
2104002–001 rev. AA

Totalflow®

EZ Block™ Builder Software
Maintenance Guide

Intellectual Property & Copyright Notice

©2009 by ABB Inc., Totalflow (“Owner”), Bartlesville, Oklahoma 74006, U.S.A. All rights reserved.
Any and all derivatives of, including translations thereof, shall remain the sole property of the Owner,
regardless of any circumstances.
The original US English version of this manual shall be deemed the only valid version. Translated
versions, in any other language, shall be maintained as accurately as possible. Should any
discrepancies exist, the US English version will be considered final.
Notice: This publication is for information only. The contents are subject to change without notice and
should not be construed as a commitment, representation, warranty, or guarantee of any method,
product, or device by Owner.
Inquiries regarding this manual should be addressed to ABB Inc., Totalflow Products, Technical
Communications, 7051 Industrial Blvd., Bartlesville, Oklahoma 74006, U.S.A.

Document Version 1.0
April 24, 2009

EZ Block Builder Software Maintenance Guide

Software Version 1.0

1 Introduction... 3
2 Build Environment.. 3

2.1 Release mode build issues with Visual Studio 2008 and .NET 3.5 SP1 3
2.2 Build procedure... 5
2.3 Building the help file .. 5

3 Design Notes... 7
3.1 Application Settings.. 7

4 Classes and methods ... 9
4.1 Function blocks (EZ blocks)... 9
4.2 Communications ... 10
4.3 Extensions ... 11
4.4 PropertiesControl .. 11
4.5 Attribute classes .. 12

5 Serialization .. 14
6 Adding new EZ Blocks to the project... 15
7 Line Routing ... 29
8 Class Listing.. 31

EZ Block Builder Software Maintenance Guide

Page 3 of 37

1 Introduction
This document is intended to serve as an aid for developers tasked with maintaining
and/or extending the EZ Block Builder application, which was developed by ProtoLink,
Inc. (www.ProtoLink.com) for ABB. It provides a road map to the documented source
code. The document assumes that the developer is familiar with the features and use of
the application and has read and thoroughly understands the contents and terminology of
the EZ Block Builder Requirements Specification.

2 Build Environment
The source code for “EZBlockBuilder.exe” was written in C# and developed using
Microsoft Visual Studio 2008, Professional Edition, with Service Pack 1 (Version
9.0.30729.1 SP) and Microsoft .NET Framework, Version 3.5, Service Pack 1.

This software was designed to execute on a computer running Windows XP Professional
SP2.

2.1 Release mode build issues with Visual Studio 2008 and .NET 3.5 SP1

At the time of the writing of this document, there is a problem with Microsoft’s .NET 3.5
SP1 bootstrapper that may cause attempts to create a release mode build of EZ Block
Builder to fail. The following workaround may be required in order to get a release-mode
build of this project to complete. The explanation that follows is taken from the Microsoft
Visual Studio 2008 Service Pack 1 Readme file.

If the .NET Framework 3.5 SP1 bootstrapper package is selected in the Prerequisite
dialog box for a Setup project or in ClickOnce publishing, and also the "Download
prerequisites from the same location as my application" option is selected, the following
build error is shown:

The install location for prerequisites has not been set to 'component vendor's web site'
and the file 'dotNetFx35setup.exe' in item 'Microsoft.Net.Framework.3.5.SP1' cannot be
located on disk.

To resolve this issue:

Update the Package Data

1. Open the [Program Files]\Microsoft
SDKs\Windows\v6.0A\Bootstrapper\Packages\DotNetFx35SP1 folder or
%ProgramFiles(x86)%\Microsoft
SDKs\Windows\v6.0A\Bootstrapper\Packages\DotNetFx35SP1 on x64 operating
systems

EZ Block Builder Software Maintenance Guide

Page 4 of 37

2. Edit the Product.xml file in Notepad.
3. Paste the following into the <PackageFiles> element:

<PackageFile Name="TOOLS\clwireg.exe" />
<PackageFile Name="TOOLS\clwireg_x64.exe" />
<PackageFile Name="TOOLS\clwireg_ia64.exe" />

4. Find the element for <PackageFile Name="dotNetFX30\XPSEPSC-x86-en-
US.exe" and change the PublicKey value to:
3082010A0282010100A2DB0A8DCFC2C1499BCDAA3A34AD23596BDB6CB
E2122B794C8EAAEBFC6D526C232118BBCDA5D2CFB36561E152BAE8F0D
DD14A36E284C7F163F41AC8D40B146880DD98194AD9706D05744765CEA
F1FC0EE27F74A333CB74E5EFE361A17E03B745FFD53E12D5B0CA5E0DD0
7BF2B7130DFC606A2885758CB7ADBC85E817B490BEF516B6625DED11DF
3AEE215B8BAF8073C345E3958977609BE7AD77C1378D33142F13DB62C9A
E1AA94F9867ADD420393071E08D6746E2C61CF40D5074412FE805246A216
B49B092C4B239C742A56D5C184AAB8FD78E833E780A47D8A4B28423C3E
2F27B66B14A74BD26414B9C6114604E30C882F3D00B707CEE554D77D2085
576810203010001

5. Find the element for <PackageFile Name="dotNetFX30\XPSEPSC-amd64-en-
US.exe" and change the PublicKey value to the same as in step 4 above

6. Save the product.xml file

Download and Extract the Core Installation Files

1. Navigate to the following URL: http://go.microsoft.com/fwlink?LinkID=118080
2. Download the dotNetFx35.exe file to your local disk.
3. Open a Command Prompt window and change to the directory to which you

downloaded dotNetFx35.exe.
4. At the command prompt, type:

dotNetFx35.exe /x:.
This will extract the Framework files to a folder named “WCU” in the current
directory.

5. Copy the contents of the WCU\dotNetFramework folder and paste them in the
%Program Files%\Microsoft
SDKs\Windows\v6.0A\Bootstrapper\Packages\DotNetFx35SP1 folder
(%ProgramFiles(x86)%\Microsoft
SDKs\Windows\v6.0A\Bootstrapper\Packages\DotNetFx35SP1 on x64 operating
systems). Note: Do not copy the WCU\dotNetFramework folder itself. There
should be 5 folders under the WCU folder, and each of these should now appear
in the DotNetFx35SP1 folder. The folder structure should resemble the following:
o DotNetFx35SP1 (folder)

o dotNetFX20 (folder
o dotNetFX30 (folder)
o dotNetFX35 (folder)
o dotNetMSP (folder)
o TOOLS folder)
o en (or some other localized folder)

EZ Block Builder Software Maintenance Guide

Page 5 of 37

o dotNetFx35setup.exe (file)

You may now delete the files and folders you downloaded and extracted in
steps 2 and 4.

2.2 Build procedure
To build the EZ Block Builder application, load the FunctionBlockDesigner solution file
(FunctionBlockDesigner.sln) into Visual Studio.

The solution is comprised of two projects. The FunctionBlockDesigner project contains
the files needed to build EzBlockBuilder.exe The Setup project takes assembles
EZBlockBuilder.exe with various support files to create an installer program.

After loading the solution, set the solution configuration to “Release” mode and hit “F6”
to begin the build. If a problem was encountered during the build operation, refer to the
section titled Release mode build issues with Visual Studio 2008 and .NET 3.5 SP1 to
ensure that any required patches have been applied.

The following files and directories will be created and placed in the solution’s
“Setup\Release” directory:

• Setup.exe
• Setup.msi
• DotNetFX35SP1
• WindowsInstaller3_1

The entire the entire contents of the “Setup\Release” will be required for an install.

For a full installation, run Setup.exe (not Setup.msi).

2.3 Building the help file
The project’s user guide was converted into a “chm” file using EC Software’s Help &
Manual, Professional Edition, Version 4.5.1 Build 1371.

If modifications to the User Guide or help file are required, first make the modifications
to the Microsoft Word document titled UserGuide.doc.

Save a copy of the user guide as an RTF file (UserGuide.RTF) and import this file into
Help & Manual.

After importing the RTF file, each section of the help file will need to be examined.
Some adjustments to the layout and formatting of the help file will be necessary since the
RTF import procedure does not perfectly maintain the look of the MS Word User Guide.

Any hyperlinks created in the user guide will be lost during this import procedure so each
hyperlink in the file will need to be manually adjusted. Note: For small changes to the

EZ Block Builder Software Maintenance Guide

Page 6 of 37

document it may be faster to simply modify help file manually and bypass the RTF
import step and avoid having to re-format the entire document.

Additional modifications will need to be made to the positioning of graphics in the help
file to make them appear to be in the same (or similar) positions to the graphics in the
user guide.

After modifications to the help file are complete, build the help file by pressing CTRL-F9
inside the Help & Manual Editor.

The output of this procedure should be a file named “UserGuide.chm”. Copy this file
over the old UserGuide.chm in the EZ Block Builder’s main solution directory and the
next time a release build of EZ Block Builder is performed, the new UserGuide.chm will
be included in the build.

EZ Block Builder Software Maintenance Guide

Page 7 of 37

3 Design Notes

3.1 Application Settings
The application stores the defaults for project setting values in the file
EZBlockBuilder.exe.config, located in the executable’s directory. The user may modify
many of these settings via the user interface. These modifications are stored in a
user.config file located in the C:\Documents and Settings\USER\Local
Settings\Application Data\FunctionBlockDesigner\ subdirectories where “USER” is
the name of the current user’s login. The customized settings for the user are loaded each
time the application runs.

The following settings are used by the application:

• TooltipsEnabled: When this Boolean value is true, tooltips are displayed
when the cursor hovers over a function block in the work area. When false, they
are not displayed.

• AliasListFile: This string value contains the full name and path to the
currently selected alias list file.

• AliasListEnabled: This boolean value is true when an alias list has been
selected for use; false otherwise.

• RecentFiles: This collection contains the names of recently opened EZ
Block Builder program files.

• LastFile: This string value contains name of the most recently opened EZ
Block Builder program file.

• MaxRangesPerRequest: This integer contains the maximum number of
ranges allowed in a device poll request.

• RemoteTimeout: This integer value contains the timeout value (in seconds)
for a remote device connection.

• PCCUSecurityCode: This string value contains the security code used for
connecting to the device.

• LocalCommPort: This integer value contains the COM port selected for device
communications.

• UseLocalMode: When true, the application uses local communication methods
to talk to the device when in serial mode. When false it uses remote
communication methods when in serial mode.

• ProfileFile: This string contains the name of the currently active profile.
• ProfileEnabled: When this boolean value is true, the application uses

profiles; when false, it does not.
• SnapToGrid: This boolean value governs if function blocks placed in the work

area are arranged along a defined grid or if they may be placed at any location in
the work area.

• ShowPins: This Boolean value determines if the input and output pins are
displayed on function blocks visible in the work area.

EZ Block Builder Software Maintenance Guide

Page 8 of 37

• UseSerial: When true, the application uses serial communication methods to
talk to the device (RS-232 or USB). When false it uses IP communication
methods (network).

• TargetIPAddress: This string contains the IP address the application will
connect with during IP mode communications

• TargetIPPort: This unsigned integer contains the port value the application
will use to connect with the device during IP mode communications.

EZ Block Builder Software Maintenance Guide

Page 9 of 37

4 Classes and methods

A design goal for the EZ Block Builder was to design the software so new blocks
could be added at a later time relatively quickly and without excessive modification
to the rest of the code base.

To that end, much of the EZ Block Builder code was designed with the idea that the
blocks themselves would be fairly sparse, ideally containing just enough information
to describe its data model and any other code required for specialized operations.

The following sections describe classes and methods that are likely to be important to
examine when performing code maintenance or upgrades.

4.1 Function blocks (EZ blocks)

The FunctionBlock base class implements much of the functionality required of EZ
blocks. (During most of the development process of Version 1.0, EZ blocks were
referred to as Function blocks and the code retains references to Function blocks.
The terms, for purposes of this document, are interchangeable.) All EZ blocks have
an associated class that extends the FunctionBlock base class. The methods described
in the remainder of this section are relevant to extending the functionality of EZ
blocks while detailed instructions on the actual procedure for creating new EZ blocks
is provided in the section titled Adding new EZ blocks to the project.

protected void Initialize()
Initialize should be called at the end of every FunctionBlock derived class's
constructor. This method initializes the input and output pin lists for the
FunctionBlock and synchronizes them with their associated array assignments by
calling SynchAppIDandArrayValues().

public virtual bool IsVisibleTo(FunctionBlock fb)
IsVisibleTo returns true if the supplied FunctionBlock can see the pins of the
current function block. Certain function blocks may exhibit special behavior such
that pins that would normally be visible to one another should not be visible. For
example, ComplexInputs should be invisible to ComplexOutputs and vice versa. These
"helper" function blocks are there to service the device function blocks. By default,
every function block is visible to every other function block as long as they share the
same parent.

public virtual bool IsFullyConfigured()
This method returns true if all the input and output pins of this function block are
fully configured; false otherwise.

EZ Block Builder Software Maintenance Guide

Page 10 of 37

public virtual void OnDrop(PageCanvas canvas)
This method is called when a function block is dropped onto the PageCanvas. The
Default action is to do nothing. The PageCanvas will automatically add the function
block. This method should be overridden if custom actions need to be performed
when particular type of function block is dropped.

public virtual string HelpString()
This method returns a brief description of the function block. It is displayed in the
property window when the function block is selected.

public void SynchAppIDandArrayValues()
This method gathers all properties of the function block pins that have the attribute
[ArrayAssignment]. It then sets the AppID and Array values for these pins to the
appropriate values.

public virtual bool IsUploadedToDevice()
This method is called to determine if this function block is a block that needs to be
uploaded to the physical device or if it is a construct such as a Complex block or an
External Location block which does not. By default, this method returns true and
should only be overridden to return false when the function block should not be
uploaded to a device.

public virtual Pin GetPinByName(string strPinName)
Given the label for an InputPin, this method returns its instance.

4.2 Communications
The Communications class handles the interaction between EZ Block Builder and the
target device.

static public bool ConnectToDevice()
Before any file upload or download operations may begin, EZ Block Builder must
establish a connection with the target device. This method attempts to establish that
connection.

static public void SaveOperationsAppToDevice(
 string strTempFileLocationOnDisk, int iAppID, int iInstance)
This method is called to initiate a file upload operation after the user chooses to save
a file to the device. The file is first saved to a temporary location on disk and then the
contents of that file are uploaded to the device. The operations application to be
saved is the app displayed in the current tab on the work area.

static public string ReadOperationsAppFromDevice(int iAppID, int iInstance,
 string strFilename)
This method is called to initiate a file download operation after the user chooses to
read a file from the device. The file is saved to filename specified or to a temporary
file if no filename is given. The method returns the path and filename where the
downloaded file was stored.

EZ Block Builder Software Maintenance Guide

Page 11 of 37

4.3 Extensions

The following extension methods are used in the project to provide a simple way to
perform common operations on several primitive classes.

public static string Description(this Enum value)
This is an extension method for the Enum class. This extension returns the text
defined in the [Description("some text")] attribute of an enumerated type.
Usage:
MyEnum obj = MyEnum.SomeEnumeratedValue;
string strDescription = obj.Description();

public static string ToStringNullSafe(this object value)
This extension method for the object class will return the normal ToString value of
an object unless the object is null in which case it returns an empty string. Unlike
ToString(), ToStringNullSafe() will not cause an exception when obtaining the
string value of a null object.

public static string ToStringFormattedForDisplay(this TimeSpan ts)
This extension method for the TimeSpan class will return the given time formatted as
HH:MM:SS

4.4 PropertiesControl

The PropertiesControl class contains the logic for automatically producting the UI
needed for configuring EZ Blocks. This control is displayed in the Properties pane on
the right side of the EZ Block Builder’s main window.

public FunctionBlock Target
To specify the function block to be displayed in the property control, set the Target
property.

public bool ValidateSettings()
If any UI element in the property control is unable to commit its property values then
this is an invalid configuration and the method will return false. This could occur, for
example, if a user entered a text string in a control that was expecting a numeric
entry. If all the settings are valid, then the method will return true.

public void ConfigureFBProperties(FunctionBlock fbSelected)
Given a function block, this method will check to see if it has any properties or
methods that are decorated with the [FBConfigurableProperty] tag. If it does, this
method will populate the properties window grid with a row that describes the
property or method and that allows the user to change the property value or call the
method.

EZ Block Builder Software Maintenance Guide

Page 12 of 37

4.5 Attribute classes

Three custom attribute classes are used through the project. This section describes
the function of these three classes.

FBConfigurablePropertyAttribute
The [FBConfigurableProperty] attribute and is used inside the application's
FunctionBlock classes to decorate properties that are configurable via the property
window. For example, a FunctionBlock-derived class may define the following
property:

[FBConfigurableProperty]
public string StringOp
{
 get { return strValue; }
 set { strValue = value; }
}

In the example shown above, the properties window will contain an entry for
"StringOp" and will allow the user to enter a new string value for the property. Note
that both get and set methods must be provided in order for this feature to work
properly. The user may also specify the Description parameter like this:

[FBConfigurableProperty(Description="Enter a string.")]
public string StringOp
{
 get { return strValue; }
 set { strValue = value; }
}

In this case the text "Enter a string." will appear as the description in the property grid
instead of "StringOp". In order to work properly with the properties window, the
return type of the property must be one of the following:

• Pin
• string
• int
• double
• any user defined enumeration

The SortOrder option determines the order the properties appear in the property
window with lower numbered sort orders appearing above higher numbered Sort
Orders.

Additional options include MinValue and MaxValue for setting boundaries on a
property's numeric values and NumLines for specifying how many lines the property
setting should take inside the property pane.

EZ Block Builder Software Maintenance Guide

Page 13 of 37

ArrayAssignmentAttribute
The [ArrayAssignment] attribute and is used inside the application's FunctionBlock
classes to decorate properties that are present in the device. For example, to define a
property with an array assignment location of 24, a class could define the following
property:

[ArrayAssignment(Location=24)]
public string Description
{
 get { return strValue; }
 set { strValue = value; }
}

An Array assignment of 9 is given to the string “Description” shown in the above
example.

It is important to set the ArrayAssignment attribute since this is the attribute that will
be checked when programming the device in order to associate uploaded elements
with their proper array assignment.

ExternalAssignmentAttribute
This [ExternalAssignment] attribute is used inside the application's
ExternalLocationFunctionBlock class to decorate properties that represent pins
providing access to registers external to the current application. For example, to
define a property as an External Assignment, a class would define the following
property:

[ExternalAssignment]
public OutputPin Output
{
 get { return outputPin; }
 set { outputPin = value; }
}

EZ Block Builder Software Maintenance Guide

Page 14 of 37

5 Serialization
Serialization is the process of persisting the state of an object to and from storage. The
application can serialize a Program in XML form to or from disk and too or from an X-
Series device.

The application makes use of the IXmlSerialize interface and the XmlArchive class. The
IXmlSerialize interface has a method named SerializeAll.
This method takes a single argument, a reference to an XmlArchive object. An
XmlArchive object is always associated with a .NET Stream or Stream derived object.
The only public constructor for the XmlArchive class takes a reference to a Stream object,
a boolean indicating whether the Archive object will be used for reading or writing (true
for writing), and a string to define the default namespace of the object being stored. Once
an XmlArchive object is created, it can be used for reading or writing – depending on the
boolean used in construction. An XmlArchive object can never be used for both reading
and writing.

Internally, the XmlArchive class uses the .NET XmlDocument class to read Streams and the
StreamWrite class to write them. The XmlArchive class provides generic Write and
WriteCollection methods for writing primitive types such as ints, strings, floats, etc
or collections or these primitives respectively. In addition the XmlArchive class provides
a WriteClass method that can write any object that implements the IXmlSerialize
interface. For reading, the XmlArchive class provides methods analogous to the
previously describe write methods with the notation “Read” instead of “Write”.

In addition to the Program class implementing the IXmlSerialize interface, all types of
objects contained in the Program class that need to be serialized (such as EZ Blocks) also
implement the IXmlSerialize interface. In general, each type of object is responsible for
being able to serialize itself to and from an XmlArchive object. Special attention is
required when dealing with derived classes that implement IXmlSerialize when the class
they inherit from also supports IXmlSerialize. In this case the base class should declare
the SerializeClass method as virtual. The overridden method in the derived class
should always call the base classes SerializeClass method as the first thing it does. The
key concept is that each class is responsible for only data items that it contains directly
and not for any items in the base class or further derived classes. This makes all
serialization code local to a single class. If a new data member is added to a class the
only serialization code that needs to be modified is the SerializeClass method in that
class.

One advantage of this approach is that it allows very fine grained control of the
serialization of individual objects in a complex hierarchy of objects. The Program class
contains several collections of other objects. Each of these objects is potentially complex
and can contain many individual elements as well as collections of other objects.

EZ Block Builder Software Maintenance Guide

Page 15 of 37

6 Adding new EZ Blocks to the project
EZ Block Builder was designed with the idea that new EZ blocks would be added to the
project without the need for excessive modifications or extensive user interface or
graphics changes.

This section describes the steps required for adding an EZ block to the project by way of
an example. In this example the programmer will add a new EZ block named
“HiLoFunctionBlock” to the project.

1) Define a specification for the EZ Block
Before an EZ block can be added to the tool, the following attributes must be defined:

• The number of inputs it takes
• Zero or more configurable properties
• An output
• A property summary format
• The register number for the “Capacity” setting inside the device.

The inputs, properties, and output of an EZ block are stored within specific arrays in the
Operations application on the X-Series device. The following tables describe the
requirements for the example HiLo EZ block and provide the array assignments for its
constituent components. A table describing the property summary format is also
provided. The tool will display the property summary on the graphical depiction of the
block. With this information, a programmer can now begin the process of adding the
new EZ block to the application.

Note that the transfer function for the HiLo block is not required because it is not relevant
to the operation of the EZ Block designer. The array assignments given in the example
specification below are ficticious, as is the HiLo block itself. These values are used only
for purposes of illustrating the process of creating a new EZ Block.

HiLo Block Inputs:

Name Pin Label Array Assignment

R1 R1 9
R2 R2 10

HiLo Block Properties:

Name Type Array
Assignment

Enumeration List Items

Description String 24 N/A

EZ Block Builder Software Maintenance Guide

Page 16 of 37

Operation Enumeration 8
String Value
None 0

High Value 1
Low Value 2

HiLo Block Output:

Name Array Assignment
N/A 7

HiLo Block Property Summary Format:

Line Format

1 FB Type : Description
2 Operation

Register assignments:

Register Value
Capacity 50

2) Create a 16x16 pixel GIF image for the function block.

 Freeware such as Paint.Net is adequate for creating simple icons with a transparent
background. This is the graphic that will be displayed in the toolbox and in the property
pane of the application.

3) Add GIF image to the project

Copy the GIF to the project’s “images” folder and add the icon to the project by right-
clicking on “images” in the Solution Explorer and selecting Add | Existing Item…

4) Create the HiLoFunctionBlock class

Add a new class to the project and name it “HiLoFunctionBlock”.

5) Edit the class

The commented HiLo block code is given below. Refer to the bolded comments in the
code below for detailed explanations of important features of the code.

// FunctionBlockDesigner.Extensions provides access to helpful
// extension methods such as ToStringNullSafe that prevents

EZ Block Builder Software Maintenance Guide

Page 17 of 37

// the developer from having to manually
// perform a null check on an object
// before performing a ToString() operation

using FunctionBlockDesigner.Extensions;
using System.ComponentModel;
using System.Windows.Media;
using System.Windows;

namespace FunctionBlockDesigner
{
 // All EZ blocks (also referred to as function blocks in this code)
 // must inherit from the base class FunctionBlock

 public class HiLoFunctionBlock : FunctionBlock
 {
 // According to the example specification, the HiLo block contains
 // an Operation property that has three enumeration list items
 // None:0 , High Value:1 , Low Value:2
 // The HiLoOperation enumeration below is used to produce this mapping
 // The text that appears inside the [Description] attributes for each
 // entry is the text that will appear in the "Hi Lo Operation" combo
 // box in the properties pane.

 public enum HiLoOperation
 {
 [Description("None")] None = 0,
 [Description("High Value")] Hi = 1,
 [Description("Low Value")] Lo = 2
 };

 // Define all the input and output pins as class variables
 // Each will be initialized in the constructor

 private Pin m_R1;
 private Pin m_R2;
 private Pin m_Output;

 // The HiLo Operation variable is defined here and is
 // given a default value of "None".
 private HiLoOperation m_eOperation = HiLoOperation.None;

 // The following three property getters and setters define the public
 // properties of the HiLo blocks input pins, output pin, and
 // Enumeration operation.
 // Every pin definition of an EZ block class will
 // follow the general pattern outlined below.

 // The [FBConfigurableProperty] attribute and is
 // used inside the application's FunctionBlock classes to decorate
 // properties that are configurable via the property window.
 // For example, if a FunctionBlock-derived class defines
 // the following property:
 //

EZ Block Builder Software Maintenance Guide

Page 18 of 37

 // [FBConfigurableProperty]
 // public string StringOp
 // {
 // get { return strValue; }
 // set { strValue = value; }
 // }
 //
 // then the properties window will contain an entry for "StringOp"
 // and will allow the user to enter a new string value
 // for the property. Note that both get and set methods
 // must be provided in order for this feature to work properly.
 // The user may also specify the Description parameter like this:
 //
 // [FBConfigurableProperty(Description="Enter a string.")]
 // public string StringOp
 // {
 // get { return strValue; }
 // set { strValue = value; }
 // }
 //
 // In this case the text "Enter a string." will appear as the
 // description in the property grid instead of "StringOp".
 //
 // In order to work properly with the properties window,
 // the return type of the property must be one of the following:
 // Pin
 // string
 // int
 // double
 // any user defined enumeration
 //
 // The SortOrder option determines the order the properties
 // appear in the property window with lower numbered
 // sort orders appearing above higher numbered Sort Orders
 //
 // Additional options include MinValue and MaxValue
 // for setting boundaries on a property's numeric values and
 // NumLines for specifying how many lines the property
 // setting should take inside the property pane. Refer to other
 // FunctionBlocks in the application for examples on how to use
 // these additional options.

 // The [ArrayAssignment] attribute and is used inside the
 // application's FunctionBlock classes to decorate
 // properties that are present in the device.
 // In the Pin R1 shown below, for example,
 // the Array Assignment 9 is given to this property.
 // This was the array assignment given to R1 in the example
 // specification. It is important to set the ArrayAssignment
 // attribute since this is the attribute that will be checked
 // when programming the device in order to associate the Pin
 // with the array assignment.

EZ Block Builder Software Maintenance Guide

Page 19 of 37

 [FBConfigurableProperty(SortOrder = 1)]
 [ArrayAssignment(9)]
 public Pin R1
 {
 get { return m_R1; }
 set { m_R1 = value; }
 }

 [FBConfigurableProperty(SortOrder = 2)]
 [ArrayAssignment(10)]
 public Pin R2
 {
 get { return m_R2; }
 set { m_R2 = value; }
 }

 [FBConfigurableProperty]
 [ArrayAssignment(24)]
 public Pin Output
 {
 get { return m_Output; }
 set { m_Output = value; }
 }

 [FBConfigurableProperty(Description = "HiLo operation")]
 [ArrayAssignment(8)]
 public HiLoOperation Operation
 {
 get { return m_eOperation; }
 set { m_eOperation = value; }
 }

 // The Name property is a special property that is common to each
 // EZ block.No SortOrder option is required in the
 // [FBConfigurableProperty]attribute since the name always appears
 // at the very top of the property pane. It is still important

 // to specify the ArrayAssignment value. The "Description" field
 // in X-Series device is the same thing as the

 // "Name" of the EZ Block. It is given the array assignment 24 as
 // required by the example specification.

 [FBConfigurableProperty]
 [ArrayAssignment(24)]
 public override string Name
 {
 get { return m_strName; }
 set { m_strName = value.Trim(); }
 }

 // Every EZ block must override the ImageResourcePath property
 // and return the relative path to the associated GIF image file
 // that will be used as the icon for the block. Project images
 // reside in the "images" subfolder as shown below.

EZ Block Builder Software Maintenance Guide

Page 20 of 37

 public override string ImageResourcePath
 {
 get { return @"images\HiLo.gif"; }
 }

 public HiLoFunctionBlock()
 : base()
 {
 // Assign the m_strType and m_strName strings
 // to be the name of the EZ Block. In most cases
 // the string used for both will be identical however
 // they may be different if it is desired that the
 // name shown to the user m_strName is different from the
 // name used internally to reference the class.

 m_strType = "HiLo";
 m_strName = m_strType;

 // The input and output pins are initialized next.
 // Note that each pin is assigned a PinType.
 // The PinType determines if a pin is an input or output
 // and what kind of other pins it can be connected to.
 // The are four types of Pins supported:
 // ValueConsumer - A pin that can read a single value
 // ValueSupplier - A pin that can supply a value
 // ReferenceConsumer - A pin that can read a device address
 // ReferenceSupplier - A pin that can supply a device address
 // For most EZ Blocks, the input pins will be ValueConsumers
 // and the output pin will be a ValueSupplier.

 R1 = new Pin(this, PinType.ValueConsumer, "R1");
 R2 = new Pin(this, PinType.ValueConsumer, "R2");
 Output = new Pin(this, PinType.ValueSupplier);

 // Call the base class initializer as the last
 // act of the constructor

 base.Initialize();
 }
 }
}

6) Enable drag/drop capabilities

Now that the HiLo EZ Block has been added to the project, it must be added to the list of
acceptable drag/drop types known to the work area’s canvas.

In PageCanvas.cs, add typeof(HiLoFunctionBlock) to the static array of Types contained
in s_dragDropAcceptableTypes.

EZ Block Builder Software Maintenance Guide

Page 21 of 37

7) Place HiLo in the toolbox

In order for HiLo to appear in EZ Block Builder’s toolbox, a single line of code is
needed.

In the InitializeToolbox() method of MainWindow.cs, add the following line.

listBox1.Items.Add(new ToolBoxItem("HiLo", typeof(HiLoFunctionBlock),
@"images\HiLo.gif", "HiLo Block"));

EZ Block Builder Software Maintenance Guide

Page 22 of 37

8) (Optional) Run the application
This is all the code needed to enable the HiLo function block for inside the UI. More
work will be required to get serialization and device communication working but running
the application now will produce the following:

Note that the HiLo object now appears in the toolbox along side its icon. A user can drag
the HiLo block onto the work area and see that it is named “HiLo0”, it has input pins

EZ Block Builder Software Maintenance Guide

Page 23 of 37

labeled R1 and R2, and one output pin. In the property pane, the R1 and R2 inputs have
associated combo boxes. The HiLo block’s pins are fully functional and if other EZ
blocks are added to the work area, the HiLo block can be connected to them. A “HiLo
operation” property combo box is present pre-populated with the options “None”, “High
Value”, and “Low Value” as called for in the specification. Entries for name and
comment fields also appear. A tooltip is also available for the block and is displayed
when a user hovers over the block when the global tooltips option is enabled.

This functionality was achieved by defining a few properties and writing a class
constructor. No graphics code was required, no UI code was required for populating the
property pane, and no conditional logic was required for getting the EZ block to operate
in conjunction with other types of EZ Blocks.

As stated above, some additional code will be required in order to customize the HiLo
block, add serialization, and to make it function during device uploads but the above code
is all that’s needed to produce a starting point for these customizations.

The following steps will add these needed additional features.

9) Add remaining features to the EZ block

The code listed below should be inserted into the HiLoFunctionBlock class to add
serialization, custom drawing, comparison checking and other features to the block.
Each code segment is commented in detail in bold text. This code completes the
HiLoFunctionBlock class.

 // If special drawing code is needed to render text or
 // other visual elements inside the EZ block, override
 // RenderFunctionBlockVisualContent.
 // In the example specification for the HiLo block, we
 // are to display the HiLo operation selected by the user
 // inside the block. The following code shows how to
 // accomplish this.

 internal override void RenderFunctionBlockVisualContent
 (DrawingContext dc, int iHighlight, double dOffsetX, double dOffsetY)
 {
 // Each enumerated value in the HiLoOperation has
 // a [Description] attribute that contains a text string.
 // The following line of code, get's that string and
 // places it in a FormattedText object.

 FormattedText text = FormatText(m_eOperation.Description());

 // The following code draws the formatted text centered
 // horizontally in the block and 70 pixels below the top
 // of the block.

 double dWidth = text.Width;

EZ Block Builder Software Maintenance Guide

Page 24 of 37

 dc.DrawText(text, new Point(dOffsetX + (m_dWidth - dWidth) / 2,
dOffsetY + 70));
 }

 // EZ Block Builder has the ability to check each function block
 // in a program to determine if it is fully configured.
 // Unconfigured blocks can be reported to the user so he can
 // make changes as necessary.
 // The FunctionBlock's base class implementation of IsFullyConfigured
 // will interrogate each input and output to see if it is connected
 // and return false if it detects a problem.
 // Some EZ Blocks may want to override this method however in order
 // to perform checking that is specialized to the block.
 // For example, HiLo's implementation of IsFullyConfigured will
 // return true even when its inputs are configured when the
 // selected operation is "None".

 public override bool IsFullyConfigured()
 {
 // Check to see if the input pins are required for this
 // configuration

 if (Operation != HiLoOperation.None)
 {
 // The operation is not "None", so only return "true" if
 // both inputs are configured.

 return (R1.IsFullyConfigured() &&
 R2.IsFullyConfigured());
 }

 // In this example, HiLo is considered to be fully
 // configured any time the operation is set to "None".

 return true;
 }

 // The Help string is the text that appears in the lower portion of
 // the property window when the block is selected.
 public override string HelpString()
 {
 return "HiLo block";
 }

 // GetHashCode must be overridden using the normal rules
 // for .NET and C# to produce a suitable hash code.
 // As a general rule, GetHashCode() should be overridden
 // any time Equals() is overridden.

 public override int GetHashCode()
 {
 string strHash = string.Format("{0}{1}{2}{3}", base.GetHashCode(),
R1.ToStringNullSafe(), R2.ToStringNullSafe(), Operation.ToStringNullSafe());
 return strHash.GetHashCode();
 }

EZ Block Builder Software Maintenance Guide

Page 25 of 37

 // Override the Equals method so that a comparison of two
 // HiLo objects that are configured identically produce
 // a result of "true"

 public override bool Equals(object obj)
 {
 if (obj is HiLoFunctionBlock)
 {
 // Call the base class Equals
 // operation to compare the class name
 // and type fields.

 if (base.Equals(obj))
 {
 HiLoFunctionBlock fb = (obj as HiLoFunctionBlock);

 // This method will return true only when the object
 // being compared is an identically configured
 // HiLo block.

 return ((R1.Equals(fb.R1) &&
 R2.Equals(fb.R2) &&
 (Operation == fb.Operation)));
 }
 }

 return false;
 }

 // Serialization is the process of loading an EZ block
 // from a file, saving it to a file, loading it into
 // memory for a copy operation, or reading it from
 // memory for a paste operation.

 // In most cases, the SerializeAll method for an EZ block
 // will be exactly as shown below. SerializeAll is called
 // during file save/load operations to begin the
 // process of serializing the class.

 public override void SerializeAll(XmlArchive ar, string strInstance)
 {
 ar.SerializeClass(strInstance, this);
 }

 // SerializeBody is where the work of saving and loading
 // the EZ block to/from an XML file occurs.
 // This usually involves writing code to save and
 // load the various block properties as described
 // in the code below.

 public override void SerializeBody(XmlArchive ar)
 {
 // The first thing that must be done during a read
 // or write operation is to call the base

EZ Block Builder Software Maintenance Guide

Page 26 of 37

 // class implementation of SerializeBody.
 // This will cause the user-configurable
 // properties that are common to all EZ blocks
 // (such as the Name of the block,
 // the position of the block in the work area,
 // etc.) to be serialized.

 base.SerializeBody(ar);

 // The XMLArchive that is passed to SerializeBody
 // contains a boolean named IsStoring.
 // This value will be true when it is desired to
 // write the object to an XML file and
 // false when it is desired to read the object from
 // an XML file

 if (ar.IsStoring)
 {
 // This is a write operation.
 // Any customized properties must be written.
 // In the case of the example HiLo block there are
 // three user-configurable properties that need
 // to be saved: R1, R2, and the Operation property
 // Note that the Output pin is not being serialized
 // because it is a supplier of data, not a consumer.

 ar.Write("R1", m_R1);
 ar.Write("R2", m_R2);

 // The following notation saves the Operation
 // enumeration as an integer value.

 ar.Write<int>("Operation", (int)m_eOperation);
 }
 else
 {
 // This is a read operation.
 // Any customized properties must be read.
 // In the case of the example HiLo block there are
 // three user-configurable properties that need
 // to be read: R1, R2, and the Operation property

 // Reading a pin is a two step process.
 // First, read the pin by passing a reference to the
 // pin to the XMLArchive's Read method.

 ar.Read("R1", ref m_R1);

 // Next, "hook" the pin to the Function block by
 // setting the pin's FunctionBlock property to this.
 // This pattern will be repeated for every EZ block
 // pin that is read. This is shown below when R2
 // is also read from the XML file.

 m_R1.FunctionBlock = this;

EZ Block Builder Software Maintenance Guide

Page 27 of 37

 // All pins follow the same read procedure as outlined
 // above.

 ar.Read("R2", ref m_R2);
 m_R2.FunctionBlock = this;

 // The HiLo Operation enumeration is stored in XML as
 // an integer value so the following code, reads that
 // value and casts it to a HiLoOperation.
 // If for any reason, the read operation is unsuccessful,
 // m_eOperation is left unchanged.

 int iReadEnumVal = 0;
 m_eOperation = ar.Read("Operation", ref iReadEnumVal) ?
(HiLoOperation)iReadEnumVal : m_eOperation;
 }
 }

 // This additional Serialize method is used for binary
 // serializations that take place during copy/paste operations.
 // It follow much of the same pattern used for the XML
 // serialization used above.

 public override void Serialize(ProtoLink.Archive ar)
 {
 // The base class serialization method must
 // be called first

 base.Serialize(ar);

 if (ar.IsStoring)
 {
 // This is a write operation.
 // Any customized properties must be written.
 // In the case of the example HiLo block there are
 // three user-configurable properties that need
 // to be saved: R1, R2, and the Operation property
 // Note that the Output pin is not being serialized
 // because it is a supplier of data, not a consumer.

 ar.Write(m_R1);
 ar.Write(m_R2);

 // Enumeration values such as m_eOperation may
 // be stored as integer values

 ar.Write((int)m_eOperation);
 }
 else
 {
 // This is a read operation.
 // Any customized properties must be read.
 // In the case of the example HiLo block there are
 // three user-configurable properties that need

EZ Block Builder Software Maintenance Guide

Page 28 of 37

 // to be read: R1, R2, and the Operation property

 // Reading a pin is a two step process.
 // First, read the pin by passing a reference to the
 // pin to the XMLArchive's Read method.

 ar.Read<Pin>(ref m_R1);
 ar.Read<Pin>(ref m_R2);

 // Next, "hook" the pin to the Function block by
 // setting the pin's FunctionBlock property to this.
 // This pattern will be repeated for every EZ block
 // pin that is read.

 m_R1.FunctionBlock = this;
 m_R2.FunctionBlock = this;

 // The HiLo Operation enumeration is stored as
 // an integer value so the following code, reads that
 // value and casts it to a HiLoOperation.

 int iOperation = ar.ReadInt32();
 m_eOperation = (HiLoOperation)iOperation;
 }
 }

10) Configure EZ block capacity location

Each EZ block that has a corresponding function inside the device has a capacity register.
This capacity register, which resides inside the device, contains a value which is the
number of instances of a particular block type that is present in the program. In the
example specification, the register location is “1”.

Add the following value to the FBCapacityRegister enumeration of the Communications
class:
[Description("HiLo")] HiLo = 50

Examine the ComputeCapacities() method of the Communications class. The method has
an “if” block that sets a capacity table to a value depending on the EZ Block type. Insert
the following code in the “if” block:
 …
 else if (fb is HiLoFunctionBlock)
 {
 dictCapacityTable[FBCapacityRegister.HiLo]++;
 }
 …

EZ Block Builder Software Maintenance Guide

Page 29 of 37

11) Add ability to read EZ block from device

When a HiLo block is read directly from the device registers instead of from an XML
file, EZ Block Builder must instantiate the block for use by the end-user.

Examine the LoadDeviceConfigurationFromRegisters() method of the
LoadFileFromDeviceWindow class. The method contains a switch statement that checks
the FBCapacityRegister value of the current register dictionary.

Add the following code to the switch block:

case Communications.FBCapacityRegister.HiLo:
 HiLoFunctionBlock hiLoFB = new HiLoFunctionBlock();
 ReadNonPeriodicRegistersFromDevice(iAppID, iInstance,
 dictCurrentRegister[kvpEntry.Key]++, hiLoFB);
 AddFunctionBlockFromDevice(pNewProgram, hiLoFB, m_dX, m_dY);
 break;

12) Test the application

The example HiLo block is now fully implemented. Since the HiLo block does not
actually exist on the device, attempting to upload or download the block will, of
course, fail, however the steps followed in the creation of this example block can be
reused when creating new EZ blocks for use with the EZ Block Builder application.

7 Line Routing

EZ Block Builder automatically routes lines (Connectors) that connect function blocks.

EZ Block Builder uses an implementation of the “Corner Stitching” data structures and
algorithms described in a paper by John K. Ousterhout entitled “Corner Stitching: A Data
Structuring Technique for VLSI Layout Tools”. The basic corner stitching data structure
is the Tile. All the workspace is divided into non-overlapping tiles. The tiles can either
represent occupies space (used by a FunctionBlock) or empty space (available to route
lines through). Each tile maintains a reference to its immediate neighbors at its corners.
These references are the “stitches”. There are eight stitches for each tile: TopLeft,
TopRight, BottomLeft, BottomRight, LeftTop, LeftBottom, RightTop and RightBottom.
There are various algorithms for basic operations such as inserting tiles, finding all of a
tile’s neighbors along a specific edge, etc.

Another paper used for reference was “A Novel Algorithm for Line Routing in
Hierarchical Diagrams” by Tobias Reinhard, et al. It describes methods for finding
optimum routes for lines connecting non-space blocks.

EZ Block Builder Software Maintenance Guide

Page 30 of 37

The diagram below shows a sample of how the tiling is used. The space tiles are outlined
in red. They are not shown during the normal operation of the program. All lines that
connect function blocks must be routed through space tiles.

If an EZ Block Builder program is laid out in such a way that there is not a possible path
(a block is completely surrounded and boxed in by other function blocks for instance),
then the line routing algorithm defaults to a simple route that doesn’t avoid other blocks.

The line routing algorithm contains a post processing step to look for line intersections
after all lines have been routed. The algorithm then adds “line hops” over all intersecting
lines to make the program more readable.

.

EZ Block Builder Software Maintenance Guide

Page 31 of 37

8 Class Listing
Class Description
AboutDialog This window displays “About EZ Block

Builder” dialog
AliasListCategory This class is used to serialize a Category

element of an Alias list to XML.
AliasCreationWindow This window displays the “Create Alias”

dialog, launched when the user selects the
“Create Alias” button from an External
Location function block’s property page.

AliasListArchive This class is used to read and write alias list
files.

AliasListEntry This class is used to serialize an entire alias
entry list to XML.

AliasListParameter This class is used to serialize a Parameter
element of an Alias list to XML.

AppTypeManager This class is used to process the
AppTypes.xml file

Archive.cs This class contains methods used for
function block copy/paste operations.

ArrayAssignmentAttribute This class defines the [ArrayAssignment]
attribute and is used inside the application's
FunctionBlock-derived classes to decorate
properties that are present in the device.

ArrayFunctionBlock This class defines the capabilities of an
Array Function Block

AssignmentControl This class contains the control used in the
Options dialog for configuring the various
assignments.

AssignmentWindow This is the shell class for the options dialog
BitFunctionBlock This class defines the capabilities of a Bit

Function Block
BoundaryItem This class is used in lists to encapsulate

exposed pin classes contained in function
blocks.

CommConfigDialog This window allows the configuration of
the communication setting options.

Communications This class contains the logic required for
connecting and communicating with X-
series devices.

CompareFunctionBlock This class defines the capabilities of a
Complex Function Block

ComplexFunctionBlock This class defines the capabilities of a
Complex Function Block

EZ Block Builder Software Maintenance Guide

Page 32 of 37

ComplexInputBase This abstract class derives from
FunctionBlock and provides the base
functionality for the ComplexValueInput
and ComplexReferenceInput classes.

ComplexOutputBase This abstract class derives from
FunctionBlock and provides the base
functionality for the ComplexValueOutput
and ComplexReferenceOutput classes.

ComplexReferenceInput This class derives from ComplexInputBase
and provides the functionality required to
provide reference inputs to a complex
function block.

ComplexReferenceOutput This class derives from ComplexInputBase
and provides the functionality required to
provide reference outputs to a complex
function block.

ComplexValueInput This class derives from ComplexInputBase
and provides the functionality required to
provide value inputs to a complex function
block.

ComplexValueOutput This class derives from ComplexInputBase
and provides the functionality required to
provide value outputs to a complex
function block.

ConnectionStatusControl This class defines a user control that
displays the current connection status with
an X-Series device.

Connector This class defines a program elements used
to express a relationship between two
function blocks.

ConnectorEndBlock This helper class is used by the Connector
class to define the function of the
connector’s endpoints.

ConnectorEndVisual This helper class is used by the Connector
class to define the visual properties of the
connector’s endpoints.

Constants This class contains constant values used
throughout the application.

DevAppListViewDataItem This wrapper class is used by various list
views when a text representation of an App
ID is desired.

Device This class contain a variety of methods
used to interact with the device durinf file
upload and download operations.

EZ Block Builder Software Maintenance Guide

Page 33 of 37

DeviceApplication This data class encapsulates information
about applications that exist within the X-
Series device.

DrawingPage This class is used to represent a printable
page of the work area

DrawingPagePaginator This class is used to determine how to
divide the work area into separate prinable
pages.

ExtensionMethods This class defines the various C# extension
methods used throughout the application.

ExternalAssignmentAttribute This class defines the
[ExternalAssignment] attribute and is used
inside the application's External Location
Function Block class to decorate properties
that represent pins providing access to
registers external to the current application

ExternalLocationFunctionBlock This class defines the capabilities of an
External Location Function Block

FBConfigurablePropetyAttribute This class defines the
[FBConfigurableProperty] attribute and is
used inside the application's Function
Block classes to decorate properties that are
configurable via the property window.

FBPropertySummaryWindow This class defines the window displayed as
function block tooltips.

FunctionBlock This class serves as the base class for the
other function block classes and provides a
set of common methods and properties.

FunctionBlockVisual A function block drawing visual class.
FunctionBlockVisualPair A wrapper class that associates a function

block visual with a function block.
HSegment This class is used to represent a horizontal

line segment. This class is used for line
routing purposes.

HSegmentCollection This class contains a collection of
VSegments.

InputPinVisual An input pin drawing visual class.
InputPropertyControl A wrapper class for a combo box used to

represent input properties in the function
block’s properties pane.

IXmlSerialize This interface provides the contract needed
for objects to read themselves from disk
and to write themselves to disk.

LagFunctionBlock This class defines the capabilities of a Lag
Function Block

EZ Block Builder Software Maintenance Guide

Page 34 of 37

LeadFunctionBlock This class defines the capabilities of a Lead
Function Block

LimitFunctionBlock This class defines the capabilities of a
Limit Function Block

ListViewItemStyleSelector A utility class that performs alternate-row
shading on list views

LoadFileFromDeviceWindow This class displays a window that can be
used to select a program file from a
connected device for downloading into the
application.

LoadSelectionWindow This informational dialog is presented
when the user must decide if the
application should load a program directly
from the device’s registers or from a
previously saved program file.

LogEvent A helper class used for logging events.
MainWindow The application’s main window containing

the work area, property pages, toolbox,
menus and other program elements.

MathFunctionBlock This class defines the capabilities of a Math
Function Block

OptionsManager The options window contains various
global settings such as alias list and profile
selections.

OutputPinVisual The output pin’s drawing visual
OutputPropertyControl A wrapper class for a combo box used to

represent an output property in the function
block’s properties pane.

PageCanvas This class is the canvas used in the work
area of the main window of the application.

PageSetupWindow This window allows the user to configure
various options regarding the work area
and printed page layouts.

PaperSize This class is used to encapsulate the page
size settings used during printing
operations.

PeriodicFunctionBlock This class defines the capabilities of a
Periodic Function Block

PIDFunctionBlock This class defines the capabilities of a PID
Function Block

Pin This class is used by function blocks to
define how they may be connected with
other function blocks. The pin class may
be configured to behave as an input or
output.

EZ Block Builder Software Maintenance Guide

Page 35 of 37

Plane This class is used for line routing purposes.
The Plane object is composed of multiple
non-overlapping Tile objects that spatially
represent the entire work area.

PrintPreviewWindow This class is used to show a WYSIWYG
representation of the printed output.

PriorityQueue This class is used in the routing logic of the
Connector class to help determine the
appropriate tile to use during line drawing
operations

ProfileArchive This class encapsulates the functionality
required to read and write profile XML
files.

ProfileInstanceNameWindow This window allows the user to name or
rename instances associated with a profile
entry.

ProfileListViewDataItem This wrapper class is used by the profile
listview to hold the data associated with a
profile entry.

ProfilePropertiesWindow This window displays detailed information
about the currently selected profile.

Program This class represents a complete
application program. Serializing this class
results in an application program file.

ProgramControl This class associates a program with a page
canvas so that it may be displayed visually.

ProgramTabItem This class represents an individual tab of in
the work area’s tab control.

ProgramTreeView This class displays a program’s complex
function block hierarchy in visual form.

ProgramValidationWindow This window contains the functionality
required to validate if a program is
complete and ready for upload to a device.

PropertiesControl This window is displayed as part of the
main window and contains detailed
information about the currently selected
function block. A user may modify the
configuration of the selected function block
using the user interface elements provided
by this class.

PulseFunctionBlock This class defines the capabilities of a
Pulse Function Block

QueueFunctionBlock This class defines the capabilities of a
Queue Function Block

RampFunctionBlock This class defines the capabilities of a
Ramp Function Block

EZ Block Builder Software Maintenance Guide

Page 36 of 37

Range This class is used during X-series device
communications to specify a set of
registers on which to operate.

RegisterPromptWindow This window is displayed when the
application needs to determine if an
application register should be re-used or
reserved.

SaveFileToDeviceWindow This window allows a user to selected a
location within an X-Series device to save
a device and to begin the save operation.

ScalarBox This wrapper class contains the UI element
used to enter numeric data in the property
page.

ScaleFunctionBlock This class defines the capabilities of a
Scale Function Block

Segment This class represents a line segment used
for line routing purposes. It is the base
class for HSegment and VSegment.

SelectFunctionBlock This class defines the capabilities of a
Select Function Block

TextBoxBlock This class represents the capabilities of a
Text Box Block.

Tile This class is used for line routing purposes.
The PageCanvas class has a single instance
of a Plane class. The Plane is divided into
multiple non overlapping Tile objects.
Tiles can represent areas that contain
FunctionBlocks as well as areas that
contain empty space.

TimeSpanBox This wrapper class contains the UI element
used to enter time information in the
property page.

ToolBoxItem This class is used to visually represent
items that may be dragged onto the work
area from the toolbox.

Variable This class is used during X-series device
communications to specify a variable entity
inside the device.

VSegment This class is used to represent a vertical
line segment. This class is used for line
routing purposes.

VSegmentCollection This class contains a collection of
VSegments.

XmlArchive This class contains methods used to
serialize program information to disk in
XML form.

EZ Block Builder Software Maintenance Guide

Page 37 of 37

XSeriesAddress This class encapsulates the address values
required for writing and reading data from
an X-series device.

XSeriesComm This class contains methods that manage
the lifecycle of X-series communication
sessions.

ABB Inc.
Totalflow Products
7051 Industrial Blvd.
Bartlesville, Oklahoma 74006

Tel: USA (800) 442-3097

International 001-918-338-4880

