PRODUCT INFORMATION

EARTHQUAKE CALCULATION ON TAP-CHANGER, TYPE UZE/UZF

General

The transformer and its foundation is assumed to be rigid but not stiff, so the ground acceleration \(a_{HG} \) is considered to be amplified through the transformer tank to the tank cover with the amplification factor \(K \), which is prescribed to be 1.5 (IEC 1463).

Static calculation on a somewhat flexible structure, taking into consideration the response factor \(R \) as an alternative to the method by dynamic analysis, gives a simple and at the same time a more conservative method for calculation.

The bending moment \(M_s \) in the critical cross-section on the part of the tap-changer under consideration is then calculated from an equivalent acceleration \(a_{MP} \) of the centre of gravity of that part:

\[
M_s = a_{MP} \times h \times m_p
\]

The acceleration \(a_{MP} \) is calculated from the cover acceleration \(a_{HC} \) by multiplication with a coefficient \(S_c \) and the response factor:

\[
a_{MP} = a_{HC} \times S_c \times R
\]

The value of \(S_c \) depends on the natural frequency of the mounted part and if no value is known, the conservative value \(S_c = 1.5 \) should be used. This coefficient aims to take into account the effects of both multifrequency excitation and multimode response. \(R \) can be assumed to be equal to the conservative value 1.74 when information for frequency and damping of the tap-changer on a transformer is not available. This value corresponds to the frequency range 2.4 Hz to 9 Hz and 5% damping ratio.
Calculation

(Calculation of the load and stress on the clamping screws of the tap-changer's epoxy resin moulding)

For the tap-changer UZE/UZF is the following valid:

\[h_1 = 0.7 \text{ m} \quad h_2 = 3.0 \text{ m} \quad \text{(Conservative values)} \]
\[m_{pl} = 40 \text{ kg} \quad h_1 = 0.25 \text{ m} \quad K = (h_1/h_2) \times 1.5 \quad R = 1.74 \quad S_c = 1.5 \]

Assume the strongest type of earthquake with a ground acceleration level \(a_{HG} = 0.5g \) (Richter scale >7.0) which gives that:

\[a_{HG} = 5 \text{ m/s}^2 \quad a_{HC} = K \times a_{HG} \quad a_{MP} = a_{HC} \times S_c \times R \]

The bending moment \(M_s \) in the critical cross-section will be:

\[M_s = a_{MP} \times h \times m_p \quad M_s = 45.675 \text{ Nm} \]

The force \(F \) from the acceleration is:

\[F = a_{MP} \times m_p \quad F = 182.7 \text{ kg \cdot m \cdot s}^{-2} \]

The distance \(h_{E2} \) between the clamping screws which hold the epoxy resin moulding is 240 mm. Six screws M16 on each side clamp the moulding and are prestressed to about 8 kN. The balance between the force \(F \) from the acceleration \(a_{MP} \) and the reaction forces \(F_2 \) at the clamping area gives that \(F_2 = 190 \text{ newton} \). It means that even a single screw (with prestress of 8 kN) would be enough to take care of the force \(F \) from the earthquake acceleration. In practice the number of screws is six.

NOTE: The mass \(m_p = 40 \text{ kg} \) does not include the part of the epoxy resin moulding, which is close to the transformer wall connection.

(Ref.file for calculations: earthuz.mcd)