Profile Mill Advanced Service Portfolio
Value Added Services
Motivation

How can I Ensure Availability?
How can I Improve Productivity & Yield?
How can I Optimize Energy?
How can I Maintain Quality?
What ABB can offer to address these

ProfileOpt

A physics based mathematical model to simulate and optimize rolling conditions

Profile Mill Fingerprint

Questionnaire based, find out the life cycle status of the automation and drives equipment.

Technical Audit by intelligent and automated tool, to capture the long term trends

Advanced Service Offering for Profile Mills
What is ProfileOpt?

- Model based optimization service for Profile Mills (Bar Mills, Wire Rod Mills), which is used to simulate and optimize rolling conditions.

- Solution combining physics based models with ABB’s rich process know-how

![Diagram showing Level 1 System with mill setup/pass schedule values for reduction factor for speeds, roll gaps and new mill setup values for implementation from ProfileOpt.](image-url)

ABB
ProfileOpt
Customer Benefits

Savings in rolling energy with same billet temperature

- A savings of 5 ~ 10% of rolling energy consumption depending on process constraints

Improved productivity

- 10 ~ 15% increase in productivity depending on power constraints

Desired groove utilization, and load sharing at various stands

Simulate mill rolling condition to predict outcomes for changes in process inputs
ProfileOpt
Technical Details and Features

Mill Set-up Values

Mill Configuration

Basic Model

Actual Rolling Parameters

Adaptation

Offline Tool
No direct impact on process unless the findings are implemented

Simulation

What-if analysis
Sensitivity/Monte Carlo

Optimization

Pass Schedule Values for Optimization Objectives

© ABB Group
ProfileOpt
Modeling Approach

A complete know-how of billet deformation during hot profile rolling, which includes

- Spread, torque and power – with interstand tensions
- Continuous mass flow and interstand dimension changes due to change in tensions
- Non-linear material model for thermo-elasto-viscoplasticity
- Thermodynamic for heat generation, conduction, transfer and radiation

Material deformation between rolls
ProfileOpt
Adaptation and Simulation

Model adaptation is done for four parameters for a particular material grade

1. Power
2. Neutral Angle (Speed)
3. Spread (Exit Width)
4. Temperature

Simulation
Once adaptation is done for all the above four parameters, it is possible simulate the actual roll condition for any set up values for the same material grade
ProfileOpt Optimization

Objectives
(Either one can be selected)

- Minimize rolling power
- Maximize mill productivity
- Maximize productivity with minimal increase in rolling power
- Achieve target loading (power) at each stand (load sharing)
- Achieve target widths or area at each stand exit (groove utilization)
- Minimize billet entry temperature at given production speed

Mill constraints
(practical operation constraints)

- < Roll gap <, < Production speed <
- < Motor speed <, < Billet temperature <
- < Interpass tension <
- < Width <, < Area <

Optimization Outputs

- Optimal Mill setup (Roll gaps and Reduction factor setpoints for all stands)
- Billet entry temperature (Optional)
Case Study
Sample Results
Bar Mill (10 mm Rolling)

- Mill Set-Up
 - Sq. 150 mm x 150 mm Billet @1050°C
 - Final Products: 10, 12, 14 and 16 mm Bars
 - 16 Stand in Vertical and Horizontal Configurations in Roughing and Intermediate Sections
 - Finishing Block after Intermediate Section
 - Typical Final Production Speed of ~30 m/s

- Material: Plain Carbon Steel (C~0.2 %)
Model Adaptation

Rolling Power

- Rolling power is calculated using stand RPMs and torques.
- Torque (in kNm, as shown below) for all stands from iba.

<table>
<thead>
<tr>
<th>Stand #</th>
<th>RPMs (iba)</th>
<th>Torque (T) (kNm) (iba)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1044.4</td>
<td>1.15</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>934.8</td>
<td>1.33</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>1049.5</td>
<td>2.0</td>
<td>219</td>
</tr>
<tr>
<td>4</td>
<td>1320.4</td>
<td>1.16</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>1209.2</td>
<td>1.9</td>
<td>240</td>
</tr>
<tr>
<td>6</td>
<td>1182</td>
<td>1.72</td>
<td>212</td>
</tr>
</tbody>
</table>

Power model of Avitzur adapted to rolling power within 3% mean absolute error.
Model Adaptation

Temperature

- Temperatures along the mill are measured
- To account for emissivity variations and other effects, temperatures measured using handheld pyrometers were scaled with measurements from installed pyrometers
- Thermal model adapted to handheld and fixed pyrometer measurements within 1% absolute mean error.

<table>
<thead>
<tr>
<th>Distance from Furnace Exit (m)</th>
<th>Temperature (°C) (Handheld and fixed Pyrometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5</td>
<td>1026</td>
</tr>
<tr>
<td>29.9</td>
<td>1036</td>
</tr>
<tr>
<td>32.7</td>
<td>1013</td>
</tr>
<tr>
<td>34.6</td>
<td>1051</td>
</tr>
<tr>
<td>35.5</td>
<td>1067</td>
</tr>
<tr>
<td>38.3</td>
<td>1055</td>
</tr>
<tr>
<td>41.1</td>
<td>1066</td>
</tr>
</tbody>
</table>
Initialization and Simulation
Simulating Actual Rolling

ProfileOpt simulates actual rolling conditions accurately.
Optimization: Minimizing Rolling Power
Minimizing Rolling Power (Keeping Production Speed and Exit Tension Same)

- Model predicted actual rolling power within 1-2%.
- 6.2% savings in rolling power can be achieved by using optimum roll gaps and speeds.
Optimization: Minimizing Rolling Power
Effect of Constraints

Power savings reduce as narrow constraints are applied.
From: 7.2 to 6.2 to 4.5 (%)
Optimization: Maximizing Productivity
Maximizing Production Speed at the cost of Rolling Power

- Production speed predicted within 4% of actual.
- 18% increase in productivity at the cost of 19% increased electrical rolling power.
Sensitivity Analysis
10% Increase in Roll Gap at Each Stand

- Tension, compression and their effects are seen propagating when roll gap is increased at stand #1.
- At later stands, it's mainly tension which decreases exit width and correspondingly changes speed and reduction ratio.
ProfileOpt Tool
ProfileOpt
Service Features

Based on physics-based profile rolling mathematical models developed after years of research

Possibility to choose among different optimization objectives – power, productivity, groove utilization, load sharing etc

What-if and sensitivity analysis to analyze the effect of change in operation parameters on mill performance

Practically implementable recommendations within mill operation and capacity constraints
Advanced Service Offering for Profile Mills

ProfileOpt

A physics based mathematical model to simulate and optimize rolling conditions

Profile Mill Fingerprint

Questionnaire based, find out the life cycle status of the automation and drives equipment.

Technical Audit by intelligent and automated tool, to capture the long term trends
Questionnaire based audit to address

- Prevention Strategy
- Maintenance Strategy
- Emergency Strategy &
- Life Cycle Strategy

For
- Drives & Motors
- Automation & Sensors
- Level 2
- Process & Technology

Finds the issues and recommends to improve availability
Profile Mill Fingerprint
Technical Audit

- Technical Audit is done by a tool, which takes a batch of historical data and analyzes various mill performance parameters

- Powered by Statistical Analysis and algorithms, it brings out the preliminary trends and inter-relations between various process parameters

- Finally with ABB’s rich process know-how, a detailed summary report with recommendations are prepared and presented to customer.
Profile Mill Fingerprint
Customer Benefits

1. Assessment of current mill performance and performance gap
2. Recommendations for performance improvement
3. Solid foundation for Life Cycle Management
4. Facilitates management decision by highlighting high impact opportunities

- Improved Productivity
- Sustainable Quality
- Better process Yield
- Increased mill availability
Technical Audit Scope

Modules

- Water Box Control
- Motors and Drives
- Shear
- Torque and Tension
- HMD
- Reheat Furnace
- Pinch Roll
- Mill Speed Analysis
- Looper Control

Impact drop, load response, setpoint tracking

- Tracking repeatability
- Cutting repeatability
- Overspeed calculation

HMD Accuracy

Optimal pace time calculation

- Poor regulation
- Offset from setpoint
- Good regulation

Audit

- Slow response
- Fast response
- Cyclic response

Technical Audit Scope

Modules
Mill Performance Analysis

Sectional/Local Performance Measures (KPIs)

- Motors and Drives
- Shear
- HMD
- Reheat Furnace
- Pinch Roll
- Mill Speed Analysis
- Torque and Tension
- Looper Control
- Water Box Control

Overall Mill KPIs

- Yield
- Energy
- Availability
- Productivity
- Quality
Profile Mill Fingerprint
Mill Data Requirement (From Iba or any other datalogger)

HMD Module Input Data

<table>
<thead>
<tr>
<th>IBA Signals List</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMD signals</td>
<td>Binary</td>
</tr>
<tr>
<td>Torque signals of the stand before HMD</td>
<td>%</td>
</tr>
<tr>
<td>Torque signals of the stand after the HMD</td>
<td>%</td>
</tr>
<tr>
<td>Motor speed of the stand before the HMD</td>
<td>% rpm</td>
</tr>
</tbody>
</table>

Shear Data

<table>
<thead>
<tr>
<th>IBA Signals List</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMD signal for the shear cut</td>
<td>Binary</td>
</tr>
<tr>
<td>Angular position of the shear blade</td>
<td>%</td>
</tr>
<tr>
<td>Speed of the motor for the shear</td>
<td>% rpm</td>
</tr>
<tr>
<td>Motor speed of the stand before the shear</td>
<td>% rpm</td>
</tr>
</tbody>
</table>

Looper Data

<table>
<thead>
<tr>
<th>IBA Signals List</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque signals of the stands before looper</td>
<td>%</td>
</tr>
<tr>
<td>Torque signals of the stands after the looper</td>
<td>%</td>
</tr>
<tr>
<td>Looper height signal</td>
<td>mm</td>
</tr>
<tr>
<td>Looper arm initiation command data of that particular looper</td>
<td>binary</td>
</tr>
<tr>
<td>Module</td>
<td>KPIs</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Motor and Drives</td>
<td>• Torque - Average Torque, Torque Variance, Torque Peaks</td>
</tr>
<tr>
<td></td>
<td>• Impact Drop</td>
</tr>
<tr>
<td></td>
<td>• Impact Recovery Time</td>
</tr>
<tr>
<td></td>
<td>• Load Speed Tracking</td>
</tr>
<tr>
<td></td>
<td>• Travel Ratio</td>
</tr>
<tr>
<td>Interstand Control</td>
<td>• Looper Setting Time and Steady State Error</td>
</tr>
<tr>
<td></td>
<td>• Looper Arm Initiation Consistency</td>
</tr>
<tr>
<td></td>
<td>• R-factor Variation</td>
</tr>
<tr>
<td></td>
<td>• Tension Control</td>
</tr>
<tr>
<td>Pinch Roll</td>
<td>• Overspeed</td>
</tr>
<tr>
<td></td>
<td>• Speed drop</td>
</tr>
<tr>
<td></td>
<td>• Torque Profile</td>
</tr>
<tr>
<td>Mill Speed Analysis</td>
<td>• Mill Speed increase potential, Bottleneck stands</td>
</tr>
<tr>
<td>Mill Pacing</td>
<td>• Average Pace time, Optimal Pace time, Downstream bottleneck</td>
</tr>
<tr>
<td>Shear</td>
<td>• Tracking and Cut Cycle Repeatability</td>
</tr>
<tr>
<td>Tracking</td>
<td>• Switching ON performance</td>
</tr>
<tr>
<td></td>
<td>• Switching OFF performance</td>
</tr>
<tr>
<td>Furnace Temperature</td>
<td>• Mean Temperature</td>
</tr>
<tr>
<td></td>
<td>• Temperature Profile</td>
</tr>
<tr>
<td>Water Box Control</td>
<td>• Settling time, Steady state error</td>
</tr>
</tbody>
</table>
Profile Mill Fingerprint

Sample Outputs and Recommendations

<table>
<thead>
<tr>
<th>Module</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| **Motor and Drives** | • Torque – Identify whether a batch of billets have abnormal torque behavior or a particular stand
 | • Impact Drop/Recovery time of a stand is higher than benchmark
 | • Load Speed Tracking – Actual speed is within 0.5% of setpoint
 | • Drive Tuning – Drive may be sluggishly tuned. |
| **Interstand Control**| • Yy% of billets in Looper 1 show oscillation before settling
 | • Zz% of billets have steady state error more than 10% of its reference
 | • R-factor Variation is localized for stand 7, 9, 15. Need to check stand setting, loop scanner etc |
| **Pinch Roll** | • xx% of billets have average speed drop more than 2%
 | • xx% of billets reached torque limit |
| **Mill Speed Analysis**| • Maximum achievable production speed is 6.42 m/s. Stand 7 is limiting |
| **Mill Pacing** | • Productivity can be increased to ppp tph, pace time should be bb secs. |
| **Shear** | • aa% of billets have higher dev for head/tail cut cycle repeatability |
| **Tracking** | • xx% of billets shows a time lag of more than 0.2 sec during head / tail
 | • xx% of billets show more than 2 disturbances in the HMD signals for HMD_1 |
| **Furnace Temperature**| • a% of total billets are overheated by 50 °C, consumes excess thermal energy |
| **Water Box Control** | • x% of billets have temperature variation more than 50 °C from setpoint |
Case Study
Sample Results
Profile Mill Fingerprint
Executive Summary – Sample Report

- Executive Summary indicates overall mill performance w.r.t. Availability, Yield, Energy and Productivity
- Separate executive summary for Life cycle Index and Technical Audit
Profile Mill Fingerprint Results
Mill Pacetime Analysis

- Actual pace time (APT) calculation from data
- Optimal pace time recommendation based on Mill Rolling Time and Furnace Discharge Pace Time
- Evaluation of productivity bottleneck

Results:
- Productivity improvement with current downstream limitation: 8.3%
- Productivity improvement without downstream limitation: 14.1%
Profile Mill Fingerprint Results
Motor and Drives - Torque Analysis

- Motor and Drive module of the tool captures large number of peaks in torque profile of rolling stand#7
- Same billets do not show peaks in other stands
- Validated by raw data from IBA
- Concluded that this abnormal behavior is due to stand#7 mechanicals
Profile Mill Fingerprint Results
Motor and Drives - Impact Drop and Impact Recovery Time

- **Analysis:**
 - Impact drop is higher than benchmark (0.5%)
 - Impact recovery time is higher than benchmark (1 sec)
 - Adverse impact on product quality

- **Root cause:**
 - Drive controller tuning is required
Profile Mill Fingerprint
Deliverables

Fingerprint report including

- Executive Summary indicating current mill status, performance gaps and key recommendations
- Current life cycle status of equipment and recommendations for life cycle management
- Process and control performance status
- Detailed improvement plan with potential impact on mill energy consumption, productivity, yield, and availability.
Profile Mill Fingerprint Service Features

- Uses large historical data to bring out statistical performance trends which is difficult to examine manually
- Brings out inter-relations between various process parameters
- Modular and Configurable Technical Audit tool
- In-built intelligence in tool to provide first-level of analysis
- Provides quantitative impact on Productivity, Energy, Yield
- Benchmark the plant performance
- Practically implementable recommendations
Service Products Overview

Profile Fingerprint
- Data based *audit* to assess process and control performance
- To identify poor performance and possible root causes in various sections of mill

ProfileOpt
- Model based optimization service for *mill-setup*
- Optimal mill setup (pass schedule) calculation
ProfileOpt and Profile Mill Fingerprint
Execution Methodology

- Agreement on which product (grade and dimension) the tool is to be applied.

- Collect data as per pre-defined template. Customer can also fill up the data sheet and send by email to ABB engineer.

- Run the tool in ABB premises.

- ABB will prepare the findings in form of report and present the same to customer.
Power and productivity for a better world™