Introduction

In a system for enzyme production, the measuring media contain cellulose particles which have a size of approx. 8 mm and can block the valve during quick regulation of the valve position. This effect appears when positioners are used.

The solution

Thanks to the use of an I/P signal converter, the positioning of a small diaphragm valve with a stroke of 15 mm can be adjusted. Using a valve, the flow rate in a range from 50 to 2000 liter/h can be set with an accuracy of ±3 to 5 liter/h.

The used I/P signal converter TEIP11 PS ‘open loop’ provides quick control on the set point side, yet reacts slowly in terms of actual value, so short position deviations of the valve which can occur when cellulose particles pass through the valve are negligible. As a result, the valve will not become blocked even when the opening is small.

No valve blockage thanks to trouble-free control using the I/P converter. System shutdowns are avoided.
Benefit analysis

Thanks to the reduction of unplanned system downtimes, there are fewer production stoppages. Considerable cost-savings along with increased system availability are achieved as a result.
Product in use

02 I/P signal converter
TEIP11-PS

03 Diagram of solid matter content flow control with I/P converter

Input signal:
- 4 to 20 mA,

Output signal:
- 0.2 to 1 bar (3 to 15 psi)

- Robust field mount housing IP 65
- High operational stability

1. Pump
2. Flowmeter
3. Heating
4. Cooling
5. I/P converter
Introduction

In a system for enzyme production, the measuring media contain cellulose particles which have a size of approx. 8 mm and can block the valve during quick regulation of the valve position. This effect appears when positioners are used.

The solution

Thanks to the use of an I/P signal converter, the positioning of a small diaphragm valve with a stroke of 15 mm can be controlled. By using the I/P converter TEIP11 PS 'open loop' provides quick control on the set point side, yet reacts slowly in terms of actual value, so short position deviations of the valve which can occur when cellulose particles pass through the valve are negligible. As a result, the valve will not become blocked even when the opening is small.