

LATAMID 66 H2 G/50-V0KB1

Polyamide 66 (PA66) based compound.

Heat stabilised. Glass fibres. UL94 V-0 classified, with red phosphorous.

PHYSICAL PROPERTIES	STANDARD	VALUE MEASURE UNITS
Density	ISO 1183	1.56 g/cm³
Linear shrinkage at moulding		
Longitudinal (2.0mm/60MPa)	ISO 294-4	0.25 ÷ 0.55 %
Transversal (2.0mm/60MPa)	ISO 294-4	0.65 ÷ 0.95 %
Dimensional stability		40
Moisture absorption (in air)		
after 24hrs	ISO 62-4	0.25 %
MECHANICAL PROPERTIES	STANDARD	VALUE MEASURE UNITS
CHARPY impact strength		
Unnotched, at +23°C	ISO 179-1eU	65.0 kJ/m²
Unnotched, at -20°C	ISO 179-1eU	65.0 kJ/m²
Notched, at +23°C	ISO 179-1eA	10.0 kJ/m²
Notched, at -20°C	ISO 179-1eA	9.0 kJ/m²
Tensile elongation		
At break (5 mm/min), 23°C	ISO 527 (1)	2.2 %
At break (5 mm/min), 60°C	ISO 527 (1)	3.2 %
At break (5 mm/min), 90°C	ISO 527 (1)	3.5 %
At break (5 mm/min), 120°C	ISO 527 (1)	3.7 %
At break (5 mm/min), 150°C	ISO 527 (1)	3.8 %
Tensile strength		
At break (5 mm/min), 23°C	ISO 527 (1)	180 MPa
At break (5 mm/min), 60°C	ISO 527 (1)	125 MPa
At break (5 mm/min), 90°C	ISO 527 (1)	100 MPa
At break (5 mm/min), 120°C	ISO 527 (1)	80 MPa
At break (5 mm/min), 150°C	ISO 527 (1)	65 MPa
Elastic modulus		
Tensile (speed 1 mm/min), at 23°C	ISO 527 (1)	13500 MPa
Tensile (speed 1 mm/min), at 60°C	ISO 527 (1)	8500 MPa
Tensile (speed 1 mm/min), at 90°C	ISO 527 (1)	7200 MPa
Tensile (speed 1 mm/min), at 120°C	ISO 527 (1)	6000 MPa
Tensile (speed 1 mm/min), at 150°C	ISO 527 (1)	4500 MPa

LATAMID 66 H2 G/50-V0KB1 Polyamide 66 (PA66) based compound.

Heat stabilised. Glass fibres. UL94 V-0 classified, with red phosphorous.

THERMAL PROPERTIES	STANDARD	VALUE MEASURE UNITS
Coefficient of linear thermal expansion (CLTE)		
+30°C to +100°C (longitudinal)	ISO 11359-2	4 μm/(m·°C)
VICAT - Softening point		
49 N (heating rate 50°C/h)	ISO 306	255 °C
HDT - Heat Deflection Temperature		
0.45 MN/m ²	ISO 75	260 °C
1.81 MN/m ²	ISO 75	250 °C
C.U.T Continuous Use Temperature		
Long period (20,000h)		130 °C
FLAMMABILITY	STANDARD	VALUE MEASURE UNITS
Oxygen Index	ASTM D 2863	32 %
Flammability rating		
3.00 mm thickness	UL 94	V-0
1.50 mm thickness	UL 94	V-0
0.75 mm thickness	UL 94	V-0
GWFI - Glow Wire Flammability Index		
	IEC 60695-2-12	960°C/1mm
	IEC 60695-2-12	960°C/2mm
GWIT - Glow Wire Ignition Test		
	IEC 60695-2-13	800°C/1mm
	IEC 60695-2-13	800°C/2mm
ELECTRICAL PROPERTIES	STANDARD	VALUE MEASURE UNITS
CTI - Comparative Tracking Index		
solution A (without surfactant)	IEC 60112	600 V

LATAMID 66 H2 G/50-V0KB1

Polyamide 66 (PA66) based compound.

Heat stabilised. Glass fibres. UL94 V-0 classified, with red phosphorous.

MATERIAL - STORAGE

Sealed, undamaged packages has to be kept in dry storage facilities, providing they are also able to protect them from weather and accidental damage.

HANDLING AND SAFETY

Detailed information about a safe treatment of the material are indicated in the "Material Safety Data Sheet" (MSDS) furnished with the first material supply. The MSDS may be also sent again in case of loss.

PREDRYING CONDITIONS

At least 3 hours at 90 ÷ 100°C

These are the suggested conditions to reduce the moisture content to adequate levels. Temperature and drying time can be reduced by using vacuum ovens. Particularly wet material may need a longer drying time.

ACTUAL MELT TEMPERATURE

270 ÷ 290°C

The injection moulding machine settings needed to obtain the suggested melt temperature will depend greatly on shot size and machine capacity, as well as other moulding parameters such as: injection speed, screw RPM, back pressure, etc. On small machines, running short cycles, it is possible to use higher melt temperatures to improve plastification, fluidity and surface appearance, paying attention to any indication of material degradation.

MOULD TEMPERATURE

70 ÷ 100°C

The mould temperature suggested above is the actual tool steel temperature. This can be significantly different from the tool settings, due to the cooling system efficiency and the accuracy of the temperature control on the tool.

INJECTION SPEED Medium

The advisable injection speed greatly depends on cavity geometry and injection moulding machine size. The use of high injection speed can improve the surface appearance, but it can also cause outgassing and burn marks due to overheating through shear stress.

REGRIND USAGE

The use of regrind is possible, but should be assessed on the basis of the project, moulding parameters, and type of grinding used. The effect of using regrind on material properties must be evaluated by the customer on its specific project and process. High percentages of regrind may cause a reduction in viscosity and fibre length, reducing mechanical properties, first resilience. According to UL guideline, up to 25% of regrind is permitted, without affecting the ratings of the yellow card. However, LATI suggests that no more of 15% of regrind is used.

HOT RUNNER MOULDS

Hot runner moulds are not recommended, but they may be used when a very tight temperature control is assured, overall in the gate(s), and the cycle time is short.

LATAMID 66 H2 G/50-V0KB1

Polyamide 66 (PA66) based compound.

Heat stabilised. Glass fibres. UL94 V-0 classified, with red phosphorous.

TO AVOID

Shut-off nozzles and internally heated hot runners have to be avoided. In order to prevent any material degradation, over-dimensioned machines should be avoided.

EQUIPMENT WEAR/CORROSION

Usually, critical processing conditions (high injection rate, high back pressure and high screw rotating speed, etc.) and/or disadvantageous geometric conditions (low wall thickness, low diameters, sharp fillet radius, etc.) generate wear on equipment Wear increases in case of filled materials (particularly fibre filled ones). Appropriate equipment surface treatments are suggested in these cases, as well as a proper venting to avoid material overheating. Compound containing flame retardant additives are, in general, more aggressive than standard versions. Therefore, steels with a high chrome percentage and/or with a specific surface treatment (e.g. Chrome or Nickel electroplating) are suggested.

APPROVALS

USA (UL): Product versions approved according UL recommendations are available. Please, check our site or contact LATI for details.

NOTES

The products mentioned herein are not suitable for applications in contact with foodstuff or for potable water transportation, or for toy manufacturing. The products mentioned herein are not suitable for applications in the pharmaceutical, medical or dental sector. The products mentioned herein must not be used to produce parts operating in hot (>70°C), very humid environments, or in contact with hot water, or in contact with overheated steam.

CONTACTS

LATI Industria Termoplastici S.p.A.

Via F. Baracca, 7 - I - 21040 VEDANO OLONA (VA) Tel. +39-0332-409111 - Fax +39-0332-409260 email: techserv@it.lati.com http://www.lati.com

http://lambda.lati.it

Values shown are based on testing of Injection moulded laboratory test specimens, conditioned according to the practice and represent data that fall within the standard range of properties for non-coloured material, if not dehenwise specified. As they may be subject to variations, perfection purposes. Properties of moulded parts can be influenced by a wide range of factors including, but not limited to, colorants, part design, processing conditions, post-treatment conditions, environment to expect the considered wine. This information and technical assistance are provided as a converience for informational purposes only and are subject to change without notice. The customers will be latest the considered wine the latest release of latest release of latest the latest release of latest released latest released of latest released of latest released latest released of latest released of latest released of latest released latest released latest released of latest released latest release