PRESENTED AT CEPSI 2000-CONFERENCE IN MANILA, PHILIPPINES, OCTOBER 23-27, 2000

LAND AND SEA CABLE INTERCONNECTIONS WITH HVDC LIGHT

Gunnar Asplund*)
ABB Power Systems
Box 703
771 80 Ludvika
Phone no: +46 240 782146
Fax no: +46 240 782379
E-mail: gunnar.asplund@se.abb.com
SWEDEN

Kjell Eriksson
ABB Power Systems
Box 703
771 80 Ludvika
Phone no: +46 240 782246
Fax no: +46 240 611159
E-mail: kjeller.eriksson@se.abb.com
SWEDEN

Ove Tollerz
ABB High Voltage Cables
Box 546
371 23 Karlskrona
Phone no: +46 455 55780
Fax no: +46 455 82245
E-mail: ove.tollerz@se.abb.com
SWEDEN

*) Main author

Keywords: HVDC, VSC converter, IGBT, extruded cable, controllability

ABSTRACT - HVDC Light is the most recent HVDC technology based on Voltage Source Converters and extruded DC cables with power units up to 300 MW. HVDC Light converters include Insulated Gate Bipolar Transistors and operate with high frequency Pulse Width Modulation in order to get high speed control of both active and reactive power. HVDC Light cable is a cable with insulation of extruded polymer and specifically adapted for direct voltage. Within its power range HVDC Light converters and cables provide an excellent combination for transmitting power over any distances with underground or submarine routes. Experiences are given from actual cases, presenting what problems can be resolved using this combination of technologies. The benefits of HVDC Light in applications to fulfill the goals of deregulation are accounted for in the paper.

1. INTRODUCTION

HVDC Light is the most recent HVDC technology based on Voltage Source Converters and extruded DC cables with power units up to 300 MW. HVDC Light converters include Insulated Gate Bipolar Transistors and operate with high frequency Pulse Width Modulation in order to get high speed control of both active and reactive power.

A successful way to design an HVDC Light transmission is to combine the converters with a pair of HVDC Light cables for a submarine or underground cable transmission. The new HVDC Light cables have insulation of extruded polymer. The strength and flexibility make the HVDC Light cables well suited for severe installation conditions both underground as a land cable and as a submarine cable at sea.

A pilot 3 MW transmission has now been in successful operation for more than three years. Since then four more schemes with a total power of 280 MW and 540 km cable have been commissioned.

2. VOLTAGE SOURCE CONVERTERS WITH PULSE WIDTH MODULATION

By use of high switching frequency components, such as the IGBT it is possible to use Pulse Width Modulation (PWM) Technology and reduce the filter size. The ac-voltage in inverter mode is created by switching very fast between two fixed voltages. After low pass filtering the desired fundamental frequency voltage is created. See figures 1 and 2.

To use the VSC for power transmission, it is needed to increase the direct voltage to such levels as can be effective for useful levels of power-distance combinations. This is achieved by series connection of semiconductor devices in the same way as is made with conventional thyristors.
With PWM it is possible to create any phase angle or amplitude (up to a certain limit) by changing the PWM pattern, which can be done almost instantaneous. Hereby PWM offers the possibility to control both active and reactive power independently. From a system point of view it acts as a motor or generator without mass that can control active and reactive power almost instantaneously. Contrary to a generator it does not contribute to the short circuit power as the ac current can be controlled. The reactive power capabilities can be used to control the ac voltages of the networks connected to the converter stations.

Fig. 1 shows one phase of a VSC converter using PWM

Fig. 2 shows the PWM pattern and the fundamental frequency voltage

Fig. 3. HVDC Light converter
3. HVDC LIGHT CABLES

3.1 Experience
The HVDC Light polymeric cables system is now qualified for two voltage ranges, i.e. Uo = 80 kV (Um = 88 kV) and 150 kV (Um=165 kV). The qualification tests have comprised Long term tests and Type Tests successfully performed.

The amount of commercially delivered HVDC Light cables is now 540 km bipole route length for the three projects Gotland in Sweden, Tjaereborg in Denmark and Directlink in Australia where power transmission has started.

3.2 New applications with polymeric HVDC Light Cables
Previously cable types have been used for HVDC transmission.

- The MIND, Mass Impregnated Non Draining, cable which has an insulation of paper impregnated with high viscosity oil.
- The LPOF, Low Pressure Oil Filled, cable which has an insulation of paper impregnated with low viscosity oil.

Compared with these traditional paper insulated cables, the polymeric cable immediately shows up to advantage because of its excellent mechanical flexibility and strength, leading to new applications:

- Deep Sea Cables. Submarine HVDC Light cables can be laid in very deep waters and on rough bottoms. The very robust polymeric insulation material can withstand high forces and repeated flexing. The HVDC Light submarine cables are also more suited for deep water than polymeric submarine cables for AC applications. This is because single or double galvanised steel wire armour can be used for DC current whereas non-magnetic and less strong armours normally are used for AC cables.

Fig. 4 shows 10 – 600 MW deep sea HVDC Light cable
• Aerial Cables. HVDC Light cables can be used as overhead cable in the same way as other polymeric cables, with the difference though that a DC bipole utilises two cables and an AC three phase system utilises three cable (or cores). HVDC cables have more transmission capacity than AC cables of the same size.

3.3 Cables instead of overhead lines
The increased demand to use underground cables because of reluctance to use overhead lines has many reasons. These reasons could be:
• Storms, falling trees, snow and ice loads do not harm underground cables.
• Cables do not harm the impact of beautiful areas.
• The land can be used for other purposes.
• Overhead transmission lines require maintenance such as clearing of power lanes from growing trees, thermographic checks of conductor jointing sleeves and checks of insulators.

![Fig. 5 shows low cost installation with plowing](image)

3.4 AC and DC cable cost comparison
The cost for HVDC Light land cables are typically lower than for AC cables. In two of the projects performed the cables have been plowed into the ground instead of laying in excavated cable trenches. This has reduced the installation costs substantially.

3.5 Low magnetic fields from HVDC Light cables
A particular advantage with the HVDC Light cable system is that magnetic fields are almost eliminated with the bipolar system. A classic monopolar HVDC cable scheme with a current of 1000 A gives a magnetic field of the magnitude 20 micro Tesla at a distance of 10 meters. This is about half the magnitude of the natural magnetic field from earth. With HVDC Light cables the magnetic field is reduced to less than 0.2 micro Tesla.
Fig. 6 shows iso-Tesla curves for 300 MW HVDC Light submarine and land cables.

3.6 Accessories for the cables
HVDC Light cable joints and cable terminations have been developed for all applications including:
- Cable terminations inside the HVDC Light Converters.
- Prefabricated stiff joints, normally used on land cables
- Site molded flexible joints, normally used on submarine cables

![Cable Accessories](image)

150 kV Joint JDDC
40 kV Termination SOT
150 kV Termination OWT
80 kV Joint SOJ - DC

Fig. 7 shows cable accessories for HVDC Light.
4. EXPERIENCE

HVDC Light is a recently developed technology and already a number of commercial projects have been undertaken and installed.

4.1 The Gotland HVDC Light

During the past years, there has been a considerable increase in wind power production on the Swedish island of Gotland. The infrastructure built for existing consumption cannot receive the increasing production. Wind power production does not conform to consumption. HVDC Light has been chosen to transmit 50 MW between the windpower park and the centre of the island. By this link the Owner received an underground transmission, which provided an environmentally sustainable link and considerably eased permitting. With the Gotland HVDC Light transmission, the reactive power capabilities are used to control the AC voltages of the networks connected to the converter stations and keep the power quality high despite the high amount of wind power infeed. The link has been in operation and transmitting power since November 1999.

4.2 The Tjaereborg HVDC Light

The Tjaereborg Wind Farm is in the western part of Denmark, on the West Coast. A dc feeder rated 8 MW is installed to be able to operate as the only infeed of the wind power or in parallel with the ac-feeder. Disconnected from the ac net the windfarm may be operated at frequencies varying between 35 Hz and 52 Hz and thus use the windforce more efficiently. The link will be used to investigate how wind power can be fed into the network in an efficient way by a dc transmission. The link was commissioned mid 2000.

4.3 Directlink HVDC Light Project

Directlink project is a transmission in Australia. This is an ITP (Independent Transmission Project) developed by the Hydro-Quebec group and North Power. The so-called Directlink is rated at 180 MVA, route length is 65 km and it interconnects the Queensland and New South Wales networks. The extruded HVDC Light cable is installed along an existing rights-of-way along a railway, where the extruded HVDC Light cable is ploughed into the ground for a large part of the transmission route. The driving forces behind this project are a capacity shortage in Queensland combined with surplus capacity in New South Wales and the possibility to trade electric energy in a deregulated market. HVDC Light was the preferred choice due to the short delivery time, just 12 months, and the ease of cable installation. The link has transmitted power since April 2000.

![Converter station in Directlink Project](image)

Fig. 8 shows one of the two converter stations in Directlink
4.4 Eagle Pass
Central and South West Corporation (CSW) (NYSE: CSR) and Commission Federal de Electricidad (CFE) will install an asynchronous electrical tie using HVDC Light technology. The 36 MW back to back tie will link the transmission system of CSW's Central Power and Light Company (CPL) subsidiary with the Mexican transmission system owned and operated by CFE. The link is scheduled for operation mid 2000.

5. HVDC LIGHT APPLICATIONS
HVDC Light has been and presented for a variety of applications, using both land and submarine cables. The following could be worth mentioning:

- Land cables
 - Small isolated remote loads
 Many isolated communities are not connected to the electrical grid and are dependent on expensive local generation for their needs. The VSC transmission concept for dc makes it feasible, in many cases, to connect such communities to the main grid where low price electricity is available. The receiving network does not need to have generation of its own.
 - Infeed to cities
 Adding new transmission capacity by ac lines into city centres is costly and in many cases the permits for new ROW are difficult get. A dc cable needs less space than an ac overhead line and can carry more power than an ac cable and is therefore many times the only practical solution, should the city centre need more power.

- Remote small scale generation
Remote small scale generating facilities such as low-head hydropower and wind power have normally not been economic to develop, due to too high transmission costs and low transmission capacity of the ac lines. Especially for wind power the active and reactive control possibilities with HVDC Light would improve the feasibility of such projects.

- Sea crossings
 - Power supply to islands
 The power supply to small islands is often provided by expensive local diesel generation. By installing an HVDC Light transmission with a low cost extruded cable, low price electricity from the main-land grid can be imported.
 - Remote small scale generation
 Many times remote small scale generating facilities are located on islands that will not need the power, which by HVDC Light can then be transmitted to a consumer area on mainland or an adjacent island. Generation on platforms can of course be considered in the same way and use an HVDC Light connection to land.

- Interconnecting power systems
The advantages of HVDC Light are of high value when connecting between individual power systems, especially when they are asynchronous. This refers to the possibilities to control the transmitted power to an undertaken value as well as being able to provide and control reactive power and voltage in the connected networks. An interconnection could be with land cable, and/or submarine cable or without a transmission link, a so-called back-to-back connection.
6. DEREGULATED MARKET
The present ongoing deregulation makes interconnections more interesting. As in all trade the driving force is differences in prices. In the case of a deregulated electricity market trade will take place as soon as there is a price difference between two places if there is a transmission capacity available. In reality, the lack of transmission capability is one major force that creates price differences. This fact makes it increasingly interesting to interconnect networks that are neither synchronous, nor have bottlenecks.
In both these cases HVDC Light is very suitable as there are no problems created in the connected ac networks by the dc link. On the contrary, the power quality will be improved as the HVDC Light terminals can control reactive power in each station in excess of the active power transfer between stations. As has been demonstrated earlier there is also much higher probability to get the necessary permissions for laying cables than to get permissions for overhead lines, thereby reducing the project risks.

7. CONCLUSIONS
The new electric transmission system, HVDC Light, is utilising state of the art semiconductors, control and cable insulation and can offer many new transmission opportunities. In many cases transmission can give new opportunities to trade electric energy in the new deregulated markets. As HVDC Light has been developed to minimise environmental impact and impact on the connecting ac grids, the permitting procedure is generally more favourable than more traditional solutions. As several schemes are now in operation all over the world the technology is now maturing rapidly.

8. REFERENCES