" .

SOFTWARE ENGINEERING STANDARDS & PRACTICES

C# Coding Standards
9AAD134036

Department GF-1S ADM Applications Performance Excellence (APE)
Approver Giulio Bitella, Global Department Manager
Owner

Tomasz Jastrzebski, Global Leader for Software Engineering (SE)

For the latest distributable version of this and other Software Engineering standards please

visit this link to ABB Library.

https://share.library.abb.com/api/v4?cid=9AAC819824

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

WHAT IS THIS?

This document presents set of coding standards, design principles and naming con-
ventions that applies to C# language and .NET framework types. It describes the
rules in structure that is easy to read and use so that can be quickly applied by soft-
ware developers.

WHAT IS THE PURPOSE OF THIS DOCUMENT?

The goal of the document is to create the main reference and efficiencies across a
community of developers. Applying a set of well-defined coding standards will result
in code with fewer bugs, better maintainability and ensuring consistency of coding
styles between all teams. However, there might be situations when the good code
design requires that the below set of rules will be violated. Such as cases should be
rare and have clear and compelling reason eventually approved by Technical (Team)
Lead Developer.

i © ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

TABLE OF CONTENTS

L T I o I o | TR I
WHAT IS THE PURPOSE OF THIS DOCUMENT?....ccccciiituieiimmnisninmsessesss 1
NAMING CONVENTIONSuuuiiiiiittiiiiitetiicisneeecsssneeessssssesesssssseeesssssssssssssssasssssssssssssssssssssssssnans 1
1. General GUIAEIINESuuuueeeiiiiiiieeeeetetcccceeeec e scneeeeee s ssssssese e sssssssssssssaneees 1

2. NamMiNg GUIAEIINESuuuueeietteeeessses 1

3. Code COMMENTINGccuuuuuerernrnennnnenereeesses 2
LANGUAGE USAGE....... o iieiiiitiiiiiteiiiiieeiiiirteeietteaeeietssesssstssssssstessssssssssessssssssssssssssssssssssssssses 2
T €= 3 = - | N 2

5. Variables and TYPeS......rrrrrrrrrrrrrrnrssrsss 3

LT =) [1TV @ 4} o N 4

7. EXCEPLIONS ... cccieeieieeeeceeceeeeeeeenaeseeeeeeeeeeenssssssssesseessssssssssssssssssssnsssssssssssessssnnssssssssasasees 5

8. EVENts and Delegates........cccciiiiieeiueiiiiiiiiiienueeiiiiiiiiiieesssessisssiiissssssssssssssssssssssssssssssssssses 6

1= TR I 3 T=T- T T ' N 7
DESIGN GUIDELINES.cccuuiiiiiiiitiiiiiteiitiiteeiitieaeiittsseeestessessssessesssssssessssssssssssssssesssssssesssses 7
3 0 T o F- V-3 0 713 T T W 1V [=1 114 U= RN 7
REFERENGCESccoiiiiittiiiiiiiiiinnnttetteecccsissnneeeeeiessssssssssssestesssnns 9
RECOMMENDED READING........cccovvttiiiirnetiiiisneeieiisseeessssseesssssssssesssnans 9
REVISION HISTORY ...ccuuriiiitiiiiiiiiinnneeetttieccsssssssseetessscssssssssssesessns 9

i

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

NAMING CONVENTIONS

Consistency is the key to maintainable code. This statement is most true for naming
your projects, source files, and identifiers including Fields, Variables, Properties,
Methods, Parameters, Classes, Interfaces, and Namespaces.

1. General Guidelines

C#101

C#102

C#103
C#104

C#105

All source code files containing intellectual property owned by ABB must
start with the below header containing copyright information. Specified
year(s) must state when the content was created.

Avoid putting multiple classes or interfaces in a single file. Exception:
nested classes.

Never declare more than 1 namespace per file.

Group extension methods in a class suffixed with Extensions.

If the name of an extension method conflicts with another member or
extension method, you must prefix the call with the class name. Having
them in a dedicated class with the Extensions suffix improves readabil-
ity.

Append folder-name to namespace for source files within sub-folders.

2. Naming Guidelines

C#201

C#202

C#203

C#204
C#205
C#206

C#207

Always use Camel Case or Upper Camel Case (Pascal Case) names.
Example: MyClass tempInstance = new MyClass(); // Good

Avoid ALL CAPS and all lowercase names. Single lowercase words or let-
ters are acceptable.

Do not create declarations of the same type (namespace, class, method,
property, field, or parameter) and access modifier (protected, public,
private, internal) that vary only by capitalization. Example:

// Bad

private MyClass myInstance;

public MyClass MyInstance;

Always use grammatically correct US-English for all identifier names.
Do not add numeric suffixes to identifier names.

Variables and Properties should describe an entity not the type or size.
// Bad

private int countl;

private int count2;

Do not use Hungarian Notation!

Example: strName or iCount // Bad

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#208

C#209

C#210

C#211

C#212

C#213

C#214

C#215
C#216

Avoid using abbreviations. Any abbreviations must be widely known and
accepted.

Capitalize only the first character of the abbreviations.

Example: SqConnection, NOT SQLConnection

Note this rule applies to namespaces as well.

Example:

ABB.XYZProject.MySolution.MyClassName // Bad
Abb.XyzProject.MySolution.MyClassName // Good

Never use underscores in literals besides class member prefix.
Example: RecordId, not Record_Id.

Avoid using “of” preposition.

Example: RecordCount, not NumberOfRecords

If desired use data kind descriptor at the end.

Example: RegistrationDate, not DateRegistered

Prefix interface names with “I”, keep interfaces each in a separate file.
Example: IMyInterface // Good

Do not include the parent class name within a property name.
Example: Customer.Name NOT Customer.CustomerName
Try to prefix Boolean variables and properties with “Can”, “Is” or “Has”.

Append folder-name to namespace for source files within sub-folders.

3. Code Commenting

C#301

C#302

C#303
C#304

Avoid use inline-comments to explain obvious code. Well written code is
self-documenting.

All comments and variables should be written in English, be grammati-
cally correct, and contain appropriate punctuation.

Use // or but never

Always use XML comment-blocks for documenting the API.

Do not “flowerbox” comment blocks.

Example:

LANGUAGE USAGE

4. General

C#401

Do not omit access modifiers. Explicitly declare all identifiers with the
appropriate access modifier instead of allowing the default.
Example:

// Bad

void WriteEvent(string message)

{3

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

#C402

C#403
C#404

C#501
C#502

C#503
C#504

C#505

C#506

C#507

C#508

C#509

// Good

private void WriteEvent(string message) {..}

Always use internal or private access modifiers for types and mem-
bers, unless you intend to support them as part of a public API.

Do not use C# reserved words as literals.

Avoid adding redundant or meaningless prefixes and suffixes to identi-
fiers. Example:

// Bad

public enum ColorsEnum {..}

public class CVehicle {..}
public struct RectangleStruct {..}

Variables and Types

Always choose the simplest data type, list, or object required.

Try to declare member variables as private first. Use other access
modifiers only when needed.

Use decimal for variables when operating on financial values.

Always prefer C# Generic collection types over standard or strong-typed
collections.

Avoid boxing and unboxing value types.

Example:

int count = 1;

object refCount = count;

var newCount = (int)refCount;

Floating point values should include at least one digit before the deci-
mal place and one after. Example: totalPercent = 0.05;

Never concatenate strings inside a loop. See more in best practices doc-
ument.

Always use string.IsNullOrEmpty() or string.IsNullOrWhitespace
() to check for null or empty strings.

Avoid hidden string allocations, especially within a loop.

Use string.Compare(a, b, false)

or string.Equals(a, b, StringComparison.InvariantCul-
tureIgnoreCase) for case-insensitive comparison.

Example: (ToLower() creates a temp string)

// Bad

var id = -1;

var name = "john";

for (var i = @; i < customerList.Count; i++)

{
if(customerList[i].Name.ToLower() == name)
{
id = customerList[i].Id;
}
}

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#510

C#511

// Good

var id = -1;

var name = "john";

for (var i = @; i < customerList.Count; i++)

{

if(string.Compare(customerList[i].Name, name, true) == 0)

{

}
}

Use C# 6 string interpolation and nameof () operator for increased read-
ability and compile time name check whenever possible and feasible. Ex-
ample:

// Bad
string msg
Main.";

// Good
string msg = $"File {fileName} cannot be read in function
{nameof(Main)}.";

Prefer string.Format() or StringBuilder over string concatenation for
strings build programmatically, i.e. within a loop.

id = customerList[i].Id;

"File " + fileName + cannot be read in function

6. Flow Control

C#601

If control block spans multiple lines always use curly brackets.
// Bad
if (isvalid)

count++;
else

count--;
// Good
if (isvalid)
{

count++;
¥
else
{

count--;
¥

In control blocks curly brackets on the same line are allowed, the same
style must be maintained within assembly (application/library)

// Good

if (isvalid) {

count++;
} else {
count--;

}

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#602

C#603

C#604

C#605

C#606

// Good
if (a == null) throw new ArgumentNullException(nameof(a));
Use the ternary conditional operator only for trivial conditions.
Avoid complex or compound ternary operations.
Example (short): var result = isvalid ? 9 : 4;
Example (long):
var result = isValid
? ResultStatus.Success
: ResultStatus.UnknownError;
Avoid evaluating Boolean conditions against true or false.
Example:
// Bad
if (isValid == true)
{..}
// Good
if (isvalid)
{..}
Besides obvious cases always use else clause. If no action within else
clause is required document the reason.

Example:
if (count > 10)
{
return;
}
else
{
}

Never use assignment within conditional statements.

Example: if((i=2)==2) {..} // Bad

Only use switch/case statements for simple operations with parallel
conditional logic.

7. Exceptions

C#701
C#702

C#703
C#704

CH#705

Always provide exception message text.

Throw the most specific exception that is appropriate. For example,
if a method receives a null argument, it should throw
ArgumentNullException instead of its base type ArgumentException.
Do not use try/catch blocks for flow-control.

Only catch exceptions that you can handle or when you need to perform
any action on it (ex. Logging).
Never declare an empty catch block.

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#706

C#707

If re-throwing an exception, preserve the original call stack by omitting
the exception argument from the throw statement.

Example:

// Bad

catch(Exception ex)

{
Log(ex);
throw ex;

}
// Good

catch(Exception ex)

{
Log(ex);
throw;

}

When defining custom exception classes that contain additional proper-
ties always:

1. override the Message property, ToString() method and the implicit
operator string to include custom property values,

2. modify the deserialization constructor to retrieve custom property
values,

3. override the GetObjectData(..) method to add custom properties to
the serialization collection,

4. consider not preserving the original call stack when it may contain se-
curity sensitive information.

8. Events and Delegates

C#801
C#802

Always check Event & Delegate instances for null before invoking.

An event that has no subscribers is null, so before invoking, always
make sure that the delegate list represented by the event variable is not
null. Furthermore, to prevent conflicting changes from concurrent
threads, use a temporary variable to prevent concurrent changes to the
delegate.

Example:

// Good

event EventHandler<NotifyEventArgs> Notify;

void RaiseNotifyEvent(NotifyEventArgs args)

{
var handlers = Notify;
if (handlers != null)
{
handlers(this, args);
¥
}

In C# 6.0 and later simply call: Notify?.Invoke(this, args);

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#803

C#804

C#805

C#806
C#807

C#808

Use a verb or verb phrase to name an event. For example: Click,
Deleted, Closing, Minimizing, and Arriving.

Example: public event EventHandler<SearchArgs> Search; // Good
Use -ing and -ed to express pre-events and post-events.

For example, a close event that is raised before a window is closed
would be called Closing and one that is raised after the window is
closed would be called Closed. Don’t use Before or After prefixes or
suffixes to indicate pre and post events.

Suppose you want to define events related to the deletion process of an
object. Avoid defining the Deleting and Deleted events as BeginDelete
and EndDelete. Define those events as follows:

Deleting: Occurs just before the object is getting deleted

Delete: Occurs when the object needs to be deleted by the event han-
dler.

Deleted: Occurs when the object is already deleted.

Prefix an event handler with On. For example, a method that handles the
Closing event could be named OnClosing.

Prefer to derive a custom EventArgs class to provide additional data.

Avoid passing null as the sender argument when raising an event. Iden-
tify the sender.

Pass EventArgs.Empty instead of null.

Exception: On static events, the sender argument should be null.

9. Threading

C#901

C#902

Only lock on a private or private static object.
Example: lock(_object); // Good

Never locking on a Type and on “this”.
Example: lock(typeof(MyClass)); // Bad

DESIGN GUIDELINES

10. Class Design Guidelines

C#1001
C#1002

C#1003

C#1004
C#1005
C#1006
C#1007
C#1008

Use S.O.L.I.D. principles.

Only create a constructor that returns a useful object. There should be
no need to set additional properties before the object can be used for
whatever purpose it was designed.

Never throw the exception from the constructor besides argument
check.

Avoid to refer to derived classes from the base class.

Use Law of Demeter.

Always declare types explicitly within a namespace.

Do not use the default “global” namespace.

Always call Close() or Dispose() on classes that offer it, typically inside
finally clause. Prefer “using” keyword.

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

C#1009 If you need to free resources allocated by your type implement

IDisposable interface. Use good practices — refer to MSDN.
C#1010 Never throw exception from Dispose() method and from finalizers.
C#1011 Validate public methods arguments.

© ABB Asea Brown Boveri 2015-2019

C# Coding Standards GF-1S ADM Applications Performance Excellence (APE)

REFERENCES

1. Best Coding Practices - 9AAD135446

C# Best Coding Practices - 9AAD134037

C# Coding Standards - Field Guide - 9AAD134039
Java Coding Standards - 9AAD135383

SQL Server Coding Standards - 9AAD134842

Source Code Management Standards - 9AAD134843

o U e W

The latest versions of the above standards are available in ABB Library
(http://library.abb.com)

RECOMMENDED READING

1. Albahari, J., & Albahari, B. (2018). C# 7.0 in a nutshell. Beijing: O’Reilly.
Martin, R. C. (2016). Clean code: A handbook of agile software craftsmanship.
Upper Saddle River, NJ: Prentice Hall.

3. Skeet, 1. (2018). C#in Depth. Manning Publications Company.

4. Watson, B. (2018). Writing High-Performance .NET Code (2nd ed.). Ben Wat-
son.

5. Aviva Solutions. (n.d.). C# Coding Guidelines. Retrieved from
https://csharpcodingguidelines.com

REVISION HISTORY

Rev. Page Change Description Author(s) Date

A all first version Tomasz Oleniacz et al. 2015-02-01
B all tech leads review Tomasz Oleniacz 2015-03-01
C all major review Wojciech Bartus et al. 2017-08-10
D all approved Tomasz Jastrzebski et al. 2019-04-09

9 © ABB Asea Brown Boveri 2015-2019

https://search.abb.com/library/Download.aspx?DocumentID=9AAD135446LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AAD134037&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AAD134039&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AAD135383&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AAD134842&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AAD134843&LanguageCode=en&DocumentPartId=&Action=Launch
http://library.abb.com/
https://csharpcodingguidelines.com/

Information Systems

Applications Performance Excellence Department (APE)
Software Engineering Standards & Practices

AL HR HR
rfRpmw

