
1 Introduction

Model predictive control, MPC, is a widely used industrial technique for advanced multivariable control. An 
overview is given in [QB 1996]. For processes with strong interaction between different signals MPC can offer 
substantial performance improvement compared with traditional single-input single-output control strategies. 
Model predictive control has been used for several decades, and has been accepted as an important tool in many 
process industry applications. 

The purpose of this paper is twofold. It presents a new multivariable model predictive controller product, 3dMPC, 
from ABB Automation Products AB. Further we will show some benefits of using multivariable state space 
models in model predictive control.

The paper is organized as follows: Section 2 gives an overview of the product 3dMPC, section 3 describes briefly 
the underlying mathematics, section 4 focuses on identification, section 5 gives an example of one of the benefits 
of using state space models. Finally some conclusions are given in section 6.

2 Product Overview

This section gives an overview of 3dMPC, a new multivariable model predictive controller product from ABB 
Automation Products AB.

The controller 3dMPC uses a combination of feedback and feed-forward. The controller determines the 
manipulated outputs, based on actual measurements of process variables, and feed forward signals. The process 
variables can be assigned set-points that are the target for the feedback control law or they could just be used in the 
state-observer to improve the state estimate. The feed forward signals are measurable disturbances acting on the 
process that can be used for feed forward.

At each sample the manipulated outputs are obtained from a sequence of constrained optimizations. The loss 
functions in these problems penalizes a weighted sum of squared control-errors and moves in the manipulated 
outputs. The constraints in the optimization comes from limits on the manipulated outputs and from limits on the 
process variables.

The 3dMPC product contains both on-line and off-line components. The on-line components consist of algorithms 
for MPC, a data-logging function, and a function for the generation of excitation signals for identification. The on-
line components also include graphical user interfaces for operator interaction and start and stop of the on-line 
algorithms. The off-line engineering tools for configuration, data pre-processing, modeling, tuning, and analysis 
are available as a MATLAB toolbox.

The 3dMPC product is intended to run on a PC under Windows NT. It is connected to an underlying 
instrumentation system through an OPC server. The graphical interface can run on the same PC or on another PC 
connected through a network.
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Abstract: 

This paper presents a new multivariable model predictive controller from ABB. Some of its more important 
features are that is has three degrees of freedom (independent tuning of responses to set-point changes, to 
measurable disturbances and to non-measurable disturbances/model-mismatch) and that it is based on discrete 
time state-space models obtained from a truly multivariable identification procedure. Model predictive controllers 
based on such models can, compared to model predictive controllers based on input-output models, offer 
substantial improvement in rejection of certain types of disturbances. An example will demonstrate this.



2.1 Controller Functionality

This section lists some of the features of 3dMPC to give a glimpse of the functionality.

The controller works with three degrees of freedom (3d). This has motivated its name. Three degrees of freedom 
means that the controller can be configured to have different dynamic responses to set-point changes, to changes in 
measurable disturbances, and to other disturbances and to model mismatch. The two first functions are 
implemented as feed forward from set-points and from measurable disturbances. The third function is 
accomplished through feedback. Three optimization problems are solved with appropriate control error 
formulations. 

After the dynamic optimizations has been performed, a static optimization algorithm is employed to drive the 
manipulated outputs towards desired values. This algorithm will only have effect in cases where there is ambiguity 
in how manipulated outputs are chosen in order to reach the desired targets for the process variables.

The inputs and outputs of the controller can operate in independent operational modes. This means that some 
signals in the controller can work in automatic mode while other signals can work in manual mode. The mode for 
a signal is determined either by the operator or by external inputs. 

A main feature of model predictive controllers is the ability to handle constraints, not only for manipulated outputs 
but also for process variables. In 3dMPC, constraints ranked with priorities, can be defined for process variables, 
for deviations, and for manipulated outputs. These constraints can be violated under exceptional operating 
conditions. They are then violated according to their priorities. Hard constraints can be defined for manipulated 
outputs and their speed, and can never be violated.

The 3dMPC is based on a discrete time state-space model. The state vector is estimated using an observer. The 
parameters of the model are determined using truly multivariable identification methods provided by the modeling 
tools of the 3dMPC product.

Using state space models is not a goal per se, instead the reason for using state space models is that it provides 
some nice features for the model predictive controller:

• Uniform treatment of stable, integrating, and unstable processes.

• Allows feed-forward from non-measurable disturbances using extra measurement signals.

The controller is able to handle non-linear processes in two ways: Static non-linearities can be defined for each 
signal to compensate for known characteristics. The controller can also use an external input signal for parameter 
scheduling. One of four pre-defined sets of controller parameters is then selected. Such a set contains e.g a 
complete process model, weights on control-errors and moves, and constraint definitions. This high level 
controller parameter scheduling allows complete changes of the controller. The controller parameters can also be 
modified on-line by the operator.

The operator interface allows a user to have full insight in and control of 3dMPC through a number of displays. 
These are created automatically from the configuration.

2.2 Off-line Engineering Tools

The engineering tools are used to define and analyze a multivariable control system. The tools are available as a 
MATLAB toolbox with an elaborate graphical user interface. The most important tools are described below.

The configuration tool is used to create and modify the structure of the control system: Which signals should be 
used as manipulated outputs, as process variables, and as feed-forward variables. Properties associated with these 
signals are also defined using the configuration tool.

The pre-processing tool provides functions for signal processing to generate data sequences suitable for the 
process identification procedure in the modeling tool. The functionality include linearization functions to 
compensate for know non-linear elements, linear filtering, removal of means and trends, data editing to remove 
outliers and to split and merge data sequences, and finally there is also a function to resample data.

The modeling tool is used for building models of the process from data. There are modeling tools for process 
identification and for merging of models obtained from different process identifications. The tool also contains 
elaborate analysis functions to assist the user. The main part of the modeling tools are the parametric identification 
tool that is used for building state-space models from data sequences. The used two step state-of-the art algorithm 
for parametric identification combines the ease of use with the ability to use data sequences from both open and 
closed loop identification experiments. More details are found in Section 4.

The tuning tool is used to define the tuning parameters for the controller, e.g weights on control errors and moves, 
constraint definitions, and observer design parameters. The tool also contains elaborate analysis functions to assist 
the user.



3 MPC based on State-Space Models

A state space based model predictive controller, like 3dMPC, is described in this section. The controller design is 
based on a  model of the open loop process.

(1)

where y(k) and z(k) are vectors with measured and noise free process variables, u(k) is the vector with manipulated 
outputs, and d(k) is the vector with measurable disturbances. The noise vectors w(k) and v(k) are assumed to be 
white noise sequences. It is assumed that the model (1) is stabilizable and detectable.

Integrators are introduced by using an extended state space model that uses the differentiated state vector 
 and the controlled outputs z(k) of (1). This gives

which in short notation can be written as

(2)

The state vector is estimated using a state observer. It is based on the model (2). The observer is given by

(3)

The observer (3) provides the one step ahead prediction of the extended state vector. Further predictions are 
obtained by repeated use of (2) with the assumption that , , and 

. Multiplication with C provides prediction of z, based on estimated state, actual measurements, 
and future manipulated output moves. The output vector is predicted p samples ahead (prediction horizon) and 
control actions are considered for m future samples,  (control horizon). To simplify the notation, introduce

(4)

that collects manipulated outputs over the control horizon and process variables over the prediction horizon. Then 
the predicted process variables over the prediction horizon are

(5)

which in short notation can be written as

(6)

The presence  in (6) shows that the feedback is based on the most recent measurement of y(k).

The control error over the prediction horizon is the difference between predictions and the trajectory of future set-
points, i.e
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The three degrees of freedom design is obtained by splitting the error function in three different parts, 

each with its own state vector definition. The first part is the set-point error, the second part is the feed forward 
error, and the third part is the remaining error. Three consecutive optimization problems are then solved for the 
three error functions to provide ∆Usp(k), ∆Uff(k), and ∆Ufb(k). These sum up to ∆U(k), the increments of the 
manipulated outputs. 

Each optimization problem is of the form:

Minimize 

with respect to constraints on predicted process variables and to constraints on manipulated outputs.

4 Identification

One main benefit with the observer based state space MPC implementation is that, in addition to known process 
inputs, all available process outputs are used when predicting one of the outputs, thus improving the prediction 
quality. Specifically this means that added secondary measurements can be used to help in the predictions of the 
controlled variables (See Section 5). For this to be possible, however, the model must include the necessary 
relationships. If, as is common in the MPC community, the model is constructed by merging single output models 
together, each measurement can only be used to predict itself.

Thus, the whole multivariable system must be identified at once, which complicates matters. The methodology 
used in the 3dMPC tools is a two-step procedure where first a preliminary state space model is identified using a 
subspace method. This model is then refined by a prediction error method. The procedure combines the relative 
simplicity of use for the subspace method with the theoretical advantages of the prediction error method (most 
important, the ability to produce unbiased results in closed loop).

4.1 Subspace Identification

Subspace identification comprises a whole family of algorithms. The algorithm used in 3dMPC has been 
developed by Peter Van Overschee and is described in detail in [VODM 96] (in the reference referred to as a robust 
algorithm for combined deterministic-stochastic identification).

Here, a very short sketch of the ideas behind the method is given, mostly to introduce some concepts used later. 
For a detailed description, see [VODM 96].

The purpose is to identify the matrices of the model (1) (here we simplify the input relationships by introducing the 

matrix  and including the measurable disturbances d in the input vector u). The first step is to set up 

the multi-step prediction equations

(7)

where  and  are user supplied parameters. This predictor can easily be found through ordinary least-squares. To 
get the connection to the state space model, it is now assumed that the best estimate of the state vector based 
on the signal vectors  and  is available. The prediction of  can then alternatively be written

(8)

The extended observability matrix  and  containing Markov parameters, are easily constructed by iterating 
(1). By comparing (7) and (8), the following relation can be seen

(9)

The left hand side is known, and if the state dimension is known1, singular value decomposition can be used to find 
a column space of that dimension that can act as  for some state representation. With  known, the state 
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sequence can in principle be extracted through (pseudo-)inversion of (9) and with the state sequence known, the 
system matrices appear linearly in (1) and can be solved for through least-squares.

To help the user in the choice of state dimension and of the parameters  and , the identification tool can 
perform scans over intervals of the parameters. All produced models are automatically evaluated by calculating a 
measure of the prediction errors over a prediction horizon. The result is presented in a list ranking the models and 
from where the user can select models for a more thorough evaluation.

4.2 Prediction Error Identification

In the prediction error method, each candidate model is used to calculate the optimal predictor (given the candidate 
is the true model) and by using this predictor, the prediction errors are calculated by looping through the data. The 
model giving the smallest value of a norm of the prediction errors is chosen.

Our use of the method can be summarized as:

Find A, B, C, K minimizing

(10)

with

(11)

The search is started from the model found by the subspace method. Large residuals e are damped to decrease the 
sensitivity to outliers. The elements of B, C and K are all treated as independent parameters while for A a special 
tri-diagonal parameterization described in [McKHe 96] is used.

4.3 Identification using Merged Data

The 3dMPC tools contain functions to merge data collected at different occasions. The identification tools then 
uses information about the merging to perform the identification in a proper way. 

For subspace identification, when solving the least squares problem to determine the predictor (7), equations 
containing values from more than one data set are removed. For the prediction error method, the loss function (10) 
is divided into partial sums, each sum involving only one data set, and with the state estimates of (11) re-initialized 
at the start of each set. Theoretical justifications for these ways of treating merged data can be found in [Lju 99].

When the results of different identification experiments are to be merged, the situation can occur that not all 
signals are covered by all the experiments. This situation is handled in 3dMPC by automatically filling in the 
missed parts of the data sets with zeros.

5 Example

To demonstrate the possibility to use secondary measurements to improve the predictions of the controlled 
variables, the process of Figure 1 is studied.

The input u is the manipulated output and v is an non-measurable disturbance. The output  is the controlled 
variable and  is used only to improve the predictions. Simulated data were used to create two models, one by 
directly identifying a model with u as input and  and  as outputs (MO model) and the other by merging two 
single output models (SO model). The latter approach is a standard procedure when commissioning MPC 
controllers. The step-responses of the models are shown in Figure 2.

1.In principle, the singular values could be used to determine the rank (equalling the state dimension), but in practice, due to noisy 
measurements and the fact that in reality a low-dimensional approximation is desired, there is no simple rule to set a threshold for 
the values.
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Two controllers with identical design parameters, having  as the controlled variable were designed based on the 
two identified models. The result of a simulation is shown in Figure 3.

6 Conclusions

Although its long and widespread use, the MPC products have not adopted to modern state space theory, and hence 
not been able to benefit fully from what state space models can offer. The new product 3dMPC from ABB 
Automation Products changes this since it relies on state-space models obtained from a truly multivariable 
identification procedure. It further allows for independent tuning of responses to set-point changes. to measurable 
disturbances and to non-measurable disturbances/model-mismatch. The first two loops are purely feed-forward 
and can often be tuned tightly while still retaining robustness through a more cautious tuning of the feed-back 
loop.
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Figure 2 Step-responses of the model in Figure 1 (solid lines) together with the responses of the MO model 
(dashed lines) and of the SO model (dotted lines).
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Figure 3 Closed-loop responses to steps in v (dotted line). Solid line shows  and dashed line u. The first 
response is for the controller based on the MO model and the second is for the controller based on 
the SO model.
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