
—
A B B M E A SU R EM ENT & A N A LY TI C S | A PPLI C ATI O N R EFER ENCE M A N UA L

SpiritIT eXLerate
Measurement supervisory software

Introduction, tutorial, application
development and report generation

Measurement made easy

Introduction
Welcome to the exciting world of SpiritIT eXLerate!

Using SpiritIT eXLerate, you are able to create your
complete real-time HMI applications completely
from the well-known and most popular Microsoft®
Excel environment.

This manual is the reference manual with which a
developer is able to create a full-featured, full-blown
real-time HMI application.

There are two reference manuals:
•	 This ‘Application reference manual’, with the

installation and setup guide, a tutorial, the
control center reference, and application
development guide.

•	 	The ‘Advanced topics reference’ manual with
various additional information about the built-in
Wizards & Tools, the worksheet- and VB function
reference, database management system
extensions, and various other topics.

For more information
All publications of Spirit IT eXLerate are available for
free download from:

Search for:

Spirit IT eXLerate
application reference manual

IM/eXL-EN

Spirit IT eXLerate
advanced topics reference manual

CM/eXL-EN

Spirit IT eXLerate
function reference manual

CM/eXL/RF-EN

Spirit IT release notes RN/eXL-EN

—
SpiritIT eXLerate
interfaces

2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Contents

1 Introduction to SpiritIT eXLerate 3
Advantages ... 3
Purpose of this manual... 3
How this manual set should be used 4
Abbreviations ... 5
Terms and definitions... 7
Document conventions .. 8

2 Getting started .. 9
Introduction .. 9
Hardware requirements ... 9
Software requirements .. 9
Microsoft Office editions ... 9
Installation & setup of Microsoft Excel 9
SpiritIT eXLerate editions and options 10
Installing the software on your computer 10
License number and authorization key 13
Project files ... 14
Using the license manager .. 14

3 Tutorial .. 16
Introduction .. 16
The SpiritIT eXLerate 2016 Control Center 16
Operating modes of SpiritIT eXLerate 18
Application launch ... 18
The SpiritIT eXLerate ribbon .. 19
Worksheet functions .. 24
Browsing through the application 24
Conclusion ...29

4 Control Center reference 30
Introduction ... 30
Control Center functions .. 30
User accounts .. 30
Application shortcuts ... 31
System parameters and options .. 33
Terminal services options ..35
Application control ..35
Command line arguments .. 36

5 Application development 37
Introduction .. 37
Development steps ... 37
Start a new project in SpiritIT eXLerate 37
The tag database .. 38
Worksheets as display pages ... 42

6 Data communications .. 46
Introduction ... 46
Multi-drop or point-to-point communications 46
Simplified data-model ... 47
Data updates from external devices 47
Data updates to external devices 48
Controlling real-time data communications................... 48
Configuring real-time data communications 48
xlConnect, the protocol manager 48
The Query table ..51
Advanced communication topics 53
OPC server .. 54

7 Intervals and periods .. 55
Introduction ... 55
Interval vs. period .. 55
Supported calculations .. 55
The Interval table ... 56
Interval processing ... 57
Generated objects .. 59
Cascading calculations .. 59
Calculation triggers .. 60
Resetting historical values .. 61

8 Object animations ... 62
Introduction ... 62
The Animation table ... 62
The Shape properties tool .. 63
The Animation table functions ... 63
The Animation color table ... 64
Adding animations to your project 65

9 Menu navigation .. 66
Introduction ... 66
The Button table .. 66
Button wizard ... 67

10 Cell editing .. 68
Introduction ... 68
Editing range .. 68
The Editing table ... 68
Accepting edit groups.. 70
The Editing table ... 70
Edit lists .. 71
Date and time edit formats ... 71

11 Reporting ... 73
Introduction ... 73
Report generation ... 73
Advanced reporting in your application 75
HTML page support .. 77

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3

1 Introduction to SpiritIT eXLerate

Advantages

With SpiritIT eXLerate, you are able to develop your process

visualization applications in a convenient and familiar

spreadsheet environment, and yet, for the operator generate a

robust and more than complete application.

In an application created with SpiritIT eXLerate, which is stored in

just one (!) single standard Excel workbook, you can:

 Obtain real-time values from external devices, such as a

process controller, flow computer, or other device, directly

into a spreadsheet cell utilizing the available communication

drivers or from an OPC server.

 Visualize the obtained data in a display page using the

powerful possibilities of Excel.

 Animate shape objects, such as a bar graph, with the real-

time data. Shapes may be created with the office shape

library, or may be imported from external tools, such as

Microsoft® Visio, or even AutoCAD®.

 Create many types of alarms for a tag, which can be printed,

logged on disk or shown on a window on the display.

Trend these values, for an historical overview of a value, in a real-

time or historical trend graph.

 Perform extensive calculations on the obtained data, using

directly an ‘=’ formula in Excel.

 Generate professional-looking reports of the obtained,

derived and all other data, graphics and tables as available in

SpiritIT eXLerate.

 Create additional Visual Basic for Applications code to be

even more flexible and powerful, with which you can create

your own dialogs, functions and subroutines.

 Add database functionality in your application utilizing one of

the available database standards, such as, MySQL (which is

also as embedded database), SQL Server or any other OLEDB

type driver.

 Secure your applications, so an operator is restricted in his

Windows environment.

 Publish your display pages in HTML/XML/VML format onto

the Internet using the built-in support of Excel.

 Skip going through a steep learning curve as is required for all

other process visualization software packages. And there is

no programming required to do so.

 Trouble-shoot in an open environment, without black boxes.

 Do much, much more, utilizing the fully open architecture of

the Microsoft Office environment. All of these possibilities as

mentioned above can be realized from within your familiar

Microsoft Excel environment.

Purpose of this manual

This SpiritIT eXLerate 2016 reference manual is written for a

variety of readers:

The application developer, who is interested in all details

required to develop a complete real-time application with SpiritIT

eXLerate.

He or she is assumed to be acquainted in general with

visualization software.

It would be an advantage if the application developer is familiar

with the basics of some other real-time HMI or SCADA software

package.

A more generally interested reader, who wonders if the

capabilities and features of SpiritIT eXLerate will satisfy his/her

project requirements.

Both types of readers are assumed to be familiar with the

environment of Microsoft Office members, especially Microsoft

Excel.

Where the more generally interested reader is expected to be

commonly acquainted with Excel, the application developer is

assumed to have a thorough understanding of at least the

following aspects of Excel:

 Worksheet/workbook organization

 Named ranges, tables

 ‘=’ Worksheet formula syntax

 Cell formatting

 Macro recording and playback

Although not absolutely required, a programmer is also assumed

to have a good understanding of the programming environment

of Visual Basic for Applications.

When one of the above areas is looking unfamiliar to the

application programmer, looking for one of the - more than

many – excellent study books on Microsoft Excel would be a

great idea.

4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

How this manual set should be used

This reference manual is setup both as a manual, in which a

newcomer is quickly introduced with the principles and

techniques of real-time application development, as well as a

reference manual, in which all details of application engineering

can be found. The manual is setup in two volumes, as follows:

Application reference manual

In the first chapters, an introduction is given to this manual.

Various terms and definitions as used throughout this book are

given.

In chapter 2: ‘Getting started’ the user is acquainted with

hardware and software requirements for SpiritIT eXLerate, the

available options, and explains how to install the software on the

computer. The content of the end-user license agreement is

added for convenience. In this chapter, the usage of the License

number and corresponding authorization key are explained.

In chapter 3: ’Tutorial’, the user is introduced to the concept of

SpiritIT eXLerate and the basic ingredients of a complete

application, and is added to this reference to quickly start

application development in SpiritIT eXLerate.

In the next chapters, fully detailed information is given on all

software components.

In chapter 4: ‘Control Center reference’, a full explanation is given

on using the SpiritIT eXLerate Control center program.

In chapters 5-10: ‘Application development’, an overview of the

components in a complete application is given, so the user

knows how start with the development of an application. Other

issues of an application are discussed as well, which completes

the process of engineering an application in this chapter.

In chapter 11: ‘Reporting’ is described, so a user is able to add

reports to an application, and able to publish reports or display

pages as HTML files on a web-server.

Advanced topics reference manual

In this volume, many advanced topics, such as structuring your

application, and how to utilize calculation worksheets in an

application are described in the first chapters.

The next chapters of this volume give detailed information on

how to use the various wizards and tools in case not already

discussed in the Reference Manual.

In the Function API Reference chapters, all worksheet functions

and VBA interfaces are described in detail, with all parameters,

comments and return values. This chapter is the core reference

part of the SpiritIT eXLerate API in Microsoft Excel.

In ‘Trouble shooting’, help is offered when things might not work

out the way you have expected.

In the next chapter, you will learn how to add a relational

database based on MySQL to your application, and how to use a

relational database in an application.

MySQL has been selected as the database engine typically used

in a SpiritIT eXLerate environment, because of its programming

power, excellent performance as well as its beneficial economic

aspects.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5

Abbreviations

Throughout this document the following abbreviations are used:

AI Analog Input

AO Analog Output

API Application Programming Interface

An interface that allows an application to interact with an application or operating system, in our case, SpiritIT eXLerate. Most of the SpiritIT eXLerate

API is implemented through Excel worksheet functions.

ASCII American Standard Code for Information Interchange.

A set of standard numerical values for printable, control, and special characters used by PCs and most other computers. Other commonly used codes

for character sets are ANSI, Unicode, and EBCDIC (Extended Binary-Coded Decimal Interchange Code, used by IBM for mainframe computers).

COM Component Object Model

Standard for distributed objects, an object encapsulation technology that specifies interfaces between component objects within a single

application or between applications. It separates the interface from the implementation and provides APIs for dynamically locating objects and for

loading and invoking them (see ActiveX and DCOM).

CPU Central Processing Unit

DAC Digital to Analog Converter

DCE Distributed Computing Environment

Definition from the Open Software Foundation, DCE provides key distributed technologies such as RPC, distributed naming service, time

synchronization service, distributed file system and network security.

DCOM Distributed Component Object Model

Microsoft’s protocol that enables software components to communicate directly over a network in a reliable, secure, and efficient manner. DCOM is

based on the DCE-RPC specification and works with both Java applets and ActiveX components through its use of the COM. See also ActiveX.

DCS Distributed Control System

DDE Dynamic Data Exchange

A relatively old mechanism for exchanging simple data among processes in MS-Windows.

DI Digital Input

DLL Dynamic Link Library.

A file containing a collection of Windows functions designed to perform a specific class of operations. Most DLLs carry the .DLL extension, but some

Windows DLLs, such as Gdi32.exe, use the .EXE extension. Functions within DLLs are called (invoked) by applications as necessary to perform the

desired operation.

DO Digital Output

EGU Engineering Units

EIA Electrical Industries Association

GUI Graphical User Interface

HART Highway Addressable Remote Transducer.

A protocol defined by the HART Communication Foundation to exchange information between process control devices such as transmitters and

computers using a two-wire 4-20mA signal on which a digital signal is superimposed using Frequency Shift Keying at 1200 bps.

HMI Human Machine Interface.

Also referred to as a GUI or MMI. This is a process that displays graphics and allows people to interface with the control system in graphic form. It

may contain trends, alarm summaries, pictures, and animations.

I/O Input/Output

IEEE Institute for Electrical and Electronics Engineers

ISO International Standards Organization

MES Management Execution System.

A level of monitoring of a process control system that is above the PLC and HMI level, where data analysis and integration with other aspects of a

company such as accounting and purchasing play a significant role.

MMI Man Machine Interface

MIC Machine Identification Code. License code of SpiritIT eXLerate which uniquely identifies your computer.

ODBC Open Data Base Connectivity.

A standardized application programmer's interface (API) for databases. It supports Visual Basic, Visual C++, and SQL for Access, Paradox, Text, Excel

and many more database standards.

OEM Original Equipment Manufacturer

OLE Object Linking and Embedding.

A protocol specification by which an object, such as a photograph, a spreadsheet, video, sound, etc., can be inserted into and used by an application.

Renamed by Microsoft into ‘ActiveX’.

OSI Open System Interconnection.

An ISO standard for worldwide communications that defines a networking framework for implementing protocols in seven layers. Control is passed

from one layer to the next, starting at the application layer in one station, proceeding to the bottom layer, over the channel to the next station and

back up the hierarchy.

OPC OLE for Process Control.

A particular COM interface specification. Applications which implement the OPC interface are able to inter-operate without the developer needing to

control both the server and client development. In essence, by following the OPC interface, clients and servers from different manufacturers can

communicate and interact successfully. The OPC interface is designed to offer the types of interactions that are typical of process I/O hardware such

as PLC, DCS and direct I/O boards.

SpiritIT eXLerate 2016 is OPC DA 2.05 compliant, and ABB is a member of the OPC Foundation.

P&ID Piping and Instrumentation Diagram

PC Personal Computer

PCB Printed Circuit Board

PLC Programmable Logic Controller.

A specialized device used to provide high-speed, low-level control of a process. It is programmed using Ladder Logic, or some form of structured

language, so that engineers can program it. PLC hardware may have good redundancy and fail-over capabilities.

6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

AI Analog Input

RPC Remote Procedure Call

A form of application-to-application communication that hides the intricacies of the network by using an ordinary procedure call mechanism. It is a

tightly coupled synchronous process.

RS232 EIA standard for point to point serial communications in computer equipment

RS422 EIA standard for two-wire differential unidirectional multi-drop serial

RS485 EIA standard for two-wire differential bidirectional multi-drop serial communications in computer equipment

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SQL Standard Query Language

SVC Supervisory Computer

TCP/IP Transmission Control Protocol/Internet Protocol.

Transmission Control Protocol/Internet Protocol. The control mechanism used by programs that want to speak over the Internet. It was established

in 1968 to help remote tasks communicate over the original ARPANET.

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver & Transmitter

URL Uniform Resource Locator.

The global address for documents and resources on the World Wide Web.

VBA Visual Basic for Applications.

The official name is "Visual Basic, Applications Edition." VBA is Microsoft's common application programming (macro) language for Excel,

PowerPoint, Visio, Access, Project, Word, and the Visual Basic programming environment.

VBE Visual Basic for Excel.

Although VBA is a general name for the Visual Basic in Office, more specifically, in Excel, the term VBE is used as well.

VML Vector Markup Language.

An XML based graphics rendering language that describes how an object should be drawn on web pages resulting in more flexibility for the developer

and faster, smaller graphical images.

XLL Excel Link Library.

Special formatted DLL, which is recognized by Excel as extension library. In an XLL, typically worksheet calculations are defined. For example, the

xlMath library from SpiritIT containing petrochemical equations has an XLL format.

XML Extensible Markup Language. A specification for Web

documents that allows developers to create custom tags that enable the definition, transmission, validation and interpretation of data contained

therein.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7

Terms and definitions

Throughout this manual the following additional terms and definitions are used:

Asynchronous A type of message passing where the sending task does not wait for a reply before continuing processing. If the receiving

task cannot take the message immediately, the message often waits on a queue until it can be received.

ActiveX A family of Microsoft object technologies, formerly called OLE, based on the Common Object Model (COM), serving nowadays as

the foundation of many internet products. See also COM/DCOM/OLE.

C/C++ C is a low-level compiled programming language popular for real-time applications because of its precision and rapid execution

times. C++ is an object-oriented superset of C.

Client/server A network architecture in which each computer or process on the network is either a client or a server. Clients rely on servers for

resources, such as files, devices, and even processing power.

Another type of network architecture is known as a peer-to-peer architecture. Both client/server and peer-to-peer architectures

are widely used, and each has unique advantages and disadvantages. Client/server architectures are sometimes called two-tier

architectures

Device driver A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a

hardware interface card that receives field device messages and maps their content into a region of memory on the card. The

device driver then reads this memory and delivers the contents to the spreadsheet.

Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example ‘bar’, or ‘ºC’, and not to a

type of unit, as with ‘metric’ units, or ‘imperial’ units.

Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of

10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software

layers. A newer version, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version,

Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second.

Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from

a user.

Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control.

Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field

devices. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the

different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus,

and CANopen.

Kernel The core of SpiritIT eXLerate that handles basic functions, such as hardware and/or software interfaces, or resource allocation.

Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server

architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but

they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P.

Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data

point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data

points in the system. Otherwise, exception handling is generally faster.

Process visualization

software

A system for monitoring and controlling for production processes, and managing related data. Typically such a system is

connected to external devices, which are in turn connected to sensors and production machinery.

The term ‘process visualization software’ in this document is generally used for software with which SCADA software, HMI

software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms

‘SCADA, ‘HMI, ‘supervisory’, and ‘process visualization’ are alternately used, and refer to the computer software applications that

can be realized with SpiritIT eXLerate.

Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link

Layer in the OSI 7-Layer Communication Model.

Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with

the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.

Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a

determined length of time.

The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-

time means real-fast.

Real-time database A flat database designed for quick, deterministic response. Not to be confused with a relational database, a real-time database

is like a hub--a lively transfer point where data can be updated and sent virtually instantaneously, from and to many processes at

the same time. In SpiritIT eXLerate, the contents of the real-time database can be stored in the system registry to avoid startup

and shutdown problems in an application.

Registry A database that contains information required for the operation of Windows, plus applications installed under Windows.

Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-

world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file

descriptors, files, etc.

Synchronous A type of message passing where the sending task waits for a reply before continuing processing.

System registry The registry in Windows is an internal register, in which many properties and values from the operating system, such as class

definitions, file associations, file types etc. are stored. The system registry is also used as a replacement of the older ‘.ini’ files, in

which a specific program can store its internal settings and properties.

SpiritIT eXLerate also uses the registry for storage of both its component properties, as well as for storage of real-time settings

and user-defined parameters.

Tag A ‘tag’ as used within this document refers to a data point existing in the tag database, with a number of properties, such as its

assigned I/O address, current value, engineering units, description, alias name, and many others.

Visual Basic A graphical programming language and development environment created by Microsoft in 1990, and currently the de-facto

standard for scripting in applications like Microsoft Office. All macros in Office are created in Visual Basic.

Web Server A computer that has server software installed on it and is used to deliver web pages to an intranet/Internet.

8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Document conventions

Specific keys, i.e. function keys, editing keys, cursor direction keys etc., are presented with the text on top of the key enclosed

between ‘<‘ and ‘>‘ characters. For example <F1> refers to function key 1 while <Esc> refers to the key with the text ‘Esc’ imprinted.

Sometimes the user is assumed to press two keys simultaneously. If this is the case those keys are specified separated by a ‘-’

character. So when <Ctrl-F1> or <Ctrl-a> appears in the text the user should press and release the keys <Ctrl> and <F1> or <Ctrl> and

‘a’-key simultaneously.

When the book symbol as displayed at the left appears

in the text in this manual, a reference is made to

another section of the manual. At the referred section,

more detailed, or other relevant information is given.

When in this manual a symbol as displayed at the left

appears in the text, certain specific operating

instructions are given to the user. In such as case, the

user is assumed to perform some action, such as the

selection of a certain object, worksheet, or typing on

the keyboard.

A symbol as displayed at the left indicates that the user

may read further on the subject in one of the sample

workbooks as installed on your machine.

When an important remark is made in the manual

requiring special attention, the symbol as displayed to

the left appears in the text.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 9

2 Getting started

Introduction

In this chapter, the reader is guided through the installation

process of the setup program of the CD-ROM of SpiritIT

eXLerate. It further explains about various versions of the SpiritIT

eXLerate software package.

In this chapter, the license usage is also explained. Please read

this section carefully, as it is important to obtain you permanent

license as soon as possible

Hardware requirements

SpiritIT eXLerate runs best on a Personal Computer with at least

1.5 GHz with a minimum of 2 GB or more of RAM installed,

depending on the application. It is recommended to use higher

frequency processor over lower frequency multi core processor.

The hard-disk should have at least 200MB of free disk space for

trending file storage space, log-files and reports. The SpiritIT

eXLerate software itself requires about 70MB-80MB of disk-

space.

A fact is that the more memory is available, the better the

performance is of Excel and hence the performance of SpiritIT

eXLerate. For larger or more complex applications, 4GB or more

is recommended.

Software requirements

SpiritIT eXLerate 2016 runs on Microsoft Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1,

Windows Server 2012 R2 and Windows 10. Both 32- and 64-bit

editions of these Operating Systems are supported. We strongly

recommend Windows Server 2012 R2, when using SpiritIT

eXLerate 2016 in a production environment. These server

operating systems often contain better drivers and better

support for diagnosing problems.

SpiritIT eXLerate 2016 requires Microsoft Excel 2016 (or Excel

2010 or Excel 2013) to be installed. Only the 32 bit editions of

Microsoft Office are supported. Office 365 may work but is NOT

supported.

Always make sure that the latest Service Pack and

Updates are installed for Windows and Office to ensure

optimal stability and protection against viruses.

Microsoft Office editions

There are various editions of Microsoft Office available, e.g.

Home Edition, Professional Edition, etc... SpiritIT eXLerate works

with any of these editions because they all contain Microsoft

Excel. As a recommendation we recommend either Microsoft

Office Standard or Professional edition. This will also give you

certain support rights from Microsoft in case you have trouble

installing Office.

We further recommend the English version of Microsoft Office,

although other languages will also work. The documentation

may refer to certain Excel features in the English version of

Microsoft Office which may be called differently in other

languages.

Note that SpiritIT eXLerate is a Microsoft Windows based

program, it will not work on other platforms also running

Microsoft Office such as Mac OS-X. Furthermore, SpiritIT

eXLerate requires a 32 bit edition of Microsoft Office, it will not

run on a 64 bit edition of Microsoft Office.

Installation & setup of Microsoft Excel

Microsoft Excel is an important component of SpiritIT eXLerate.

Before installing SpiritIT eXLerate, make sure that Microsoft

Excel is installed.

To install Microsoft Excel, you can either insert the DVD in your

drive or mount an ISO and run the setup. The following screen-

shots depict the setup process for Microsoft Excel 2010, the

setup for Microsoft Excel 2013 and 2016 however is very similar.

Alternatively, for Microsoft Excel 2013 and 2016 there also exist

online installers, these are simplified versions with less choice in

options that by default contain everything SpiritIT eXLerate

needs.

Installation type

After ‘Accepting the terms of agreement’, you may choose to

either install Microsoft Office right away (Install Now), or

Customize the installation. Select the Customize option in order

to make sure that features required for SpiritIT eXLerate will be

installed.

Figure 2.1 Office setup – Installation Type

Customizing the installation

When choosing Customize make sure that at least “Microsoft

Excel” and “Visual Basic for Applications” (VBA) is selected. Click

Install Now to start the installation.

1 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Figure 2.2 Office setup – Customize

Completing the installation

After Microsoft Office is installed, it is ready to be used. Click

Close to exit the installation program. At this point it is strongly

advised to install any Service Packs and Updates that are

available for Microsoft Office.

Figure 2.3 Office setup – Completing the installation

SpiritIT eXLerate editions and options

In traditional process visualization software packages, various

options are usually based on limitations on both its functionality

as well as on the number of tags that can be created within the

package. These limitations are mostly there for commercial

aspects of the software: the bigger the number of tags, or the

more functionality, the higher the price of the software will be.

eXLerate comes in various flavors as well, each with its specific

qualifications with respect to tag database size and

functionality. However, this size or functionality is not as far

restricted as with other packages, since in Microsoft Excel,

theoretically each worksheet cell may be thought of as a ‘tag’,

since each cell may contain a number or equation, can be

presented to the operator, and may be formatted.

Restrictions only apply on number of values obtained from

external devices, called: real-time data, and further on built-in

support with respect to automatically generated calculations for

reporting purposes. eXLerate does not limit the number or size

of the worksheets in your project.

Effectively, due to the open character of Excel, your application

may therefore contain as many tags as you want. The following

versions of eXLerate are available:

Editions I/O Tags

eXLerate 2016 Lite Edition license 75

eXLerate 2016 Basic Edition license 150

eXLerate 2016 Standard Edition license 300

eXLerate 2016 Extended Edition license 750

eXLerate 2016 Pro Edition license 1500

eXLerate 2016 Pro Edition license 3000

eXLerate 2016 Pro Edition license 6000

eXLerate 2016 Pro Edition license 32K

eXLerate 2016 Full I/O Edition license Unlimited *

Table 2.1 Available editions of eXLerate with respect to I/O tags

Besides these I/O tag size related options, various other options

are available, such as math libraries for specific technologies and

industries. Please take a look at http://www.abb.com for an

update on the available products.

Installing the software on your computer

Assumed pre-installation

Make sure you have installed Microsoft Excel 2016, Microsoft

Excel 2013 or Microsoft Excel 2010 prior to installing eXLerate.

See the previous section ‘Software requirements’ for more

details.

In order to install the software onto your hard disk, insert the

disk in your CD-ROM drive, and run the eXLerate setup program.

The following display page appears:

Figure 2.4 eXLerate setup program

This page tells the user which version will be installed, or in case

or upgrading which version will be upgraded. The “Next”-button

may be pressed, after which the End User License Agreement

dialog is displayed.

End user license agreement

The end-user license agreement has the following contents:

SOFTWARE PRODUCT LICENSE

After installation an evaluation version of this product will run

for the period of 15 days. Please contact ABB for a valid license

authorization key. A valid license authorization will not expire at

all.

http://www.abb.com/

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 1 1

This end user license agreement grants you the following rights:

Application software

You may install and use one copy of the SOFTWARE PRODUCT, or

any prior version for the same operating system, on a single

computer. The primary user of the computer on which the

SOFTWARE PRODUCT is installed may make a second copy for

his or her exclusive use on a second computer such as a portable

computer.

Storage/network use

You may also store or install a copy of the SOFTWARE PRODUCT

on a storage device, such as a network server, used only to install

or run the SOFTWARE PRODUCT on your other computers over

an internal network; however, you must acquire and dedicate a

license for each separate computer on which the SOFTWARE

PRODUCT is installed or run from the storage device. A license

for the SOFTWARE PRODUCT may not be shared or used

concurrently on different computers.

OTHER LIMITATIONS

Separation of components. The SOFTWARE PRODUCT is licensed

as a single product. Its component parts may not be separated

for use on more than one computer.

Rental. You may not rent, lease, or lend the SOFTWARE

PRODUCT.

Software transfer

You may permanently transfer all of your rights under this EULA,

provided you retain no copies, you transfer all of the SOFTWARE

PRODUCT (including all component parts, the media and printed

materials, any upgrades, this EULA, and, if applicable, the

Certificate of Authenticity), and the recipient agrees to the

terms of this EULA. If the SOFTWARE PRODUCT is an upgrade,

any transfer must include all prior versions of the SOFTWARE

PRODUCT.

Termination

Without prejudice to any other rights, ABB may terminate this

EULA if you fail to comply with the terms and conditions of this

EULA. In such event, you must destroy all copies of the

SOFTWARE PRODUCT and all of its component parts.

COPYRIGHT

All title and copyrights in and to the SOFTWARE PRODUCT

(including but not limited to any images, photographs,

animations, video, audio, music, text, and "applets" incorporated

into the SOFTWARE PRODUCT), the accompanying printed

materials, and any copies of the SOFTWARE PRODUCT are

owned by ABB. The SOFTWARE PRODUCT is protected by

copyright laws and international treaty provisions. Therefore,

you must treat the SOFTWARE PRODUCT like any other

copyrighted material except that you may install the SOFTWARE

PRODUCT on a single computer provided you keep the original

solely for backup or archival purposes. You may not copy the

printed materials accompanying the SOFTWARE PRODUCT.

LIMITED WARRANTY

ABB warrants that (a) the SOFTWARE PRODUCT will perform

substantially in accordance with the accompanying written

materials for a period of ninety (90) days from the date of

receipt, and (b) any Support Services provided by Spirit shall be

substantially as described in applicable written materials

provided to you by Spirit, and Spirits support engineers will

make commercially reasonable efforts to solve any problem

issues. Some states and jurisdictions do not allow limitations on

duration of an implied warranty, so the above limitation may not

apply to you. To the extent allowed by applicable law, implied

warranties on the SOFTWARE PRODUCT, if any, are limited to

ninety (90) days.

NO OTHER WARRANTIES

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,

ABB DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT, WITH

REGARD TO THE SOFTWARE PRODUCT, AND THE PROVISION OF

OR FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED

WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE

OTHERS, WHICH VARY FROM STATE/JURISDICTION TO

STATE/JURISDICTION.

LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN

NO EVENT SHALL ABB OR ITS SUPPLIERS BE LIABLE FOR ANY

SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL

DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION,

DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS

INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY

OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR

INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION

OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF ABB

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN

ANY CASE, ABB ' ENTIRE LIABILITY UNDER ANY PROVISION OF

THIS EULA SHALL BE LIMITED TO THE GREATER OF THE

AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE

PRODUCT OR U.S.$5.00; PROVIDED, HOWEVER, IF YOU HAVE

ENTERED INTO AN EXLERATE SUPPORT SERVICES AGREEMENT,

ABB ' ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL

BE GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE

SOME STATES AND JURISDICTIONS DO NOT ALLOW THE

EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE

LIMITATION MAY NOT APPLY TO YOU.”

1 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

When the user has accepted the end-user license agreement, the

customer information must be entered. Next, dialogs are

displayed in which the user is opted for various choices:

Figure 2.5 Choosing the Setup type

 Complete installs all files.

 Typical installs all files except all the samples.

 Minimal installs only the files that are absolutely necessary for

running the product (no samples, no help, no HTML

framework and no tools).

 Custom install which allows to user to install various

components optionally and into customizable file locations.

For example, a user may want to only install the main program

files, without any sample applications, in which case the

appropriate check mark box may be turned off, as in the

example:

Figure 2.6 Choosing a program files installation location

 The location of the Program Files in which the setup program

will install the software. This may be at an existing program

folder, or setup will create a special folder for you.

Figure 2.7 Choosing a project files installation location

 The location of the sample projects, resource files and HTML

framework. By default, this location is the folder C:\XLRX, but

this can be changed into any other folder.

Figure 2.8 Individual feature installation

 The features that are selected for install. When selecting a

feature, a detailed description is displayed in the description

box. For example, in the figure above, the Protocol Samples

feature is selected and the description shows which files are

part of that feature.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 1 3

Before the software actually starts copying the software, the

user is prompted to review the installation settings. Clicking

Install will start copying the files and the following progress bar

is presented:

Figure 2.9 Copying files at installation

When the copying process has been completed, the user is

presented with a dialog containing license information.

License number and authorization key

eXLerate uses a software based license system, preventing the

use of awkward hardware dongles at the back of the computer.

The software license is based on the data that you have entered,

as well as on the machine that the software is installed on.

If the machine on which the software is installed is replaced

with another machine, you may request for a new authorization

code, which will be generated and sent to you by ABB.

A license authorization code is sent to you via e-mail or fax, and

may be entered in the system using the “License Manager”. The

“License Manager” is located in the “eXLerate 2016” menu of the

Windows Start menu.

The following information must be entered at the license dialog

during the setup process:

End-User Your full name, or the name of your department using

the eXLerate software, for example: “John Smith”, or

“Engineering”.

Company The name of your organization to which the license will

be granted, for example “MyCompany, Inc.”

System The name of your system (by default your computer-

name is used).

The following dialog is presented in the client license dialog:

Figure 2.10 Entering license information

When you have installed the software for the first time, a

temporary license is automatically installed on your machine,

with which you may run most portions of the software for a

period of 15 days.

In this period, you should send your name, organization,

license number and your MIC (Machine Identification

Code) to Spirit at the back of this manual, after which

you will receive your permanent authorization code.

If you have previously installed the software, the parameters of

the previous installation are displayed, which may be corrected if

required.

If you already have an installed permanent license, this license

remains active. During product upgrades, no additional licenses

have to be installed at all.

When the setup process has been completed, the following

dialog may or may not appear on your display. This depends on

the files that were already installed on your machine.

When the following dialog appears, the computer must be

restarted prior to using the software:

Figure 2.11 Setup has been completed

Please restart the computer if this message is displayed, after

which the installation process is completed.

1 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Project files

By default, the project files are installed in the ‘C:\XLRX’ location.

This directory contains the eXLerate project files (*.XLRX),

samples, and additional support files. After the first installation

some sub-directories are automatically created, others are

created when running eXLerate. The following sub-directories

are created:

Directory Description

<C:\XLRX> Location for the .XLRX project files

<C:\XLRX>\Archive Location for automatically generated project

backup files

<C:\XLRX>\Cache Location for temporary cache files

<C:\XLRX>\Database Location for the database (e.g. event-log)

<C:\XLRX>\HTML Location for the website files

<C:\XLRX>\Logger Location for logs

<C:\XLRX>\Reports Location for generated reports

<C:\XLRX>\Resources Location for additional graphical resources

(e.g. .jpg, .bmp)

<C:\XLRX>\Templates Location for project component templates (e.g.

TrendChart defaults)

<C:\XLRX>\TrendData Location for the trending files

Table 2.2 Additionally created directories

After the installation new projects can be added to

eXLerate through the Control Center application. The

default file locations of each project (e.g. reports, trend-

files) point to the directories above. These may be changed to

any location (e.g. “D:\Reports”,

Using the license manager

In order to use the product, either a software license must be

installed or a hardware-key (dongle) must be attached to the

system.

The License Manager can be used to view the currently installed

license(s) or install software based licenses. The program can be

found in the Start menu of Windows, named “License Manager”.

Figure 2.12 License Manager

The “Status” field shows the current status of the selected

product. In the example above, an evaluation license is installed

which is about to expire in 1 day. The user is urged to obtain a

permanent license from ABB in order to continue to use the

software.

Requesting a software based license

A software based license can be requested directly from ABB,

e.g. by sending an email to nl-spiritit-support@abb.com.

The following information should be included in the email so

that the request can be handled quickly and efficiently.

 End-User

 Company

 System

 Machine Identification Code (MIC)

 License Number

 License options (tag-count, Flow-Xpert support, etc…

Figure 2.13 Requesting a software based license

If you don’t know which options you need or have any other

questions, don’t hesitate to contact our sales or support team.

Installing a software based license

After purchasing a license, you should have received an

“Authorization Key” and “License Number”.

Both the Authorization-key and License Number can be copied

(using Ctrl+C/V) to the relevant fields of the License Manager.

After this, the button “Install” should become enabled.

Figure 2.14 Installing a license

After pressing “Install” a message will appear that the license

was installed successfully.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 1 5

Figure 2.15 License successfully installed

If installing the license doesn’t work, please verify that:

 No Hardware-Key is attached (there is no green icon at the

top)

 Both the Authorization-Key and License Number have been

correctly entered.

 The date/time of your system is correct. Authorization-Keys

can only be installed up to 15 days after they have been

issued.

 You are installing the license onto the correct system.

 If you are still unable to install the license, please contact ABB.

Hardware keys (dongles)

Alternative to software based licenses; hardware-keys can be

used as well. A hardware-key is a small device which connects to

the USB port of your computer.

Hardware-keys are particularly useful for commissioning- and

service personal that can take the hardware-keys with them and

be always sure that they have the correct license rights for

authoring a system.

When a hardware-key is attached, the License Manager displays

a green hardware-key icon at the top of the program.

Figure 2.16 Hardware-key attached

If no green hardware-key icon is displayed, then make sure your

hardware-key is properly attached and that the Hasp HL Driver is

installed. Please read the next section on how to manually install

the hardware-key driver.

A hardware-key can contain licenses for multiple products.

Whenever the hardware-key is attached, the key overrules the

software based licenses.

Hardware-keys can be purchased directly from ABB, please

contact nl-spiritit-support@abb.com on how to obtain a

hardware-key and licenses.

Installing the hardware key driver (HASP HL)

Whenever a hardware-key is attached to an USB port for the first

time, Windows will try to install a driver for it. Only when a

correct driver is installed will the hardware-key function properly.

In some cases Windows will not be able to install a driver

automatically (e.g. not connected to the internet) and the driver

has been installed manually. ABB distributes this driver on your

product CD under the name “Hasp HL Driver”.

eXLerate also install the driver setup-package onto your system

and it can be accessed from the Windows Start Menu; “eXLerate

2016\Hasp HL Driver”.

Figure 2.17 Hasp HL driver

After the Setup package has been launched, the following

window is displayed.

Figure 2.18 Installing Hasp HL driver

Follow the instructions of the program to install the driver.

After successful installation of the driver, the License Manager

should display the green hardware-key icon at the top of the

program.

If the hardware-key is still not functioning, try downloading the

latest driver from http://www3.safenet-

inc.com/support/hasp/enduser.aspx

http://www3.safenet-inc.com/support/hasp/enduser.aspx
http://www3.safenet-inc.com/support/hasp/enduser.aspx

1 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

3 Tutorial

In this chapter the reader is introduced to general concepts of

eXLerate. At first, a short introduction will be given on the

advantages of using eXLerate.

Step by step, the user will learn how to start a ready-to-run

project, which is installed on the computer by the setup

program.

This chapter is added for a novice user, who wants to learn

about using eXLerate.

If you are already familiar with the concepts of eXLerate, you

might want to only briefly look at this chapter, and move

forward to one of the next chapters.

Introduction

eXLerate is a full-featured real-time HMI software package,

based on Microsoft Excel. Many functions, features and wizards

have been added to:

 Make sure that you have a full-featured real-time HMI

software package that is able to offer you more than

competitive HMI functionality.

 Allow you to quickly create your projects using structured

application engineering techniques. Save tremendously on

human resources, because of the powerful and well-known

environment.

 Automatically generate built-in calculations, generate reports

and XML / VML based HTML pages.

In this chapter an overview of the product will be given, to

familiarize with the possibilities of eXLerate.

In the following chapters, more detailed information is

presented. Using this manual, you are able to develop real-time

HMI applications on your own, and all from within Excel.

The SpiritIT eXLerate 2016 Control Center

The SpiritIT eXLerate 2016 environment is controlled from a

special program, which is called the “Control Center”. This is a

Windows executable program in which all programs that are

made available for the operator are defined, including eXLerate

applications. Any other type of application may be installed in

the Control Center as well, for example a word processor, or

print utility program.

The Control Center is used for the following tasks:

 Control, start, monitor, or terminate the installed

applications, including eXLerate projects.

 Print logged event messages to the printer.

 Maintain a list with users and passwords, and allow a user to

login.

 Act as a program shell, in case the regular Windows Program

Manager is not accessible for the operator in a production

environment.

 Maintain common eXLerate properties, such as auto-logoff

time, alarm idle time, and various other properties.

From the Windows Program Manager, start the Control

Center by activating the “eXLerate 2016” icon as in the

figure on the right of this page.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 1 7

The following display is presented after a short welcome splash window:

Figure 3.1 The eXLerate Control Center dialog with different areas

The display page is divided into several areas:

 At the left-hand side of the display, a scrollable list box is

available containing all currently defined application

shortcuts.

 At the left-hand top, there is a system menu containing a

menu for user maintenance, and the control center property

dialog.

 In the middle of the display, a large window is available

holding the presentation area of the currently selected

application. In case the event monitor is selected, this area

contains a scrollable list-box holding the last logged event

messages. In case of another application, a presentation

bitmap may be showed.

 At the right top corner, the current name of the computer is

presented (“DEMO” in this case), and the current revision of

the eXLerate suite.

 At the left-hand bottom of the display, there is a status area

containing the current monitored status of the selected

application.

 At the right-hand bottom of the display, there is a button area

with buttons: ‘RunTime’, ‘Design’, ‘Login’, ‘Help’, and ‘Exit’.

 Just above the button area, there are three status sections;

one section containing the last system message, the currently

logged-in user, and the security level of the current user.

Above the status sections is a progress bar to show the

progress on lengthy operations.

Figure 3.2 System menu at the left-top part

In order to start any of the application shortcuts in the

application shortcut bar at the left of the display page, you must

be first logged in. At application installation with the eXLerate

setup.exe program, various factory-default user accounts are

created:

User Password Level Description

guest guest 10 Low level guest account. Typically

used to only browse through

display pages, not to change vital

process data.

operator operator 500 Higher level operator level.

Typically used to do all of the

above, and additionally print out

generated reports etc.

engineer engineer 1000 Higher level engineer account,

typically used do all of the above

plus alter process data, such as

alarm limits and other process

parameters.

administrator admin 2000 Highest level, with which a user is

allowed to add users to the system.

Table 3.1 Setup’ generated user accounts

You are advised to alter these passwords for your own projects.

Although the usage of security levels is freely programmable, the

above suggested security levels would be more than sufficient

for most types of applications.

These levels are also implemented in one of the installable off-

the-shelf project templates.

In order to login to eXLerate and set your security level,

click on the ‘Login’-button on the Control Center button

Name of system, and current suite revision

Application presentation area

List-box with Application shortcuts

Area with a general message, the current

user, and the associated security level.

Above this area is a progress bar for

lengthy processes.

Status area containing the status of the

currently selected application shortcut

Buttons for application activation, user

login, and termination

System Menu

1 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

bar at the bottom of the page, after which the following Login

dialog is presented:

Figure 3.3 Login dialog in the Control Center

Enter the User name “engineer”, and password “engineer”, and

accept the input by pressing the ‘OK’-button, or the <Enter>-key.

When the event monitor is selected as active application

shortcut, a message like:

“dd/mm/yyyy hh:mm:ss [xlCenter] – User

‘engineer’ has successfully logged in”

is logged in the system event logger.

Now various buttons are enabled, for example the ‘Design’- and

‘Runtime’-buttons, which are used to launch an application in

design-mode, or runtime-mode.

Operating modes of SpiritIT eXLerate

eXLerate basically is aware of four operating modes:

 Design mode

(Application engineering, no real-time updates active)

 Runtime mode

(Control System Operation, with real-time updates active)

 Preview mode

(Preview of Control System Operation without real-time

updates active)

 Verify mode

(Application engineering, real-time updates active)

When started from the Control Center, the user may select to

start an application in Runtime mode, or in Design mode. These

are the two basic modes.

In Runtime mode, an application is normally running for daily

operation of a control system with data communications

running, while is Design mode, an application engineer may

modify an application.

Preview mode is like runtime mode, except that there is no data

communication running. When in Preview mode, the user may

press <Esc> to return to design mode. Preview may be used to

test/browse the user interface navigation buttons for the

application, preview a completed display page for layout etc.

Verify mode is selected from Design mode, when data

communications are started. Verify mode allows for checking of

animations and equations with data communications/updates

running. This is a unique eXLerate mode.

Application launch

In order to start an application, select it with your mouse in the

application shortcut bar.

You may start an application shortcut in RunTime-

mode, or in Design-mode.

When an application is started in RunTime-mode, the application

is actually running, with all communication devices activated.

Only display pages are presented to the operator, and display

pages cannot be changed. When in RunTime-mode, the operator

is allowed to navigate through the application using the

function-key button bar at the bottom of the display.

When an application is started in Design-mode, it is available for

application engineering.

Press the ‘Design’-button, after which the application is loaded,

initialized, and started in Design-mode.

During the application startup, various startup messages are

logged on the main logger window of the Control Center. An

example of such a message is:

“dd/mm/yyyy hh:mm:ss [eXLerate] – Initializing

application…”, and

“dd/mm/yyyy hh:mm:ss [eXLerate] – Initializing

displays…”

These messages may be used to closely monitor the entire

application startup process, and is typically used during the

application development process.

After a project has been started in eXLerate with the Control

Center, the Control Center itself is minimized, and disappears as

an icon into the system tray, where the user may restore the

Control Center to full screen view by clicking once on the

eXLerate icon.

Figure 3.4 The system tray with the eXLerate icon

Once the application is started, the following screen appears

(Figure 3.5):

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 1 9

Figure 3.5 eXLerate main window

The SpiritIT eXLerate ribbon

At the ribbon in Excel, a special ‘eXLerate’ item is available. The

ribbon is only visible in Design-mode, and is used for application

development.

The eXLerate ribbon looks as follows:

Figure 3.6 The eXLerate ribbon in Design-mode

In the eXLerate ribbon there are various sections, which will be

described shortly in this section.

File section

The file-section contains the ‘Save’ button, prominently visible

for quick access. Opening and creating new applications can be

done through the Control Center interface.

Save (Ctrl+S)

The Save button saves your changes to the

application project file.

Whenever the application is saved, a backup is

created of the old application file in the archive

directory (e.g. “C:\XLRX\Archive).

Figure 3.7 Save-option

Save New Application

Below the Save button, a

small arrow is visible. When

pressed, the ‘Save New

Version’ option appears.

Figure 3.8 Save New Version –option

When clicked the ‘Save new version’ dialog appears:

Figure 3.9 Save new version dialog

The ‘Save new version’-option performs the same actions as the

Save button, and also creates or updates the ‘xVersion’ sheet.

The ‘xVersion’ sheet contains information about which version of

eXLerate was used to save the application, the status of the

application, the name of the application engineer, and the time

Special eXLerate ribbon, containing

a widespread type of options.

Work area, which can be used for

creating displays and performing

calculations.

Application Worksheets with display

pages and background worksheets

for special purposes.

2 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

of the last version update. If no ‘xVersion’ sheet is present, it will

be created with default settings and layout.

If an ‘xVersion’ sheet is present, the eXLerate version will be

checked when the application is started. If the version stored in

the application does not match the running version of eXLerate,

a warning is shown and the user is urged to save the application

with updated version information. This is important so that

problems with applications can be traced to specific versions of

eXLerate and the engineer who made changes to the application.

When the ‘Save new version’-button is used, a form shows up

which allows the engineer to change some values. The preset

status values can be changed on the ‘xVersion’ sheet.

Real time updating section

The Real time updating section contains the most important

options for applying configuration changes and

starting/stopping communications.

Figure 3.10 Real time updating section

Apply worksheet changes (Ctrl+K)

This option needs to be selected when the user has

changed a table in a background worksheet that has an

effect on eXLerate’s internal configuration, for example the

‘xTagDB’ tag database worksheet, the ‘xComm’ worksheet for

real-time data comunications, or the ‘xAnimations’ worksheet

for shape animation settings. Further in the manual the exact

conditions are given under which the Apply Worksheet Changes

command should be activated.

Start (Ctrl+T)

Starts real-time data communications or simulations.

This also starts any intervals configured in the ‘rIntervals’

table and animations. When started, the workbook is

automatically calculated every second.

Stop (Ctrl+O)

Stops real-time data communications. Also see ‘Start’.

This option is enabled when communications are running.

Preview mode/ Runtime mode (Ctrl+N)

This option may be used by the user to switch from

design-mode to preview-mode, or to Runtime mode.

Preview mode is used to preview display pages, when no real-

time updates are currently running. When updates are actually

active, this option is called: ‘Runtime Mode’, which is the normal

operation mode. When real-time updates are not started

however, switching to runtime mode is used to preview the

created display pages. This is a helpful tool during display

development. Changing from Runtime/Preview mode back to

Design mode may be done using the eXLerate Control Center, by

clicking on ‘Design’-mode, or by pressing the <Esc>-key while

displaying pages.

Cell properties section

The Cell Properties section contains a variety of often used Excel

commands as well as the ability to edit names and styles.

Figure 3.11 Cell Properties section

Some of the options in this section require additional attention.

Lock cell

The concept of locking and unlocking cells in eXLerate is an

important one. In general the following rule applies:

Whenever a cell is locked, it cannot be modified when Real Time

Updating is started. This is important when designing a User

Interface Display and you want users to only edit certain cells.

Only those cells that are not locked will be editable. This also

applies to the ‘xTagDB’ sheet, so make sure that changeable cells

are not locked.

Names

The name section allows the creation and removal of names.

Names are a vital part of eXLerate. By using names (sometimes

also referred to as ‘named ranges’), an application can be

simplified. Instead of referring to a cell-address (e.g. “B78”) it is

possible to refer to “MeterPressure”, which is far easier to

understand. Names can be created for a single cell or a multiple

cells (range).

The current name of the cell is automatically displayed in this

section. If no name exists, then the edit-box is empty. To create

a new name, select the cell and type a new name in the Name

edit-box, following by the ENTER key.

By clicking on the icon, the Names Manager is displayed

which shows an overview of all available names.

Styles

You may want to define a certain number format for all pressure

related values. Using styles you can create such a definition and

rapidly apply it to your application. The styles section shows the

style that is selected for the current cell. To choose a different

cell for the selection, choose a different style from the combo-

box or create a new style.

Insert section

The Insert section contains the most common options for

inserting and selecting objects.

Figure 3.12 Insert section

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 2 1

Select objects

This option toggles the select objects state. This useful

Excel option is located on the main eXLerate ribbon for

your convenience. When selected, this option makes it easier to

select multiple objects such as shapes or controls using a

dragging motion. When not selected (default), Excel will select

multiple cells when holding the left mouse button and using a

dragging motion.

Design mode

This Excel option should not be confused with the eXLerate

Design-option. This option toggles the Excel Design Mode,

which makes it possible to select Active-X controls such as the

eXLerate Trend Chart control. Only when this option is selected

is it possible to move, size, rename or delete Active-X controls.

Picture

The Picture button inserts a new picture into the

application. These pictures are then embedded in

the application-file.

Chart

The Chart button inserts a new standard Excel

Chart into the application.

Controls

The Controls option allows you to

insert eXLerate specific controls

such as trend-charts, alarm-

summaries and generic list-views.

After inserting a control, the Excel

Design mode is selected in which

you can move and size the control.

Click the Design mode button to

enter or exit this mode.

Insert

The Insert option allows you to insert

standard Excel controls such as buttons

and check-boxes.

We advise to only use the Form

controls and not the ActiveX controls.

Apart from the standard Excel Form

controls, shapes may also be used as

buttons.

Shapes

The Shapes option allows you to

insert a large variety of standard

shapes.

Apart from all standard shapes,

shapes can be easily grouped

together to form new shapes. The

‘Library’ sheet also contains a set

of predefined shapes and pictures.

Wizards section

Figure 3.13 Wizards section

A wizard in eXLerate is like a Tool, except that the result of a

wizard has a bigger impact on your application, because a

wizard adds items to your existing workbook, for example an

alarm list, menu navigation buttons, or even a complete color

table.

Tag & Object wizard (Ctrl+W)

The Tag & Object wizard is a powerful tool for application

generation. It is used to automatically create various

pieces of your application, such as tag object names, periodical

calculations, alarm summary pages, or navigation bars at your

display pages.

Calculation wizard

The calculation wizard creates calculation tag names in a

special worksheet, called a calculation sheet. A calculation

sheet is a specially structured and formatted worksheet

containing calculations of your application.

Color wizard

Animations use colors from a predefined palette. These

colors are located on a Color table on the ‘xTables’

worksheet. The Color wizard copies these colors to the palette of

Excel after which they become active in Excel.

Button wizard

The button wizard creates the function key button bar at

the bottom of each display page with all associated VBA

macros from the corresponding definitions in the Button table in

your application. The function key bar is used for menu

navigation through your display pages. The Button table is

located in the ‘xTables’ worksheet. Using the Button wizard,

creation of menu navigation functionality in your application is

highly automated.

2 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Language Wizard

The language wizard creates the ‘xLanguage’ worksheet

for your application. This language worksheet can be used

to extend the application with multiple languages. It can also be

used for modifying system texts such as dialog texts and alarm

texts.

The difference between the Tag & Object wizard and the

calculation wizard is that the Tag & Object wizard generates

various pieces of your application, at various worksheets, while

the calculation wizard only generates calculation tags at a

calculation sheet.

These wizards are discussed more in detail in the ‘Advanced

topics reference’, so you can have both books opened at the

pages of interest.

Development section

Figure 3.14 Development section

The Development section gives access to the Visual Basic (VBA)

programming environment and a range of tools. Visual Basic is

also accessible through the keyboard short (ALT+F11).

Tools

Figure 3.15 Tools

Shape property tool

The Shape property tool is a tool showing the properties for

shapes, especially for shapes that are to be animated with live

data. Using this tool, existing shape properties may be copied

into the Animation table. In addition, a cross reference shows

the usage of a shape over various worksheets.

Name definition tool

The Name definition tool is a pop-up dialog showing all currently

defined (object) names in the application. It has similar

functionality as the Excel built-in Names tool, except that the

presented list-box of the Name Definition Tool is more elaborate

than the built-in names tool.

Color palette tool

The Color Palette Tools gives an overview of the currently

defined color palette, and their index numbers, which are

required for animations.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 2 3

Alarm tree tool

This tool shows the currently configured alarm directory tree. In

eXLerate, an alarm for a tag in the tag database may be grouped

in a directory-oriented tree structure. With this tool, the

currently configured alarm tree is displayed.

Generate report

The ‘Generate report’ option may be used to generate a

predefined report. Reports are generated using a report

template. A report template is a standard Excel worksheet, in a

separate report workbook, or internally in the current

application, in which reports for your application are defined.

Reports may be also automatically generated, for example on

predefined intervals, or on a special event.

Generate HTML

This option is available to force generation of the defined HTML

pages in the application. Normally, HTML pages are generated

periodically and automatically by eXLerate at a defined interval.

Using this option however, all defined HTML objects are

generated at user request.

Browse OPC servers

This option displays the OPC server browser.

Communications options

This option shows the diagnostic and logging options for the

communication protocols. The protocols themselves are

configured on the ‘xComms’ worksheet,

Show Control Center

This option shows the Control Center application.

Mark unprotected cells

Because worksheet cells may be protected

during runtime mode, and it is not evident to

see which cells are protected and which

aren’t, this tool clearly marks all unprotected

cells in the current worksheet with a light pattern.

Unmark unprotected cells

This option un-marks the cells that were marked with the

previous command.

Remove external links

Sometimes a workbook contains external links to another

workbook, for example because of the fact that cells-values or

worksheet functions were copied from another workbook. Using

this option, such external links are removed, and all external link

references are reverted to the current application workbook. To

check if there are external links in the first place, see the ‘Edit’,

‘Links’ menu in the standard Excel menu. When the ‘Links’ menu

option is grey, no external links exist in the current application.

This option should be used with caution.

Reset historical values

The automatically calculated values, for example hourly averages

may be reset to 0 using this option, for example to test the

application, and remove all existing counters and historical

values.

Recalculate application

When this option is chosen, all open workbooks are recalculated.

The system flag: ‘xAutoRecalc’, which is used to force

recalculate expressions in Excel on a system restart is updated

as well. In addition, shape animations are updated.

Import sheets

This option allows you to easily import sheets into your

application. The tool automatically removes any external links

and provides the ability to replace content while importing.

Advanced replace

Advanced Replace allows you to find & replace content not only

on the sheet, but also in names, and objects. Special ‘prefix’ and

‘postfix’ options allow you to replace only the content that you

are interested in.

Goto section

Figure 3.16 Goto section

The Goto section contains several navigation options for quickly

navigating the application. The ‘xTagDB’ and ‘xComms’ options

represent worksheets. When pressed, these worksheets are

selected,

Goto name (Ctrl+Q)

This option searches for the definition of the

referred name in the current cell. For example,

when the current cell contains: ‘=xTR1TA.Value’, this option

jumps to the cell bearing the name ‘xTR1TA.Value’.

Goto last position (Ctrl+Shift+Q)

This command returns to the last cell that the editor was

located at before the ‘Goto name’ option was activated.

Help section

The final section in the eXLerate ribbon is the Help section.

It provides access to the documentation, license manager

and the about-screen.

2 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Worksheet functions

In eXLerate, a large number of worksheet functions are available

to implement the required functionality for your application.

Functions may be inserted using the ‘Insert Function’ button on

the formula-bar.

Figure 3.17 Insert worksheet function option

You may insert any type of worksheet function, eXLerate and

non-eXLerate specific. You may also create your own worksheet

functions that may be inserted in an eXLerate application, or in

any other type of Excel workbook.

Figure 3.18 Insert function dialog

For each worksheet function specific help is available by clicking

the ‘Help on this function’ shortcut.

For more complex worksheet functions, the Tag & Object wizard

is available. You may also examine one of the supplied example

projects for additional help on using the worksheet functions of

eXLerate.

Browsing through the application

In the following sections, we play around a little bit, and see

which components an eXLerate project exist of.

Browsing through various worksheets

The worksheets at the bottom of Excel may be browsed through,

just like any other Excel workbook. Please check briefly the

following displays of the application:

 Template

This worksheet contains a template for a new display page. It

contains a standard header section with user information,

display name, and the current date and time. At the bottom of

the display there is a set of buttons, with the name ‘Button1’,

‘Button2’,,…,’Button12’. These buttons as well as the

surrounding frame may be used as a template for all other

display page buttons.

 LibrarySheet

The ‘LibrarySheet’ contains a predefines set of pictures and

shapes. These object may be copied to other worksheets

using the standard Copy/Paste commands in Excel. You can

extend the ‘LibrarySheet’ with your own objects.

 sAlmSum (Alarm Summary)

The alarm summary is a worksheet containing a control which

displays the alarm-summary. The alarms are updated

automatically during runtime mode. The user may define the

looks of the alarm summary page. If you don’t want an alarm

summary in your application, you may remove this worksheet

from your workbook.

 sAlmHis (Alarm History)

The alarm history display page mainly exists for convenience

during runtime operation of a system. It contains alarm

specific messages, which is a subset of the logged event

messages as available on disk and the eXLerate Control

Center program. If you don’t need an alarm history window,

you may delete this worksheet from your application.

 sTrend (Trending)

The trending display page is a standard Excel worksheet

containing three trend controls which work together. In the

tag database you determine which and how tags are to be

recorded in the trend database. In this ‘sTrend’ worksheet the

recorded data is displayed. If you do not require trending in

your application, and it is not part of your license, you may

remove this worksheet from your application.

 Various sample sheets

There are various sample display pages, reports, HTML pages

and sample sheets, which may be studied, as part of your

eXLerate training, freely be modified or removed as required.

 A number of background sheets starting with an ‘x’

There are a number of background worksheets with a special

purpose. These sheets are internal eXLerate sheets, and are

used for application engineering. All eXLerate applications

contain at least a tag database (“xTagDB”), and a number of

configuration tables (“xTables”, “xAnimations”, “xEvents”,

“xComms”), which the user may modify.

 There are also two hidden worksheets (“xWizard”, and

“xAlarmList”), which are generated by the Tag & Object wizard

of eXLerate. These two worksheets are typically the last two

sheets in your application.

 Your own worksheets

You may add as many display pages and worksheets, as you

would like. It is recommended that you separate your

worksheets into display pages with just visualization and

animation, and worksheets for calculations. This eases the

process of testing your application. Tips on using calculation

worksheets are discussed in the ‘Advanced Topics Reference’

manual.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 2 5

 Starting real-time updates

Let’s now revert back to the dynamics of eXLerate, and go back

to the eXLerate ribbon.

Figure 3.19 Starting real-time data updating

The ‘Start’ option enables real-time-updating. Real-

time-updating causes Communication protocols to run,

animation to blinks, databases to activate, network

connections to be established, any many more.

Also watch the icon of eXLerate itself change from its

normal blue color (not updating) into red (real-time updating) at

the left top corner of your display.

In your normal applications, data would be coming from external

devices, such as a process computer, (remote) MySQL database

server, DCS/SCADA system, flow computer, recorder,

transmitter, electronic meter or any other equipment capable of

external communications, including another Personal Computer.

Please check available communication drivers and/or other

sources of real-time updates at your local distributor or at ABB.

Switching to Runtime/Preview mode

Now switch to runtime mode, by selecting ‘Runtime

mode’ or ‘Preview mode’, and watch the Excel

development environment disappear.

Figure 3.20 Switching to runtime mode

When real-time-updates is started, this option is called ‘Runtime

Mode’, otherwise it is called ‘Preview Mode’.

Instead, operator pages appear, but now without any Excel

menu, and without the possibility or make modifications in the

worksheets. You may now use the function buttons at the

bottom of the page. Browse through the application display

pages using function keys <F1> through <F12>.

Figure 3.21 Previewing display pages in Runtime mode

In Runtime/Preview mode

When real-time updates are indeed active, pressing the <Esc>-

key has only effect when the current access level allows for

‘Design mode’.

When in Runtime/Preview mode, there are two ways to revert

back to design mode:

 By pressing the <Esc>-key, this shows a

small exit button in the application. Note

that pressing the <Esc>-key has only

effect when the current access level

allows for ‘Design Mode’.

 By switching to the Control Center (which is minimized in the

Windows Taskbar Tray); and selecting the ‘Design’ button.

The tag database worksheet

Please revert back to Design-mode for now, and select the

worksheet called: “xTagDB”. The tag database worksheet is the

‘beating heart’ of an eXLerate application, since it contains both

the definition of all tags in the system, as well as its current

value.

If you have trouble in finding this sheet,

there is a convenient shortcut for this

sheet located in the ‘Goto’-section of

the eXLerate ribbon.

Please note that:

 For each tag, one row in the worksheet is available. There may

be as many tag rows as your current eXLerate license allows

for. In the example project template, the tags are ordered in

logical groups, like ‘PLC’, ‘Line 1’, ‘System’ etc. A row in the tag

database may be considered as a record in a relational

database.

 There are a number of columns. Each column represents a

property of the tags, such as its tag name, its current value,

engineering units, or alarm limit value. A column may be

considered as a field in a record in a relational database.

2 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

 Most columns in the sample project are mandatory and

required by eXLerate, while other columns are user-defined,

and are available for user convenience. User-columns may be

added and deleted, but the required columns for eXLerate

should not be removed.

 Some columns have a trivial meaning, such as ‘Group’, or ‘Tag

name’, while other columns seem more ambiguous, such as

column ‘P_Min’, or ‘Query’. In ‘Application development’ on

page 37 onwards, the tag database is fully described.

 Note that when you set the cursor over the current value of a

tag, the name box at the right top of the display in Excel

shows a logical name, such as ‘xAlarmTag.Value’. Instead of

referring to cell ‘G23’ it is much better to use

‘xAlarmTag.Value’ if referring in an equation to the current

value of tag ‘PT1’. eXLerate has the ability to automatically

generate such logic object names. You need the Tag & Object

wizard to generate such objects names for you.

Figure 3.22 Usage of logical names in the tag database

Check various columns, and watch how the data in the ‘Value’

column automatically changes, when your real-time updates are

still active.

Please note that the tag database worksheet is protected during

real-time updates. All cells that are setup for live updates should

therefore be unprotected. The lock-symbol, displayed in the

figure above at the left indicates whether or not a cell is

protected.

Normally, the entire ‘Value’ column is unprotected, unless a

formula is entered in a cell rather than a straight value.

The tag database looks as follows:

Figure 3.23 worksheet: 'xTagDB' containing the tag database of

eXLerate

Internally, eXLerate continues calculating during the Excel cell

edit-mode.

When you have examined some or most of the tag database, go

back to the ‘Sample’ display page by clicking on the appropriate

tab at the bottom of the Excel workbook.

Figure 3.24 Stop real-time data updates

For now, stop real-time updating via the eXLerate menu,

and take a look at various cells in the worksheet.

Displaying a number from the tag database is very easy

in Excel: simply refer to the appropriate cell in the tag database,

as with the pressure value at the top of the display page, which

shows: ‘=xTR1TA.Value’ in the formula bar of Excel. It’s that

simple!

Shape animations

Now that you have seen value changing directly in a spreadsheet,

it is about time to start looking for animated objects. How does

that work in eXLerate?

eXLerate is able to dynamically set various properties of a shape.

A shape is a drawing object in the Microsoft Office family

products. Shapes can be user-drawn, or imported into an

application. Properties that eXLerate is able to change, are the

color, the size, position, rotation angle, and visibility.

Figure 3.25 A selected shape, and the Excel name-box with the shape

name

Click on the left top valve in the ‘Sample’ display, and

check the name box at the left top of the display. Check

that the name of the valve is ‘valve_11’ in the template

project.

Now type <Ctrl-1>, or right-click the object and select ‘Format

Shape’ to display the properties of this shape object. The

following object property dialog appears:

Figure 3.26 Shape object format dialog

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 2 7

Using this shape object format dialog, colors, lines, size, shape

protection settings, and other properties may be defined. For

example, change the color into another color, and see the shape

changes on the worksheet. eXLerate also uses these shape

properties internally for its data-driven shape animations, just

like you are able to change these properties using the Format

Object dialog.

The Animation table

In eXLerate, animations of shape objects in all display pages are

stored in just one single table, which is called the Animation

table. The Animation table is stored in worksheet ‘xAnimations’.

In order to display the Animation table, select the ‘xAnimations’

worksheet, and verify that there is table with object names, and

that the object ‘valve_11’ is one of the entries in the table.

Figure 3.27 Fragment of the Animation table

The Animation table has various rows, one for each animated

object, and a number of columns, one for each animation

property.

Columns at the left-hand side of the table contain actual shape

properties, i.e. the settings in the application for the object,

while columns at the right-hand side of the table contain

worksheet functions for the appropriate shape.

The following column properties are available for an animated

shape:

Shape, FillColor, LineColor, Visible, BlinkCol, Interval, Left, Top,

Width, Height, and Rotation.

The values at the table at various rows contain the actual

dimensions for a shape. For example, the ‘Valve_11’ object might

have a defined FillColor of ‘2’, and a ‘LineColor’ of ‘0’.

If you are looking for a relation between a number, and its actual

color, press <Ctrl-L>, for the Color palette tool, as follows:

Figure 3.28 Color palette tool

You may click on a color to paste the associated color

index directly into a cell formula box, or, when the

checkbox at the dialog isn’t checked, paste it into an

expression with the <Ctrl-V> paste key.

For now, close the Animation color palette dialog box, and let’s

continue with the explanation of the animation table.

The internal eXLerate functions, which are used for shape

animations are stored at the right-hand side of the animation

table, in the following columns:

ID, Color, Visible, Blink, Pos, Size, and Rotate.

In the reference chapters you’ll learn all about using these

functions. For now, it is important that you understand the

concept of eXLerate regarding shape animations:

 eXLerate stores all animations of your application in a single

table, the Animation Table;

 Current property values are stored in the Animation Table at

the left-hand side, in various columns. For example to change

the color of a valve-shape, the fill-color may contain a

worksheet function, which depends on the status of a valve.

 These properties are passed to eXLerate using worksheet

animation functions. All animation functions are stored at the

right-hand side of the animation table.

If you want to add an animation of a shape, do the following:

 Simply add a row in the animation table using copy and paste

of a full row, and fill in the name of your shape object in the

copied row at the column ‘Shape’;

 Set the properties that you want to animate under the

appropriate columns, for example the object color, size or

position;

 Make sure that the worksheet functions at the right-hand side

of the table are correct; this is required to tell eXLerate that

you want to animate a shape. Remove unused cell functions.

Perhaps the most convenient way of adding a new animation is

to simply copy an entire line, using the <Ctrl-C>, <Ctrl-V> keys of

Windows, and change the copied name to your own shape

object. That’s all!

Page navigation

On each display, there are buttons used for page navigation.

These buttons could look like this:

Figure 3.29 Section of a button-bar for page navigation

Each button could have a corresponding function-key,

<F1>..<F12>, which may be used to navigate through the display

pages. This allows for systems without a pointing device, where

only a keyboard is present.

2 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

The text on each button has the function key name displayed in

bold text, and the associated display page or other function

displayed below, such as ‘Login’, or ‘Reports’.

Internally, a button is linked to a VBA macro, which is responsible

for selection of another display page or pop-up menu.

Right-click on an individual button, and verify that a

VBA-macro is linked to the button.

 For example, the <F2>-button has the text: ‘Alarms’, and

internally a link to the macro:

‘Call_Load_AlarmSummary’.

You may verify this by right-clicking the <F2> button while in

design-mode, after which the pop-up menu as given on the left

is shown. Verify that there is a link to the foresaid macro exists.

Figure 3.30 Macro assigned to a navigation-button

In eXLerate, the creation of such a function key button-bar, and

the underlying menu navigation, are automated utilizing the

Button wizard of eXLerate.

eXLerate uses the button bar in the ‘Template’ window as a

template for all other display pages, so you don’t have to worry

about exact placement of a button-bar at each display page.

eXLerate copies this button bar to all other display pages when

invoking the Button wizard. The contents of the button bar, i.e.

both the text on the button-face as well as the functionality

‘behind’ each button is stored in an Excel table called the Button

table. The Button table is located at the ‘xTables’ worksheet.

The Button table and associated automated functionality allows

for easy configuration of your display pages, saving your

precious time for more important aspects of application

engineering.

Other tables

Now that you have been viewing the ‘xTables’ worksheet, let’s

examine the other tables presented at this worksheet; you will

need this sheet as you will start develop your own applications.

When the worksheet ‘xTables’ is in Outline* view, only the table

headers are shown, as follows:

*A worksheet in outline view is a standard feature of Excel: all of the grouped

columns are ‘closed’

Figure 3.31 The 'xTables' worksheet in Outline view

Various tables at this worksheet have already been introduced to

you. To complete your overview, an overview is given below of all

relevant tables:

 The Button table is used to define buttons for menu

navigation. This table is required for each application.

 The Worksheet table is used to define certain runtime

worksheet settings, such as worksheet protection, security

level for visibility, security level for editing, scroll-range,

HTML-page range, and HTML refresh settings. This table is

required for each application.

 The Alarm group table is used to define alarm groups, which

are hierarchically organized. This table is optional for an

application.

 The Styles table is used to define Excel styles. Styles contain

formatting settings such as Bold, Font-Size, etc…, and can by

quickly applied to a cell. This table is optional for an

application.

 The Color table, which defines the color palette with 56 colors

in your application. This table is optional for an application.

 The User level table, which defines which user levels are

defined in your application. This table is optional for an

application.

 The Time table, which is used to define changeovers for

summertime and wintertime in your application. This table is

optional for an application, and may be removed when no

summertime and/or wintertime changeovers are used.

Summer- and wintertime changeovers are discussed in the

‘Advanced topics reference’ manual.

You can open each table by clicking on the ‘+’-button. When the

Worksheet table is opened, the worksheet may look as follows:

Figure 3.32 xTable worksheet opened with the worksheet table

'opened'

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 2 9

If you feel more comfortable with a worksheet without outline

views, you may remove the column groups; it is only used to

structure your application.

To remove the outline view, select the relevant columns. In the

example above, select columns K-P using the mouse. From the

‘Data’ ribbon in Excel, select ‘UnGroup’. The outline view

disappears. When only cells K2...P2 are selected, Excel shows the

following dialog to verify if the ‘UnGroup’ command is related to

columns, or to rows. In this case, select ‘Columns’.

You may add you own tables to this worksheet. It is

recommended to add other tables for your own application, to

this ‘xTables’ worksheet, so all ‘background’ tables are collected

in a single worksheet. You wouldn’t have to search a lot to find a

table in your application.

Conclusion

In this chapter you were acquainted with the most common

features of a complete eXLerate application:

 You have started an application in design-mode, in runtime

mode, and in preview mode. In the next chapters, you can

read a lot more about the control center and application

engineering.

 You have started and stopped real-time data communications

and viewed changing of live data and objects in Excel. In the

next chapters, you will learn a lot more about real-time data

communications.

 You have looked at various standard display pages, such as a

trending page, an alarm summary, an alarm history and a tag

view page. In the next chapters, you will learn to create your

own display pages.

 You have looked at various eXLerate application components,

such as the tag database, and the Animation Table. In the

next sections, you will read all about the configuration tables

in eXLerate.

 You have looked at menu-navigation in an eXLerate

application, and the Button table.

 You were able to look at various additional tools, such the

color wizard. In the next sections, all of the built-in

development tools in eXLerate will be introduced to you. In

the ‘Advanced topics reference’, the wizards and tools are

discussed in detail.

3 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

4 Control Center reference

Introduction

The Control Center in eXLerate is the main executable in which

all projects in eXLerate are controlled, monitored, added,

removed, changed, started, stopped, and maintained.

In 3 Tutorial, important functionality of the Control Center was

already discussed.

In this chapter all remaining functionality regarding user

accounts, application shortcut properties, the system event

logger and other issues is discussed.

Control Center functions

The Control Center takes care of the following:

 eXLerate project control and maintenance.

 Monitoring, printing, and disk-storage of all event messages

that are generated with an eXLerate component or module.

 Maintenance of eXLerate users and their associated security

levels.

 External executables, which are allowed for the operator

during runtime operation of a system. Any executable file may

be added to the Application shortcut list, for example a word

processor, the Windows Notepad, or the License Manager

license utility.

 System security. The Control Center is able to prevent certain

Windows actions, such as using the Windows key or task

switching, depending on the current user level. This function

allows eXLerate to be used in environments where a user is

not allowed to use the computer for anything else but the

running eXLerate application.

A shortcut to the Control Center program is created by the setup

program in the Start Menu of Windows, so eXLerate may be

conveniently started using the Windows start menu.

The Application Control Center may be also used to

automatically launch a project in Runtime mode, so your

project may be automatically started at computer

power-on.

In the following sections, Control Center functionality as far as

not already discussed in 3 Tutorial, on page 16 above will be

discussed in detail.

The Control Center, a dialog application
When the Control Center has been successfully launched, a

dialog similar to Figure 4.1 The eXLerate Control Center

program is displayed:

Figure 4.1 The eXLerate Control Center program

Since most buttons are grey at Control Center launch, we should

login first, to be able to start using the Control Center.

Functionality in the Control Center is coupled to the security

level of a user.

User accounts

Refer to section The SpiritIT eXLerate 2016 Control

Center on page 16 onwards for an explanation of

available login accounts and associated security levels.

Basically, a user has a name, a password, and a security level. The

security level is internally used by the Control Center itself, and

may be additionally used by an application developer to create

application dependent security functions.

For example, one could create a special dialog in VBA, which is

only accessible for certain users, e.g. a motor operated valve may

only be opened or closed with a button in a dialog when the user

is an official operator, and not by a guest just looking at the

display pages.

Users may be created only by a user having administrator rights,

i.e. a user with security level of at least ‘2000’.

In order to add/delete/modify the list with current users, go to

the System Menu of the Control Center, and select the ‘Edit

Users…’ menu option.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3 1

Figure 4.2 Edit users option

If your security level is not sufficient to modify the current user

accounts, the ‘Edit Users…’ option is disabled, and cannot be

selected.

When selected from the system menu, the following dialog is

presented:

Figure 4.3 Edit Users dialog

Users can be added/remove/modified using the appropriate

buttons. When editing a user the following dialog is presented:

Figure 4.4 Edit user dialog

For each user, a name, a password, and two security levels

should be defined. In the following text, you will find out why

there are two security levels available.

Security levels are both used by the Control Center for

application access, as well as in an application.

Application development discusses security in a next

chapter.

Application access is coupled to various actions:

To start an application in Runtime mode,

To start an application in Design mode, and

To close a currently running application.

Access is granted to one of the actions above if the level of the

currently active user lies between the minimum and the

maximum level. This allows for flexible application engineering.

Security strategy

For example, an application developer may start an application

in design-mode, to make a modification to a certain display

page, but (s)he may not be allowed to actually start an

application in Runtime mode. Running an application would be

only allowed for an operator.

On his turn, an operator may be allowed to operate a control

system, but not to make changes in an existing application.

In addition, an operator may be allowed to start a project at

computer startup, but not allowed to terminate a running

application.

Flexibility is the keyword in eXLerate on security level usage!

If this all sounds quite complex to you, forget all about it. In the

“MyTemplate” sample project, user levels are already

implemented for you.

Application shortcuts

An application shortcut in the eXLerate Control Center is similar

to a regular program shortcut in Windows, except that in

eXLerate, additional properties exist for a shortcut.

To show the current properties of a shortcut, you may right-click

an application shortcut, after which the application shortcut

menu appears on the dialog:

3 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Figure 4.5 The application shortcut menu

Using the application shortcut menu, existing entries may be

deleted, new entries may be added, and the selected application

may be started in Runtime mode, in Design mode, or may be

terminated.

Shortcut property dialog

For now, select the ‘Shortcut properties’ menu option,

which shows the shortcut property dialog, as follows:

Figure 4.6 Application shortcut property dialog

This dialog may be also displayed while double-clicking the

application shortcut. In this dialog, you may define the following

properties:

 Icon

For each application shortcut, an icon may be selected from

the icon list at the left of the dialog. Double-click on an icon to

set it as the current icon. The current icon is highlighted.

 Shortcut Name

The shortcut name is the name of the application shortcut as

appearing in the shortcut list at the left-hand side of the

Control Center main dialog. This name will be used as a key-

value, under which various application parameters are stored

in the system registry.

 Type

The application type defines what type of application is

defined ‘behind’ the shortcut. The type may be one of:

‘Windows application’, ‘eXLerate Logger’, ‘eXLerate Project’,

‘Program Shell’, ‘Task Manager’, or ‘Microsoft Excel’. For our

eXLerate projects, choose ‘eXLerate Project’ as the default

type. Other application types are available for operator

convenience, in order to create a complete but restricted

Windows environment.

 Program

The program is the executable, which corresponds with the

entry type. The name of the Windows executable should be

exactly defined, including the absolute path to the executable,

so the control center knows where to find the file.

 File Path

The file path of an application are usually the document name,

but may include other parameter as well. In case of an

eXLerate application, it should be the name of your project

workbook, including its absolute path.

 Presentation Picture

The presentation picture is the name of an image file (.BMP or

.JPG), which is used in the presentation area of the Control

Center. In case of an event logger shortcut, no image is used.

Instead, the logger window itself is used as presentation area.

The image file should have an aspect ratio of about 3:2 to

maintain the aspect ratio of the original bitmap file. When no

presentation bitmap is selected, the event logger will be

displayed instead when this application shortcut is selected.

 Report output path

The report output path defines the location where your

eXLerate application stores generated reports. In eXLerate,

you may define report templates. Each time eXLerate

generates a report from your templates, the generated report

is stored in this location, for example on a directory on a

remote file server.

 HTML output path

eXLerate allows you to automatically generate HTML pages

from your display pages. These HTML pages are stored in this

directory.

 Trending path

eXLerate allows you to store historical trend files in a

dedicated directory.

In addition, when old-style trending is used, client-only

trending may be configured for client/server systems, where

typically only the server computer is writing to trending files,

but each client is able to retrieve trending information. The

actual path for trending files is defined with this entry.

On systems that use the new trending controls, the path is

ignored on clients.

 Database path

eXLerate allows you to use an embedded database.

Such a database is required for client/server

systems and optional for stand-alone systems. If the

database doesn’t already exist it is automatically

created.

 Security levels

Each application in the Control Center may be started in

Runtime mode, in Design mode, or may be terminated. Using

the pull-down box, a security level may be assigned to each

action. A security level of ‘0’ means that all users are allowed

to perform the associated action.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3 3

When the current settings at the dialog are accepted with the

‘OK’-button, all changes are stored in the registry. With ‘Cancel’,

the previous settings are retained.

 Watchdog protection

eXLerate allows you to monitor an application with a built-in

application watchdog. This watchdog of xlCenter is a timer

routine that periodically checks if the application is still

responding. If this is the case, then nothing happens, but

when an application does not respond within the predefined

timeout to the watchdog mechanism, the control center will

terminate the application, and automatically restart the

application again. Your application will not respond for

example when in VBA, a programming loop does not end (e.g.

while…wend without ever stopping.

The application watchdog may be disabled (which is the default

behavior), or enabled using various options. An initial delay may

be used to only start the watchdog mechanism after the initial

delay is elapsed. The timeout value after which the application

should respond may be user defined as well. Typical values are

30s for both the initial delay and the timeout value.

System parameters and options

There are a number of parameters that influence the operation

of eXLerate. These parameters include the name of the event

printer, and various directories.

WARNING: Please only change these parameters when well

understood, because changing these parameters without a

thorough knowledge of their impact may introduce

unpredictable results and may cause fatal application errors.

In order to monitor or alter these options, select the

options dialog from the Control Center system menu.

When the system menu is selected, the menu below is displayed.

Figure 4.7 Edit Options in system menu

Select ‘Edit Options…’, after which all user-definable options are

displayed, in the following dialog:

Figure 4.8 Control Center Options

The following properties and options may be defined:

System options

 System name

A custom system name may be entered using this dialog. By

default, the computer-name is used as system name. The

system name is available in the eXLerate project, as a defined

object name (‘xSystemName’). In Excel, you may use the name

in a worksheet function, i.e. ‘=xSystemName’. Please note that

only the internal name within the eXLerate environment is

changed; the system name does not affect the

computer/network name.

 Report printer

This field defines the printer to which generated reports are

automatically printed. The button ‘…’ right to the edit control

may be used to browse the system for an existing printer.

When no printer is configured, the default Windows printer is

used. Additionally, an eXLerate project may configure a

printer for each report that is configured. This will overrule

the printer as configured in the Control Center.

 Number of project archive files

This parameter defines the maximum number of backup files

that the Control Center maintains per project. When all files

are to be maintained, ‘0’ may be entered. For example, when

set at 25, the latest 25 archive files are maintained, and older

files are removed from the archive directory. Made available

for the user to prevent disk capacity problems. Up to 1000

backup files may be defined for each project.

Event logger options

 Print events to

In case events and alarms are to be continuously printed, for

example when a HMI application is in normal operation, the

name of the printer can be defined using this dialog. This may

include network printers, or locally connected printers.

Standard Windows printers are supported by eXLerate. In

case a printer goes off-line, or generates an error, e.g. an ‘Out

of paper’ error, eXLerate may report this alarm to the

operator via a defined worksheet name (use:

‘=xPrinterErrorStatus’ in a worksheet to obtain an error flag).

The condition of printers is checked every minute by

eXLerate. The button ‘…’ right to the edit control may be used

3 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

to browse the system for an existing printer. While in runtime,

the events printer can be temporarily changed using the

‘exSetEventPrinter(…)’ worksheet- or Visual Basic function.

 Log events to

The event logger of eXLerate is responsible of storing each

generated event in the event logger window, printing events

to the assigned printer, and to store each event in a disk file.

The directory in which the log files are stored, is defined using

this edit parameter. The button ‘…’ right to the edit control

may be used to browse the computer for an existing path.

 Retain logs for

This parameter determines for how many days .LOG files

(which are in fact ASCII files containing all logged events and

alarms) and database records in the events table will remain

available on the computer. eXLerate removes older files from

the hard disk and database, in order to limit it to a defined

size. A ‘0’ indicates forever, i.e. no files or database records

are removed from the system.

 Define colors …

This button allows for user definition of colors of event

messages. This feature is added to allow easy recognition of

certain event messages in a system, because a specific

display color can be attached to certain messages. For

example, al alarm message can be colored with white text on

a red background.

Startup options

 Install eXLerate as Program Shell

eXLerate may be installed as a so-called system ‘shell’, when

this option is checked. In this case, no standard Windows

desktop is available for the user. This may be installed to

prevent a system from being used for anything else but for

running an eXLerate project, for example in production

environments. These limitations are only applicable for

appropriate user levels.

 Program shell command line arguments

When eXLerate is set as Windows program shell,

additional command line arguments may be used,

such as logging in as a specific user, or by starting a

certain application in runtime mode. See section:

‘Command line arguments’ on page 36 on the syntax of

command line arguments.

 Start shortcut

Select a shortcut here which is started (in runtime mode)

whenever the eXLerate Control Center is started. In order for

this to work properly, a user with a sufficient security level

needs to be logged in. To do this, see the next section on

Automatic Logon.

There are three additional buttons available at the dialog, which

causes the following programs to be started:

Cmd Starts the Windows ‘CMD’ process, which is the command

line interpreter for Windows. Used for system

administration purposes.

Explorer The Windows explorer is started when this button is

pressed. Used for system administration purposes.

TaskMngr The Windows task manager is started when this button is

pressed. Used for system administration purposes.

Misc. settings

 Alarm idle time

This parameter specifies for how long the system suppresses

alarms at system startup. This prevents generation/printing

of many less useful alarms, being part of the startup process

of a system rather than being actually alarm conditions. After

this period, the alarm manager effectively starts monitoring

events and alarms. When set at ‘0’, no alarm idle time is

defined at all.

 After cell kill focus

This is an advanced option which controls how cells behave

after they have been edited in runtime mode. For on-screen

keyboards it may be useful to change this setting to a

different value to get the desired behavior.

 Flush to registry

eXLerate stores certain retentive data such as parameters,

totals, etc… in the Windows registry. This option controls

how frequently this data is physically stored on your hard-

drive. By default, the option is set to 0, which means that

Windows itself determines when and how often the data is

physically written to your hard-drive. For instance, when the

computer is very busy, Windows will flush data later on to

ensure smooth system operation. By setting this option to a

fixed value, the default Windows behavior is circumvented

and flushing occurs at fixed intervals.

Trending options

 Retain trends for

This parameter contains the number of days that trend data

will remain on the hard disk. When set at 0, the trending

module will try to store as much data as possible, until the

disk is full. This is not recommended as operation of Windows

and all programs will halt as well.

 Generate warning at

This parameter is used by eXLerate to generate a warning

when the disk reaches a full percentage of the specified

amount, e.g. when set at 80%, an alarm is generated when the

hard disk becomes full for 80%.

 Suspend trending at

This parameter is used by eXLerate to temporarily suspend

trending. When the disk full percentage exceeds this

parameter, all trend recording is suspended. When the disk

full percentage becomes lower again, trending is resumed.

This prevents a disk-full situation, which causes an instable

Windows system.

System security options

 Windows key level

eXLerate protects tampering of the system in a running

application. With this parameter, the security level is defined

below which the Windows key will be disabled, so no other

tasks can be started.

 Protection disable level

This parameter defines at which security level certain

protections, such as disabling of minimize and maximize

buttons of a running eXLerate project, will be switched off.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3 5

 System shutdown level

This parameter defines at which security level System

Shutdown will be disabled.

 Task switch level

This parameter defines at which security level task switching

will be disabled.

 Debug break level

This parameter defines at which security level the ESC-key can

be used to switch to “Verify” mode when in “Runtime”.

Automatic logon / logoff options

 Auto logon

When eXLerate starts, an automatic logon can be achieved by

the use of this parameter. When the checkbox is enabled and

a valid user/password combination is provided, eXLerate will

automatically logon upon startup.

 Auto logoff

When a user is logged in, an automatic logoff may be

effectuated via this parameter. When the checkbox is

disabled, no automatic logoff takes place. eXLerate monitors

activity of mouse and keyboard. When no activity has been

detected for the auto-logoff time, the log-off takes place

automatically.

Report generator options

 Retain reports for

This parameter defines for how long generated reports are

retained on the system. By default this option is set to 0

which means that all generated reports are retained

indefinitely. To prevent the hard-drive from filling up, the

parameter can be set to clean-up any reports that are more

than x days old.

 Enable watchdog

The report generator is a service program which is

launched whenever an eXLerate project is started.

By default this option is enabled which caused the

report generator program to be restarted if anything

unexpected happens (faulty/buggy printer drivers may cause

the report generator to exit unexpectedly). It is strongly

advised to keep this option enabled.

 Watchdog timeout

This is the timeout-value in seconds used by the Enable

watchdog option mentioned above. If the report generator

isn’t responding for more than x seconds, the Control Center

terminates it and restarts it. Situations have been witnessed

where a printer driver causes the report generator to block for

a long time. In these cases increasing the time-out value may

help to prevent eXLerate from restarting the report

generator, in case the printer driver is simply taking a long

time.

Terminal services options

 Enable Terminal Services Mode

This parameter enabled Terminal Services Client Mode. This

option allows you to run multiple client instances of eXLerate

on a single machine using Terminal Services (=Remote

Desktop).

 Run first logon of the first user as..

When enabled, runs the first login for of the current user as a

regular eXLerate session (e.g. as a Server-session). Use this

option when you want to run Terminal Services on the same

machine that is a duty/standby or a standalone server.

Application control

When an application is started from the Control Center, it is

important to acknowledge what exactly happens.

Application startup

At startup in Design or Runtime mode, the following actions take

place:

 A copy is made of the original specified eXLerate project

workbook. The copy is created for security reasons. This copy

of the original project workbook is created in the Windows

temporary directory, e.g. ‘C:\Temp’. The actual directory

depends on Windows setup.

 The executable corresponding with the application shortcut is

started as a separate Windows process, with the copy of the

project workbook as its argument, in which case the copy of

the workbook is opened.

 A special startup sequence takes place, which creates the

typical eXLerate environment rather than a standard

Microsoft Excel environment. Note that the Excel icon of an

eXLerate project is colored red rather than the standard green

icon. During this startup sequence, various event messages

are logged in the event logger, which is displayed as an active

window by the Control Center.

 When the application is started up normally, the Control

Center itself is minimized to the System tray, where it can be

re-activated with a single mouse click.

 When the application has not started properly, the Control

Center does probably not disappear into the system tray. In

this case, minimize the Control Center manually, and check

the application status carefully, or monitor the messages as

logged to the event logger carefully for unusual messages. A

possible reason can be the usage of additional controls or

components, or an improper eXLerate installation process.

Check the Trouble shooting Guide at the end of this manual in

that case.

Saving an application

In order to save changes made to your application, use the Save

button at the top or the Ctrl+S shortcut. Before overwriting the

application file, eXLerate makes a backup of the original

application in the archive directory (e.g. “C:\XLRX\Archive”).

Saving an application

When the Design or Runtime -button is pressed while an

application is already running, it is activated in the specified

mode, and not re-spawned. This prevents running of multiple

project instances of the same project, which would cause

unpredictable results.

3 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Terminating an application

A running application may be also terminated, either from the

application itself using <Alt-F4>, using the standard “File”, “Exit”

menu option in Excel, or via the Control Center, via the control

menu of the application shortcut (Right-click an application

shortcut, then select the ‘Terminate Application’ menu option.

Figure 4.9 Terminate application menu, and Windows close box

(right)

When an application is terminated from Excel via <Alt-F4>, the

“File”, “Exit” menu, the close box, or from the Control Center (See

figure above), the application workbook is closed in an orderly

manner.

When the application is terminated, eXLerate checks if the

security level allows for such action. If sufficient, the following

warning message is displayed:

Figure 4.10 Security warning message

If however the application that is to be closed, is not saved yet,

the following message pops up instead:

Figure 4.11 Exiting an unsaved application

You may save your project first prior to exiting Excel, or decide

after all that the changes need not to be saved.

Finally, the shutdown process may be monitored by the user.

Figure 4.12 Application shutdown from the Control Center

The progress bar of the Control Center indicates the duration of

the shutdown process, which may vary based on application size

and processor speed.

Typically, the shutdown process should be completed within 10

seconds.

Command line arguments

Although designed as a Windows compliant program with a

standard user interface, i.e. a windows dialog, the Control Center

may be additionally started from the command line with a

number of command line arguments, for automated system

startup.

Syntax

The control center application may be started using the

following syntax:

xlcenter.exe [[-user {Username}] -pswd {Password}][

-exec {Application}][-open {Application}] [-wait

{Delay}]

with:

Command Description

user {Username} is the User name to login with

pswd {Password} is the password corresponding with {Username}

exec {Application} is the name of the shortcut or the whole path of

the application to start in runtime mode with

open {Application} is the name of the shortcut or the whole path of

the application to start in design mode with

wait Wait for {Delay} seconds before the exec command actually

proceeds

Table 4.1 Command line arguments of the Control Center

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3 7

5 Application development

Introduction

Now that you have been introduced to an eXLerate application,

it’s about time to learn more about the details on behalf of

application development.

In this chapter, the details of application components are

discussed. These components include, but are not limited to:

 Project management

 Graphical user interface and drawing

 The tag database, the beating heart of an application

 Real-time data communications

 Interval events and associated calculations

 Animation Table details

 Cell editing

 Alarm management

 Historical trending

Besides the components mentioned above, there are a number

of tools and wizards in eXLerate that help you with project

development. These are the following:

Wizards

 Tag & Object wizard

 Calculation wizard

 Color wizard

 Button wizard

 Language wizard

Tools

 Worksheet organizer tool

 Tag property tool

 Quick-jump tool

 Cell marker tool

 Name editor tool

In the ‘Advanced Topics Reference’ manual, also the wizards and

tools are described in detail. The worksheet functions and the

VBA API are discussed in the Function Reference. This volume

contains also other advanced programming topics.

Development steps

In the next chapters, a complete application will be developed.

During this process, various steps are thoroughly discussed, and

examples are given of these various steps and components. An

application is generated in various steps, which are discussed in

the following chapters:

 Start a new project

A new project file is created using an existing project. All

steps needed to create a workbook are discussed.

 Tag database

The tag database is discussed and manipulated. Available

fields in the tag database are explained to the user, and their

usage.

 Worksheet components

Various worksheet components are introduced and discussed

to the user, such as animated shapes and real-time values.

Various tools are discussed with the user.

 Data communications

Real-time data communications are added to the application,

which ‘connects’ an eXLerate application to the outside world.

 Interval based calculations

Various automatically generated calculations may be added

to an application. This is discussed in a dedicated section

containing various examples.

 Shape animations

Shapes on display pages are discussed an added to the

application. Shapes may be dynamically changed by color,

size, position or rotation angle, set blinking, or shown/hid.

 Menu navigation

Menu navigation in eXLerate is managed via a single table,

and a template navigation bar, which may be automatically

added to an application.

 Cell editing

Cell editing in eXLerate is managed via a single table, which

can be manually added to an application.

 Alarm management

Alarm management functionality, including an alarm

summary, and an alarm history are added to an application.

 Trending

Real-time and historical trending is added to the application.

 Report generation

Report creation, storage, and generation are explained

further in the next chapter, and are added to the application

as well, including pages in HTML format.

Start a new project in SpiritIT eXLerate

When you are about to create your own real-time HMI project,

there are a number of steps to consider. This section explains

what to do when a new eXLerate project is to be created. These

steps include:

 Creating your own project workbook.

You may create your own project workbook. This may be done

by creating an entire new workbook in Excel, and by adding

required basic components, or by copying an existing project

to your own project.

 Adding a shortcut.

Application shortcuts may be automatically, or manually

added in eXLerate. Specific security rights should be assigned

to a new project as well.

 Adding/removing components.

With an existing project, certain application components,

such as a trend, alarm page, or any other component may be

added to your application.

3 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

NOTE During the discussions in this chapter, we assume that

you are logged in properly, and that you have sufficient security

rights for application engineering.

Creating your own project workbook

If you want to create your own project, all you have to do is to

copy an existing workbook to a new workbook. Remember, a full

eXLerate application is nothing more than just a single

workbook!

You can also start from scratch using the ‘MyTemplate’

application. Just double-click the ‘MyTemplate.xlrx’ file and

follow the instructions. When ‘MyTemplate’ is opened it allows

you to create a new project in a specific resolution. Select the

appropriate screen resolution and click the ‘Create New

Application’ button.

Figure 5.1 Create New application dialog

The contents of the ‘MyTemplate’ application is now

automatically copied into a new application. If you select ‘Cancel’

in the dialog above, you may edit the template yourself. This way

you can create your own company specific template and use that

when creating new applications.

Upon success a new project-file is automatically created and a

shortcut is added to the Control Center.

* Referring to other SCADA/HMI software suppliers

The tag database

In this section details of the tag database are given. You are

assumed to have read the tutorial chapters, where an

introduction was given on the tag database.

Purpose of the tag database

In eXLerate, the tag database manages all external, and most

internal variables in a project.

The word ‘database’ is used as a general classification, i.e. the

tag database is not a pure relational database, even though the

tag database is arranged as a table, with records (rows) and

fields (columns).

An external tag is a variable retrieved from an external device,

such as a PLC or flow computer, usually via a serial device, such

as an RS-232 or RS-485 port. Alternatively, external tags may be

sent to the device.

An example of an external tag retrieved from an external device

is an analog input from a PLC; an example of a tag, which is sent

to a device would be an analog output.

An internal tag is a variable internally used in an application, for

example a calculated result, which is used in the eXLerate

application for a report.

There may be many ‘internal tags’ defined in eXLerate, even

outside the tag database, because in fact each regular

worksheet cell in all worksheets in Excel may be considered as

internal tags, traditionally spoken*.

A tag in the tag database of eXLerate has various properties:

 Important properties of a tag may be referred to with a

logical name, such as ‘xTR1TA.Value’, or ‘xTR1TA.Units’, in

addition to a standard Excel name such as ‘xTagDB!F245’. You

need the Tag & Object wizard to create such object names for

your tag database.

 A tag may be selected for real-time and historical trending.

 A tag may be defined as ‘retentive’, in which case its current

value is automatically and permanently stored in the system

registry. At system startup, its current value is automatically

retrieved from the registry.

 A tag may have additional calculations defined, which are

automatically created and maintained by eXLerate, such as

weighted averages, or latched values.

 A tag may retrieve its value from an external device. If this is

the case, certain additional parameters, as its PLC address

should be defined.

 The current value of a tag may be simulated, so your

application may be thoroughly tested.

 A tag may have alarm properties assigned, so eXLerate

automatically monitors the value for various high/low/state

alarms.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 3 9

 Additional project and engineering information may be added

to a tag database. You may add your own fields (columns) to

suit your own needs and preferences, as long as eXLerate is

able to locate the required fields.

NOTES Although you may add fields for your own requirements,

predefined column names may not be altered. This is because

eXLerate uses these columns internally.

The number of tags that you may have in your application

depends on your license.

Although you may add variables in other worksheets, it is highly

recommended to define tags in the tag database because of

application support as mentioned above.

During real-time updates, the tag database worksheet is

protected.

Figure 5.2 The tag database in eXLerate

Fields may be grouped together. Although not essential, in the

project samples, the grouped fields have a distinct color.

Various fields of the tag database are used to define certain

automatically generated calculations (‘P_XXXX’ fields, e.g.

‘P_Min’), object names (‘TagName’, ‘Alias’, ‘Value’, ‘Units’), or

automatically generated alarms (‘Salarm’, ‘Lalarm’, ‘LLAlarm’,

‘Halarm’, ‘HHAlarm’, ‘Priority’, ‘Delay’, ‘AlarmDesc’, and

‘AlarmGroup’).

After these fields have been defined or modified in the tag

database, the eXLerate Tag & Object wizard must be used first

to automatically generate the required calculations for you. You

might want to read more about the Tag & Object wizard in the

‘Advanced topics reference’, chapter ‘Wizards and tools’.

The following columns are defined in eXLerate:

General fields

 Group

Tags are arranged in groups. You will see at the left-hand side

of a tag database a group symbol (vertical line around the

group, with a “+”, or “-” at the end of a group to open, or close

a group. Groups may be created multi-leveled in Excel, but

only single level groups are supported in eXLerate. When this

column is used, you define a group rather than a normal tag.

Columns to be filled in are Tagname, and location. All other

columns remain empty. An example of a group is: “PLC”, or

“Line 12”.

 ID

This is a sequence number, starting from 1 for the first tag,

until the last tag. Group names also have an ID. The Tag &

Object wizard automatically generates an ID, when object

names are generated.

 TagName

This is the name under which the tag will be known for the

application programmer: a tag name defines the internally

used object names. The tag name may be looked at as a ‘key’-

field in a relational database. A tag name follows the same

restrictions as standard names in Excel. An example of a

TagName is: ‘PT1_1’, or ‘XFC-01’. Since tag names are used for

object names, spaces are not allowed in a tag name.

 Alias

The alias name may contain a different name for the tag, to

be used in display pages and reports, pen selections for

trending and for alarming. Usually, alias names are longer

than a tag name, and may contain characters that are not

allowed for tag names, e.g. a valid alias name may be:

‘##$%^’. When an alias name is not defined, the tag name is

automatically used.

 Location

The location of a tag may be optionally defined. The location

is used in alarming. There may be a difference between the

location, and the group to which a tag belongs.

 Description

The description of a tag is used throughout the application,

for example in alarming, and for trend pen selection.

 Value, Value2,…,Value5

The current value(s) of a tag, as last retrieved from (an)

external device(s), or as last simulated, is stored in this field.

The current value of a tag may be referred to in the

application with ‘x’{TagName}.Value, e.g. ‘xTR1TA.Value’, or

‘xPT1.Value3’. If a tag has no external data source, a formula

may be entered as well. If you have extensive calculations in

your application, you may want to add a special calculation

sheet rather than to add expressions or worksheet functions

right here in the tag database. Value2…Value5 may be used

for multiple tags, where a single tag database entry is used

for data from various parallel running devices, for example

dual redundant flow computers.

 Units

The engineering units as used in the application for this tag,

e.g. ‘bar’, ‘m/s’, ‘gallon’, or ‘feet’. When entered, eXLerate

creates an object name for this field (e.g. ‘xTR1TA.Units’).

 TrendNorm

The trend norm is a field that defines whether the tag should

be recorded for trending. When this field is left blank, the tag

value is not trended at all. When filled in, it is used as a norm

for trending. If the expression:

TrendNormedValueLastrecordueCurrentVal 

is true, then a new sample is recorded. When TrendNorm = 0,

all tag values are recorded.

 Format

This optional field can be used to display the tag-value in a

4 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

specific format. The format is in the same style as Excel

formats but it should be preceded by a single-quote character

otherwise Excel recognizes it as a value rather than a string:

 Retentive

When the value of this field is set to ‘1’, the current value will

be permanently stored in the system registry. At system

startup, the value will be automatically reloaded.

 Type

The type of this tag, for example ‘AO’ (analog output), ‘AI’

(analog input), ‘DI’ (digital input), or ‘DO’ (digital output). You

may add your own abbreviations as well. Only used as

engineering aid, not currently used by eXLerate internally.

 User-address

The user address is an optional user-definable address, for

example an internal PLC address. May be left blank. The actual

address as referred to in data communications is stored in

column: ‘Address’. Only used as engineering aid, not currently

used by eXLerate internally.

 HTML

This field is a user-defined field, used for the built-in HTML

page support for eXLerate. This field may contain a formula,

which is used for HTML page generation. Support for HTML

pages is explained in chapter 13 in this manual. An object

name x{Tag}.HTML will be generated for each non-empty field

by the Tag & Object wizard.

Interval related fields

In the tag database, you may specify if an automatic calculation

should be periodically calculated. For example, an hourly average

may be automatically calculated on behalf of reporting. Interval

related fields start with a ‘P_’, for periodical calculations, and are

followed by the period as defined in the event table, for example:

‘hour’. A field: ‘P_hour’ is then used to define the parameters for

the interval based calculations.

To fully understand all fields you might want to read the

section on interval events and period calculations first,

in section ‘Interval’ on page 55 onwards or skip this part

if you are not interested in automatically generated period

calculations.

 P_xxxx fields

Various fields defining automatically calculated interval values

for the tag. For example, ‘P_hour’ and ‘P_day’ columns refer to

hourly and daily period columns, but all intervals are user

defined and may therefore be configured differently. You may

enter one of the following tokens in the field: ‘L’ (creates a

latched (= periodically clocked) value for the tag value of the

current period), or ‘W’ (creates a Weighted average for the tag

of the current period).

 WeighFactor

Used in combination with weighted averages. The value

specified here determines the weight for each value to be

averaged into the weighted average. It should be an

accumulative value, for example a total flow. eXLerate

calculates the difference between two interval periods to

determine the weigh factor to be used for this tag. An

example of a weighted average is a flow weighted average.

The field should contain a reference, not a value, e.g.

‘xFT1.Value’ is a correct reference, but ‘=xFT1.Value’ is not

(because it is a value).

Communication related fields

The following fields are used in conjunction with the Protocol

Table (used to define the in-use communication protocols) and

the Query Table (which defines the queries used for each

protocol. A query is a data message containing a read or write

request with 1 or more values from an external device.

To learn more about communications with eXLerate, you

might want to check ‘Data communications’ from page

46 onwards first.

 Query

This is the query number in which the tag retrieves its data. It

should be an index to the Query Table, starting from 1.

Various protocols support multiple queries for a single item,

where queries are comma-separated.

 Address

Each numerical value might have an address corresponding

with a register in an external device, such as a PLC. At this

location, the address relative to the message query should be

defined. The actual number to be filled in depends on the

query definition and communication protocol that

corresponds with the tag. In Modbus, a valid address would

be: ‘1500:12’ which specifies bit #12 in a register with address

1500. For the HART protocol, a valid address example would

be: ‘R:4’, specifying a number at offset 4 in the response

message.

 DataType

Each tag in eXLerate has a distinct data type. Most tags are

numerical, but in eXLerate, also text strings, single bits, or

other data types are defined. The following data types are

currently supported:

Datatype Value Description

xBit 1 Coil (in 16 bit word)

xByte 2 8 bit unsigned integer

xShort 3 16-bit signed integer (C WIN32 short)

xWord 4 16 bit unsigned integer

xUInt24 5 24 bit unsigned integer

xLong 6 32-bit signed integer (C WIN32 long)

xDWord 7 32 bit double word (unsigned integer)

xFloat 16 32 bit single precision IEEE floating point,

‘standard’ byte order 4321

xRevFloat 17 32 bit single precision IEEE floating point,

reversed byte order 2143

xDouble 18 64 bit double precision IEEE floating point

xShortFloat 19 16 bit integer to scaled floating point

xIntelFloat 20 32 bit single precision floating point, byte order

1234

xWordFloat 21 32 bit integer to scaled floating point

xRevDouble 22 64 bit double precision IEEE floating point, byte

order 21436587

xBCD 32 32 bit BCD value, with 8 nibbles of 4 bits each,

each nibble coded 0..9

xTimeDate 33 64 bit time date string, in 8 bytes, as follows:

<YY><MM><DD><hh><mm><ss><xxyy>

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 4 1

Datatype Value Description

YY: Year (0-99), MM: Month (1-12), DD: Day(1-31),

hh: Hour (0-23), mm: Minute (0-59), ss: Seconds

(0-59), xxyy: User added value, 0..65535

xTimeStamp 34 64 bit time date string, in 8 bytes, as follows:

<1><YY><MM><DD><1><hh><mm><ss>

YY: Year (0-99), MM: Month (1-12), DD: Day(1-31),

hh: Hour (0-23), mm: Minute (0-59), ss: Seconds

(0-59), xxyy: User added value, 0..65535

xAdcFloat 37 12 bits Analog input 0-4095 to float, direct value

from a ADC

x10kFloat 38 12..16 bits Analog input 0-10000 to float,

converted value from a PLC

xBitInQWord 39 Single bit in a 64-bits word, with its upper 32

MSB bits reset

xLowQWord 40 32-bits word in a 64-bits quadruple word, with

its lower LSB bits reset

xString6 64 6 byte, 8 character packed ASCII string (HART)

xString12 65 12 byte, 16 character packed ASCII string (HART)

xString24 66 24 byte, 32 character packed ASCII string (HART)

xString10 67 10 character string.

xString80 68 80 character string.

xString 69 A null-terminated string.

xString8 70 An 8-byte character string, used in some devices.

xString16 71 A 16 byte character string, used in some devices.

xVariant 80 An OLE originated Variant data type. Used in the

OPC drivers.

Table 5.1 Supported data types

The data type is available as a predefined constant in

eXLerate, so to specify a 32-bit floating point variable, specify

‘=xFloat’ in this field rather than ‘16’.

 Min

Minimum value of the tag, when the input is simulated. Also

used for minimum scale value in trending, and for internal

value scaling in case the xShortFloat, xAdcFloat, x10KFloat, or

xWordFloat data type is used.

 Max

Maximum value of the tag, when the input is simulated. Also

used for maximum scale value in trending, and for internal

value scaling in case the xShortFloat, xAdcFloat, x10KFloat, or

xWordFloat data type is used.

 Initial

An initial value of the tag at system startup, i.e. the current

value of the tag internally, until actual communications have

been started. Optional field.

 ScaleMin

Minimum scaling value for a tag. Optional field which is used

for additional scaling of a value, for all data types.

 ScaleMax

Maximum scaling value for a tag. Optional field which is used

for additional scaling of a value, for all data types.

Explanation

All values coming into the tag database from external devices

may be additionally scaled with user defined constants before

the value is stored in the tag database. In addition, values in the

tag database may be scaled with additional constants before

being sent to external devices.

For inbound data, i.e. data coming from the driver into the tag

database, the following equation applies:

)(.. ScaleMinScaleMaxvaluedriverScaleMinvaluetag 

Equation 1 ‘inbound’ data scaling

For outbound data, i.e. data to be sent to external device, the

following equation applies:

ScaleMinScaleMax

ScaleMinvaluetag
valuedriver






).(
.

Equation 2 ‘outbound’ data scalingFor example, when ScaleMax is set

to 1000, and ScaleMin is set to 0, all values are multiplied with a

constant factor of 1000. In your application, you may use the tag

value, and automatically, when the tag value is sent back to the

external device, it is divided by a 1000.

When no additional scaling is required, these columns may be

left empty.

 Update

This last field related to data-communications is used in

eXLerate to enter a worksheet function with which data is

written from the worksheet into a connected external device.

In eXLerate, the exUpdateEx(..),

exUpdateVarEx(..) and exUpdateStrEx(..)

worksheet functions are used for updates from your tag

database worksheet to an external device. When no updates

are required, because the tag is read-only with respect to the

device, this field may be left empty. See one of the sample

projects of how to update a device using the

exUpdateXXXEx(..) worksheet functions.

Also consider the use of VBA function exUpdateForce

for writing values to an external device

 OPCMode

This field is used to determine whether the tag values should

be available in the OPC Server. Valid values are ‘r’ and ‘w’,

which are described in detail in chapter 6 Data

Communications.

Alarming related fields

The following fields are related to the built-in alarm manager of

eXLerate. When no alarms are to be generated for a tag, the

fields below should be left empty.

The alarm manager is explained in Advanced Reference

Manual.

The Tag & Object wizard should be run after changes made to

the fields below to effectively create the alarm entries for the

alarm manager. The alarm manager is the run-time part of

alarms in eXLerate.

The following fields are available in the tag database for

alarming:

 AlarmDesc

Alarm description. When left empty, the general ‘Description’

field is used as alarm descriptor in the alarm manager.

 AlarmGroup

Alarm group to which the tag belongs. Alarms may be

grouped into hierarchical, unique groups, much like a

4 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

directory tree structure. An operator may acknowledge a

group rather than an individual alarm.

 Priority

Each alarm has an assigned priority, ranging from 1 to a user

defined maximum value. Although the priority is assigned,

displayed and printed, the priority of an alarm has just an

informational character.

 SAlarm

This field contains the state alarm level, when filled in. When

not filled in, no state alarm will be defined for this tag. A state

alarm is generated when the current value of the tag is equal

to this ‘Salarm’ field. A state alarm is usually associated with

digital signals, such as a valve.

 LLAlarm

The ‘LLAlarm’ field is used to define a low-low alarm level.

When this field is defined, the Tag & Object wizard creates a

low-low alarm entry in the alarm list for this field. An alarm

event is generated by the alarm manager when the current

tag value drops below this level.

 LAlarm

The ‘LAlarm’ field is used to define a low alarm level. When this

field is defined, the Tag & Object wizard creates a low alarm

entry in the alarm list for this field. The alarm manager

generates a low alarm event if the current tag value drops

below this level. A ‘LAlarm’ may be used as a warning limit,

while the ‘LLAlarm’ field may be used as a critical error limit.

 HAlarm

The ‘HAlarm’ field is used to define a high alarm level. When

this field is defined, the Tag & Object wizard creates a high

alarm entry in the alarm list for this field. The alarm manager

generates a high alarm event when the current tag value

exceeds this high level. A ‘HAlarm’ may be used as a warning

limit, while the ‘HHAlarm’ field may be used as a critical error

limit.

 HHAlarm

The ‘HHAlarm’ field is used to define a high-high alarm level.

When this field is defined, the Tag & Object wizard creates a

high-high alarm entry in the alarm list for this field. The alarm

manager generates a high-high alarm event when the current

tag value exceeds this high-high level.

 Deadband

The ‘Deadband’ field is used to set a so-called dead-band

value for a high-high, high, low, or low-low limit alarm. This

parameter, which may be entered in engineering units for

each tag, is used to suppress jittering alarms that are caused

by the fact that the process value gets close to an alarm limit

value. This column is optional, and inserted in the tag

database when required. When omitted, a value of ‘0’

effectively disables the dead-band mechanism.

 Delay

The delay field is used to define a delayed alarm. When

defined, an alarm should exist for this period in time, in

seconds, before the alarm manager actually generates an

alarm event. This delay may be used to prevent the generation

of rapidly changing alarms.

Worksheets as display pages

Now that you have been familiarized in the previous section with

drawing of lines, shapes, bitmaps and all other drawing

components in Excel, it is time to start discussing how to create

a dynamically changing display page using Excel worksheets and

eXLerate.

At first some general considerations are given.

Worksheet components

In what SCADA/HMI software packages often refer to as ‘display

pages’ are in eXLerate simply plain Microsoft Excel worksheets.

Although you will quickly get familiarized in using worksheets for

display pages, this simple fact seems unbelievable for

newcomers.

“Can I build serious graphical user interfaces using Excel

worksheets?” is a question often raised.

Yes, you can! Beautifully, easily, and with many powerful

components!

Although this manual is not meant as a general learning book on

Microsoft Excel, you will learn all about building display pages in

this section.

A worksheet in Excel may contain:

 Worksheet cells

A worksheet cell may contain text, numbers, or worksheet

functions. Standard Excel worksheet functions may be used,

including your own written VBA functions, and array

functions. Worksheet cells may be formatted utilizing many

Excel cell properties. In addition, conditional formatting may

be used in a worksheet cell. Conditional formatting allows for

animated cells. User add-in library functions may be used as

well, for example a math library for specific calculations.

 Charts

A chart may consist of any of the more-than-many available

standard charts in Excel. A chart is used by eXLerate for

display of real-time and historical trending, but may be

additionally used for display of any data, for example a

temperature profile in an oven recipe.

 Shape objects

Besides cell data and charts, worksheets may contain the

shape objects as discussed in the previous section. A shape

object is a Microsoft Office item, which is used for drawing of

lines, basic figures like rectangles, circles, ellipses, arrows,

flowchart symbols, call-outs and much more. Shape objects

may be animated by eXLerate, as we have seen in the tutorial

chapter and the previous section.

 Miscellaneous objects

In Excel, bitmaps (for example your company logo in a report

or display), or any other ActiveX component may be inserted

as well. Although those external objects are sometimes

impressive, and may indeed be added, an application

developer should be aware of the fact that system instability

is often caused by inferior components, or components not

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 4 3

designed for real-time systems. The best approach would be

to first develop & test your application with standard

eXLerate components (which are stable), and then, in a later

stage, add such additional components. “If it works, it works”!

Worksheet cells

A worksheet cell may contain text,

numbers, or worksheet functions. In

order to show a number from another

worksheet, for example the tag

database, all you have to do is refer to a cell in that worksheet

with the familiar ‘=’ syntax in Excel, e.g. ‘=xTR1TA.Value’.

Standard Excel worksheet functions may be used, including your

own written VBA functions, and array functions. User add-in

library functions may be used as well, for example a math library

for specific calculations.

To insert a worksheet function, click on the ‘Paste Function’

button on the eXLerate toolbar. You may insert functions. For

each function argument, Excel offers help on entering the

correct value, as in the dialog below.

Figure 5.3 Entering a worksheet function into a cell

NOTE If you feel uncomfortable while using such numerical

expressions or functions in worksheet cells, it is now really time

to start looking for a good Excel learning book…

Named items rather than plain cell references

eXLerate relies on named ranges in Excel rather than on direct

cell references, because working in a structured way calls for

such approach.

For example, to calculate the average value of two pressures, it

is better to use:

=(xTR1TA.Value + xPT2.Value)/2

then using:

=(xTagDB!G34 + xTagDB!G35)/2

Names can be easily created using the ‘Name’ controls in the

eXLerate ribbon:

The ‘Name’ edit-box automatically displays the name defined on

the current cell or range. To create or rename a name, just type a

new name end press <Enter>.

To check which names are available in your application, you can

use the Excel ‘Name Manager’, as shown below:

Figure 5.4 Name Manager of Excel

In this chapter, you will learn how to use object names. You may

use the tag database as the main data source in your

application.

Using the eXLerate Tag & Object wizard, you may create

your own object names from values in the tag database.

The Tag & Object wizard is discussed separately in the

‘Advanced Topics Reference’ of the eXLerate manuals.

Using the eXLerate Calculation wizard, you may create

special calculation worksheets containing calculation

tags. These object names are available to allow you to

create structured applications. Creating a structured application

is highly recommended, if you want to spend your time as

efficient as possible. An advantage of using separate calculation

sheets in your application is that you will be able to separate

data communications tags, and derived calculations.

Tag database items in display pages

In many cases, you might want to display data directly from the

tag database.

Remember, the tag database is a background worksheet in the

application in which all of the external I/O points are defined.

To display items from the tag database into your display pages,

you can refer to the name of a tag, e.g. ‘xTR1TA.Value’ rather than

to a cell reference, such as ‘xTagDB!G35’.

The precise syntax for referring to items from the tag database

in a worksheet cell is:

‘x’{TagName}.{UsedFieldName}

4 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

with:

‘x’ Standard prefix in eXLerate for automatically

generated object names.

{TagName} Name of the tag, as defined in the column:

‘TagName’ in the tag database

{UsedFieldName} A used field of the tag in the tag database. A used

field is a non-empty field. The fieldname is the name

of the corresponding column. The following field

names are supported using the above syntax:

‘Value’, ‘Units’, ‘Calculated’, ‘SAlarm’, ‘Lalarm’,

’LLAlarm’, ‘Halarm’, ‘HHAlarm’, ‘AlmDead-band’,

‘AlmRaised’, ‘AlmOptions’, ‘AlmDelay’, ‘Criteria’, and

‘Alias’. In section: ‘The tag database’ on page 38

onwards of this chapter all details on using the tag

database is given.

After an expression has been entered, the current value of the

referred cell is presented. You might want to press <Ctrl-R>,

‘Recalculate Workbook’ to recalculate you project workbook and

update the inserted number.

NOTE Calculation must be set at manual in eXLerate, for

performance reasons.

Cell formatting

When a number, worksheet function, array function or regular

expression has been entered, it may be formatted using <Ctrl-1>,

or by right clicking a cell and choosing ‘Format Cells…’ from the

context-menu. The following dialog appears:

Figure 5.5 Formatting a cell

Instead of formatting each cell independently, you may

also use a predefined style in Excel. In eXLerate, support

is built-in for using these styles. For now, play around

and format your cell for your taste and specific

requirements.

Cells can be dynamically formatted using range animations.

Range animations are similar to shape animations, where a color

can be given to a range of cells using worksheet functions

exRangeColor(…), exRangeBlink(…) etc. Range animations are

virtually unlimited, because the number of formats is not limited

to the three formats as with conditional formatting.

Charts in display pages

One of the most impressive features of using Excel in a real-time

HMI environment is the usage of charts. Even the real-time and

historical trending module in eXLerate uses Excel charts for

display of trend data.

In the examples below, some standard graphs are presented, to

give you a quick impression of possibilities.

Figure 5.6 Pie-chart type example

Figure 5.7 Columns in a display page example

Figure 5.8 Scatter-chart type example

Please note that these charts are dynamic too! When the source

data changes (and this will happen if related to an external I/O

point, such as a pressure or temperature), the chart will change

as well.

Figure 5.9 Temperature profile example

Selected temperature receipe

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100

Time [min]

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 4 5

All built-in charts of Excel may be used in your display pages.

NOTE If you do not feel comfortable in using Excel charts, and

you want to nevertheless use a chart in your application, you

might want to pick up one of the many excellent titles on this

subject in your bookstore.

When using X-Y charts as in some of the examples above, make

sure to minimize the number of data-points to present in your

graph, because the larger the number of data-points, the more

resources in your computer will be used.

Shapes in display pages

In the previous sections you were introduced with Excel shapes.

Shapes may be animated by eXLerate, as you have seen in the

tutorial chapter as well. See the Animation Table for details on

animating shapes.

Important to realize is that eXLerate uses the name of a shape

for animations in the Animation Table. These names have a

global scope in the application.

A global scope means that all occurrences of all shapes in all

display pages with this global name are animated identically.

You may use <Ctrl-C>, <Ctrl-V> to copy and paste shapes

between display pages, and change the size and perhaps

rotation angle of each object individually. You may even create

two totally different shapes in two display pages. As long as

their name is identical, the shapes may be animated using the

same definition.

Example

You may create a valve symbol on one display, and a much bigger

valve symbol in another page.

Figure 5.10 Two instances of the same "valve_11" object on two

displays

If you give them both the same name, e.g. “valve_11”, there need

to be only one entry in the Animation Table to animate both

different objects. In the example, it would not be smart to

animate the position, size or rotation angle of these two valve

objects, since it would modify the objects accordingly; you

would want to change the colors only (green on open/ red on

close).

4 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

6 Data communications

Introduction

The purpose of real-time data communications in eXLerate is to

be able to exchange information from one or more external

devices, such as a Process Logic Controller, with the tag

database of the computer running eXLerate.

Figure 6.1 Bi-directional data communication between a device and

a PC

Process or configuration data from the device may be retrieved

on an interval basis, under programmatic control, at manual

request, or in a combination of these methods.

Data may be sent to an external device using an event-driven

update technique, or alternatively on an interval, program-

matically, manually, or a combination of these methods.

Exchange of information takes place in an agreed format for

transmitting data between two devices, a protocol, which is

usually query based. A query in this context is a data message

from a computer to a client in a master/client configuration

utilizing the protocol to request for information.

Many different protocols and worse, protocol variations of many

hardware and software manufacturers have been developed over

the years, each with certain advantages, some drawbacks, and

implemented on numerous devices.

Usually, more than 1 data-point is transmitted in a single query.

A single data-point corresponds with a single tag value in

eXLerate.

Most protocols are based on serial ports utilizing the RS-232 /

RS-485 / RS-422 interface standard, or on the Ethernet standard

but can be based on other hardware as well, such as 4-20mA

(HART), or in fact any other suitable hardware interface.

Multi-drop or point-to-point

communications

There are basically two different approaches in the network

architecture to communicate with external serial devices:

 Multi-drop

In a multi-drop system, most or all devices are connected to

the supervisory computer using a single communication line.

All of the devices have a unique address, and each device is

polled by eXLerate for data sequentially.

 Point-to-point

In a point-to-point setup, most devices are connected to the

supervisory computer using multiple communication lines,

where each device has a dedicated communications line. The

devices may have identical addresses, and each device is

polled by eXLerate for data in parallel.

A typical multi-drop RS-485 system may look as follows:

Figure 6.2 Example of a multi-drop system

eXLerate supports multi-dropping for its serial communication

drivers. The advantage of multi-dropped communications is the

fact that hardware requirements are simple: there is only one

single communication path required, over which all of the data

communications is handled. The drawback however is slower

throughput of data, since only single communication port must

sequentially poll all connected devices.

Another drawback is the fact that in a multi-drop system, a

failing device is able to seriously delay or even stop

communications of all devices.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 4 7

A typical point-to-point architecture (based on both RS232 and

Ethernet) looks as follows:

Figure 6.3 Point-to-point communications

Each of the connected devices has a dedicated serial port with

which the connection with the supervisory computer is realized.

The serial PortServer is equipped with as many serial ports as

there are external devices available, and an Ethernet connection

with the supervisory computer.

The advantage is much higher data throughput, because all of

the devices are polled for data in parallel, at a higher hardware

cost.

Also combinations of multi-drop and point-to-point connections

are possible, since eXLerate fully supports both architectures.

eXLerate also supports Ethernet based architectures, in which

case peer-to-peer communications are achieved using an

Ethernet LAN (intranet), or even the Internet to connect devices

in a network. eXLerate supports Modbus/TCP for this purpose.

Simplified data-model

Although there are many differences in data communications

caused by the variation of implemented protocols, most

communication protocols in eXLerate have a multiple query-

based structure, i.e. each of the n protocols in a project has m

data queries (a ‘query’ in this manual is also referred to as a ‘poll-

block’, ‘message’, or ‘frame’, asking for data, or sending data) in

which z data-points, or more specific, tag values are enclosed.

Example: In a system there may be 5 Modbus devices defined,

each configured with 4 queries. Each query is a read-request

asking for 8 register values.

Communication protocols are running asynchronously in the

computer, and each protocol is able to serve m data queries,

from which z tag values retrieve or send new data at each cyclic

data-poll. This n x m x z model is presented in the following

figure:

Figure 6.4 Data model of eXLerate communications

Protocols utilize specific hardware, such as serial ports, or

Ethernet interface cards to connect a server with its clients. Each

protocol in eXLerate is running in an independent programs

execution thread, and processes its associated queries

sequentially.

A query defines which data items are transferred, the direction

of the dataflow (from client to server or vice-versa), and how this

transfer takes place: periodically, event-based,

programmatically, manually, or a combination of these methods.

Queries may only ask for data (a read-only query), may only write

data (a write-only query), or may have combined read/write

commands specified.

It is the task of eXLerate to allow for both flexible as well fast

data throughput using this model without sacrificing ease and

maintainability of its configuration.

In eXLerate, the three involved objects (protocol, query, and tag)

are implemented with just three simple worksheet tables: the

Protocol table, the Query table, and the tag database, containing

the retrieved real-time data.

Data updates from external devices

A query has several properties that are defined in the Query

table. For example, the interval time between two consecutive

read-polls, the number of retries, or the read command code are

entered in the Query table, as well as a number of options

defining exactly how data is retrieved from external devices.

Data may be read:

 Cyclic, at a user defined interval, for example every second

 Through a subroutine or macro in VBA, where a trigger may be

given to start a read-poll.

 Manually, from a user-definable dialog. In the user dialog, the

trigger may be given by the press of a button to actually start

reading data.

Several advanced techniques are available to read data as

flexible as possible. A special design has been used to cater for

devices going off-line and back online. Such update techniques

are optionally available in eXLerate: in a simple application

reading of data is configured easily, while more complex

applications these more advanced techniques may be used.

When data of a corresponding query is successfully transferred

from a device to the computer, or vice versa, an offline/online

event is sent to the eXLerate application, and the status column

of the query in the Query table is automatically updated.

n x Protocol m x Query z x Tag

4 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Data in a query is sent to eXLerate, directly in the tag database

worksheet, and may be additionally logged in a .LOG file for

further analysis. This is a great tool for debugging your

applications!

In the ‘Advanced Topics Reference’ manual, various VBA

functions, Sub routines and API for the above mentioned

communication options are discussed in detail.

Data updates to external devices

Data may be written back to a device as well. For example, a

master protocol may use a write command to update a value in a

PLC, or a slave protocol may reply to an external master with a

read response.

The process of writing data to an external device is usually

event-driven, i.e. when the value changes in the application, it is

immediately written to the external device, allowing the

application to instantaneously respond to actions.

For example, when the operator issues a valve-close command

by clicking on a valve object on the screen, an immediate write

request may follow (in case a master device is handling the data

transactions).

Alternatively, various properties are defined in a query to allow

for periodical updates as well. The interval parameter in a query

defines this behavior.

Controlling real-time data communications

Data communications may be started both in runtime mode as

well as in design-mode, using the eXLerate menu. The following

options are available from the eXLerate design-mode menu:

Figure 6.5 Communications related menu options

Configuring real-time data communications

Real-time data communications in an eXLerate project is

configured from only two worksheets:

 xComms’

In this worksheet, the ActiveX control responsible for real-

time data communications is present. From this worksheet,

all communication protocols and message queries in the

project are defined in the Protocol Table, and the Query Table

respectively.

 ‘xTagDB’

In this worksheet, the tag database worksheet, all settings for

an individual tag are defined, including the properties needed

for data-communications.

Since all real-time data communications are just configured from

those two sheets, configuration of real-time data

communications is orderly defined in an eXLerate application.

For example, printing the current communication settings of all

protocols and associated messages does not take more than the

printing of single worksheet.

When the Protocol Table, the Query Table, or the tag database

are modified in eXLerate, the ‘Apply Worksheet Changes’ option

should be activated prior to starting communications.

Protocol samples

For each specific protocol in eXLerate, a working sample

workbook is available, in which available options,

settings, and other parameters are defined. These

settings can be copied into your project workbook. Check the

specific workbooks for working examples and additional

information of the protocols that you need in your application.

xlConnect, the protocol manager

xlConnect is the eXLerate family member with which you are able

to ‘connect’ to external devices, i.e. the component that

manages all external data-communication protocols.

Besides protocol management, cyclic interval processing is also

taken care of by xlConnect. Cyclic interval processing is further

discussed in section: ‘Interval’ on page 55 onwards.

xlConnect is implemented as an ActiveX control, that is

inserted in the ‘xComms’ worksheet. It looks as follows:

Figure 6.6 Main window of xlConnect with data scope/event

logger

There are several items present on the control’s main dialog

window:

 an ‘About…’-button

When this button is clicked, a pop-up dialog appears showing

the available communication protocols with a short

description and version number for each protocol. From this

about box, license information may be displayed as well, so

you can verify that you have the correct authorization code

installed.

 The ‘Options…’-button

The ‘Options’-button at xlConnect‘s main window is used to

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 4 9

set a number of message debugging options for each

protocol, and for cyclic interval events.

 The ‘Clear’-button

The event logger display will be cleared when this button is

clicked.

 The ‘Running’ icon

The ‘Running’ icon is light grey and standing still when no

cyclic interval events are currently defined or sent to Excel.

The icon is dark grey and in motion when cyclic interval events

are active, and sent periodically to Excel.

Icon Description

Cyclic interval events are not currently active

Cyclic interval events are currently active. At each new event,

the hour pointer jumps to the next hour.

Table 6.1 Cyclic interval events animated icon

 The Status icon

This icon is used to present the current status of the

xlConnect ActiveX control to the user. Its presence is just

informational, and has the following meaning:

Icon Description

 The communication settings are correctly configured, and

real-time data communications are currently updating Excel.

 Interval processing of communications are temporarily

stopped, because the user has clicked once on this icon, or

was stopped from the eXLerate menu. Communications may

be resumed by clicking again on the status icon, or via the

eXLerate menu.

Communications is programmatically paused, and may be

continued. Usually not visible for the user, unless communi-

cations are set up via VBA.

 There was a warning issued when communications were set

up. Communications are configured when the user issues the

‘Apply Worksheet changes’ from the eXLerate menu.

 The configuration has been programmatically set up

correctly. Normally not visible for the user, unless

communications are set up via VBA.

 The configuration is not defined yet for xlConnect. Its

database is still empty.

 There was a fault issued during communication

configuration. Correct the problem, of which details are

logged in the system event logger, and try again.

Table 6.2 Animated state icons of xlConnect

 The local Logger/data scope window

The logger window of xlConnect is a local logger, which may

be used as a data scope logger window, and a fault/warning

message logger for messages related to data

communications. To enable logging of message of xlConnect,

use the Options dialog, and set the output to the local

window. Data scope messages may be alternatively sent to

the central event logger in the Control Center of eXLerate, and

to a .LOG file for off-line analysis.

Protocol options

The protocol options dialog of xlConnect is selected with the

appropriate button, after which the following dialog appears:

Figure 6.7 Communication server properties

For event logging, various logging devices may be enabled as

output for generated events. ‘Local’ means the local window of

xlConnect, ‘View’ is the logger window view of the Control

Center, ‘File’ is a .LOG logger file in which event messages are

stored, and ‘Print’ is the alarm/event printer in eXLerate. There

are various message types: ‘Alarms’, ‘Errors’, ‘Info’, and ‘Debug’.

An Alarm is a message issued during run-time, while an Error is

generated as a result of a faulty configuration. Info, and Debug

are additional message types.

The data scope options are defined in the lower part of the

dialog, where the device that may be monitored is entered, and

the type of data scope messages to be logged. In the protocol

window, a selection can be made to generate additional,

protocol dependent messages.

The stress slide bar is used to increase the communication

speed with a defined factor, and may be used during application

development for stress-testing your project. In the bar graphs,

the current processor load, as well as memory usage is

displayed, to tune the generated stress to an optimum level.

In the release version of your project, logging and/or

stress factors should be avoided as much as possible,

since logging has an impact on system resources in

terms of processor utilization.

Protocol table

The Protocol table is a table located in the ‘xComms’

worksheet, and contains the list of all communication

protocols currently defined in the project. Multiple

protocols are available, all running in parallel. For each protocol,

a thread is created in Windows to ensure optimum system

performance.

The protocol table has the following basic layout:

Figure 6.8 Protocol table layout

5 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

As with most specific configuration tables in eXLerate, the table

starts with a table identifier (‘rProtocolTable’) which defines

which Excel range is associated with the table, a number of field

headings (dark red row in the example above), and the data in

the table itself.

The protocol table has various columns, each with a specific

function:

 ID

This is an index number of the protocol table, starting from 1,

and up to and including the number of used protocols in the

application. Note that there may be empty entries in the

table.

 Protocol

The key name of the protocol to be specified, for example:

’SBUS’, or ‘ModbusMaster’. Only protocols in accordance with

your license key may be specified.

 Type

Per protocol, a variation may be optionally entered, such as

‘RTU’, or ‘ASCII’ in case of Modbus. Per communication

protocol, a sample worksheet file is available, in which most

common settings for various communication protocols are

defined.

 Protocol Options and MoreOptions

At these fields, specific protocol dependent options may be

entered. In the example above, no additional options are

specified. See Table 6.4 for the supported options.

 Device

This field is used to specify the device to be used for the

protocol, i.e. a serial port (e.g. “COM56:9600,n,8,1”), or a

TCP/IP address, in case of an Ethernet device (e.g.

“192.168.0.10”). May be set to ‘Sim’ to simulate the device, in

which case the protocol and pertaining data is simulated.

Exact usage depends on the actual protocol; see the

application example files.

 Device options

For the device hardware, two additional option fields are

available.

 In case of a serial device, the Device Options are used for RTS

switching. RTS switching allows for hardware/software

control of the RTS line during signal transmission, for various

signal converter support, for example when using the HART

protocol. For the OPC client protocol, this is the time in

seconds an item write action is allowed to take.

Options [RtsMode[, TxDelay[, OffDelay[, RtsOptions]]]]

RtsMode 0: No RTS switching is supported (RTS remains low)

1: Use built-in Windows’ RTS_TOGGLE switching option

2: Use software controlled RTS switching, positive logic

3: Use software controlled RTS switching, negative logic

4: RTS remains high

TxDelay Transmission delay, in [ms]. Used with RtsMode 2 and 3,

for a delay between a switched RTS line, and the

moment at which the data is transmitted.

OffDelay Inactivation delay, in [ms]. Used with RtsMode 2 and 3,

for a delay between completion of data transmission,

and inactivation of the RTS line.

RtsOptions Options bits, only used in RtsMode 2 and 3

0x01: Use event based RTS control

0x02: Force flushing of data before RTS is dropped

 Table 6.3 RTS options for serial hardware

Protocol Options MoreOptions

Modbus Master RTU standard RTU message format RTUnn nn may be

16, 32, 48, or 64 for fixed register size addressing mode ASCII

standard ASCII message format ASCIInn nn may be 16, 32,

48, or 64 for fixed register size addressing mode

Delay time, in 0.1 [sec] units between two queries

Modbus Slave RTU standard RTU message format RTUnn nn may be

16, 32, 48, or 64 for fixed register size addressing mode ASCII

standard ASCII message format ASCIInn nn may be 16, 32,

48, or 64 for fixed register size addressing mode

SIM for simulation of data

Modbus Client RTU standard RTU message format

Clock HOPF Specifies a Hopf DCF receiver WHARTON Specifies

a Wharton receiver

RdCmd, Intv, Tmout, Tolr

RdCmd Read command byte

Invt Interval time, in sec TmOut Timeout, in sec

Tolr Tolerance of time, in sec

When nothing is specified, default: “?”, 300, 10, 2 (Hopf) or “T”, 300, 10, 2

(Wharton) is used.

HART Master None Delay time, in 0.1 [sec] units between two queries

HART Slave None SIM for simulation of data

OPC client OPC 2.0 compliance with the OPC DA 2.05 specification

OPC 1.0 compliance with the OPC DA 1.0 specification

Option bits:

0x0001 Use OPCENUM

0x0002 Use cached values

Table 6.4 Protocol Options/MoreOptions settings

 Device

This field is used to specify the device to be used for the

protocol, i.e. a serial port (e.g. “COM56:9600,n,8,1”), or a

TCP/IP address, in case of an Ethernet device (e.g.

“192.168.0.10”). May be set to ‘Sim’ to simulate the device, in

which case the protocol and pertaining data is simulated.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5 1

Exact usage depends on the actual protocol; see the

application example files.

 Device Options

For the device hardware, two additional option fields are

available.

 In case of a serial device, the Device Options are used for RTS

switching. RTS switching allows for hardware/software

control of the RTS line during signal transmission, for various

signal converter support, for example when using the HART

protocol. For the OPC client protocol, this is the time in

seconds an item write action is allowed to take.

Options [RtsMode[, TxDelay[, OffDelay[, RtsOptions]]]]

RtsMode 0: No RTS switching is supported (RTS remains low)

1: Use built-in Windows’ RTS_TOGGLE switching option

2: Use software controlled RTS switching, positive logic

3: Use software controlled RTS switching, negative logic

4: RTS remains high

TxDelay Transmission delay, in [ms]. Used with RtsMode 2 and 3,

for a delay between a switched RTS line, and the

moment at which the data is transmitted.

OffDelay Inactivation delay, in [ms]. Used with RtsMode 2 and 3,

for a delay between completion of data transmission,

and inactivation of the RTS line.

RtsOptions Options bits, only used in RtsMode 2 and 3

0x01: Use event based RTS control

0x02: Force flushing of data before RTS is dropped

 Table 6.5 RTS options for serial hardware

Use these options with great precaution, since it highly affects

system performance. The options only depend on the hardware

used. If you have an application using RTS switching, please refer

to one of the example worksheets where working settings are

given.

In case of an Ethernet based protocol, the port number is

specified in this field. For the ModbusClient protocol, always

port 502 should be used.

 Device MoreOptions

This is a reserved field, for future usage.

 ModemInit

In case a modem will be connected to the system, a modem

initialization string can be defined for the modem, e.g. a ‘ATZ’

or alike command may be sent to the modem prior to calling a

telephone number.

 DialCommand

This field allows for entering a dial command, such as: “ATDT

+31402961234”. A dial command entered at this field is only

available during the configuration pass of communications,

and cannot be used to dynamically change telephone

numbers while communications are running. In order to

change a number, stop data communications, and then

restart.

 Options

Several options may be passed to the modem dialer, to setup

various timers and timeout counters, as follows:

Options [CmdTimeout[, Retries[, FailTimeout[, HangupDelay]]]]

CmdTimeout Command timeout, in [0.1 sec] units

Retries Number of retries on a command

Options [CmdTimeout[, Retries[, FailTimeout[, HangupDelay]]]]

FailTimeout Connection timeout, or failed timeout, in [0.1 sec] units

HangupDelay No activity timeout & hangup, in [0.1 sec] units

Table 6.6 Modem options

 Tag

Optional field in which the name of the device, associated

with the protocol may be defined, e.g. ‘PLC-22’ to designate a

PLC in a system. May be left empty; not internally used by

eXLerate.

 Description

A description of the device may be entered here as well, e.g.

’Main Controller in the system’; not internally used by

eXLerate.

 Status

This field is a calculated field, of which the content depends

on the status of the associated queries. In case one or more

queries go off-line, this status field increases with one,

yielding to a combined status of which a non-zero value

indicates that one or more associated queries (logical

devices) have gone off-line.

The Protocol Table may be group-wise opened or group-wise

closed using the Excel plus (‘+’) and minus (‘–’) buttons at the top

of the worksheet.

The Query table

All queries in the current project are defined from a single table,

called the Query table, which resides in the ‘xComms’ worksheet.

The table has the following general layout:

Figure 6.9 The Query Table

As with most specific configuration tables in eXLerate, the table

starts with a table identifier (‘rQueryTable’) which defines which

Excel range is associated with the table, a number of field

headings (dark red row in the example above), and the data in

the table itself.

The Query Table may be group-wise opened or group-wise

closed using the Excel plus (‘+’) and minus (‘-’) and/or the ‘1’ and

‘2’ outline level buttons at the top of the worksheet.

The exact layout of the columns in this table depends on the

associated protocol details.

The table has a size of at least 21 columns. Various fields are

available for all protocols, while other fields are protocol specific.

Protocol specific fields

Common fields

5 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

The fields are described below:

 ID [1]

This is an index number of the Query table, starting from 1,

and up to and including the number of used queries in the

application. Note that there may be empty entries in the

table.

 Protocol [2]

This field links to the Protocol Table, and designates a query

to an existing protocol. In the example above, the first two

queries (1 and 2) are linked to the first protocol (1), i.e. the

first protocol has two queries defined.

 Device [3]

This field specifies a device ID, which is usually a number.

Most (multi drop) protocols have a device ID, which should be

specified for each message. For example, in Modbus devices

1..254 are legal device IDs. For the OPC client protocol, the

device refers to a group name rather than a numerical value.

 Interval [4]

The interval time applies to the time between two

consecutive read- or write-polls, and is entered in 0.1 [sec]

units, e.g. 30 specifies 3.0 second intervals. The relative start

time of a query may be also defined, e.g. when the user

specifies: ‘20:15’, there will be a 2.0 second interval update for

this query, which starts at 1.5 seconds after the 2.0 second

interval time has elapsed. This option allows for time-wise

distributed queries. To immediately send the first query at

communication start, you may specify 20:-20.

 Timeout [5]

The timeout parameter specifies the time, in 0.1 [sec] units,

before a retry of the query is sent to the device in the event

that no response message is received, or that the device is set

to sleep, in case no retries have been defined.

 Retries [6]

The number of retries in case of a timeout is specified with

this parameter. When elapsed, the device is set to sleep.

 SleepTime [7]

This parameter specifies the sleep time, in 0.1 [sec] units that

the associated device is put in after all retries have been

elapsed, and still no response is received at a message query.

A sleep time is used to let other devices, which share the

same protocol hardware, prevail communications over a

failing device. When the sleep time has elapsed,

communications are resumed.

The data of a query is sent to eXLerate, and a worksheet, usually

the tag database receives this data, as a contiguous array of

values. The exact destination of the array containing the new

data is specified in the following three parameters: row, column,

and worksheet name. In the sample projects, the column number

is fixed, because all values arrive in the same column in

worksheet ‘xTagDB’, while the row number is automatically

calculated with the Excel worksheet function MATCH(..).

 Row [8], and Col [9]

Specifies the row and column number of the first value in the

array containing new data of the corresponding query, e.g. 10,

5 specifies ‘R10C5’, in Excel terms cell ‘E10’.

 Sheet [10]

Specifies the worksheet name in which the array with data is

to be written. In the sample projects, this is the ‘xTagDB’

worksheet.

 Options [11]

The options field is used for all protocols, and specifies

certain advanced details regarding data updates for

associated items. The following options are currently

supported:

Option Description

xBlockWrites Only use block-writes to a device, e.g. only

write all fields in a query at once rather than

either value belonging to the query has

changed. When not specified, items may be

individually updated (default).

xNewDataOnly Only send new data to Excel; if retrieved data is

equal to the data already available in Excel then

no update takes place. This option prevents

unnecessary calculation updates. When not

specified, every read query causes an

associated update in Excel (default).

xTransparentRead Allow for reading of data while write updates

are currently pending. When not specified, read

polls are postponed during a write update

(default).

xForcedWrites Allow pending write commands to be executed

after a device has gone back on-line. When a

device has gone off-line, write queries cannot

be sent to a device. This option allows for

automatic update of the data once the device

in online again. When not specified, no

automatic write updates takes place, i.e. the

user has to ensure these updates (default).

xNoReadOnce Write-only queries are normally updated

initially, if there is a read command defined for

the query (default). This option disables even

an initial read.

xItemUpdates Items in this query are updated in Excel

individually rather than group-wise, a query at

a time. This option is available for the OPC

client, but not available for all communication

protocols. Check the protocol samples.

xNoSleepAll Prevents all queries from going to sleep when

at least one query in the protocol fails. This

option is available for the Modbus

communication protocols.

xWriteOnly Items can only be written and are never

updated in Excel. This option is available for

the OPC client, but not available for all

communication protocols. Check the protocol

samples.

xWriteAll Writes the whole query-block, when at least

one item in the query was changed.

Table 6.7 Query options

Query options may be combined together, by adding individual

settings. For example, option

‘xNewDataOnly+xForcedWrites’ means option

‘xForcedWrites’ (Allow pending write commands), plus

option ‘xNewDataOnly’ (Only new data to Excel). If you do not

feel comfortable defining such details as described above, refer

to one of the working examples in one of the supplied

workbooks.

 MoreOptions [12]

This field is used for additional options. This option is

currently only used by the OPCClient protocol where it

represents a bitmask of the following options: 1:

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5 3

UseOPCEnum (by default the registry is used), 2:

ReadFromCache (by default reads are from the device).

 Status [13]

The status field is updated automatically by eXLerate. If a

query goes off-line, a non-zero value is stored at this field.

While on-line, a ‘0’ is stored at this location. This query status

field is used to update the protocol status field, by summing

all query status fields of the appropriate queries, using the

SUMIF(..) worksheet function. You may want to check this

formula at the ‘xComms’ worksheet in the Protocol Table at

this moment to see how the status of a query is processed.

 Fields 14..21+ are used to specify the type of query, and are

protocol dependent. Check the working sample workbooks

for an example of the protocol you require. Below, fields 14..21

for Modbus (serial and TCP), HART, ASCII and IEC 870 protocol

are included as an example.

 Fields 14..21 (Modbus)

For a Modbus query, usually referred to as a poll-block, fields

14..21 are used to describe the poll-block type (14: Type), the

start address of the query (15: Address), the number of

registers of the query (16: Length), the register bit-size (17:

Size), the single write command (19: SW), the multiple register

write command (20: MW), and the multiple register read

command (21: MR). See the Modbus workbook for working

examples on various Modbus devices.

 Fields 14..21 (OPC)

For an OPC query, usually referred to as a group, fields 14..21

at present is only used to describe the group type (14:

Deadband). See the OPC Client workbook for working

examples on various OPC clients. The OPC Group name is

entered at the Device field. Fields Retries (6), and SleepTime

(7) are currently not used for an OPC client.

 Fields 14..21 (HART)

For the HART protocol, queries are referred to as HART

commands. Fields 14..21 are used to specify the details of the

command: long / short message type (14: Type), Master

address (15: Address), Number of preambles (16: Preambles),

number of bytes in the HART command (17: Command bytes),

number of bytes in the reply (18: Reply bytes), and HART

command (19: Command). Fields 20 and 21 are not used in

Hart.

 Fields 14..21 (ASCII)

For an ASCII protocol, a query specifies the ASCII characters

to be sent, and the location of data in the reply message:

query type (14: Type), reply template string (15: Template),

Number of registers in reply (16: Registers), number of

<CR><LF> terminated strings in reply (17: Size), and command

string (19: Command).

 Fields 14..21 (IEC 870)

For a IEC 870 compliant query, usually referred to as a frame

or telegram, fields 14..21 are used to describe the message

type (14: Type), the data set number DN of the user data (15:

Dataset), the size of the request frame (17: OutSize), the size

of the reply frame (18: InSize), the Send/Reply command (19:

SR), the Send/Confirm command (20: SC), and the

Request/Respond command (21: RR). See the IEC 870

workbook for working examples on various IEC 870 compliant

devices.

Advanced communication topics

Although many of the communication features within eXLerate

operate implicitly and automatically, in some applications there

may be the need to obtain further control of communications.

For example, when a device goes offline, and comes back online

after some time, you might want to do something with pending

write requests. A pending write request is a value that should

have been written to the device, but because the device was

offline never got that far. eXLerate is able to automatically write

pending requests to the device when the device comes back on-

line.

Advanced communication options are utilized using various

methods:

 Using the options settings of a query

 Using the exUpdateEx(..) worksheet function in the

Update column at the tag database

 Using several VBA functions

The most commonly used method for writing values to

an external device is through VBA function

exUpdateForce

Most tags with an external data source are read-only, i.e. the

external device determines its value, and eXLerate simply

retrieves its current value by periodically polling for data using

one of the defined queries.

Tags may be also write-only, i.e. eXLerate determines the current

value of a tag, for example by using your own worksheet

function to determine its current value.

A write-only value may be updated to the external device using

an event driven update, a periodical update, a latched update, or

a combination of these three basic techniques.

 Event-driven

At each change of the current value, the worksheet

functions exUpdateEx(..),

exUpdateStrEx(..) and

exUpdateVarEx(..) are used to signal xlCon-

nect that the value must be written immediately. This is the

most common technique, enabled by eXLerate by default.

Check the function reference for details of using the

exUpdate***Ex(..)worksheet functions.

 Periodically

A cyclic interval update will write the current value repeatedly

to the external device, even when it did not change. The

interval value of the corresponding query must be set <>0 to

enable periodical updates of write-only values.

 Latched

Latched updates are updates that are grouped

together. For example, you may want to send

updates to an external device in a single update for

all tags rather than to send each value separately.

5 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

The trigger for such a common update may be controlled via

VBA. Latched updates are important for redundant systems,

where there may be two computers that need to be

synchronized. The worksheet function exUpdateEx(..) is

needed, in combination with the VBA function

exSetUpdateMode(..) to configure latched updates.

Check the function reference for details of using

exSetUpdateMode(..).

A combination of these techniques is quite easily enabled: you

may want to update a value event-driven, and periodically. This is

enabled by simply setting an interval value at the query

definition, or by using the exSetUpdateMode(..) in VBA

user function OnEvent(..). The latter function is a

predefined Sub in VBA, which is periodically called by eXLerate, in

which you may add your own functionality.

It is also possible to create read/write tags, although great care

should be taken in the design of read/write tags to avoid update

conflicts. To specify a read/write tag, the corresponding query

should be made read/write. A query may be considered as the

‘engine’ behind the data taking care of read or write requests.

OPC server

The OPC Server (Data Access 1.0/2.0) is an integrated part of

eXLerate and the only communication protocol that does not

need to be specified explicitly. The OPC Server makes tag data

as found on the xTagDB sheet available to external applications,

on the computer running eXLerate and/or over a network

connection.

OPC server configuration

The default configuration for eXLerate will not start the OPC

Server. If external access to the tag values is desired, an

‘OPCMode’ column has to be added to the xTagDB sheet. In the

OPCMode column, the access mode of the tags can be defined.

Two values are allowed in the OPCMode column: “r” for a read-

only tag and “w” for a read-write tag. When no value is specified,

the tag will be hidden from the OPC Server.

Figure 6.10 OPCMode column

Optionally an ‘OPCGroup’ column can be added. This column will

supply an OPC group name for the tag. If the OPCGroup column

is missing completely or one of its fields is empty, the location

value is used as OPCGroup.

Figure 6.11 OPCGroup column

After adding columns to the xTagDB sheet, make sure

the xComm sheet is correct (especially the ‘Query table’

‘col’ column). Moreover, adding/removing OPC Server

functionality requires the tag & object wizard to be run.

OPC server monitor

Figure 6.12 Windows notification area with xlOPC, xlCenter and

report icons

When the OPC Server is configured and the eXLerate application

is running an extra icon will be shown in the windows

notification area. When a user is logged with sufficient privileges

(>=2000), clicking this icon or using the restore item on its

context menu will open the eXLerate OPC Server monitor

window. The eXLerate OPC Server monitor allows users to view

which tag values are currently available in the OPC Server:

Figure 6.13 OPC monitor with tags hidden and shown

Normal behavior for the eXLerate OPC Server monitor is to keep

running as long as there are OPC clients connected, an eXLerate

application is open with exported tags or the window has been

opened by a user. If the eXLerate OPC Server monitor is

minimized and there are no OPC clients attached or applications

running, it will automatically shut down after 60 seconds.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5 5

7 Intervals and periods

Introduction

In your application there might be a need to periodically

calculate certain values, for example an hourly average value of

the current pressure, the daily total flow in a metering system, or

a weekly production total.

You might want to automatically print a report containing

calculated values based on the associated period, for example in

a fiscal metering system.

In addition, you may want to create another recurring event, for

example a 10 second event, in which you alternately open and

close a valve in a PLC.

If you do not use such advanced options as VBA code that you

periodically want to call, or periodical calculations, you might

want to skip reading this section; this part is particularly added

to eXLerate to automate the process of creating periodical data

for reporting purposes in a fiscal environment.

Interval vs. period

The functionality mentioned above is implemented in eXLerate

using two basic entities:

 A recurring interval event causing a report to be printed, or to

trigger your VBA code in which you open/close a valve,

 And

 Functionality with which periodical quantities are calculated,

such as weighted averages or latched totals.

The recurring event in which certain (VBA) actions takes place in

eXLerate is called an interval event, or simply event; the recurring

periods over which the associated calculations take place is

called a calculation period, or simply period.

It is obvious that the two entities interact highly: you need a

defined period to calculate a daily average, and an event

associated with the period to actually print the report.

Supported interval event types are: second, minute, hour, day,

week, month, quarter, and year.

The user defined interval events and associated calculation

periods are defined in a single table called the Interval Table.

Required calculations for a specific tag are configured in the tag

database, in special fields (columns). The names of these fields

start with ‘P_’, and are followed with the corresponding period

name, e.g. ‘P_Hour’ contains period definitions for hourly data.

These fields may be generated by the Tag & Object wizard.

Interval events/calculation periods must be entered in ascending

order in the Interval table.

Example

In an application, a period of 8 hours is defined in which a report

must be generated in which the average value of a pressure

transmitter, ‘PT1’, is calculated. The report must be printed at

every 8-hour cycle.

The 8-hour period, the calculation of the average value of the

pressure transmitter during these 8 hours, the generation of a

user-defined report as well as printing of the report may be

implemented using built-in features of eXLerate.

Supported calculations

In eXLerate 2016 there are currently three types of periodical

calculations defined, which are specified in the appropriate

period columns of the tag database:

 A latched value specified with an ‘L’

 A weighted average specified with a ‘W’

Latched values

A latched value acts as a sample and hold register, which takes

the current value of a tag, and stores that value in memory for

the duration of the associated period. When the period elapses a

new value is sampled for the duration of this period.

Figure 7.1 Sample and Hold registers, or ‘Latches’

In the figure above, the blue line represents a varying signal, for

example an hourly flow obtained from a process computer. Every

new hour, represented by the black vertical lines, a new value is

latched in the latch registers, of which the value is displayed with

the red line.

Latches are especially useful to keep values for a certain period,

such as ‘previous day’, or ‘previous hour’ data. Latches are

retentive: at system startup, the last stored values are retrieved

from the system registry.

Latch calculations always yield to an array of results rather than

a single value.

--
>

 v
a

lu
e

--> time

Latch registers

5 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Weighted averages

A weighted average is a calculated average of a real-time value,

where a weight factor is used rather than time for the calculation

of the average value. The contribution of the process parameter

to the resulting weighted average depends on the weight factor.

A weight factor may be based on an accumulative value, with

which the difference between the previous and the current value

is calculated. The calculated difference may be used as weight

factor. Alternatively, a flow rate signal may be used as weigh

factor.

The equation for a flow-weighted average value is given as

follows:

 

 




tn

t

i

tn

t

ii

avg

Q

QP

P

0

0

*

With:

Pavg : Weighted average of parameter P in period t0..tn

P i : Current value of parameter P during interval time t i

Q i : Weight factor between two consecutive intervals, for

 example an accumulative flow value

t0 : Start time of period in which the average is calculated

tn : End time of period in which the average is calculated

Equation 3 Weighted average equation

In the example below, an example is given of the calculations

involved.

 P Q P*Q P*Q/Qt

7:00 15 2000 30000 0.60

8:00 30 100 3000 0.06

9:00 20 0 0 0

10:00 20 100 2000 0.04

11:00 15 1000 15000 0.30

Arithmetic average 20

Sum 3200 (Qt) 50000 1.00

Weighted average of parameter P 15.625

Parameter P, reported at 9:00 is not used for the averaging

process, because the weight factor was zero during that hour.

The weighted average is calculated by dividing 50000 by 3200,

which yields 15.625. The arithmetic average is 20.

The Interval table

The Interval table, which defines all cyclic interval events and

associated calculation periods in eXLerate, has the following

layout:

Figure 7.2 The Interval table

As with most specific configuration tables in eXLerate, the table

starts with a table header with caption: ‘Interval table’, the Excel

range name (‘rIntervals’) which defines the table for eXLerate, a

number of field headers, and the data in the table itself.

The Interval table may be group-wise opened or group-wise

closed using the small Excel plus (‘+’) and minus (‘-’) buttons

and/or the level ‘1’ and level ‘2’ buttons at the top of the

worksheet.

A small help/comment for each field in the Interval table is

available.

Select the appropriate column of the table, and a little pop-up

help window appears in which explanation follows on usage of

the column, as in the figure left.

There are 15 columns in the Interval table. Columns 1-9 define the

interval events in the application; columns 10-14 may define

additional associated calculation periods. Column 15 may

contain a general description of the interval.

Interval events may exist without an associated calculation

period, but a calculation period can never exist without a

preceding interval event.

Intervals must be entered at the table in ascending order to

allow for cascading period calculations.

The columns in the table have the following purpose:

 ID [1]

This is a key index number of the table, starting from 1, up to

and including the number of recurring intervals used in the

application. Note that there may be empty entries in the

table.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5 7

 Name [2]

The name of each interval is internally used as a key, and

should be unique. The name of an interval is used throughout

the application, and determines the column name in the tag

database associated with this period. For example, the ‘Hour’

interval has an associated tag database column name:

‘P_Hour’, in which for each tag the automatic periodical

calculations are defined for that period. There may be empty

entries in the table, in which case no associated column name

for the tag database is associated or created – preventing

generation of automatic period calculations for this interval.

 Type [3]

The type of periodic interval can be one of: second (use

predefined constant ‘=xSec’), minute (‘=xMin’), hour

(‘=xHour’), day (‘=xDay’), week (‘=xWeek’), month (‘=xMonth’),

quarter (‘=xQuarter’), and year (‘=xYear’). This is the basic

type, which will be combined with the size parameter to

obtain the cyclic events associated with a period.

 Count [4]

The count of a period determines at how many of the

intervals specified at type an event is triggered by eXLerate.

For example, if you want a period defined of 5 seconds, set

type to ‘1’, and count to ‘5’. A period of 3 minutes is defined by

setting type to ‘2’, and count to ‘3’.

 Fields MM/DD/hh/mm/ss [5-9]

These fields determine the actual start moment of the interval

event. For example, a minute interval may be created starting

at hh:mm:10, i.e. 10 seconds after the whole hour. Another

example is a daily interval, starting at 08:00, which could be

the start time at which you may want to print out your daily

report.

COMMENT: The above fields allow for creation of latency in

consecutive interval events, i.e. a small delay may be built in

before the system progresses from one interval to the next

interval, for example for report generation. This is useful in

systems where data must be retrieved from external systems

before a report is generated, e.g. the system may wait a few

seconds to allow external data to be retrieved prior to the

generation of a new hour. This is why hourly events should

start a few seconds later than exactly on the hour, and a daily

event perhaps a minute later than the exact new day, etc. Of

course, no data will be lost when using such latency; only the

moment at which a report is generated is affected.

 Periods [10]

This optional field contains the number of interval periods

that are used for a full period calculation cycle. When not

defined, no period calculations are available for this interval.

This makes the interval event-only.

COMMENT: For example, you may have 24 hours in a single

day for which you may want to calculate hourly totals, i.e.

every hour, an hourly event is to be generated, and after 24

hours, the cycle is completed, after which a new day starts. In

this case Type would be set to ‘3’ (hour) and Count would be

set to ‘1’, to obtain a calculated average every hour, and

Periods would be set to ‘24’, to define that there are 24

calculated periods of 1 hour for a full cycle.

 StartOn [11]

This optional field is used to define at which interval event the

calculation period starts. In the example above, you might

want to start a daily report to be printed at 08:00, which

means that this field would have a value of ‘8’. The StartOn

field relates to the Periods field. If omitted, a new calculation

period always starts on ‘0’, which is the first period.

 ResetBy [12]

The ResetBy field is an optional field, which may contain the

name of a higher interval, which will reset the periodical data

of this interval, but only after the referred higher calculation

period has been processed. It is available for advanced period

calculations.

COMMENT: If not defined, the periodical data of this interval

will be automatically reset after the StartOn period event has

occurred. This postponed reset of periodical data, which is

defined with the ResetBy field allows for calculation results at

the higher period based on calculations of a lower period. For

example, a daily total could be based on hourly results,

generated by a lower hourly event.

 Previous [13], and Current [14]

These fields are filled by eXLerate when a new interval event

has been triggered, and may be used by the application for

additional functionality. Previous and Current are updated by

eXLerate at each new event, and cycle between 0 and Periods.

COMMENT: For example, to define the name of a report, the

Previous field may be used as tab name in a report workbook.

The values are always set by eXLerate, and therefore read-only

for the user.

 Description [15]

This is a user-definable field, not needed for eXLerate, but

added for user convenience.

Interval processing

The Interval table is processed by eXLerate during runtime on

various levels.

Each period of the Interval table has an associated period field in

the tag database. For example, the ‘Hour’ period has an

associated ‘P_Hour’ column in the tag database, where the user

may specify which periodical calculations are required for the

tag during the period.

All period calculations are updated at each new interval event.

This process is visualized as follows:

The ‘OnEvent()’ and ‘OnBeforeReport()’ events as

mentioned in the flow chart above are user-definable

VBA subroutines that are called by eXLerate on certain

events. These and other events are discussed in detail in the

Advanced Topics Reference, ‘User Application Events’.

5 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

1h Interval event

1h

Internal calculation period

processing

1h

0h

24h

1h

2h

Hourly Latched value

Report Generation at 08:00

containing hourly values

Generate report ?

Y

OnBeforeReport()

user event

invokation

OnEvent() user event

invokation

Figure 7.3 Hourly interval event & period processing example

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 5 9

Generated objects

When the required periodical calculations have been specified at

the appropriate period columns in the tag database for each tag

and for each period, the Tag & Object wizard may be started to

actually generate the required objects and corresponding

calculations. These objects are generated in the (hidden)

‘xWizard’ worksheets.

To learn more about using the Tag & Object wizard,

check the ‘Advanced Topics Reference’ manual.

Latches are configured with the ‘L’ token in the appropriate

period column in the tag database. When a tag value is latched,

the following objects are available in eXLerate, after the Tag &

Object wizard has been used to generate these objects:

Object name Description

x{tag}.{Period}.Current The current latched value of {tag} at

period {Period}

x{tag}.{Period}.Previous The previously latched value of {tag} at

period {Period}

x{tag}.{Period}.rPeriods A range, of size Periods, containing all

latched values of {tag} at period {Period}

Table 7.1 Latch objects

The Tag & Object wizard creates both the objects as well as the

worksheet (array) values containing the required data. For

latches, an array of values is returned. The size (Rows x Columns)

of the array is Periods x 1.

This result array may be pasted in the application using a

standard Excel array formula. An array formula in Excel is entered

as follows:

 Select the range, for example 24 rows and a single column

with the cursor

 Press <F2> to edit the expression

 Enter the following: ‘=xTR1TA.Hour.rPeriods’

 Press <Shift-Ctrl-Enter> to enter the array formula

Now the range holds the latched data.

Weighted averages are configured with respectively the ‘W’

token in the appropriate period column in the tag database.

The following objects are available after invocation of the Tag &

Object wizard:

Object name Description

x{tag}.{Period}.Wavg The weighted average value of {tag} over the

{Period} period. The value returned is a single

value, not an array of values.

Table 7.2 Average objects

Cascading calculations

Latches and weighted averages will be automatically cascaded,

i.e. the result of a preceding period may be used for the next

period. The basic idea is to achieve maximum resolution at a

minimum resource usage (processor load and memory

consumption). Cascading is automatically enabled for

calculations of consecutive periods.

In the figure below, the relationship between the Interval Table

and the associated columns in the tag database are highlighted.

At the right bottom cutout, cascaded latches are defined, which

create daily and monthly latches for weighted averages, based

on minutes and hours.

Figure 7.4 Relation between Interval Table, and tag database

columns ‘P_…’

In the example above for tag ‘xTR1TA’, the latched periods

contain data for all previous period averages. The periods are as

expected from the logical name: the ‘Min’ period contains 60 x 1

minute intervals, and lasts thus 1 hour; the ‘Hour’ period contains

24 x 1 hour intervals, and lasts thus 1 day, etc.

The ‘Min’ period has a weighted average, with the highest

resolution based on maximum 3600 samples, e.g. each second a

new sample is used for calculation of a minute average.

The ‘Hour’ period with 24 periods has a cascaded weighted

average: at the end of each hour, the averaged 60 min sample

from the preceding ‘Min’ period is used for the ‘Hour’ average,

thus cascading the weighted average from the previous period

in the next period. There is also a weighted average defined, and

a latch, which creates both a latch for ‘xTR1TA’, every hour, as

well as a latch for the hourly averages, and a latch for the

preceding period averages.

The ‘Day’ period contains a latch only. The effect of this latch is

that both the current value of ‘xTR1TA’ is latched, and the

preceding ‘Min’ and ‘Hour’ averages.

A ‘rule-of-thumb’ in cascading is that it is best to cascade

weighted averages of the same period, and/or one preceding

period; cascading more seems doubtful, e.g. latching a month

based on minute data.

In the tables below, the created object names of the example

cascaded period calculations are listed.

6 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

For the ‘Min’ period in the example, the following object names

are created:

Object Description

xTR1TA.Min.Wavg The weighted average value of PT1 over the ‘Min’

period. The value returned is a single value, not

an array of values. The weigh factor is the

current value of xTR1TA.

Table 7.3 Objects created for period: 'Min'

This period contains only two values. These values will be used

for cascaded period calculations below to obtain the highest

resolution average.

For the ‘Hour’ period in the example, the following object names

are created as in Table 7.4.

There are now two possibilities for using latched averages: the

‘Hour’ hourly updated values, or the ‘Min’ higher resolution data.

Usage depends on your application, and the averaging type.

Typically, use the averages based on the current period for

weighted averages.

For the ‘Day’ period of the example objects of Figure 7.4 on page

59, the following data objects are available as in Table 7.5.

Object Description

xTR1TA.Hour.Wavg The weighted average value of PT1 over the ‘Hour’ period. The value returned is a single value, not an

array of values. The calculation internally uses ‘xTR1TA.Value’ to obtain the resulting average value.

xTR1TA.Hour.Current, xTR1TA.Hour.Previous,

xTR1TA.Hour.rPeriods

Latch results, with xTR1TA.Value as latched input value. The xTR1TA.Hour.rPeriods is the array with

latched results. The data is latched at the end of the ’Hour’ period, which is every hour. The total

range contains 24 hours, or a full day of data.

xTR1TA.Min.WAvg.Hour.Current,

xTR1TA.Min.WAvg.Hour.Previous,

xTR1TA.Min.WAvg.Hour.rPeriods

Cascaded latch results, with xTR1TA.Min.Wavg as input value, taken from the previous ‘Min’ period.

Because of the nature of weighted averages not recommended. See the equations for weighted

averages.

xTR1TA.Hour.WAvg.Hour.Current,

xTR1TA.Hour.WAvg.Hour.Previous,

xTR1TA.Hour.WAvg.Hour.rPeriods

Cascaded latch results, with xTR1TA.Hour.Wavg as input value, taken from this ‘Hour’ period. The

result is the creation of cascaded weighted averages.

Recommended for weighted averages.

Table 7.4 Objects created for period: 'Hour'

Object Description

xTR1TA.Day.Current, xTR1TA.Day.Previous,

xTR1TA.Day.rPeriods

Latch results, with xTR1TA.Value as latched input value. The xTR1TA.Day.rPeriods is the array with

latched results. The data is latched at the end of the ’Day’ period, which is once every day. The total

range contains 31 days, or a full month of data.

xTR1TA.Min.WAvg.Day.Current,

xTR1TA.Min.WAvg.Day.Previous,

xTR1TA.Min.WAvg.Day.rPeriods

Cascaded latch results, with xTR1TA.Min.Mavg as input value, taken from the first ‘Min’ period. Not

recommended.

xTR1TA.Hour.WAvg.Day.Current,

xTR1TA.Hour.WAvg.Day.Previous,

xTR1TA.Hour.WAvg.Day.rPeriods

Cascaded latch results, with xTR1TA.Hour.Wavg as input value, taken from the previous ‘Hour’ period.

Because of the nature of weighted averages not recommended. See the equations for weighted

averages.

Table 7.5 Objects created for period: 'Day'

In this example, we have created weighted averages for hourly,

daily, and monthly reporting purposes, with the definition of just

three tokens in the tag database: ‘W’, ‘WL’, and ‘L’ for minute,

hour, and day periods respectively.

Weighted averages are not created if the weigh factor isn’t

entered. The weigh factor as entered in WeighFactor should

be the name of a tag. The value of this tag is assumed to be

time-wise incrementing, i.e. at every new call, its value

increases, as is the case with an eternal flow. Alternatively,

this weigh factor may be a (flow-)rate.

Calculation triggers

eXLerate generates so-called calculation triggers for the above

mentioned interval events. These calculation triggers are

internally used by worksheet functions of eXLerate, and may be

used for your own application development.

For interval based calculations and optional cascaded

calculations, the sequence in which the periodical events as

defined in the Interval Table take place is quite important.

For example, when an hourly report is to be printed, it is

important first to calculate a new result for that hour, then to

store the result for printing in the appropriate register, after

which the old result is to be reset to 0 for a new hour.

Such an event causing a function to be re-calculated by Excel is

called a calculation trigger.

Various calculation triggers are defined for each period in the

interval table.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 6 1

When an interval event takes place in eXLerate, for example for

period Hour, the following updates take place:

 The internal variable: ‘xPeriod.Hour.PreTrigger’ is

triggered (by letting eXLerate change its value). It is called a

trigger because Excel will recalculate all worksheet functions

referring to this flag.

 The previous period field in the Interval Table is updated with

a new previous value. The variable is called:

‘xPeriod.Hour.Previous’ in the application.

 The current period field in the Interval Table is updated with a

new current value. The current period field is called:

‘xPeriod.Hour.Current’.

 The variable: ‘xPeriod.Hour.PostTrigger’ is updated.

 A report for that period is actually generated, using the

correctly triggered function results.

This process can be visualized as follows:

Figure 7.5 Cascaded calculation triggers on an interval event

At 17:00, an event is defined, causing a sequence of events to

take place, being the pre-period trigger, previous period update,

current period update, and a post-period trigger.

Usage of worksheet functions in combination with the

above mentioned calculation triggers is also discussed

in the function reference in the ‘Advanced Topics

Reference’ manual.

Resetting historical values

The running historical values in an application may be reset

using the ‘Reset Historical Values’ option from the Tools option

in eXLerate.

A confirmation dialog is shown, as follows:

When ‘OK’ is activated, the historical values are reset to 0.

Historical values in this context are intermediate running data

for latches and averages. Trend and log files, or report output

files are not touched by this command.

16:00 17:00 18:00 19:00

Pre-period

trigger

Previous Period

trigger

Post-period

trigger

Current Period

trigger

17:00

6 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

8 Object animations

Introduction

The process of animating shape objects is already

introduced in ‘3 Tutorial’, from page 26 onwards. If you

skipped this chapter, it is perhaps a good idea to read

this chapter now and get familiarized with shape

animations.

eXLerate uses standard Excel shapes and their

accessible** properties internally for its data-

driven shape animations.

Regular worksheet cells may be animated as

well using a standard Excel feature:

‘Conditional formatting’. With conditional

formatting, you are able to set the font style,

underline, color, and strikethrough font

properties, border properties, and pattern

properties for cell-colors.

Refer to ‘Cell formatting’ on page 44 for usage of dynamic cell

formatting in Excel; this section discusses how to animate a

shape object.

A shape is a Microsoft Office drawing object, that eXLerate uses

to animate a display page, for example a bar graph as displayed

above.

This section basically explains how to animate a shape object by

using the Animation table, and the functionality behind the

Animation table.

In addition, worksheet cell ranges may be animated as well.

Using range animations, named ranges, or individual (unnamed)

cells may be set to a specific color, or may have a blinking

attribute set.

The Animation table

In eXLerate, animations of shape and range objects in all display

pages are stored in a single table, the Animation table.

The Animation table is stored in worksheet ‘xAnimations’ in the

‘MyTemplate’ project sample, but may be located elsewhere.

If you need to animate an object in eXLerate, an entry in the

Animation Table must be created for it.

The Animation table has various rows, one for each animated

object, and a number of columns, one for each animation

property.

** Using Microsoft COM (Component Object Model) techniques

Columns at the left-hand side of the table contain actual shape

properties, i.e. the shape property values for the shape object,

as follows:

Figure 8.1 Animation table shape properties

The following properties are available:

 Class

A class is like a group, where the application developer is able

to create groups containing identical shape objects, such as

valves, transmitters, devices etc. In the ‘MyTemplate’

application the classes are row-wise grouped, so a user is able

to select the group level with the ‘1’ and ‘2’ group levels, or use

the ‘+’ and ‘-’ buttons. This is an optional property (may be left

empty).

 Shape

The name of a shape object. Shapes have a global scope, i.e.

various sheets may contain the same shape object, even

though the shape object itself differs between worksheets.

For example, one may define a ‘valve’ shape, which may be a

different shape on various display pages: it may be a large

valve on display 1, a rotated shape on display 2, and even a

totally different object on display 3. As long as the shape with

this name is located on a worksheet, it may be animated

using this name. This is a mandatory property (must be non-

empty, as well as unique in the Animation Table). If shapes are

grouped together, the sub-shapes can be accessed using a ‘.’-

character as separator. So, if a grouped shape is called

‘MyGroup’ and within that group a shape exists with name

‘Valve’, then the shape name would be: ‘MyGroup.Valve’.

 Range

The name of a range object. Ranges have a workbook scope,

where a name is attached to a unique range in the workbook.

 Lookup

This optional column may be used to implement user-defined

color lookup tables. In the ‘MyTemplate’ sample, various

shape colors are calculated via this lookup column in

conjunction with a user-defined table (e.g. ‘rValveLookup’).

The idea is to convert a real-time value from the tag database

into a color lookup value, so a shape object changes color at

certain conditions based on “live” data. Various color lookup

tables are also located on the ‘xAnimation’ worksheets.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 6 3

 FillColor

This field specifies the animation color index of the shape

object. This is an optional property (may be left empty).

 TextColor

This field specifies the text-color index and applies to range

animations only. This is an optional property (may be left

empty).

 LineColor / BackColor

The line / background color index specifies the color to be

used for lines in a shape, identical with the fill color property,

or sets the cell background color for range animations. This is

an optional property (may be left empty).

 Visible

Optional field which defines the visibility of a shape object. If

a shape should be made invisible, the current value of this

field should be 0; otherwise the shape will remain visible. To

actually set the visibility property of a shape, the

corresponding eXLerate worksheet function should be

inserted as well, at the right hand side of the Animation Table.

This is an optional property (may be left empty).

 BlinkCol, Interval

Shapes and ranges can be made blinking with a steady

interval of about 0.5 seconds if a blink color is applied to

BlinkCol, and Interval contains an expression. If Interval yields

to non-zero, the shape or range will start blinking. Blinking in

this context is a toggle of colors between FillColor and

BlinkCol for shapes, and a toggle of colors between BackColor

and BlinkCol for ranges. These are optional properties (may

be left empty).

 Left

Specifies the left position of a shape object, to be used for

dynamically moving shape objects on a display. This is an

optional property (may be left empty).

 Top

Specifies the top position of the shape object, to be used to

dynamically move shape objects on a display. This is an

optional property (may be left empty).

 Width

Specifies the width of the shape object, to be used to

dynamically size shape objects on a display. This is an

optional property (may be left empty).

 Height

Specifies the height of the shape object, to be used to

dynamically size shape objects on a display. This is an

optional property (may be left empty).

 Rotation

The angle at which the shape object rotated, to be used to

dynamically rotate shape objects on a display. The rotation is

a number between 0-360. This is an optional property (may be

left empty).

The Shape properties tool

Shape properties may be viewed using the Shape properties

tool, which is a tool pop-up dialog, activated from the eXLerate,

Tools option. The current properties as described above are

presented in the dialog. By pressing one of the buttons, the

associated property is copied directly in the Animation table at

the appropriate cell.

Figure 8.2 Shape properties tool

The Shape properties tool is a handy tool to obtain current

positioning and size values from a selected shape on a

worksheet in the Animation table, as a starting point for shape

animations.

The Animation table functions

Figure 8.3 Animation table Shape functions

Columns at the right-hand side of the Animation Table optionally

contain worksheet functions to actually animate the shape. If a

certain animation is not desired, the appropriate column should

remain empty.

Note the color usage of cells: Constants have a black font, items

from the tag database are colored green, and worksheet

6 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

functions have a blue color. We recommend using these font

colors throughout your application, to be able to distinct

constants, functions and real-time data easily in your project.

Although it is not a good engineering practice to create display

pages that resemble a “Las Vegas Christmas tree”, it is possible

to combine various worksheet functions for a single shape

object: you may change colors, the position or size of a blinking

or invisible object.

The following columns are available in the Animation Table for

shape animations:

 ID

This column contains a worksheet function with an animation

ID. To create a new shape animation, a new animation ID

should be created using this function. The ID is automatically

generated in the table by eXLerate by means of the

exShapeID(…) worksheet function. There are two

arguments to this function: the shape object name, e.g.

“valve_11”, and a recalculation trigger, which causes Excel to

recalculate the current worksheet function at startup.

 Color

The color column contains optionally the

exShapeColor(…) worksheet function. Arguments are the

object ID (from the previous column), the FillColor, and the

LineColor, from the $D and $E columns at the left hand size of

the Animation Table.

 Visible

A shape may be made invisible or visible again using the

exShapeVisible(…) worksheet function. Arguments to

this function are the object ID, and a visible/invisible flag. An

object is made visible if this argument yields non-zero.

 Blink

A shape may be set blinking with a steady frequency of about

0.5 Hz using the exShapeBlink(…) argument. Arguments

to this function are the object ID, the line color, the blink

color, and an interval. Applying a non-zero value to the interval

column will set the shape object blinking during runtime.

 Pos

There are various positioning worksheet functions to be

added to the Animation Table: exShapeLeft(…) to set the

x-position of the shape, exShapeTop(…) to set the y-

position of the shape, or exShapePos(…) to set both the x

and y position. Coordinates on the display start at (0,0) at the

left top corner of the display, incrementing to about 10000 to

the right at cell-column IV, and to 68000 to the bottom at cell-

row 65535. Arguments of these functions include the object

ID, and the x-position/x-position or both properties.

 Size

There are various sizing worksheet functions to be added to

the Animation Table: exShapeWidth(…) to set the width

of the shape, exShapeHeight(…) to set the height of the

shape, or exShapeSize(…) to set both the width and

height of the shape. Arguments of these functions include the

object ID, and the height/width or both properties.

 Rotate

The rotation angle may be set at various shapes (but not all).

The rotation angle is defined from 0º to 360º. The

exShapeRotate(…)function may be used to set the

rotation angle of a shape.

The Animation color table

Shapes and ranges may be animated using a predefined palette

of colors. These colors are stored in the ‘rColorTable’ range of

the ‘xTables’ sheet.

Figure 8.4 Color table

The first 8 colors in the Color table are fixed and cannot be

changed. The remaining 56 colors may be changed to any color.

These colors can be changed by setting the ‘Red’, ‘Green’ and

‘Blue’ to a value between 0 and 255. After changing a value the

Color wizard must be run, which makes the colors active in Excel.

The color-indexes from the Color table can be easily inserted into

a cell using the Color palette tool (Ctrl+L):

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 6 5

When a color-button is pressed, the index of that color is

automatically inserted into the current cell.

Adding animations to your project

To add animated objects to your project, the only thing you have

to do is to draw or import the shape object in your worksheet,

and add the entry at the Animation table, preferably at the

appropriate shape class.

For example, if you have a valve object, you might want to add

the animation for your object at the ‘valves’ class. If the targeted

class does not exist yet, you may easily add your class to the

Animation table.

Use the Excel ‘Group’ and ‘Ungroup’ options from the ‘Data’

ribbon to create groups for your classes. Creating groups highly

structures your application, especially when the amount of

animations exceeds a single page on your computer’s monitor.

Remember that just the name of a shape object has a project

global scope, i.e. you may have various objects “valve_11”, one on

every worksheet, and each a different shape, but there has to be

only one shape entry in the Animation table to animate all

objects.

After completion of the appropriate property

columns at the left of the table and worksheet

functions at the right hand side of the table, you

should choose the ‘Apply Worksheet Changes’ option

from the ribbon to let eXLerate digest your table

changes.

The next time that you start communications in runtime mode,

the objects are animated according to the Animation table.

Example:

In the animations worksheet itself, we will create and

animate a new shape using 3 simple steps.

 Create a new shape

Insert a new shape in worksheet ‘xAnimations’, just for

testing. For example, create a summing junction shape from

the Excel shapes library:

Figure 8.5 Inserting a summing junction shape

Please note that when holding the <Shift>-key while resizing the

object with the mouse, both x- and y-dimensions are resized

equally, so in our case the circular shape remains circular. The

shape gets a default name assigned by Excel, for example:

‘FlowChart: Summing Junction 1’.

Figure 8.6 Default and given name of the new shape

 Change the name of the shape in: ‘MyShape’ using the Name

box on the right hand side of the display page.

 Add the shape to the animation table

We will create a new entry in the Animation Table, by setting

its name in the ‘Shape’ column, and additional properties, as

follows:

Figure 8.7 The shape properties at the Animation Table

 The ‘FillColor’ is set to ‘52’, which is in our case orange,

‘LineColor’ is 0 (fixed color black), and as blinking color

(‘BlinkCol’) we will choose ‘35’, which is dark red in our case.

The color numbers are retrieved using the Color Palette Tool,

opened with <Ctrl-L>. When a certain color is clicked at this

tool, the value may be inserted directly into the cell. The

‘Interval’ field is set to ‘1’, to enable blinking.

 Fill-in the actual animation functions

For now, we will only register the shape in eXLerate, set the fill

color, and let the shape blink at a 2 Hz interval. Simplest is to

copy the required columns from other shapes using <Ctrl-C>,

<Ctrl-V>. The functions should be looking as follows:

Figure 8.8 Shape functions to be filled-in

 The ID as returned from the worksheet function

‘exShapeID(…)’ in the example above is ‘12’, but could be

any number, which depends on the number of already existing

entries of the table. Other functions used are:

‘exShapeColor(…)’ to set the fill color of the shape, and

‘exShapeBlink(…)’, which is responsible for blinking the

shape object.

 To test the newly created shape, start real-time updating.

6 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

9 Menu navigation

Introduction

Menu navigation is an important aspect in application

development, because it is an important aspect for the look-and-

feel of the application and therefore deserves the necessary

attention, and yet it is usually a time-consuming, lesser

interesting part for an application engineer to actually

implement.

Figure 9.1 Function-key button bar in eXLerate

eXLerate automates the generation of display navigation in your

project. A function key button-bar may be defined once, in the

template display page, with which eXLerate is able to generate

the page-specific navigation behavior for each display page.

Page-specific functionality is stored in the Button table, which is

the first table on the ‘xTables’ worksheet. In the Button table the

navigation buttons <F1>…<F12> may be defined, but in addition

other shape objects with which a user is able to select another

display page. In fact, any VB-macro can be activated by clicking

on the shape. Such definitions may be defined in the Button

table as well.

This section explains how to use the available functionality in

eXLerate to automatically add display page navigation to your

application, and how to use the Button table.

The Button table

The Button Table looks as follows:

Figure 9.2 The Button table layout

As with most configuration tables in eXLerate, the table starts

with a table identifier (‘rButtonTable’) which defines which Excel

range is associated with the table, a number of field headings

(dark red row in the example above), and the data in the table

itself below the header line.

The button table has as many rows as there are buttons and/or

keys for the application, and various columns, each with a

specific function.

The last button definition of each worksheet just contains the

worksheet name in a grey colored row. Although not required, it

is maintained to create a clear distinction between display pages

in the table.

The following columns are present:

 Worksheet

This column contains the worksheet at which the button is to

be present, e.g. ‘Help’, or ‘Trending’. Button definitions at the

same worksheet are grouped together. When there are key-

definitions global for all worksheets, the name of the

worksheet remains empty, for example a common print key

<Ctrl-P>. This keystroke is used to print the current display

page on the printer.

 Button

The name of the button object, e.g. ‘Button1’, ‘MyButton’, at

which the procedure will be linked to.

 Button Text

The text to be placed on the button. A new line will be inserted

for every tilde (‘~’) character in the text. The first line of the

text will be placed bold, the rest of the text in plain font.

 Key

The keystroke to be associated with the button. Special keys

are defined between curly brackets ‘{‘ and ‘}’. The following

special keys are available:

Key Literal key text to be entered

Backspace {BACKSPACE} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete or Del {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Home {HOME}

Ins {INSERT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}
Right Arrow {RIGHT}

Up Arrow {UP}

F1 Through F15 {F1} through {F15}

Table 9.1 Key codes to be entered

Key codes may be also used in combination with the <Alt>-,

<Shift>- and/or <Ctrl> keys, in which case the character key is

preceded with the following key state character codes:

Key state Character Character name

Shift + Plus

Ctrl ^ Caret

Alt % Percent sign

Table 9.2 Key state codes

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 6 7

We strongly recommend only using function keys and keys with

either <Shift>, <Ctrl>, and/or <Alt>, and to avoid using regular

keys for macro calling.

 Procedure

The name of the macro or procedure to be invoked when the

button is pressed can be entered at this column. eXLerate’s

Button Wizard automatically creates a VBA procedure:

‘Load_{display}’ for each display page, e.g. when the user

inserts a display: ‘MyDisplay’, the Button Wizard creates a VBA

procedure (also referred to as a ‘Sub’) in VBA module:

‘modButtons’ with the name: ‘Load_MyDisplay’. Other

procedures, such as built-in dialogs of eXLerate may be

defined as well, such as the user login dialog

(‘exShowLoginDialog’), or a user-defined VBA macro.

 Macro

The name of the actual macro is entered at this ‘wrapper’

column by the Tag & Object wizard; a user should not edit this

column directly. This additional column is required, because in

Excel, only macros defined in modules can be used with

buttons. For example, the user login dialog is not a macro, but

an eXLerate procedure (‘exShowLoginDialog’), and

needs therefore an additional ‘wrapper’ macro to invoke this

dialog from a command button.

 Access Level

At this column, the minimum access code that a user should

own before the button may be activated, is entered. For

example, when a ‘Guest’ with security level ‘10’ should not be

allowed to acknowledge an alarm, the button to acknowledge

an alarm with should contain a higher access level than ‘10’.

 Enabled

This column may be used to programmatically enable/disable

the action of the button. When this field yields to TRUE, the

button is enabled. When the expression yields to FALSE,

clicking this button has no effect.

Button wizard

From the eXLerate ribbon, start the Button wizard, as follows:

Figure 9.3 Invocation of the Button wizard

The Button wizard will be showed, as follows:

Figure 9.4 Button Wizard, step 1

The Button wizard contains 3 options:

 Update buttons

When this option is selected, all the existing buttons on all the

displays are updated to reflect the contents of the

‘rButtonTable’ range. No buttons are created/removed when

using this option.

 Create User Interface components (Button1..12)

When this option is selected, the ‘ButtonFrame’ including the

buttons ‘Button1..12’ are copied from the ‘Template’ sheet to

all the display sheets.

 Create All User Interface components

When this option is selected, all user interface components

(shapes) from the ‘Template’ sheet are copied to all the

display sheets.

When this step has been properly setup, press ‘Finish’ to actually

create the User interface components, and create the menu

navigation functionality, as follows:

Figure 9.5 Button wizard generates menu navigation items

The Button wizard has copied the selected user interface

elements to all display pages, and filled for each display page the

buttons from the Button table definition.

You are now able to test the menu navigation when switching to

RunTime/Preview mode from the eXLerate menu. You may press

<ESC> to end the preview mode, and revert to Design mode.

When the Button wizard is invoked another time, the options per

step are remembered from the last time the wizard was invoked,

so simply press ‘Run’, or <Enter> to actually recreate the button-

bar.

6 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

10 Cell editing

Introduction

Editing cells is an important aspect in application

development which often does not get the necessary

attention. Checking whether the user has entered a

correct value, in the proper format, within the proper limits is

usually a time-consuming, lesser interesting part for an

application engineer to actually implement.

eXLerate enhances the standard editing behavior of Excel in

multiple ways, for example it contains an advanced editing

mechanism which does not temporarily freeze display updates

while editing is in progress. Also, user feedback is provided

using user-friendly popup balloons instead of message boxes.

Editing range

Before a cell can be edited in runtime or preview mode, it must

comply to the following rules:

 The cell must be included in the UI range of the

worksheet

Before a cell can be edited, it must be included in the UI range

of the worksheet. This range can be changed in the Worksheet

Table of the xTables worksheet as shown below. Also the Edit

level is used to verify whether the current user has sufficient

access rights to edit the cells.

Figure 10.1 Worksheet Table

 The cell is unlocked

When runtime or preview mode is activated, all display

worksheets are locked. In order to edit a cell, the cell itself

must be unlocked.

The Editing table

In eXLerate, the properties of editable cells of all display pages

are stored in a single table, the Editing Table.

The Editing Table is typically stored in worksheet ‘xEditing’, but

may be located elsewhere.

In order to configure additional properties for editable cells (e.g.

data type, min/max validations), an entry in the Editing table

must be created for it.

The Editing table has various rows, one for each editable cell and

a number of columns, one for each editing property.

Columns at the left-hand side of the table contain actual editing

properties, i.e. the edit property values for the editable cell, as

follows:

Figure 10.2 Editing table properties

The following properties are available:

 Class

A class is like a group, where the application developer is able

to create groups containing identical editable cells, such as

alarm limits, gas components etc. This is an optional property

(may be left empty).

 Cell

The address of a cell to edit. This can be either a text

containing a value such as “Tanks!D36” or a

exCellProperties(…) formula. The exCellProperties(…)

worksheet function can be used to obtain properties of a cell

such as the address. For instance, ‘=exCellProperties(

Tanks!D37, xAddress, xAutoRecalc)’ returns the

address of Tanks!D37, which is in fact “Tanks!D37”. The big

advantage of using the exCellProperties(…) function is

that Excel treats the first argument as a cell reference and not

a text. Therefore, when copying such a cell to the next row,

the reference will automatically be updated (e.g. Tanks!D37 

Tanks!D38).

 Target

The target to which the edited value should be written upon

accepting the value. This can be useful when the editable cell

identifies for instance, an alarm limit or a communication tag.

In case of an alarm limit, the target should identify the name

of the alarm limit and the Target Type should be

xTargetAlarmLimit. See Target Type for a complete list of

supported targets. No value needs to be specified when

Target Type contains ‘xTargetNone’. Multiple targets can be

configured by separating them using the ‘,’ character (e.g.

“Tanks!E36,Tanks!E37”)

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 6 9

 Target Type

This property forms a pair with the Target property. The following target types are supported:

Target Type Target Description

xTargetNone (1) Not used No target is configured.

xTargetCell (2) Address of the cell in the form ‘Sheet!A1’ or a named

range.

Upon accepting the new value is written to the cell

specified in Target.

xTargetName (3) Named range which refers to a cell Upon accepting the new value is written to the named

range specified in Target.

xTargetComm (4) Name of communication tag Upon accepting the new value is written to the

communication tag specified in Target.

xTargetAlarmLimit (5) Name of the alarm (e.g. “xMOV11.HAlarm”) Upon accepting the new value is written to the alarm

limit specified in Target.

xTargetAlarmDeadband (6) Name of the alarm (e.g. “xMOV11.LAlarm”) Upon accepting the new value is written to the alarm

deadband specified in Target.

xTargetAlarmDelay (7) Name of the alarm (e.g. “xMOV11.SAlarm”) Upon accepting the new value is written to the alarm

delay specified in Target.

Table 10.1 Target Types

 Group

Identifies the group to which an editable cell belongs. This property affects the target update behaviour. When no group is

specified, the target is updated immediately after the user accepts a new cell value. When a group is specified, an explicit call to

the function ‘exAcceptEditGroup(…)’ must be made to accept all the edited values in a group. This mechanism can be

used to accept one or more values by clicking on a button. For example, when editing a gas composition, the individual

components should be accepted altogether. See Accepting Edit Groups for a more detailed description on this subject.

 Edit Type

The type of data which can be entered by the user. The following edit types are supported:

Edit Type Description

xWholeNumber (1) Only whole numbers are accepted. Non whole numbers are automatically rounded to whole numbers.

xDecimal (2) Only numbers are accepted.

xText (3) All input values are accepted.

xList (4) The user must select a value from a pre-defined list. The list can be configured using the ‘exEditType(…)’ function. A list consists of

a 2 dimensional array with 2 columns and 1 or more rows. The first column contains the value which is copied to the optional target

and the second column contains the display item which is shown to the user. See Edit Lists for a more detailed description on this

subject.

xDate (5) Only date values are accepted. By default the Windows Regional Settings short date format is used for editing dates. It is however

possible to use a custom date-format, by specifying the date format (e.g. yyyy/mm/dd) as the fourth argument to the

‘exEditType(…)’ function. See Date and Time Edit Formats for a more detailed description on this subject.

xTime (6) Only time values are accepted. By default the Windows Regional Settings time format is used for editing times. It is however

possible to use a custom time-format, by specifying the time format (e.g. hh:mm:ss) as the fourth argument to the

‘exEditType(…)’ function. See Date and Time Edit Formats for a more detailed description on this subject.

Table 10.2 Edit Types

 Edit Type Alert

The text that is shown when the user enters a value that is not

conform the specified edit type. For instance, when the user

enters a value ‘19b’ into a cell which only accepts whole

numbers, an alert is shown that the entered value is not valid.

When no specific alert is specified, the default alert text

“Value '%INPUT%' does not match the specified datatype” is

displayed. The following special keywords can be used in the

alert text:

Keyword Description

%INPUT% Is replaced by the currently edited value.

%FORMAT% Is replaced by the in-use date or time format when the

edit-type is xDate or xTime.

Table 10.3 Edit Type Alert Keywords

 Min

Minimal allowed value. In case the edit-type is xText, this value

identifies the minimal required length of the text. This is an

optional property (may be left empty).

 Max

Maximum allowed value. In case the edit-type is xText, this

value identifies the maximum allowed length of the text. This

is an optional property (may be left empty).

 Min / Max Alert

The text that is shown when the user enters a value that is

outside the min/max limit. When no specific alert is specified,

the default alert texts "Value '%INPUT%' should be greater or

equal to '%VALIDATION%'" and "Value '%INPUT%' should be

less or equal to '%VALIDATION%'" are displayed. The following

special keywords can be used in the alert text:

Keyword Description

%INPUT% Is replaced by the currently edited value.

%VALIDATION% Is replaced by the validation limit which has been

exceeded.

%FORMAT% Is replaced by the in-use date or time format when

the edit-type is xDate or xTime.

Table 10.4 Validation Alert Keywords

 Access Level

Minimal security level which is required to edit the cell. This is

an optional property (may be left empty).

7 0 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

 Enabled

Enables or disables cell editing completely. Set this value to

‘FALSE’ to completely disable editing for the specific cell.

Accepting edit groups

Accepting edit groups is all about copying the content of an

editable cell to its target, either by clicking a button or running a

macro.

 Edit the cell(s)

Figure 10.3 Editing a cell

 Click the button

Figure 10.4 Clicking a button

 See how the new value (1212) gets accepted

Figure 10.5 See how the new value gets accepted

The following is required to make an editable cell copy its value

into another cell, alarm limit, communication tag, etc…, by

clicking a button:

 Specify a group for the cell in the Editing table

Figure 10.6 Groups in the Editing table

 Run the Button wizard

Figure 10.7 Button wizard

 This will automatically generate a VBA function for accepting

the edit group (e.g. AcceptEditGroup_Receipe(…))

 Add an entry to the Button table

Figure 10.8 Button table

 Add an entry to the button table and specify

AcceptEditGroup_<edit group> as procedure name.

See the previous chapter on how to configure the Button

Table.

In some cases it is preferable to perform a check on all the values

before accepting them. For instance, in case of a gas

composition it would be useful to verify that the individual

components add up to 100%. In this case a macro can be used to

perform this check and accept the values using the

‘exAcceptEditGroup(…)’ function.

Example:

Sub AcceptGasComponents()

‘ Verify that gas composition is 100%

 …

 ‘ Accept the new gas composition

 exAcceptEditGroup “Receipe”

End Sub

The Editing table

Figure 10.9 Editing table functions

Columns at the right-hand side of the Editing table optionally

contain worksheet functions to actually set the editing

properties. If a certain property is not desired, the appropriate

column may be deleted.

The following columns are available in the Editing table for

editable cells:

 ID

This column contains a worksheet function with an edit ID. To

create a new editable cell, a new edit ID should be created

using this function. The ID is automatically generated in the

table by eXLerate by means of the exEditID(…) worksheet

function. There are two arguments to this function: the cell

address, e.g. “Tanks!D36”, and a recalculation trigger, which

causes Excel to recalculate the current worksheet function at

startup.

 Target

The target column contains optionally the exEditTarget(…)

worksheet function. The content of a cell may be copied to a

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7 1

target using this worksheet function. Arguments to this

function are the object ID (from the previous column), the

Target, Target Type and a Group. If a group is specified, the

value will be copied to the target after a call to the function

exAcceptEditGroup(…).

 Type

The type column contains optionally the exEditType(…)

worksheet function. If no type is specified, the cell is assumed

to be a text string (xText). Arguments to this function are the

object ID, the Type and the Edit Type Alert. If the type is a

xList, the fourth parameter refers to a cell range containing a

list. See Edit Lists for a detailed description on this subject. If

the type is a xDate or xTime, the optional fourth parameter

refers to a date or time format. See Date and Time Edit

Formats for a detailed description on this subject.

Figure 10.10 Type validation during operation

 Min / Max

The min and max columns are validation columns. Both the

columns contain optionally the exEditValidation(…)

worksheet function. Arguments to this function are the object

ID, Validation Type (e.g. xMinimum or xMaximum), the

Validation Value and the Validation Alert Text. By default both

the min and max validations use the same alert text. It is

however possible to configure different validation texts for

the min and max validations.

Figure 10.11 Min / max validation during operation

 Access

The access column can be used to disable editing for a single

cell. The worksheet function exEditAccess(…) can be used

to set the access rights for the cell. Arguments to this

function are the object ID, Access Level and the Enabled

status. This function extends the edit level security defined in

the Worksheet Table so that it is possible to define security

for a single editable cell. This function may be omitted when

the edit level security defined in the Worksheet Table is

sufficient.

Edit lists

Figure 10.12 Edit lists

Instead of letting the user type the specific value, it is also

possible to present the user with a list of items as shown above.

The contents of a list can be configured in the Lists table in the

xEditing worksheet. The List table is located on the right-side of

the xEditing worksheet.

Figure 10.13 Edit list table

New list entries can be made by inserting new columns into the

list table. It is not obligated to define lists specifically in the list

table, it is simply provided as a location for storing lists.

A list always consists of two columns and one or more rows. The

first column consists of value items and the second column

consists of display items. The display items are shown to the

user when he or she tries to pick an item from the list. The value

that is copied to the target when the cell is accepted is the item

value.

For the next example, assume that the list is used, which is

mentioned in the figure above. If the user selects “Cust. A” from

the list, the target would receive the value “1”

The following actions are required for using lists:

 Set the edit type to ‘xList’

Figure 10.14 Edit Type xList

 Configure a list in the List table or somewhere else

Figure 10.15 Configure list

 Modify the exEditType worksheet function so it uses the list

 Add a fourth argument to the exEditType(…) worksheet

function which refers to the list. The range should consist only

of the actual values, not the column headers.

Figure 10.16 Modify exEditType worksheet function

Date and time edit formats

By default, editable cells of type xDate or xTime use the Windows

regional settings formats when entering new values. For

instance, when the Windows regional settings format for short-

dates is “yyyy/mm/dddd”, the user should enter the date in that

particular format and the following mask is displayed:

7 2 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Figure 10.17 Example date mask

It is however also possible to specify a custom date or time

format. A date or time format can be configured by modifying

the exEditType(…) worksheet function. The fourth argument of

this function is the custom format. If this argument is omitted

the Windows Regional Settings format is used.

Figure 10.18 Custom date/time format

The following format specifiers can be used for date formats:

Specifier Description

y, yy Year without century, as a decimal number (00-99)

yyy, yyyy Year with century, as a decimal number

m, mm, mmm Month as a decimal number (01-12)

d, dd Day of the month, as decimal number (01-31)

Table 10.5 Date format specifiers

The following format specifiers can be used for time formats:

Specifier Description

h, hh Hour in 24-hour format (00-23)

m, mm Minute as decimal number (00-59)

s, ss Second as decimal number (00-59)

Table 10.6 Time format specifiers

In some cases, it will be preferable to use the format of the cell

itself. In that case the worksheet function

exCellProperties(…) can be used to obtain the format of the

cell. The format of a cell can be obtained in the following manner:

Example:

=exCellProperties(Run_1!S33, xFormat, xAutoRecalc)

results in:

“m/d/yyyy”

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7 3

11 Reporting

Introduction

In this chapter, you will learn how to add reports to your

application, and how reports are generated in an application.

Reports may be generated manually, or automatically at

predefined intervals and at your own events.

Reports and display pages may be also published as HTML files,

so a user is able to monitor your application in a web browser.

Finally, reporting in a real-time HMI application isn’t a nightmare

anymore, it’s fun! Ever dreamt of creating a beautiful & advanced

report in less than 5 minutes? Continue reading!

Report generation

Introduction

In eXLerate you are able to automatically generate a report. A

report in eXLerate is a worksheet containing data references to

the application to which the report is attached.

The report with the references to the application is called a

report template, because when the report is ‘generated’, a copy

of this worksheet template, containing only –updated- values

without references to the application is saved to an external

workbook.

Template Report

Figure 11.1 References converted to values during report generation

The generated values-only copy of the report worksheet

template, which in fact is the report output worksheet, may be

copied to a specific workbook, to a specific worksheet.

Example

The ‘MyReport’ workbook contains three worksheets, setup as

three report templates: a daily report (worksheet tab:

‘DailyReport’), a monthly report (worksheet tab ‘MonthlyReport’),

and a snapshot report (worksheet tab ‘SnapShot’). The daily

report will be automatically printed, every day, at 08:00 in the

morning. The daily reports are stored in a monthly workbook

(‘DayReports YYYYMM.XLS’), with up to 31 worksheets (‘DD’) per

month workbook. The monthly reports, which are also

automatically printed on the first day of each month, are stored

in a yearly workbook (‘MonthReports YYYY.XLS’), where each

month is stored as a worksheet (‘MM’).

In the report output files, no functions or references to the

original project workbook are present, just the numbers.

Report locations

For every application shortcut, the (base) report output path can

be specified. Whenever a report is generated, it is placed in this

location.

Figure 11.2 Report directory specification

Report generation

Reports may be generated manually, by operator request, or

automatically, for example every day, or every hour, or at a

specific event, controlled from VBA. The way report generation

takes place is called a report event.

When the report is printed automatically, it may be optionally

marked as ‘Original’. Copies of the report are marked as

‘Reprint’.

Multiple copies of a report may be printed. Report output

workbooks may be optionally set to Read-only. All report events

of the application are defined in the Report Table.

Reports may be manually generated from the eXLerate ribbon,

after which the following dialog appears:

7 4 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

Figure 11.3 Generate report pop-up dialog

In the pull-down list box, the report to be generated and printed

may be specified. It is called a snapshot report, because it is not

generated automatically by eXLerate.

Whenever a report is being generated or printed, a progress

window is shown:

Figure 11.4 Report progress dialog

When using the ‘exGenerateReport(…)’ and ‘exReprintReport(…)’

functions it is also possible to ‘silently’ generate/print reports in

order to hide the progress window. Automatically generated

reports are always ‘silent’ and thus don’t show the progress

dialog.

The Report table

Report events of the application are defined in the Report table,

which resides in the ‘xEvents’ worksheet. The Report table looks

as follows:

Figure 11.5 Report table layout

As with most configuration tables in eXLerate, the table starts

with a table identifier (‘rReportTable’) which defines which Excel

range is associated with the table, a number of field headings

(dark red row in the example above), and the data in the table

itself below the header line.

The Report table has as many rows as there are reports for the

application, and various columns, each with a specific function.

The following fields are supported:

 Report

This is the logical name of the report.

 Period

This is the name of the interval event, which is associated to

the report. For example, a daily report is linked to the ‘Day’

event.

 Worksheet

This is the name of the worksheet containing the report

template. The template is a single worksheet, and consists of

one or more pages.

 Trigger

This field contains the Period number of the corresponding

interval event, at which the report is generated. When Trigger

is left empty, or contains an expression yielding to a value < 0,

it is generated at every interval event. When the expression at

this field yields to a number >=0, it is assumed to be the

corresponding Period at which the report is to be generated.

 StartDate

This field is automatically filled in by eXLerate, and contains

the date of the next time a report should be generated. It may

be used to construct the file- and worksheet name of the

report output. When the report is generated, it is updated

automatically with the current date.

 FileName

The name of the report output file is specified with this field,

for example: =“MyReport” & YEAR(StartDate) The current file

will be overwritten in case the target file already exists. You

may also specify sub-directories here like this:

“Daily\MyReport”.

 SheetName

This field contains the worksheet tab name under which the

generated report in the workbook is stored at. StartDate may

be used to construct the sheetname.

 Copies

The number of printed copies is specified with this field,

starting from ‘0’. When left empty, 1 copy is printed to the

report printer.

 Options

This field is used to specify additional printing options.

Currently, only a ‘1’ may be used to make the report output

workbook read-only. Other values are reserved for future

usage. If not specified, the report output workbook file is

read/write.

 Password

This field is used to specify an optional password which is

used to protect the sheets in the output report.

 Status

When the report is generated, it status is set, being: ‘0’, when

no errors have been encountered during the report

generation, or ‘1’, when the report generation has failed.

 Workbook (Obsolete)

Older versions of eXLerate supported storing reports in

external workbooks. This feature is no longer supported and

therefore this field no longer has any purpose.

Creating report contents

When you have created a report template, you may create the

report as if it were a regular display page. A report may contain

graphical objects, shapes, bitmaps, values, expressions,

constants, and everything else that Microsoft Excel supports.

To insert a value from the application into your report, you might

want to use the simple ‘=’ sign, and point to the value in your

application, as in the example below:

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7 5

Figure 11.6 Inserting a parameter from the application in the report

When you have created periods in an application, for example an hour

period containing 24 periods, for a daily report, you have done so

using the Interval Table. In the tag database, for each tag value to be

reported in that hour, you have created a latch and/or average in the

‘P_Hour’ column. If this is not the case, or you have skipped reading

section ‘Intervals and Periods’ of in this volume, you might want to

add such definitions to your application at this time.

In the ‘rDaily’ worksheet, a report is worked out for you

containing 24 periods of an hour. The ‘rDaily’ report contains the

following section:

Figure 11.7 Report section containing 24 hours of data

In this report, at the left ‘Hour’ column, the hours are given using

the array formula ‘{=xPeriod.Hour.rTimeScale}’ for 24

rows.

The data columns in this table section of the report are created

using the array formula: ‘{=xTT1.Hour.rPeriods}’, for

example for tag ‘TT1’.

The Tag & Object wizard automatically creates these arrays for

you when the Interval Table and the tag database are processed

(which takes automatically place once you run the Tag & Object

wizard).

All you need to do is setup the Interval Table properly, and define

for which tags you need (averaged or latched) data, and

eXLerate generates all required data for you!

Report print date

When a report is generated, all formulas are replaced by values.

Thus when using the worksheet function ‘=NOW()’ on a report, it

will result in the date/time of when the report was generated.

In order to put the print date/time on a report, the following

syntax can be used:

=”=NOW()”

When this formula is converted into a value, the end result is:

=NOW()

When a report is re-printed or previewed, the NOW() formula is

re-calculated and the current date/time is placed on the report.

Advanced reporting in your application

There is a VBA interface available with which reports may be

generated from user-defined dialogs, for example to allow an

operator to print certain specific reports. An example of such a

user-defined dialog is given in Figure 11.8.

Figure 11.8 Sample of a user-defined print dialog

Hour TT1 PT1 PT2 DT1 AT1 USLVFR1 USNVFR1 UPHNF1

[°C] [bara] [bara] [kg/m3] [ppm] [m³/h] [Nm³/h] [Nm³]

07:00 24.9 44.6 29.7 0.6 0.6 54.6 98470.8 203610.0

08:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

09:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10:00 2.1 42.9 4.1 1.0 1.0 54.5 97587.7 208732.6

11:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12:00 -3.2 47.7 41.5 0.8 0.8 50.1 92906.9 207470.3

13:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

21:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

01:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

02:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

03:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

04:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

05:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

06:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 6 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

The VBA-code ‘behind’ the ‘Print daily reports’-button looks as follows:

Private Sub btnDaily_Click()

 'Local data

 Dim strReport As String

 Dim strTab As String

 Cal1.ValueIsNull = False

 'Current day?

 If (Cal.Year = Year(Now)) And (Cal.Month = Month(Now)) And

 (Cal.Day = Day(Now)) Then

 exGenerateReport "DailyReport", nCopies:=1,

 PrintMode:=exPrintModeSnapshot

 Exit Sub

 End If

 strRep = "M" & Cal.Year & Format(Cal.Month, "00") & ".XLS"

 strTab = Format(Cal.Day, "00")

 exReprintReport strReport, strTab, False

End Sub

Figure 11.9 Code fragment for a dedicated user interface

The VBA sample code above demonstrates two API functions

that are available for report generation,

exGenerateReport(…), and exReprintReport(…):

 exGenerateReport(…)

This function generates a report output, from the report

template, and prints 1 copy of the report. The PrintMode flag

in the example above sets the variable: ‘xPrintMode’ in the

report template. The ‘xPrintMode’ variable contains either

values ‘–1’, ‘0’, or ‘1’, for ‘Snapshot’, ‘Original’, and ‘Reprint’,

which may be printed on the report for fiscal integrity. In

Excel, you can format these three values as a text, simply by

its Cell Number format.

 exReprintReport(…)

This function in the example above reprints an existing report

output worksheet (‘strTab’) from the report workbook

(‘strReport’). Reports may be optionally previewed before

actually reprinted, which is disabled in the example above

with the False value of the last argument.

 The VBA sample code above contains a few lines of code to

detect if the selected date on the dialog’s calendar control,

represented with the variable: ‘Cal’ in the sample code is the

current date. If this is the case, then a report is actually

generated, because it was not automatically generated just

yet. When the date from ‘Cal’ points to another date, it is

assumed to be an already existent report, after which a

reprint of the selected report is issued. Other buttons on the

dialog are processed likewise. In the sample project, the

dialog is included, which may be used for further analysis.

 Other available API functions for reporting include:

 exShowPrintDialog(…)

This function programmatically displays the pop-up dialog as

displayed in: Figure 11.3 Generate report pop-up dialog, on

page 74.

 exPrintCurrent(…)

This function prints the current worksheet to the printer. The

entire worksheet is printed, or just the ‘Print_Area’ range

when defined for the worksheet. In the sample application,

this function is called when the user presses <Ctrl-P>.

 exShowFileReprintDialog(…)

This function displays a dialog with which the user is able to

select one of the available worksheet tabs of the specified

workbook for reprinting.

Example: exShowFileReprintDialog

“C:\XLRX\Reports\Alarms.xlsx”

exShowBackupDialog(…)

This function displays a combined dialog which may be used

for reprinting of an existing worksheet tab, or to additionally

create a backup of the selected report files.

Restrictions & guidelines

When creating a report template, there are some criteria which

affect report generation.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7 7

Object positioning

When an image, chart, shape or any other type of object is

placed on a report, the “Object positioning” property must be

set to ‘Move and size with cells’. Furthermore, the ‘Print object’

option must be enabled. If these settings are not correct, the

object may not appear correctly or not appear at all on the

generated report.

Figure 11.10 Report object properties

Hidden rows & columns

Although having hidden rows & columns is fully supported, it can

have a negative effect on report file-size and performance. In

general the following situation should be prevented:

Figure 11.11 Hidden rows on reports

This would hide all rows below 200, but it also causes the report

to have a minimal size of 200 rows. If for instance, only 80 rows

are used for report data, the other 120 empty rows are still saved

into the report file making it larger than necessary and it also

takes longer to generate/reprint the report.

Sub-cell formatting (superscript, subscript)

A cell may only contain a single font or text color. For instance,

the following cell contains multiple fonts and colors:

Figure 11.12 Unsupported cell formatting

After report generation the sub-cell formatting is removed.

For certain units like m3, °F, etc… special symbols may be used

to represent them properly. Use ribbon option “Insert->Symbol”

to open the following “Symbol” dialog:

Figure 11.13 Symbol dialog

Select the symbol and press the “Insert” button to insert the

symbol into your application.

Chart source data

Charts should always refer to source data on the same

worksheet. If the source data is on an external worksheet, the

following technique may be used for accessing source data on

other worksheets.

Explicitly specify the print-area of a report.

Create cell references to the external source data on a place the

report which is outside the print-area.

Change the source data of the chart so that it refers to the cells

created in step 2.

Background images

Sheet background images are not supported.

Embedded objects

Embedded objects such as Visio drawings are not supported.

These objects are automatically converted into shapes when

placed on a report.

HTML page support

Introduction

Microsoft Excel has built-in support for HTML. A worksheet may

be ‘saved-as’ HTML page, to be re-opened with the Internet

Explorer.

No need to explain why eXLerate utilizes this basic feature to

support automated generation of HTML pages in your

application.

HTML formatted display pages allow programs like Internet

Explorer and Netscape to view your application in web-pages,

for example over a company’s intranet.

HTML options

It depends on your own usage of HTML pages how eXLerate

should be configured, if at all, for the automated generation of

HTML pages.

After generation

7 8 S P IR IT I T E XLE R ATE | A PPLICA TION REF EREN CE MAN U A L | IM/ EXL -E N

eXLerate currently supports two options:

 HTML Template generation

You are able to manually generate a HTML template from a

worksheet from the eXLerate ribbon: ‘Tools’, ‘Generate

HTML…’.

 Periodically updated HTML pages

eXLerate is able to periodically create and update HTML

‘operator’ pages from worksheets that have been configured

for HTML support.

eXLerate filters the HTML output as generated by Excel, to

remove the many unused Office based markup tags. This is

additionally done to keep the generated HTML file size as small

as possible.

Web options

There are many options for the generated pages, which can be

found under the ‘File’, ‘Save As’, ‘Tools’, ‘Web options’ menu of

Excel:

Figure 11.14 HTML file format options selection

When selected, the following dialog is presented:

Figure 11.15 Excel Web Options dialog

Make sure that ‘Allow PNG as a graphics format’ is enabled and

that ‘Rely on VML for displaying graphics in browsers’ is

disabled, otherwise graphics may not appear correctly on most

modern browsers.

The settings may be entered using this dialog, or alternatively

from VBA, by settings properties and methods of the

DefaultWebOptions object and the WebOptions object. You

may want to check the Microsoft Excel documentation for

detailed help on using and configuring these objects from VBA.

HTML templates

A HTML template file is a standard HTML file optionally

containing special support tags and variables, which are to be

used for subsequent processing of web-servers.

These support variables are defined at the tag database, using

the ‘.HTML’ field, which may be defined for each tag.

An example of a Web page in the ‘MyProject’ application is

worksheet: ‘WEB’.

Figure 11.16 HTML fields in the tag database with HTML variables

In the WEB-page references may be made to all object names in

the application, including the ‘.HTML’ fields. The current value of

these objects is saved in the HTML page output when the output

is generated.

Figure 11.17 Using HTML fields in the 'WEB' worksheet

To tell eXLerate that a worksheet is a HTML page, the Worksheet

table must be properly extended with the tow fields ‘HTML

range’, and ‘HTML period’:

Figure 11.18 Defining a worksheet as HTML page

The two fields: HTML range, as well as the HTML period define

which and how HTML is added to your application. The first

column contains the range, which is to be saved as HTML page,

in this case $A1:$L58 of display sheet ‘rDaily’.

 S P IR IT I T E XLE R ATE | A PPLICA TIO REF EREN CE MA NU A L | IM/EXL -E N 7 9

Figure 11.19 Sample worksheet: 'rDaily'

When the Worksheet Table is defined for the ‘rDaily’ display

page, first select ‘Apply Worksheet Changes’, then ‘eXLerate’,

‘Tools’, ‘Generate HTML…’ to create a HTML page from the

worksheet.

The resulting page is generated at the designated HTML output

path, which is defined at the application shortcut in the Control

Center.

—
We reserve the right to make technical changes or modify the contents of this document
without prior notice. With regard to purchase orders, the agreed particulars shall prevail.
ABB AG does not accept any responsibility whatsoever for potential errors or possible lack
of information in this document.
We reserve all rights in this document and in the subject matter and illustrations contained
therein. Any reproduction, disclosure to third parties or utilization of its contents – in
whole or in parts – is forbidden without prior written consent of ABB.
© ABB 2017

IM
/e

X
L-

E
N

 R
ev

. B
 1

0
.2

0
17

ABB Inc.
Measurement & Analytics
7051 Industrial Boulevard
Bartlesville OK 74006
United States of America
Phone: +1 800 442 3097

ABB Limited
Measurement & Analytics
Oldends Lane, Stonehouse
Gloucestershire, GL10 3TA
United Kingdom
Phone: +44 7730 019 180

—
ABB b.v.
Measurement & Analytics
Prof. Dr. Dorgelolaan 20
5613 AM Eindhoven
The Netherlands
Phone: +31 40 236 9445
Mail: nl-spiritit-sales@abb.com

ABB Malaysia Sdn Bhd.
Measurement & Analytics
Lot 608, Jalan SS 13/1K
47500 Subang Jaya
Selangor Darul Ehsan, Malaysia
Phone: +60 3 5628 4888

abb.com/midstream

	IM_eXL-EN_B_102017_COVER
	IM_eXL-EN_B_102017_content
	1 Introduction to SpiritIT eXLerate
	Advantages
	Purpose of this manual
	How this manual set should be used
	Application reference manual
	Advanced topics reference manual

	Abbreviations
	Terms and definitions
	Document conventions

	2 Getting started
	Introduction
	Hardware requirements
	Software requirements
	Microsoft Office editions
	Installation & setup of Microsoft Excel
	Installation type
	Customizing the installation
	Completing the installation

	SpiritIT eXLerate editions and options
	Installing the software on your computer
	Assumed pre-installation
	End user license agreement
	SOFTWARE PRODUCT LICENSE
	Application software
	Storage/network use
	OTHER LIMITATIONS
	Software transfer
	Termination
	COPYRIGHT
	LIMITED WARRANTY
	NO OTHER WARRANTIES
	LIMITATION OF LIABILITY

	License number and authorization key
	Project files
	Using the license manager
	Requesting a software based license
	Installing a software based license
	Hardware keys (dongles)
	Installing the hardware key driver (HASP HL)

	3 Tutorial
	Introduction
	The SpiritIT eXLerate 2016 Control Center
	Operating modes of SpiritIT eXLerate
	Application launch
	The SpiritIT eXLerate ribbon
	File section
	Save (Ctrl+S)
	Save New Application

	Real time updating section
	Apply worksheet changes (Ctrl+K)
	Start (Ctrl+T)
	Stop (Ctrl+O)
	Preview mode/ Runtime mode (Ctrl+N)

	Cell properties section
	Lock cell
	Names
	Styles

	Insert section
	Select objects
	Design mode
	Picture
	Chart
	Controls
	Insert
	Shapes

	Wizards section
	Tag & Object wizard (Ctrl+W)
	Calculation wizard
	Color wizard
	Button wizard
	Language Wizard

	Development section
	Tools
	Shape property tool
	Name definition tool
	Color palette tool
	Alarm tree tool
	Generate report
	Generate HTML
	Browse OPC servers
	Communications options
	Show Control Center
	Mark unprotected cells
	Unmark unprotected cells
	Remove external links
	Reset historical values
	Recalculate application
	Import sheets
	Advanced replace

	Goto section
	Goto name (Ctrl+Q)
	Goto last position (Ctrl+Shift+Q)

	Help section

	Worksheet functions
	Browsing through the application
	Browsing through various worksheets
	Starting real-time updates
	Switching to Runtime/Preview mode
	In Runtime/Preview mode
	The tag database worksheet
	Shape animations
	The Animation table
	Page navigation
	Other tables

	Conclusion

	4 Control Center reference
	Introduction
	Control Center functions
	The Control Center, a dialog application

	User accounts
	Security strategy

	Application shortcuts
	Shortcut property dialog

	System parameters and options
	System options
	Event logger options
	Startup options
	Misc. settings
	Trending options
	System security options
	Automatic logon / logoff options
	Report generator options

	Terminal services options
	Application control
	Application startup
	Saving an application
	Saving an application
	Terminating an application

	Command line arguments
	Syntax

	5 Application development
	Introduction
	Wizards
	Tools

	Development steps
	Start a new project in SpiritIT eXLerate
	Creating your own project workbook

	The tag database
	Purpose of the tag database
	General fields
	Interval related fields
	Communication related fields
	Explanation

	Alarming related fields

	Worksheets as display pages
	Worksheet components
	Worksheet cells
	Named items rather than plain cell references
	Tag database items in display pages
	Cell formatting
	Charts in display pages
	Shapes in display pages
	Example

	6 Data communications
	Introduction
	Multi-drop or point-to-point communications
	Simplified data-model
	Data updates from external devices
	Data updates to external devices
	Controlling real-time data communications
	Configuring real-time data communications
	Protocol samples

	xlConnect, the protocol manager
	Protocol options
	Protocol table

	The Query table
	Advanced communication topics
	OPC server
	OPC server configuration
	OPC server monitor

	7 Intervals and periods
	Introduction
	Interval vs. period
	Example

	Supported calculations
	Latched values
	Weighted averages

	The Interval table
	Interval processing
	Generated objects
	Cascading calculations
	Calculation triggers
	Resetting historical values

	8 Object animations
	Introduction
	The Animation table
	The Shape properties tool
	The Animation table functions
	The Animation color table
	Adding animations to your project
	Example:

	9 Menu navigation
	Introduction
	The Button table
	Button wizard

	10 Cell editing
	Introduction
	Editing range
	The Editing table
	Accepting edit groups
	Example:

	The Editing table
	Edit lists
	Date and time edit formats
	Example:

	11 Reporting
	Introduction
	Report generation
	Introduction
	Example

	Report locations
	Report generation
	The Report table
	Creating report contents
	Report print date

	Advanced reporting in your application
	Restrictions & guidelines
	Object positioning
	Hidden rows & columns
	Sub-cell formatting (superscript, subscript)
	Chart source data
	Background images
	Embedded objects

	HTML page support
	Introduction
	HTML options
	Web options
	HTML templates

	IM_eXL-EN_B_102017_COVER

