Predictaple
ASSEMDIY

The crystal ball to softwarel!

Magnus Larsson, Anders Wall, Kurt Wallnau

Anybody who works with
computers knows that software
sometimes doesn’t behave as expected.
On an office PC, some way can usually be found
of working around this - the bug is more a nuisance
than a real obstacle. In industrial applications, however,
it is more serious. If a machine malfunctions, this not only

leads to lost production, but safety and quality issues must
be addressed. The sheer complexity of software means that
errors often slip unnoticed through test phases - traditional
testing methods are no longer in a position to evaluate all
situations that can occur. Mathematically based ap-
proaches to development and verification greatly re-
duce risks and contribute to quality management.
Carnegie-Mellon University and ABB are joint-
ly developing techniques for designing g
high-quality software.

ABB Review 2/2005

Predictable Assembly

ABB relies on software to deliver in-
novative solutions to its customers.
This software often executes in envi-
ronments that have strict timing, safe-
ty, reliability, and security require-
ments. Software malfunctions in these
applications are expensive, and possi-
bly catastrophic. Even so, the steep
cost of developing high-reliability
software poses a challenge for the
entire software industry. The scale

of today’s systems, not to mention
those of tomorrow, exposes the fun-
damental inadequacies of relying on
testing to achieve high assurance.
ABB and Carnegie Mellon’s Software
Engineering Institute have developed
an approach to ensure that the critical
runtime behavior of systems is pre-
dictable by construction. This will
reduce testing costs and speed the
introduction of new high-assurance
software into the market.

It has often been said that the three
fundamental principles of program-
ming are modularity, modularity, and
modularity. Soon it will also be said
that the three fundamental principles
of software engineering are constrain,
constrain, and constrain.

Constraints lie at the heart of all engi-
neering disciplines. An engineering
problem may present unique chal-
lenges, but the skilled engineer knows
how to coerce it into a form that can
be solved with proven and well-de-
fined techniques. These techniques
impose constraints on both the prob-
lem being solved and on the form that
solutions can take. The loss of free-
dom implied by these constraints is
more than compensated by making it
possible to predictably and routinely
solve entire classes of problems.

Software engineering is concerned
less with programs per se than with
large scale networks of interacting
programs. At this scale engineering
challenges emerge that go well be-
yond functional correctness (the
purview of programming), and en-
compass equally crucial non-function-
al qualities (sometimes called “quality
attributes”) such as security, perform-
ance, availability, fault tolerance, and
so forth. A pivotal challenge for soft-
ware engineering research is to pro-
vide techniques to routinely construct
systems that have predictable non-
functional quality. It follows that these
techniques will impose constraints on
how future software systems will be
constructed.

Mathematically based
approaches to software
development and verifica-
tion greatly reduce risks
and contribute to quality
management.

This article shows how “smart con-
straints” can be introduced into soft-
ware development practice so that
software systems routinely exhibit
predictable quality. Smart constraints
can be embedded in software infra-
structure so that systems are pre-
dictable by construction; the days of
testing quality into software may final-
ly be numbered. Moreover, pre-
dictability by construction can be used
to impose objective and measurable
quality standards on third-party soft-
ware; such standards have strong pre-
dictive utility.

El The container idiom.

Standard connector

Software component] f

‘ Certified properties

\
r __— Prefabricated containers

>— -
Stimulus interface < Lo -5 CG— > Response interface
Custom code Interaction Reactive behavior only
Standard component constraints Standard lifecycle

runtime interface

Component runtime environment

— Standard runtime

Platform (Hardware/OS)

50

Predictable by construction

The approach presented in this article

is governed by two premises:

1) Smart constraints lead to systems
with predictable runtime qualities.

2) Component technology packages
constraints to make software pre-
dictable by construction.

To make sense of these premises,
some ideas are introduced: a runtime
quality must be defined in terms of
observations that can be made on
execution traces. A runtime quality is
predictable if and only if there is a
theory (rule) predicting future obser-
vations. The crucial point here is that
quality is defined relative to a pre-
dictive theory, and that this theory
must yield confidence about its pre-
dictions.

This is not a new idea in science or
in software. The timing behavior of a
software system may be predictable
using generalized rate monotonic
scheduling theory or real-time queu-
ing theory. Both theories (generally
all theories) make assumptions about
the systems that are their subjects,
and any system that satisfies these
assumptions is predictable in these
theories. Smart constraints ensure
that these assumptions are satisfied,
ie, they are smart because they are
informed by predictive theories.

It is one thing to define a smart con-
straint, but another to guarantee the
constraint is satisfied. One recurring
component-technology idiom that is
particularly effective in packaging
smart constraints is depicted in E.

In this idiom, custom software is
deployed into prefabricated containers
[1]. A container restricts the visibility
of custom code to its external envi-
ronment, and restricts visibility to the
custom code from the environment.
Different types of containers can play
different roles in a global (architec-
ture-defined) coordination scheme.

A software component in this idiom
is a container combined with custom
code. Components are strictly reac-
tive: they react only to stimuli re-
ceived through the container inter-
face, and respond only through the
container interface. A component
runtime environment provides coordi-
nation mechanisms (or “connectors”)
and implements other policies for
managing resources shared by com-
ponents.

ABB Review 2/2005

The point here is that the user should
not get fixed on a particular compo-
nent technology: many implementa-
tions of the idiom are possible and
simple implementations can often be
realized. What matters is that contain-
er types, connector types, runtime
environment, and an ability to place
constraints on allowable patterns of
component interaction can all be used
to encode, or package, smart con-
straints. Moreover, the small number
and uniformity of the abstractions in
this idiom considerably simplify the
task of automating substantial por-
tions of the construction and predic-
tion process — to yield predictability
by construction.

What matters is that
container types, connec-
tor types, runtime envi-
ronment, and an ability
to place constraints on
allowable patterns of
component interaction
can all be used to
encode, or package,
smart constraints.

The idea is simple, and best under-
stood by analogy. A Java or C# com-
piler checks that programs are well-
formed. One check of well-formed-
ness is that a program satisfies the
type theory of the programming lan-
guage. If this constraint is satisfied,
then the compiler guarantees certain
properties of program execution (tech-
nically, safety properties). Here the
same idea is applied, but at the level
of assemblies of components instead
of at program level. In place of type
theories we have behavior theories for
non-functional runtime qualities.

In place of specifications in a pro-
gramming language, specifications in
an architecture description language
(CCL [4]) are used. In effect, CCL for-
malizes the container idiom, and
makes possible automated prediction
and code generation. The result is
predictability by construction. If speci-
fications in CCL are well formed ac-
cording to the container idiom, and
satisfy additional reasoning-framework
specific constraints, the systems they
specify will be predictable by con-
struction. The ultimate expression of
predictability by construction is to

ABB Review 2/2005

build only systems whose behaviors
can be predicted.

Other ABB projects have already
exploited the affinity of component
technology with predictable non-func-
tional behavior, for example PECOS
[13]. However, no previous work has
generalized these ideas to multiple
non-functional attributes, or empha-

Predictable Assembly

sized the role of validation and certifi-
cation to the extent done in the work
reported here.

Certifiable quality

Analytic theories reveal which proper-
ties of the software must be known if
its effects are to be predictable. A
component technology imposes a
standard packaging of software; this

B Interpretation

opPos opPos

swSboPos swSboPos

SwPos SwPos

OPC o0——0—o 2——0—0 6——3F—00 .
CSwI swMonSink
gateways—)——Cp—1 35— Ch—1 71— —Ch—1
opSel opSel swSboSel swSboSel SwSel SwSel
swDoPos
——2
XCBR
11— —3
SwPos SwPos
= SwSel SwSel
Signal 8 2 S @ 4
b 2 & S—5
§ BrPos ‘ BrPos SwPos
B v 3—0
o—6= o, <
CLK | Signal &
55— SwSel
C—‘ BrPos
BrTrip &P §
. 1 SG—B ®
{30 TCTR 1 &0 PlOC | 2 BrTrp T
2 j@))
c c| ¢ o c o
swbolFos o
S TVTR 1 S| \ &t ©
AV c 3 5
\-%0 . w
MMXU 2 .
e~ W v
v ‘ S3—6

IEC61850 like controller

Aaba Interpretation

Aaba Simulation Model

o 0
Cno Sl

Trace
Recorder #0

=]
Exit
®-0 Count O Task @] i
= J@-"
=VARE Rl e E T J
o X
1 o095 | 04
Up % + o o1
Trace Trace
o0 Recorder| |Recorder
Co ‘ #o
®-O Courlt @0 5 B g
— 5 @ 3
IVARE R L

02000

® File
u

L 5 Out

Snow

Predictable Assembly

includes how components are speci-
fied and what details about a compo-
nent implementation must be exposed
by component suppliers. Taken to-
gether, these provide a practical basis
for establishing objective quality stan-
dards for third-party software.

To illustrate, the case is considered

where the timing behavior of compo-

nent assemblies using Lehoczky’s real-

time queuing theory [2] is predicted.

Among other things, this theory as-

sumes:

® A scheduling discipline such as
“earliest deadline first” (EDF).

® Identification of schedulable enti-
ties, for example threads.

® Second moment of expected service
time of each schedulable entity.

The first property is satisfied by the
component runtime environment, the
second by containers. The third, how-
ever, must be satisfied by the compo-
nent supplier. A few points are worth
noting from this illustration. First,
what must be satisfied is an accurate
measurement of the second moment
of service time; this corresponds to
the “certified properties” in El. While
it might be desirable to impose re-
quirements on the values these meas-
urements may take, this is considered
a separate issue. Second, the perform-
ance theory is required to give a pre-
cise definition of the measure; it may
also provide strong guidance on the
measurement process itself.

Of course, the quest for trusted soft-
ware does not end with certifiable
quality. For this wider goal, a more
comprehensive approach is required —
one that requires improvements in
software technology and process —

and in social processes as well [10]
[12]. Still, the approach presented in
this article is a first step towards es-
tablishing quality standards that are
both objective and predictive. In par-
ticular, it is worth observing the de-
scribed approach deals directly with
software artifacts rather than indirect-
ly, for example through measures of
the process maturity of developer
organizations.

Predictable assembly is
not a universal solution to
software quality. It must fit
within an overall quality
strategy based on mature
software development
processes, well-trained
and motivated software
developers, and well-doc-
umented architectural
standards.

ABB application

ABB and the Software Engineering
Institute (SED first tested the feasibility
of predictability by construction in the
domain of substation automation [3].

This work produced three main results.

1) It was demonstrated how the
IEC61850, a standard in the power
domain, can be mapped to a soft-
ware component technology.
IEC61850-compliant components
and assemblies were specified in
CCL. In itself this was a minor re-
sult, but it is one that provided a
basis for a more direct connection
between the standard and software
systems that implement it.

2) The Ahaba reasoning framework was
developed (“A” for latency, “aba”
for “average-case, with blocking
and asynchronous interactions”) for
predicting the average-case latency
of IEC61850 protection and control
assemblies. Aaba uses smart con-
straints to ensure that a number of
key assumptions of generalized rate
monotonic analysis [5] are satisfied.

The mechanism of predictability by
construction is shown in H. An
IEC61850 assembly is depicted in
the graphical notation of CCL (up-
per half of B). If the assembly is
well-formed to Aaba, an analyzable
“performance view” is constructed
(lower half of B). Note that CCL is
based in abstractions that are famil-
iar to engineers using IEC61131
function blocks or UML. Indeed,
CCL can be replaced by any num-
ber of design notations.

3) A technique was demonstrated for
the rigorous empirical validation of
the predictive strength of Aaba, or
of any other reasoning framework
purporting to predict timing behav-
ior [6]. The technique uses con-
strained random assembly genera-
tion to construct representative
samples in an application domain,
and from these build statistical con-
fidence (or tolerance) intervals that
are useful for inferring the accuracy
of future predictions. In effect, this
statistical label serves to certify the
reasoning framework itself. B and
[7] discuss how statistical labels are
interpreted.

ABB and the SEI took what was
learned from this initial experiment to
the domain of industrial robot control.

El Certified reasoning framework.

A standard label for latency theories

Population parameter: 8 out of 10 assemblies

will exhibit predicted behavior

Confidence parameter: We have >99 %
confidence that the upper bound is correct

A standard measure for statistical inference

Upper bound: Actual latency will differ <1 %
from predicted latency

Sample: Important but not exhaustive detail
of how the label can be interpreted

52

ABB Review 2/2005

There are two significant results to
report from this work.

The first deals with the question: Can
a hard real-time periodic control sys-
tem be safely extended by third party
software with stochastic execution be-
havior, while also guaranteeing best
service to the extension? In short, can
a hard real-time control system be
“open” while still providing firm guar-
antees on time? To answer this ques-
tion the Ass reasoning framework was
developed (“A” for latency, “ss” for
“sporadic server”). Ass uses sporadic
server containers as its central smart
constraint [8]. The sporadic server
container protects periodic tasks from
stochastic bursts.

The reasoning framework allows all
periodic behavior to be effectively
“collapsed” into one net periodic ef-
fect, and then uses this net effect in a
family of queuing equations to estab-
lish bounds on average service time
of plug-ins E. The bottom line is that
plug-ins are guaranteed to have
bounded and predictable invasiveness
on periodic timing behavior, are given
guaranteed access to the processor,
and exhibit predictable latency.

The second result demonstrated how

far software model checking (see glos-

sary on Page 54) has progressed in re-
cent years, and its potential to go far-
ther still if it is effectively combined
with component-based development.

Model checking is particularly effective

for verifying the correct behavior of re-

active, concurrent software — the kind
of software that is prevalent in indus-
trial automation. The IPC (inter-process
communication) code of a robot con-
troller was subjected to a commercial-
ly-available model checker. The prop-
erties checked are typical of IPC code:

B Whenever a message is sent to X, X
receives that message (barring time-
outs).

B Whenever a message is sent to X, Y
never receives that message.

B Whenever a sender receives an an-
swer, it is the answer to the most
recently sent message.

® A sender is never blocked while
trying to write to a message queue
that is not full.

® Messages (or answers) are never
written to a slot that has discon-
nected.

The verification uncovered a violation
(or “counter-example” in model-

ABB Review 2/2005

checking jargon) of the third property.
Product engineers confirmed that the
counter-example was indeed a prob-
lem, but the problem had been diag-
nosed and repaired in a subsequent
release of the code. What is remark-
able, however, is that the problem,
though suspected, had remained hid-
den for several years! In retrospect,
this is not surprising, since concurren-
cy errors in software are notoriously
difficult to reproduce. This is also re-
flected in some statistics about this
particular model checking exercise.

B The state space of only the relevant
parts of the code was =101932 states
— after abstraction!

® The error state arose on the 179th
interaction between communicating
threads.

These figures show that it is highly
unlikely a conventional testing
approach would have revealed the
error.

The single most expen-
sive part of the technical
infrastructure for pre-
dictability by construction
is the validated reasoning
framework.

Since this work was performed, the
ComFoRT model checking reasoning
framework has been further devel-
oped. ComFoRT exploits software
component technology, and imple-
ments a variety of complementary
state-of-the-art complexity reduction
techniques [9] [11].

The biggest challenge faced in the IPC
verification task — and faced by any-
one using current generation model
checkers — is to produce models that
are valid abstractions of the system
under scrutiny. One key feature of

Predictable Assembly

B Predictable plug-in latency.

100
90

70 ﬁ
60 /E//;
50 o /

A

40 =

=

30
20

Latency in milliseconds (E[W])

0 02 04 06 08 1
Periodic Utilization (Up)

< Tp=1 =Tp=100000

ComFoRT is the fully automatic gener-
ation of sound abstract models from
CCL design specifications BH. This fea-
ture of ComFoRT is one of several
that aims to make model checking sig-
nificantly easier to use for program-
mers and software engineers.

Findings

Predictable assembly is not a universal
solution to software quality. It must fit
within an overall quality strategy
based on mature software develop-
ment processes, well-trained and mo-
tivated software developers, well-doc-
umented architectural standards, and
a culture of excellence. With this in
mind, some conclusions can still be
drawn about the viability of this ap-
proach to ABB businesses.

Foremost among the findings: the
premise of this work — using smart
constraints for predictability and pack-
aging smart constraints in component
technology — is valid and useful. The
premise does not depend on a partic-
ular choice of component, specifica-
tion, or analysis technology. While not
all technology choices will be equally
effective, this work highlights what is
most important in each of these if
they are to serve the goal of pre-
dictability by construction.

B ComFoRT’s automated model construction using counter-example

guided abstraction refinement.

Complete model Predicate Abstract model Model @ true
>
Claim ¢ Abstraction Checking
Counterexample
Predicate Spurious . o false
) Spurious?
Refinement Counterexample Counterexample

o1
w

Predictable Assembly

Before the technology of predictability
by construction can be adopted, how-
ever, two conditions must be satisfied:

1) The organization must have control
over software architecture design
decisions. There are tradeoffs be-
tween predictability and design
freedom; an organization that can-
not impose or relax constraints on
design will be limited in making
these essential tradeoff decisions.
Legacy systems also pose chal-
lenges restricting such tradeoffs.

2) Predictable quality must have real
value. This may sound vacuous, but
it is not. For example, some man-
agement information systems have
“loose” design tolerance for behav-
ior such as latency. Highly accurate
timing predictions may not be of
great value here (although security
might be). An embedded controller,
however, may have “tight” design
tolerance for timing behavior.

The single most expensive part of the
technical infrastructure for predictabil-

ity by construction is the validated
reasoning framework. Elements such
as component and specification tech-
nologies are crucial but not as techni-
cally challenging. The lesson here is
that reasoning frameworks are more
likely to be core ABB assets than
those other elements, and may play
an important role in establishing
“smart” corporate design standards.

Current work

Currently work is concentrating on an
approach for a predictable soft protec-
tion and control system (Soft P&C), in
the substation automation domain. A
Soft P&C system is essentially a com-
plete substation automation system
that is implemented on a centralized,
more or less standard, computer with
no proprietary hardware. Technologi-
cally, such a system can be built to-
day. However, in order to convince
customers that such a solution still ful-
fills the critical quality requirements
such as performance and reliability,
evidence must be produced. The con-
cepts presented in this article can pro-
vide this.

ABB - CMU collaboration

ABB Corporate Research and the Soft-
ware Engineering Institute (SEI) began
work together on predictable assem-
bly from certifiable components in
2001. This collaboration has been mu-
tually beneficial. CMU/SEI gets an in-
dustrial context for developing their
technology, which can later be adapt-
ed to a larger class of analogous prob-
lems. ABB has the benefit of being
early in applying new ground break-
ing technology for predicting quality
attributes in complex software sys-
tems.

Dr. Magnus Larsson

Dr. Anders Wall

ABB AB, Corporate Research
Vasteras, Sweden
magnus.larsson@se.abb.com

Kurt Wallnau

Software Engineering Institute
Carnegie Mellon University
kew@sei.cmu.edu

Glossary:

Execution trace:The sequence of changes occurring to a system or component when observed over time.
Model checker: A software tool that performs model checking.

Model checking: An approach whereby all possible execution traces of a system (hardware or software) are looked at exhaustively to verify that given properties hold —
or when execution traces are not looked at exhaustively, this is because analytical abstraction reveals they yield no new information (for example due to symmetries,

relevance or repetition).

State space: A state is a value that the set of variables of a system can assume during execution. For example, a simple switch can assume either of two states: ON or
OFF. The set of all states a system can assume is called its state space. The size of this space increases with the complexity of the system, and more especially, exponen-
tially with the number of variables of the system. When a system has a large number of variables, the number of states explodes to such a degree that a model checker is
no longer able to analyze them in useful time, or to store them physically. This challenge is called state explosion. Model checkers use powerful abstraction mechanisms
to reduce state explosion. Modern model checkers can check very large systems very quickly.

UML: Unified modeling language — a widely used formalism for software description and specification.

References:

[1] Ward-Dutton, N., “Containers: A sign components are growing up.” Application Development Trends, pp 41-46, Jan 2000.
[2] Lehoczky, J. P., “Real-time queuing theory,” in Proceedings of the IEEE Real-Time Systems Symposium, 186-195, IEEE, New York, 1996.
[3] Hissam et. al., Predictable Assembly of Substation Automation Systems: An Experiment Report, Second Edition, Technical Report CMU/SEI-2002-TR-031,
www.sei.cmu.edu/publications/documents/02.reports/02tr031.html
[4] Wallnau, K., Ivers, J., Snapshot of CCL: A Language for Predictable Assembly, Technical Note CMU/SEI-2003-TN-025,
www.sei.cmu.edu/publications/documents/03.reports/03tn025.html
[5] Klein et. al., A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems, Kluwer Academic Publishers, 1993.
[6] Larsson M., Predicting Quality Attributes in Component-based Software Systems, Ph. D thesis Mélardalen University Press, ISBN 91-88834-33-6
[7] Moreno, G., Hissam, S. Wallnau, K. “Statistical Models for Empirical Component Properties and Assembly-Level Property Predictions: Toward Standard Labeling,”
in the 5th ICSE Workshop on Component-Based Software Engineering, May 2002, www.preview.sei.cmu.edu/pacc/CBSES5/Moreno-cbseb5-final.pdf
[8] Hissam et. al., Performance Property Theories for Predictable Assembly from Certifiable Components, Technical Report CMU/SEI-2004-TR-017,
www.sei.cmu.edu/publications/documents/04.reports/04tr017.html
[9] lIvers, J., Sharygina, N., Overview of ComFoRT: A Model Checking Reasoning Framework, Technical Note CMU/SEI-2004-TN-018,
www.sei.cmu.edu/publications/documents/04.reports/04tn018.html
[10] Meyer, B. “The Grand Challenge of Trusted Components,” 660-667. Proceedings of the 25th International Conference on Software Engineering (ICSE).
Portland, Oregon, May 3-10, 2003. Los Alamitos, CA: IEEE Computer Press, 2003.
[11] Clarke, E., Kroening, D., Sharygina, N., Yorav, K., “Predicate Abstraction of ANSI-C Programs Using SAT,” in Formal Methods in System Design, 25, 105-127,

2004, Kluwer Academic Publishers.

[12] Wallnau, K., Software Component Certification: 10 Useful Distinctions, Technical Note CMU/SEI-2004-TN-031,

http://www.sei.cmu.edu/publications/documents/04.reports/04tn031.html
[13] Nierstrasz, O., et al, “A Component Model for Field Devices” Proceedings First International IFIP/ACM Working Conference on Component Deployment, ACM,
Berlin, Germany, June 2002. See also http://www.pecos-project.org/

54

ABB Review 2/2005

