1 Safety

General safety precautions and health protection

To ensure safe operation of the 267/269C Transmitter, the following instructions have to be observed:

Please read these instructions / operating manual carefully prior to assembly and commissioning!

For reasons of clarity, the instructions do not contain all details on all types of product and do therefore not take into account every conceivable case of assembly, operation or maintenance. If you want further information or if special problems arise which are not treated in detail in the instructions, please ask the manufacturer for the necessary information.

Moreover we would like to point out that the content of these instructions is neither part of nor provided for changing a previous or existing agreement, promise or legal relationship.

All obligations of ABB Automation Products GmbH result from the respective sales contract which also comprises the complete and solely valid warranty clauses. Such contractual warranty clauses will neither be limited nor extended by the content of these instructions.

Observe warning signs at packaging, etc.!

For assembly, electrical connection, commissioning and maintenance of the transmitter, only qualified and authorized specialists are to be employed.

Qualified specialists are persons who are experienced in the assembly, electrical connection, commissioning and operation of the transmitter or similar devices holding the necessary qualifications for their job, e.g.:

- Training or instruction and / or authorization to operate and maintain devices / systems according to the safety engineering standard for electric circuits, high pressures and aggressive media.

- Training or instruction according to the safety engineering standard regarding maintenance and use of adequate safety systems.

For the sake of your own safety, we draw your attention to the fact that for the electrical connection, only sufficiently isolated tools acc. to DIN EN 60 900 may be used.

- Furthermore, the pertinent safety regulations concerning the construction and operation of electrical installations, e.g. the rule regarding technical working material §3 (safety rule for instruments), have to be observed.

- The pertinent standards, e.g. DIN 31 000 / VDE 1000.

- The regulations and recommendations relating to explosion protection if explosion-proof transmitters are to be installed.

- The device can be operated with high pressure and aggressive media.

Serious injury and / or considerable material damage can therefore be caused when this device is handled incorrectly.

- The regulations, standards, recommendations and rules mentioned in these instructions are valid in Germany. When using the transmitter in other countries, the pertinent national rules have to be observed.

Correct usage

The 267/269C Transmitter measures accurately and simultaneously the differential pressure (effective pressure), the static pressure and, with a PT 100 in four-wire technique, the process temperature of aggressive and non-aggressive gases, vapors and liquids. The measuring ranges are graduated from 10 mbar to 20 bar, each for the safe working pressure stages 6 bar (only sensor code A), 20 bar, 100 bar and 410 bar. The transmitter can be overloaded on one side up to the relevant no-minal pressure.
2 Transport and Storage

After unpacking the transmitter, check the device for transport damage. Check the packing material for accessories. During the intermediate storage / transport, store and transport the transmitter in the original packaging only. See section 11 "Technical Data" for permissible ambient conditions regarding storage and transport. The storage time is indefinite, however, the warranty conditions stipulated in the order confirmation of the supplier are valid.

3 General Description

The digital 267/269C Transmitter is a communicating field device with microprocessor-controlled electronic in multi-sensor technology for multivariable applications.

For bi-directional communication, an FSK signal according to the HART® Protocol is overlaid to transmitters with 4 ... 20 mA output signal whereas, in case of fully digital transmitters, communication is effected via the fieldbus protocols PROFINET or FOUNDATION Fieldbus, depending on the model.

The communication software SMART VISION® in touch with the graphical user interface (DTM) allows PC-based configuration, scanning and testing of transmitters according to the respective protocol.

For "local" operation, a control unit is optionally available which can also be retrofitted. The control unit consists of two keys for the adjustment of zero and span and a write protect key (except for devices with FOUNDATION Fieldbus Protocol). In conjunction with an installed LCD indicator, a complete external configuration and parameter setting of the transmitter is possible via the "local control unit", irrespective of the selected communication protocol.

As standard, the amplifier housing has a coat of varnish resistant to aggressive atmosphere; the process connection is made of stainless steel or Hastelloy C. The housing cover and the push button unit can be sealed.

The relevant transmitter data, such as transmitter type, communication, wetted parts material (flange, gasket, diaphragm), fill fluid, measuring range, min. span, operating voltage, output signal, adjusted span and serial number (S/N-No. + year) are to be found on the type plate. In case of inquiries, please always indicate this number which is valid worldwide!

For explosion-proof transmitters, the explosion protection type is described on a separate plate.

Another separate plate in front of the "local" control unit shows the functions of the three control elements by means of readily comprehensible symbols. Additionally, a tie-on plate indicating the measuring point identification may be attached (optional).

Principle of operation and construction

The transmitter has a modular design and consists of the differential pressure sensor module with an integrated electronic matching unit and an amplifier with control unit as well as an input for a PT 100 resistance thermometer in four-wire technique for process temperature.

The completely welded sensor body is a twin-chamber system with an integral overload diaphragm, an internal silicon absolute pressure sensor and a silicon differential pressure sensor. The absolute pressure sensor, which is only exposed to the pressure at the high pressure side (h), acts as a reference value to compensate for the static pressure. The differential pressure sensor is connected via a capillary tube to the negative side / reference vacuum of the sensor body. The applied differential pressure (dp) is transferred via the separating diaphragm and the fill fluid to the measuring diaphragm of the silicon differential pressure sensor.

A minimal deflection of the silicon diaphragm changes the output voltage of the pick-up system. This pressure-proportional output voltage is digitized by the electronic matching unit and fed to the electronic. The electronic linearizes and temperature compensates this signal before it is converted, together with the state variables dp, p and T, into a compensated electric signal proportional to mass flow. Apart from the mass flow (qm), the process variables dp, p, T and qw are also available for further processing.

4 Mass Flow Measurement

Functional Specifications

The 267/269C allows due to its multisensor technology the measurement of three separate process variables simultaneously and provides the ability of dynamic calculation of fully compensated mass or volume flowrate for gases, steam and liquids.

It measures differential pressure and absolute pressure from a single sensor and process temperature from a standard 100 Ohm Resistance Temperature Detector (RTD).

The flow calculation of 267/269C includes compensation of pressure and/or temperature as well as more complex variables such as discharge coefficient, thermal expansion, Reynolds number and compressibility factor.
The 267/269C includes flow equations for superheated steam, saturated steam, gases and liquids so that one model is all you need in your plant. The enhanced compensation approach of 267/269C provides a much better accuracy than the "old approach" where three different transmitters, differential pressure, absolute pressure and temperature, report their values to a DCS, PLC or flow computer and where the calculation considers sure, absolute pressure and temperature, report their values to a approach" where three different transmitters, differential pressure, absolute pressure and temperature, report their values to a DCS, PLC or flow computer and where the calculation considers the change in temperature and pressure according to:

\[Y_1 = \frac{1}{1 - (0.41 + 0.35 \cdot \beta^4 \cdot \frac{dp}{p} \cdot \frac{k}{\kappa})} \]

For nozzles:

\[Y_1 = \left(\frac{\beta}{1 - \beta^4 \cdot \frac{dp}{p} \cdot \frac{k}{\kappa}} \right) \left(\frac{1}{1 - \beta^4 \cdot \frac{dp}{p} \cdot \frac{k}{\kappa}} \right) \]

\[\beta = \text{beta ratio} \]
\[dp = \text{differential pressure} \]
\[p = \text{static pressure} \]
\[\kappa = \text{Isentropic exponent} \]

Velocity of approach factor

Is dependent on the Beta ratio as defined by the following equation:

\[E_v = \frac{1}{1 - \beta^4} \]

In turn, Beta ratio is dependent on bore diameter and pipe diameter which are functions on temperature. The material of process pipe and primary flow element expands or contracts with changes in temperature of the fluid being measured. The thermal expansion coefficients are dependent on the the material of pipe and flow element and are used for calculating the change in diameters. This ensures high flowrate accuracy at low and high temperature applications.

Density of fluids

It directly effects the flowrate calculation. The 267/269C compensates for density of fluids for changes in temperature and/or pressure as follows:
- Gases as a function of P and T per the gas law equations.
- Heated steam as function of P and T based on steam tables
- Saturated steam as function of P based on steam tables
- Liquids as a function of T

Mass flow calculation with 267/269C will be configured for the following primary elements:
- Orifice Corner Taps, ISO
- Orifice Flange Taps, ISO
- Orifice D- and D/2-Taps, ISO
- Orifice Corner Taps, ASME
- Orifice Flange Taps, ASME
- Orifice D- and D/2-Taps, ASME
- Orifice Flange Taps, AGA3
- Orifice 2.5D- and 8D-Taps
- Small bore orifice, flange taps
- Small bore orifice, corner taps
- Nozzle ISA 1932
- Nozzle, Long Radius Wall Tap, ISO
- Nozzle, Long Radius Wall Tap, ASME
- Venturi, Rough Cast Inlet, ISO
- Venturi, Machined Inlet, ISO
- Venturi, Welded Inlet, ISO
- Venturi, Rough Cast Inlet, ASME
- Venturi, Machined Inlet, ASME
- Venturi, Welded Inlet, ASME
- Venturi, Nozzle, ISO
- Area Averaging Meter
- Pitot tube, ISO 3966
- V-Cone
- Wedge Element
- Integral Orifice Assembly

Density Correction (unknown Primary Element)

Configuration of full functionality of 267/269C including all data necessary or mass flow compensation will be done via the PC based graphical user interface „DTM MV2600“.

Discharge coefficient

It is defined as the true flowrate divided by the theoretical flowrate and corrects the theoretical equation for the influence of velocity profile (Reynolds number), the assumption of no energy loss between taps, and pressure tap location. It is dependent on the primary flow element, the b ratio and the Reynolds number. Reynolds number is in turn dependent on the viscosity, density and velocity of the fluid as well as the pipe diameter per the following equation:

\[Re = \frac{v \cdot D \cdot \rho}{\nu} \]

\[v = \text{velocity} \]
\[D = \text{inside pipe diameter} \]
\[\rho = \text{fluid density} \]
\[\nu = \text{fluid viscosity} \]

Dynamical compensation for discharge coefficient provides high accuracy for orifice, Venturi and nozzles.

Gas expansion factor

It corrects for density differences between pressure taps due to expansion of compressible fluids. It does not apply for liquids which are essentially non-compressible.

The gas expansion factor is dependent on the Beta ratio, the Isentropic exponent, the differential pressure and the static pressure of the fluid per the following equation.

For orifices:

\[Y_1 = 1 - \left(0.41 + 0.35 \cdot \beta^4 \cdot \frac{dp}{p} \cdot \frac{k}{\kappa} \right) \]
5 Mounting

General

Before mounting the transmitter, check whether the model meets the measurement and safety requirements of the measuring point, e.g., with regard to materials, pressure rating, temperature, explosion protection and operating voltage. The relevant recommendations, regulations, standards and the rules for prevention of accidents must also be observed! (e.g. VDE / VDI 3512, DIN 19210, VBG, Elex V, etc.)

Measurement accuracy is largely dependent upon correct installation of the transmitter and the related measurement piping. The measuring set-up should be screened as much as possible from critical ambient conditions such as major temperature variations, vibration and shock. If unfavorable ambient conditions cannot be avoided owing to reasons related to building structure, measuring requirements or other reasons, this may influence the measurement quality! (see section 11 “Technical Data”).

If remote seals with capillary tubes are attached to the transmitter, see also the Instructions 42/15-813 EN.

Transmitter

The transmitter can be flanged directly to the shut-off armature. There is also a mounting bracket for wall or pipe mounting (2“ pipe) available as an accessory.

The transmitter has to be mounted in such a way that the process flange axes are vertical (horizontal in case of barrel-type amplifier housing) in order to avoid zero shifts. If the transmitter were installed inclined, the hydrostatic pressure of the filling fluid would exert pressure on the measuring diaphragm and thus cause a zero shift! A zero point correction would then be necessary.

Various versions are available for connecting the measurement piping. Unconnected process connections on the sensor must be sealed with the enclosed screw plugs (1/4-18 NPT). For this purpose, use your officially approved sealing material. Please refer to section 12 “Dimensional Diagrams” for possible mounting with bracket.

Pressure / differential pressure measurement

(please also refer to VDE/VDI 3512 parts 1 and 3)

- For a liquid medium, as far as possible, the transmitter has to be attached below, but at least on the same height so that possibly arising gas can get back into the process.
- For a vapor medium, the transmitter has to be mounted below the sampling studs so that the measurement piping remains filled with condensate. Balancing vessels are not absolutely necessary, but vapor must not get into the measuring chambers of the sensor. Pay attention to equal liquid columns in both effective pressure lines above the transmitter.
- For small spans and vapor measuring medium, condensate vessels possibly have to be used.
- In case of using condensate vessels (vapor measurement), the equal height of the vessels in the effective pressure lines has to be observed.
- The transmitter can be connected directly onto the shut-off armature. There is also a mounting bracket for wall or pipe mounting (2“ pipe) available as an accessory. The transmitter has to be mounted in such a way that the caps are vertical so as to avoid zero shifts. If the transmitter were installed inclined, the hydrostatic pressure of the filling fluid would exert pressure on the measuring diaphragm and thus cause a zero shift! A zero point correction would then be necessary.

Temperature measurement

(please also refer to VDE/VDI 3511)

- Resonance vibrations, e.g., by changing the immersion depth, have to be avoided.
- In case of a large temperature difference between measuring medium and ambience, the measurement error due to heat conduction has to be minimized by a suitable isolation of the mounting place.
- In pipelines with large diameter, important temperature differences arise which are kept in strands even over long distances. These temperature layers have to be prevented by sufficiently long mixing sections / whirl installations.
- Sensors of class “A” have to be used in order to achieve the maximum accuracy.
- The lengths of the protective tube should be 15...20 times the protective tube diameters for gas measurements and / or 3...5 times for liquid measurements.
- Resistance thermometers are described in the Data Sheets: 10/10-3.22 to 10/10-3.24

Measurement piping

- The following points must be observed for correct installation:
- Keep the measurement piping as short as possible and avoid sharp bends.
- Lay the measurement piping so that no deposits can accumulate. Gradients should not be less than 8 %.
- Measurement piping should be blown through with compressed air or, better still, flushed through with the measuring medium before connecting to the measuring element.
- If the medium is a liquid / vapor, the filling liquid must be at the same level in both pipes. If using separating liquids, both pipes must be filled to the same height.
- Keep both pipes at the same temperature whenever possible.
- Completely bleed measurement piping if the medium is a liquid.
- Lay the measurement piping so that gas bubbles, when measuring liquids, or condensate when measuring gases, can flow back into the process piping.
- Ensure that the measurement piping is correctly connected + HP and - LP side on sensor, seals,...).
- Ensure that there are no leaks in the piping.
- Lay the measurement piping so that blowouts do not occur via the sensor.

6 Electrical Connection

The relevant guidelines must be observed during the electrical installation!

Since the transmitter has no switch-off elements, overcurrent protection devices or mains disconnection possibilities must be provided on the system side (overvoltage protection at option).

Check that the existing operating voltage corresponds to that indicated on the type plate.

For power supply and output signal, the same lines are used. Consult the enclosed connection diagram! Depending on the supplied model, the electrical connection is made via cable entry 1/2- 1/4 NPT or M 20 x 1.5 or via plug Han 8 U / plug M12. The screw terminals are suitable for wire cross-sections up to 2.5 mm².

Caution: For transmitters of category 3 regarding the application in “Zone 2” the cable gland has to be provided by the customer. For this purpose there is a thread of size M 20 x 1.5 in the electronic housing. The cable gland must comply with the protection type “Increased Safety EEx e” according to the directions 94/9/EC (ATEX). Furthermore, the conditions stated in the type test certificate of the cable gland have to be observed!
Note:

1. (Applies to transmitters acc. to Canadian Standard (CSA) explosion proof „Electrical connection with cable conduit“)
To ensure the Type 4X and IP 67 degree of protection the conduit must be screwed into the housing 1/2” NPT female using a suitable sealing compound. The blanking plug has been sealed with Molykote DX, the use of any other sealing compound is done so at owners own risk.

2. If the type of protection “Flameproof enclosure” (EEx d) applies to the transmitter, lock the enclosure cover by means of the attachment screw (Fig. 10).

Here we would like to point out that an increased expenditure of force will be necessary to remove the enclosure cover after several weeks. This effect is not caused by the thread, but just by the kind of sealing.

Attention: Attention: For the purpose of simulation a 178 Ohm resistance (206°F / 403°F) incl. 2 wire straps have been assembled between the terminals 11 to 14. This (incl. wire straps at 4 wire connection) must be removed before connecting the PT 100.

Measurement of saturated steam (no PT 100 necessary): The factory build in resistor has not to be removed, unless for temperature information purposes only, a PT 100 may be connected.

Electrical connection in the cable connection compartment

Electrical connection with plug

Mounting of the socket connector

The socket connector for the cable connection is attached to the transmitter in component parts.

Installation (see Figure 5):
The contact sockets (2) are crimped or soldered onto the cable ends (wire cross-section 0.75...1 mm²) from which 1.5...2 cm of the sheath and about 8 mm of the insulation has been removed and inserted from the rear into the contact insert (1). The screwed gland (5), thrust ring (7), sealing ring (4) and grommet housing (3) must be pushed onto the cable in the specified order prior to installation (the sealing ring (4) may have to be adapted to the cable diameter first).

Attention:
Check the connecting points again before pressing the sockets all the way into the contact insert. Incorrectly installed sockets can only be removed again with a special removal tool (item no.: 0949 813) or with a standard ball pen refill.

For the signal line, the screwed cable gland is always made of metal. The M 20 x 1.5 screwed cable gland made of metal is provided for the PT 100 cable as, preferably, shielded cable should be used. The screen has to be connected within the metal screwing!

For signaling purposes only, a PT 100 may be connected.

Protective conductor / grounding

The transmitter operates within the specified accuracy with common mode voltages between the signal lines and the housing up to 250 V. On principle, the transmitter has to be supplied from a voltage source, which is safely separated from the mains, with an output voltage of max. 60 VDC. In order to fulfill the requirements of the low-voltage guidelines and the relevant EN 61010 rules for the installation of electrical components, the housing must be provided with a protective circuit (e.g. grounding, protective conductor) if voltages of > 60 VDC could occur.
Set-up of the signal circuit / communication circuit for transmitters with 4...20 mA output signal [HART® Protocol]

The transmitter can be operated via a modem by means of a PC or laptop. The modem can be connected in parallel to the transmitter at any place in the signal circuit. Communication between transmitter and modem is made via AC signals which are overlaid to the analog 4...20 mA output signal. This modulation is effected without averaging and therefore, it does not influence the measuring signal.

Communication between transmitter and PC or laptop is only possible if the signal circuit is set up as shown in Figure 6. The resistance between the connecting point of the FSK modem and the power supply must be at least 250 Ohm including the internal resistance of the supply unit. If this value is not reached with the normal installation, an additional resistance must be used.

The additional resistance has already been installed by the manufacturer in the supply units TZN 128 and TZN 129. In the “FSK bus” mode, the TZN 128 allows to communicate directly via the supply unit.

![Image](image-url)

Figure 8. Communication mode: “point-to-point”

For power supply, either supply units, batteries or power packs can be used which must be designed to ensure that the operating voltage U_B of the transmitter is always between 10.5 and 45 V DC (for backlit LCD indicator 14 ... 45 V DC).

The maximum current of 20 ... 22.5 mA which may occur by overranging (for backlit LCD indicator 14 ... 45 V DC).

The maximum line length is limited to:
- 3000 m for twin-core cable
- 1500 m for multicore cable

The actually possible line length of the electric circuit depends on the total capacitance and joint resistance; it can be estimated according to the following formula:

$$L = \frac{65 \times 10^6}{R \times C} \times \frac{1}{C}$$

where:
- L = Line length in m
- R = Joint resistance in Ohm
- C = Line capacitance in pF
- C_f = Capacitance of the devices existing within the circuit

The shield should be grounded on one side only. Laying together with other electric circuits (with inductive load, etc.) and the proximity of large electrical installations should be avoided.

Notes on PROFIBUS-PA transmitters

PROFIBUS-PA transmitters are provided for the connection to segment couplers DP / PA. The permissible terminal voltage ranges from 10.2... 32 V DC.

A shielded cable is recommended. Contacting of the shield is effected in the metal screwing. The transmitter must be grounded.

For further notes on PROFIBUS-PA, e.g. on the subject “Ident Number”, please refer to the “Supplementary Instructions”, the Data Sheet “Installation Proposals” and the Internet address http://www.profibus.com.

Notes on explosion protection

For the installation (electrical connection, grounding / potential equalization, etc.) of explosion-proof transmitters, the national statutory orders, DIN/VDE rules, guidelines for explosion protection and the explosion proofness test certificate of the device have to be observed. The certified explosion proofness of the transmitter is indicated on the type plate.

Transmitters of the category 3 to be used in “Zone 2” according to Directive 94 / 9 / EC (ATEX):

- The transmitter has to be connected by means of a certified screwed cable gland (type of protection “Increased safety Ex e” according to ATEX).
- It is not permitted to open the housing during operation (operating voltage switched on)!

Notes on connecting cable

To allow communication between transmitter and PC/laptop, cabling must meet the following requirements:

- It is recommended to use shielded and twisted pair lines.

![Image](image-url)

Figure 9. Communication mode: "FSK bus"

Notes on connecting cable

To allow communication between transmitter and PC/laptop, cabling must meet the following requirements:

- It is recommended to use shielded and twisted pair lines.

![Image](image-url)

Figure 8. Communication mode: “point-to-point”
Transmitters for use in areas with inflammable dust in acc. with guideline 94 / 9 / EC (ATEX)
The transmitter can only be connected via a certified cable gland in acc. with EN 50 014: 1997 (not in scope of supply). The cable gland must also meet the degree of protection IP 67 requirements. Under consideration of the intrinsic heat generation, the smoulder temperature of the dusts must be at least 85 deg. K above the ambient temperature.

When using remote seals with an anti-stick coating, one must consider the possible danger of an electro-static discharge under consideration of the medium and the transportation speed.

Transmitters of the type of protection "Flameproof enclosure EEx d" according to Directive 94 / 9 / EC (ATEX):

- It is not permitted to open the housing during operation (operating voltage switched on!)
- The following set-up instructions have to be observed:
 1. The transmitter has to be connected via suitable cable and line entries or piping systems which meet the requirements according to EN 50 018:1994, Section 13.1 and / or 13.2 and for which a separate test certificate is available!
 2. Unused openings of the housing have to be closed according to EN 50 018:1994, Section 11.9!
 3. Cable and line entries as well as blanking plugs which do not correspond to the points 1. and 2. must not be used!
- To align the transmitter (torsion by max. 360°) at the measuring point, the rotatable housing can be loosened at the shaft between sensor and housing:
 - Release the attachment screw by max. 1 rotation.
 - Align the housing.
 - Retighten the attachment screw!
- Before switching on the operating voltage:
 - Close the housing.
 - Secure enclosure cover by turning the attachment screw (hexagon socket screw) to the left.
 - Protect housing from torsion by turning the attachment screw (stud) to the right.
 - Enclosure cover, electronic housing and sensor may only be reixed in any position. A stop prevents the housing from being released and hand-tightened after the position has been set.

Type Examination Certificate / Conformity Statement
For transmitters in explosion-proof design, the EC Type Examination Certificate and / or Conformity Statement must be observed as part of these instructions.

7 Commissioning
After installing the transmitter, it is placed into operation by switching on the operating voltage.

Check the following before switching on the operating voltage:

- Process connections.
- Electrical connections.
- That the measurement piping and measuring chamber of the transmitter are completely filled with the medium.

Subsequently it is placed into operation. The shut-off armatures should be operated in the following sequence (basic setting: all valves closed):

1. Open the shut-off valves on the pressure tap connections.
2. Open the pressure compensation valve of the shut-off armature.
3. Open the positive shut-off valve.
4. Close the pressure compensation valve.
5. Open the negative shut-off valve.

Proceed in the reverse order when taking the unit out of operation.

If, in case of transmitters of the type of protection "Intrinsically safe", a current meter is connected to the test sockets or a modem is connected in parallel when an explosion hazard is existing, the sums of the capacitance and inductance of all circuits including transmitter (see type plate) must be equal to or smaller than the permissible capacitance and inductance of the intrinsically safe signal circuit (see type plate of the supply unit). Only passive or explosion-proof test devices or indicators may be connected.

If the output signal is slow to stabilize, a high damping time constant has probably been set in the transmitter.

Notes on transmitters with 4...20 mA output signal (HART® - Protocol)
If the applied pressure is within the values indicated on the type plate, the output current ranges between 4 and 20 mA. If the applied pressure exceeds the calibrated range, the output current is between 3.5 mA and 4 mA in case of underranging or between 20 mA and 22.5 mA (according to the respective parameter setting) in case of over-ranging; standard setting: 3.8 / 20.5 mA.

In order to prevent errors in the lower flow ranges, it is possible, via the communication tool SMART VISION, to adjust the "Zero suppressor" and / or the "Lin./Sq. rt. transition point". Should no values have been given, then the factory set values will be: 5 % for the "Lin./Sq. rt. transition point" and 6 % for the "Zero suppressor" of the maximum flow, i.e. the 267/269C operates only with the "Zero suppressor".

A current of < 4 mA or > 20 mA may also indicate that the microprocessor has detected an internal error; standard setting: 21 mA. Via the graphical user interface (DTM), an exact diagnosis of the error can be performed. A short-time interruption of power supply results in an initialization of the electronic (restart of the program).

Write protection
Write protection prevents an illegal overwriting of the configuration data. If write protection is activated, the function of the keys 0 % and 100 % is disabled. However, it is still possible to read out the configuration data by means of the graphical user interface (DTM), (or another comparable communication tool).

If necessary, the control unit can be leded.
Write protection is activated as follows (see also symbolism on the plate):

1. First, fully press down the switch with an appropriate screw driver.
2. Then turn the switch clockwise by 90 °.

For deactivation, the switch has to be pushed down a little and turned counterclockwise by 90 °.

Oblique sensor / zero correction
During the installation of the transmitter, zero shifts (e.g. slightly inclined mounting position, different liquid columns in the differential pressure lines, remote seals, etc.) caused by mounting may occur which have to be corrected.

Note:
For correction, the transmitter must have reached its operating temperature (approx. 5 min after switch-on if the transmitter has already assumed ambient temperature). The correction has to be made at "zero" flow (dp = 0)! There are two possibilities (point 1A or 1B) to perform the correction:

1A. Push button unit and LCD indicator have to be available. Call up the item menu path "SHIFT ZERO" via the keys "M" and "+". The correction is made by pressing the key "M" (refer to section 7 "Operation")

or

1B. By means of the graphical user interface (DTM), using the menu path Configuration_Differential Pressure Measurement_Process Variable and the button <Balance> in the field “Oblique Sensor”.

2. The transmitter has to be put into the operating state.

Rotate housing with regard to the sensor
The electronic housing can be rotated through 360° and can be fixed in any position. A stop prevents the housing from being turned too far.

To this effect, the fixing screw at the housing shaft (hexagon socket screw SW 2.5 mm, see section 12 "Dimensional Diagrams") must be released and hand-tightened after the position has been reached.
Assembly / disassembly of push button unit (Figure 8)

- Loosen the screw of the protective cap and turn it aside.
- Push the lock completely out of the push button unit, e.g., by means of a suitable screw driver.
- Remove the uncovered square nut from the push button unit.
- Loosen the fastening screw of the push button unit by a Torx screw driver (size T10) and pull the latter out of the electronic housing.
- If necessary, insert a spacer and tighten it by the attached screw.

Figure 10. Push button unit - disassembly / assembly

Assembly / disassembly of LCD indicator

- Unscrew enclosure cover of the electronic compartment (see Figure 8) (in case of EEx d type, observe section "Secure enclosure cover for EEx d")
- Plug LCD indicator. Depending on the mounting position of the transmitter, the LCD indicator can be slipped on in four different positions; in this way turns by ± 90° or ± 180° are possible.

Note: If the LCD indicator is backlit (option, however, not for fieldbus transmitters) there is a three-core cable with plug on the back of the indicator. Connect this plug with the 3-pole plug strip in the electronic compartment (see Figure 9) before slipping on the indicator.

If there is a jumper on the 3-pole plug strip, it has to be removed and plugged into the "socket for jumper".
- Fasten LCD indicator with both screws.
- Hand-screw the enclosure cover (if necessary, observe section "Secure enclosure cover for EEx d")

Jumper position
if the LCD indicator is not backlit
and / or
3-pole plug strip
for backlit LCD indicator

Socket for jumper
for backlit LCD indicator

Figure 11. Electronic compartment - LCD indicator mounting

Secure enclosure cover for EEx d

On the top right of the electronic housing front, there is an attachment screw (hexagon socket screw, SW 3 mm).

Figure 12. Secure enclosure cover

- Turn enclosure cover hand-tight into the housing.
- Secure enclosure cover by turning the attachment screw to the left. In doing so, the screw must be unscrewed to the stop of the screw head at the housing cover.

8 Operation

- There is no protection against electric shock when the enclosure covers are open. Do not touch live parts.
- The key functions "0 %" (for lower range value setting) and "100 %" (for upper range value setting) are not available. The write protection (lock symbol), however, is active.
- The key functions "M", "+" and "-" for the configuration of the transmitter together with the LCD indicator are available.

Operation via SMART VISION®

System requirements

- SMART VISION®
 SMART VISION® as from Version DSV401
- Operating systems
 - Windows NT 4.0 with service pack 5 or 6a (do not use service pack 6!), Win 2000
 - Internet Explorer as from Version 5.0

Note:

The DTM is started by means of the right mouse button or via the menu item "Device" in 2 steps with: 1. "More", 2. "Edit". After a "Connection setup", first the data of the 267/269C should be loaded completely. Changed data are underlined and displayed in blue. These data are transmitted to the device via "Store data in the device".

The transmitter has been calibrated by the manufacturer according to the order data. The set values for lower range and upper range are indicated on the type plate.
After the data have been saved in the transmitter, their nonvolatile storage is effected automatically. To do this, power supply to the transmitter must be continued for 2 minutes. If this is not observed, the previous data will become active again during the next operation.

For Profinet devices, the disconnection of "Local operation" only becomes effective in case of cyclic communication. If write protection is set by means of the DTM, the setting of the 267/269C can no more changed via the control keys.

For Profinet devices, the slave address must be indicated correctly in the project tree of SMART VISION®. Communication name and description are automatically updated when loading the device data.

The most important calibration / parameterization possibilities under the graphical user interface (DTM) are shortly described in the following. You will find further notes on the menu items in the context-sensitive help.

Before carrying out any setting, please ensure that write protection has neither been activated on the transmitter itself (Key with lock symbol), nor via the graphical user interface (DTM) (menu path Configuration_Basic Parameters _General _Local Operation).

- **Adjust damping**
 Menu path: Configuration_Differential Pressure Measurement_Output
 The required value has to be entered in the field "Output parameters" in the line "Damping".

- **Correct sensor misalignment**
 Menu path: Configuration_Differential Pressure Measurement_Process Variable
 Actuate the button <Balance> in the field "Sensor misalignment". Balancing is immediately effected with nonvolatile storage in the transmitter.

- **Change flow unit**
 Menu path: Configuration_Flow Measurement_Primary Device
 The required unit has to be selected from the pop-up list in the line "Mass flow" or "Volume flow".

- **Adjust lower and upper range value**
 Menu path: Configuration_Differential Pressure Measurement_Process Variable
 In the field "Scaling", the adjustment is possible in two ways: Value input: The required value / values has / have to be entered in the input fields "Lower range value" and / or "Upper range value".
 or Process pressure acceptance: For the adjustment, the lower range value (always 0 mbar !) and the upper range value are preset as pressure at the sensor. Make sure that the measuring limits are not exceeded. Pressure reducing stations with adjustable pressure and comparative displays can be used as sensors. When connecting, take care to avoid residual liquids (with gaseous test media) or air bubbles (with liquid test media) in the piping since they can cause errors. The pressure reducing station should have an accuracy of at least 3 times better than the transmitter to be tested.
 Attention: The lower range value must always be 0 mbar. It is only useful to change the upper range value, if the primary element is also changed and thus the orifice calculation data. Otherwise, a change of the upper range value will have no effect on the calculation of mass flow or of the analog output current here.

- **Operation with "local keys" (at the device) with LCD indicator**
 The control unit comprises 2 keys and a write protect switch. For the keys / the switch, physical connections through the housing are not required.
 In conjunction with an LCD indicator, the transmitter can be configured with the keys (- / + / M) as follows:
 (Note: Indications in () designate the menu item, they are shown in the 1st and 2nd line of the indicator.
 The complete structure tree is shown in Figure 14.
 • Exit the menu (EXIT).
 • Display of measured and calculated values (VIEW).
Display of the physical value

At the first position of the first line, the sign is displayed, and the following six positions show the amount of the measured value. The comma is placed in such a way that the maximum value can be displayed with these six positions. The place of the comma is not changed. A comma at the sixth position is not displayed. Thus it is possible to display max. +/-999999. If this value is exceeded Overflow indicated. In the second line, the unit is displayed with the last five positions.
The first position shows the following characters, if necessary, one after the other. Display changes every second.

Table 1: Legend

<table>
<thead>
<tr>
<th>Display for</th>
<th>Character</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer function</td>
<td>(\sqrt[2]{\text{transfer function}}) or /</td>
<td>Always one of these characters appears.</td>
</tr>
<tr>
<td>Write protection</td>
<td>(\text{w})</td>
<td>Only if write protection has been set.</td>
</tr>
<tr>
<td>Cyclic communication</td>
<td>(\text{c})</td>
<td>Only in case of PROFIBUS-PA</td>
</tr>
<tr>
<td>Status available (e.g. measuring range infringement or hardware error)</td>
<td>(\text{h})</td>
<td>Only if a status is available.</td>
</tr>
<tr>
<td>Code of displayed value</td>
<td>1...9</td>
<td>see menu Display (see structure tree)</td>
</tr>
<tr>
<td>Transmitter is busy</td>
<td>(\text{t})</td>
<td>This character overwrites other characters.</td>
</tr>
</tbody>
</table>

Display of the percent value

<table>
<thead>
<tr>
<th>Display on LCD indicator</th>
<th>1st line</th>
<th>Percent value, limits: -25% to 125%, 2 decimal places</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd line</td>
<td>1st position: Transfer function (Table 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd position: Write protection (Table 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7th position: %</td>
<td></td>
</tr>
<tr>
<td>Bar chart</td>
<td>2% steps - from -2% to +10%, no hysteresis</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Percent value display on LCD indicator
Program control

To make the keys accessible, release the screw and turn the protection cap aside (see Figure 13). With the mode key “M”, you can start menu-controlled programming. To call the next menu item, press the key “-”. You will return via the key “+”. Submenu items / selection lists are activated via the mode key “M”. A numerical value can only be changed via the keys “+” and “-”. It must be taken into account that the key “+” changes the value (each keystroke increases the value by 1), whereas the position of the value to be changed is reached via the key “-”. Acknowledge changes with the mode key “M”; the subsequent OK acknowledgement (via the key “M”, “+” or “-”) writes the new value into the fail-safe storage. An adjusting process can be aborted by pressing simultaneously the keys “+” and “-”. From any main menu item, you can return to the menu item “EXIT” by simultaneously pressing the “+” and “-” keys. When the adjustment has been finished, quit the program via the menu item “EXIT”.

By means of the following structure tree, you will get an overview of the selection / programming possibilities.

![Structure tree](image_url)

Start with “mode key” (M)

- **EXIT**
- **VIEW** (temporary presentation of display values \[1\] up to \[9\])
 - Output signal in physical unit (current measured value of the differential pressure in each case with user-specific-unit); correspond to the “OUT” variable in case of PROFIBUS-PA \[1\]
 - Percent value of the output signal \[2\]
 - Current (not for fieldbus transmitters) \[3\]
 - Mass flow / standard volume flow \[4\]
 - Operating volume flow \[5\]
 - Static pressure \[6\]
 - Process temperature, displays the temperature of the PT 100) \[7\]
 - Differential pressure \[8\]
 - Sensor temperature \[9\]

- **GET 0%**
- **GET 100%**
- **SET 0%**
- **SET 100%**
- **SHIFT ZERO**
- **OFFSET SHIFT**
- **DAMPING**
- **ALARM CURRENT** (not for fieldbus transmitters)
 - HIGH ALARM
 - LOW ALARM
 - LAST VALUE

- **DISPLAY**
 - Output signal in physical unit (current measured value of the differential pressure in each case with user-specific-unit); correspond to the “OUT” variable in case of PROFIBUS-PA \[1\]
 - Percent value of the output signal \[2\]
 - Current (not for fieldbus transmitters) \[3\]
 - Mass flow / standard volume flow \[4\]
 - Operating volume flow \[5\]

- **UNIT**
 - \(p / dp\)
 - \(\text{Pa}\)
 - \(\text{GPa}\)
 - \(\text{MPa}\)
 - \(\text{KPa}\)
 - \(\text{mPa}\)
 - \(\text{uPa}\)
 - \(\text{HPa}\)
 - \(\text{bar}\)
 - \(\text{mbar}\)
 - \(\text{Atm}\)
 - \(\text{psi}\)
 - \(\text{g/cm2}\)
 - \(\text{kg/cm2}\)
 - \(\text{in H2O}\)
 - \(\text{mm H2O}\)
 - \(\text{ft H2O}\)
 - \(\text{in HG}\)
 - \(\text{mm HG}\)
 - **OUT**
 - “Selection list” of the units (for the output variable, e.g.: kg/h, m)
 - \[1\] = Code of the display value (2nd line, left)
 - **ADDRESS** (only for fieldbus transmitters)

Figure 16. Structure tree
Operation with PC / laptop
To configure the transmitter via PC / laptop, the software SMART VISION and the graphical user interface (DTM 2600T) is required. Please refer to the software description for operating instructions.

Communication protocol: PROFIBUS-PA® or Foundation Fieldbus® or HART®
Hardware: for HART®: FSK modem for PC / notebook

Configuration of flow measurement with SMART VISION®
If the transmitter has been configured at the manufacturer’s work for the measuring point according to the specifications given by the user in the questionnaire (refer to page 20), you do not have to do anything else than to assemble the transmitter as specified (perhaps correct the sensor misalignment - refer to menu path Configuration_Differential Pressure Measurement_Process Variable), pressurize the transmitter and connect it to power supply; then the measuring point is ready for operation. If the transmitter is equipped with an LCD indicator, the current mass flow (default setting) is displayed immediately.

However, if you want to make changes, e.g., concerning the configuration of mass flow measurement, you need a communication tool, e.g., SMART VISION and the graphical user interface (DTM 2600T). By means of this tool, the device can be configured completely. It supports the HART Protocol as well as the fieldbus protocols "PROFIBUS-PA and FOUNDATION Fieldbus", and it is operable on a PC / notebook and / or in an automation system.

The necessary working steps for the installation of SMART VISION are described in the installation instructions delivered with the software. The parameters can be adjusted via the path Configuration_Flow Measurement.

The program offers the possibility to configure, to interrogate and to test the transmitter. Furthermore, an offline configuration can be carried out via an internal database. Each configuration step is submitted to a plausibility check. The <F1> key provides extensive context-sensitive help at very stage throughout the complete program.

Attention: Immediately after the delivery of the transmitters and / or before changing the configuration, we recommend to save the existing configuration data on a data medium using the path File_Save.

Notes on configuration

- Configuration_Flow Measurement_Basic Setting
Here measuring medium and correction range are defined. The units being displayed for differential pressure, static pressure and temperature are identical with the units specified using the path Configuration_Differential Pressure Measurement (and / or Static Pressure Measurement or Temperature Measurement). The min. and max. values which are indicated for the operating range should be within the setting values specified using the path Configuration_Differential Pressure Measurement (and / or Static Pressure Measurement or Temperature Measurement).

- Configuration_Flow Measurement_Primary Device
The calculation values of the throttling device entered here are the basis for flow calculation. Incomplete or wrong data will lead to calculation errors. Please take care that the values are transferred from a valid calculation sheet to the window!

The following specifications regarding the primary device are required:

Throttling device
- Throttling device
- For selection:
 - "Orifice" with threshold pressure tapping according to ISO,
 - ISA 1932 - nozzle
- further primary devices see questionnaire „Flow Compensation“ ff.
- Differential pressure, calculation value of the primary device.
- Absolute pressure, calculation value of the primary device.
- Temperature, calculation value of the primary device.
- Density of measuring medium, calculation value of the primary device.
- Mass flow, calculation value of the primary device.
- Volume flow, calculation value of the primary device.
- Ratio of diameters, calculation value of the primary device.
- Reynolds’ number, calculation value of the primary device.
- Percent value for Re, calculation value of the primary device.

This percent value shows at which flow the Reynolds’ number is indicated. Typical values are 100% and 67%.

Only required for gas measurement:
- Standard density, calculation value of the primary device.
- Isotropic exponent, calculation value of the primary device.
- For detailed specification please refer to questionnaire „Flow Compensation“

Depending on the software variant of the 267/269C, the displayed values for absolute pressure, temperature and density can be provided with a gray background and underlined in blue even if the data have been loaded directly from the device. Due to the adjusted units, a conversion has been performed here for the representation in the DTM.
In case of gaseous measuring media, the name of the medium can be entered and saved in the transmitter.

For exact calculations, it is possible to indicate real gas factor and/or compressibility factors for the respective measuring medium. To do this, select "With correction" and enter the corresponding values into the table.

The real gas factor / compressibility factor is only calculated for "Real gases". For "Ideal gases", K=1 (at low pressures and high temperatures, air and other gases behave like an "Ideal gas").

In case of liquids, the density must be indicated for at least two (min./max.) temperature values to perform correction computing. Between these values, the density is interpolated.

To achieve a higher accuracy, up to four other temperature values can be indicated with the density.

For the measuring medium water, the density is calculated automatically as a function of temperature and static pressure.

Write protection
If "Device write-protected" is selected, no data can be written from the communication tool into the device.

Local Operation
Via this function, the keyboard on the transmitter can be switched off completely. Thus it is possible to protect the setting from unauthorized access (for PROFIBUS-PA devices, only possible with cyclic communication).

Indicator value
Depending on the type, the alphanumeric indicator can display the following values:
- Output pressure (pressure, differential pressure or absolute pressure in the selected unit),
- Percent value pressure, differential pressure, absolute pressure or flow,
- Current (output current in mA, only for HART devices),
- Mass flow and/or standard volume flow (in case of gas),
- Volume flow.

In addition to measured values, the indicator displays diagnostic messages, max. and min. alarm, measured value overflow (OVERFL) as well as configuration changes. An indicator can be installed later without any difficulty.

Sensor temperature unit
Please enter here the unit for the sensor temperature. If the temperature dimension is changed, all associated values will be converted to this dimension and displayed accordingly. Temperature values for the process temperature (PT100) are not affected by this dimensional change.
9 Maintenance

The transmitter is maintenance-free. It is sufficient to check the output signal - depending on the operating conditions - at regular intervals according to section 7 "Operation".

If deposits in the sensor are to be expected, the sensor should also be cleaned at regular intervals - depending on the operating conditions. Cleaning should preferably be carried out in the workshop.

Replace defective transmitters / units according to the "Spare Parts Data Sheet".

Dismantling / fitting the process flanges

If remote seals are fitted to the sensor, do not dismantle the process flanges!

1. Undo the process flange screws diagonally opposite each other. (hexagon insert bit, SW 13 mm)
2. Carefully remove the process flanges so as not to damage the separating diaphragms.
3. Using a soft brush and a suitable solvent thoroughly clean the separating diaphragms and, if necessary, the process flanges. Do not use sharp or pointed tools.
4. Renew the process flange O-rings (Parts List 10/15-9.00).
5. Fit the process flanges onto the sensor body. Take care not to damage the separating diaphragms.

Note: The flange faces of the 2 process flanges must be in one plane and at right angles to the electronic housing.

6. Check that the process flange screw thread moves easily: Tighten the nut by hand up to the screw head. If this is not possible, use new screws and nuts (Parts List 10/15-9.00).
7. Lubricate the screw threads and contact faces of the screwed joint with, for instance, "Anti-Seize AS 040 P" (supplier: P.W. Weidling & Sohn GmbH & Co. KG, D-Münster). With cleanliness stages, the corresponding regulations must be observed, e.g. DIN 25410!
8. **For 267/269C with measuring ranges ≥ 60mbar**
 First tighten the diagonally opposite process flange screws or nuts to the initial torque $M_F = 10 \text{ Nm (1.0 kpm)}$ using a torque wrench. Then tighten fully by continuing to turn each diagonally opposite screw or nut in two steps of 90° each through the tightening angle $\alpha_A = 180°$.
9. **For 267/269C with measuring range 10mbar**
 Tighten the diagonally opposite process flange screws alternately in two steps using a torque wrench. Tightening torque $M_A = 10 \text{ Nm (1.0 kpm)}$.
10. Check for leaks.
11. Check the lower range value and the upper range value in accordance with section 7 "Operation".

Figure 21. Exploded view

- Electronic housing
- Process flange screw
- Process flange O-ring
- Nut
- Process flange
- Sensor body
- Isolating diaphragm

MS1484x1
10 Repairs

Attention: Explosion-proof transmitters may only be repaired by the manufacturer, or they must be certified by an acknowledged expert after the repair has been carried out! Observe the pertinent safety regulations before, during and after repairs.

Disassemble the transmitter only to such extent as necessary for cleaning, checking, repairing and replacement of defective parts. Observe section 8 "Maintenance"!

Sensor as well as sensor with attached remote seal can only be repaired by the manufacturer.

If it is necessary to screw off the electronic housing from the sensor / sensor body, first remove the electronic from the electronic housing in order to prevent it from being damaged. To do this, first screw off the enclosure cover (Attachment screw!, see Figure 10), then remove a possible LCD indicator from the electronic (loosen 2 screws), loosen both fastening screws of the electronic and carefully withdraw it from the electronic housing. Pull off the two plugs from the electronic. (Both plugs are equipped with a mechanical polarity safeguard and the smaller one additionally with a mechanical locking: Take the plug on the face between thumb and index finger and press the locking bar into the plug direction, then remove the plug from the holder.) Put the electronic on a suitable support. Screw off the electronic housing from the sensor / sensor body.

Return

Defective transmitters / units are to be sent to the repair department, if possible, stating the fault and its cause.

Note: When ordering spare parts or instruments, please quote the serial number (F.-No.) of the original transmitter.

Address:

ABB Process Industries
Department SPM
Schillerstraße 72
D-32425 Minden

11 Technical Data

11.1 Functional Specifications

Range and span limits

- differential pressure sensors

<table>
<thead>
<tr>
<th>Sensor Code</th>
<th>Upper Range Limit (URL)</th>
<th>Lower Range Limit (LRL)</th>
<th>Minimum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 kPa 10 mbar 4 mH2O</td>
<td>0</td>
<td>0.05 kPa 0.5 mbar 0.2 mH2O</td>
</tr>
<tr>
<td>C</td>
<td>6 kPa 60 mbar 24 mH2O</td>
<td>0</td>
<td>0.2 kPa 2 mbar 0.8 mH2O</td>
</tr>
<tr>
<td>F</td>
<td>40 kPa 400 mbar 160 mH2O</td>
<td>0</td>
<td>0.4 kPa 4 mbar 1.6 mH2O</td>
</tr>
<tr>
<td>L</td>
<td>250 kPa 2500 mbar 1000 mH2O</td>
<td>0</td>
<td>2.5 kPa 25 mbar 10 mH2O</td>
</tr>
<tr>
<td>N</td>
<td>2000 kPa 20 bar 290 psi</td>
<td>0</td>
<td>20 kPa 0.2 bar 2.9 psi</td>
</tr>
</tbody>
</table>

- absolute pressure sensors

<table>
<thead>
<tr>
<th>Sensor Code</th>
<th>Upper Range Limit (URL)</th>
<th>Lower Range Limit (LRL)</th>
<th>Minimum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600 kPa 6 bar 87 psi</td>
<td>0 abs 6 kPa 0.06 bar 0.87 psi</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2000 kPa 20 bar 200 psi</td>
<td>0 abs 20 kPa 0.2 bar 2.9 psi</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10000 kPa 100 bar 1450 psi</td>
<td>0 abs 100 kPa 1 bar 14.5 psi</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>410000 kPa 410 bar 5945 psi</td>
<td>0 abs 410 kPa 4.1 bar 50.5 psi</td>
<td></td>
</tr>
</tbody>
</table>

Span limits

Maximum span = URL

IT IS RECOMMENDED TO SELECT THE TRANSMITTER SENSOR CODE PROVIDING THE TURNDOWN VALUE AS LOWEST AS POSSIBLE TO OPTIMIZE PERFORMANCE CHARACTERISTICS.

Zero suppression and elevation
No suppression or elevation but zero based range as long as calibrated span >= minimum span

Process temperature range

-50°C to +650°C (-58°F to 1200°F) by external four-wire RTD

Damping
Adjustable time constant: 0 to 60s.

This is in addition to sensor response time

Turn on time
Operation within specification in less than 2.5s with minimum damping.

Insulation resistance
> 100MΩ at 1000VDC (terminals to earth)

11.2 Operative limits

Temperature limits °C (°F):

Ambient (is the operating temperature)
Silicone oil filling: -40°C and +85°C (-40°F and +185°F)
Inert filling: -20°C and +85°C (-4°F and +185°F)

Lower ambient limit for Viton and PTFE gaskets: -20°C (-4°F)

Note: For Hazardous Atmosphere applications see the temperature range specified on the certificate/approval relevant to the aimed type of protection.

Process

Lower limit
- refer to lower ambient limits

Upper limit
- Silicone oil: 121°C (250°F)
 for working pressure above 10kPa abs, 100mbar abs, 1.45psia(1)
- Inert fluid: 121°C (250°F) (2)
 for working pressure above atmospheric pressure
 (1) 85°C (185°F) for application below 10kPa abs, 100mbar abs,
 1.45psia down to 3.5 kPa abs, 35mbar abs, 0.5psia
 (2) 85°C (185°F) for application below atmospheric pressure down
to 40kPa abs, 400mbar abs, 5.8psia.

Storage

Lower limit: -50°C (-58°F); -40°C (-40°F) for LCD indicators
Upper limit: +85°C (+185°F)

11.3 Pressure limits

Overpressure limits (without damage to the transmitter)

Lower limit
- 0.5kPa abs, 5mbar abs, 0.07psia for silicone oil
- 40kPa abs, 400mbar abs, 5.8psia for inert fluid

Upper limit
- 0.6MPa, 6bar, 87psi for differential pressure sensor code A
- 2MPa, 20bar, 290psi or 10MPa, 100bar, 1450psi or
 41MPa, 410bar, 5945psi for differential pressure sensor codes C, F, L, N according to selected code variant.
Static pressure
Transmitters for differential pressure model 267CS operates within specifications between the following limits
Lower limit
- 3.5kPa abs, 35mbar abs, 0.5psia for silicone oil
- 40kPa abs, 400mbar abs, 5.8psia for inert fluid
Upper limit
- 0.6MPa, 6bar, 87psi for differential pressure sensor code A
- 2MPa, 20bar, 290psi or 10MPa, 100bar, 1450psi or 41MPa, 410bar, 5945psi for differential pressure sensor codes C, F, L, N according to selected code variant.

Proof pressure
The transmitter can be exposed without leaking to line pressure of up 1.5 times the nominal pressure simultaneously on both sides.

11.4 Environmental limits
Electromagnetic compatibility (EMC)
Definition Class 3
Radio suppression Limit class B (according to EN 550011)
Fulfills NAMUR recommendation

Low voltage directive
Comply with 73/23/EEC

Pressure equipment directive (PED)
Instruments with maximum working pressure 41MPa, 410bar, 5945psi comply with 97/23/EEC Category III module H.

Humidity
Relative humidity: up to 100% annual average
Condensing, icing: admissible

Vibration resistance
Accelerations up to 2g at frequency up to 1000Hz (according to IEC 60068-2-26)

Shock resistance (according to IEC 60068-2-27)
Acceleration: 50g
Duration: 11ms

Wet and dust-laden atmospheres
The transmitter is dust and sand tight and protected against immersion effects as defined by IEC EN60529 (1989) to IP 67 (IP 68 on request) or by NEMA to 4X or by JIS to C0920.

11.5 Electrical Characteristics and Options
HART digital communication and 4 to 20mA output

Power Supply
The transmitter operates from 10.5 to 45VDC with no load and is protected against reverse polarity connection (additional load allows operations over 45VDC). Minimum power supply is 14VDC with backlit indicator. For EEx ia and other intrinsically safe approval power supply must not exceed 30VDC.

Ripple
Maximum permissible voltage ripple of power supply during the communication:
7Vpp at f = 50 to 100Hz
1Vpp at f = 100 to 200Hz
0.2Vpp at f = 200 to 300Hz

Load limitations
4 to 20mA and HART total loop resistance :
\[R_{(Ω)} = \frac{\text{Supply voltage} - \text{min. operating voltage (VDC)}}{22.5 \text{ m A}} \]
A minimum of 250Ω is required for HART communication.

11.6 Optional indicators
Integral display
2-line, 6-character 19-segment alphanumeric display with additional bar chart display, optionally with backlight illumination. User-specific display:
percentage of the output current or output current in mA or free process variable
Diagnostic message, alarms, measuring range infringements and changes in the configuration are also displayed.

Output signal
Two-wire 4 to 20mA, related to mass flow calculation, compensating all pressure (p) and temperature (T) effects completely. HART ® communication provides digital process variable (% mA or engineering units) superimposed on 4 to 20mA signal, with protocol based on Bell 202 FSK standard.

Output function
Mass flow calculation performed as per formula:
\[Q_m = C \cdot E_v \cdot Y_1 \cdot d^2 \cdot \sqrt{dp \cdot \rho} \]
where
\(Q_m \) = mass flowrate
\(C \) = discharge coefficient
\(E_v \) = velocity of approach factor
\(Y_1 \) = gas expansion factor
\(d \) = bore diameter
\(dp \) = differential pressure
\(\rho \) = fluid density

Output current limits (to NAMUR standard)
Overload condition
- Lower limit: 3.8mA (configurable down to 3.5mA)
- Upper limit: 20.5mA (configurable up to 22.5mA)

Alarm current
Min. alarm current: configurable from 3.5mA to 4mA, standard setting: 3.6mA
Max. alarm current: configurable from 20mA to 22.5mA, standard setting: 21mA
Standard setting: max. alarm current

11.7 PROFIBUS PA output
Device type
Pressure transmitters compliant to Profiles 3.0 class A and B Identnumber 062D HEX.

Power supply
The transmitter operates from 10.2 to 32VDC with no polarity. For EEx ia approval power supply must not exceed 17.5VDC.
Intrinsic safety installation according to FISCO model.

Current consumption
operating (quiescent): 11.7mA
fault current limiting: 17.3mA max.

Output signal

Output interface
PROFIBUS PA communication according to Profibus DP50170 Part 2/DIN 19245 part 1-3.

Output update time
250 ms

Function blocks
3 analog input, 1 transducer, 1 MV block (flow), 1 physical
Integral display
2-line, 6-character 19-segment alphanumeric display with additional bar chart display, optionally with back illumination. User-specific display:
percentage of the output or
OUT (input flow)
Diagnostic message, alarms, measuring range infringements and changes in the configuration are also displayed.

Transmitter failure mode
Permanent self-diagnostic; possible errors indicated in diagnostic parameters and in the status of process values.

11.8 FOUNDATION Fieldbus output
Power supply
The transmitter operates from 10.2 to 32VDC polarity independent.
For EEx ia approval power supply must not exceed 17.5VDC (FISCO certification).

Current consumption
operating (quiescent): 11.7mA
fault current limiting: 17.3mA max.

Output signal
Physical layer in compliance to IEC 1158-2/EN 61158-2 with transmission to Manchester II modulation, at 31.25kbite/sec.
Function blocks/execution period
3 standard analog input blocks, 1 application specific MV block (flow) / 250 ms max (each)
Additional blocks
1 extended standard pressure transducer block with calibration, 1 standard resource block and 1 extended standard temperature transducer block with calibration

Number of link objects
10

Number of VCRs
16

Output interface
FOUNDATION fieldbus digital communication protocol to standard H1, compliant to specification V. 1.5; FF registration in progress.

Integral display
2-line, 6-character 19-segment alphanumeric display with additional bar chart display, optionally with back illumination. User-specific display:
percentage of the output or
OUT (input flow)
Diagnostic message, alarms, measuring range infringements and changes in the configuration are also displayed.

Transmitter failure mode
Permanent self-diagnostic; possible errors indicated in diagnostic parameters and in the status of process values.

11.9 Performance specifications Model 267C
Stated at reference condition to IEC 60770 ambient temperature of 20°C (68°F), relative humidity of 65%, atmospheric pressure of 1013hPa (1013mbar), mounting position with vertical diaphragm and zero based range for transmitter with isolating diaphragms in Hastelloy and silicone oil fill and HART digital trim values equal to and zero based range for transmitter with isolating diaphragms in

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Sensor A</th>
<th>Sensors C, F, L, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>on zero</td>
<td>bis 2 bar; 0.05 % URL</td>
<td>bis 100 bar; 0.05 % URL</td>
</tr>
<tr>
<td></td>
<td>>2 bar; 0.05 % URL/bar</td>
<td>>100 bar; 0.05 % URL/100 bar</td>
</tr>
<tr>
<td>on span</td>
<td>bis 2 bar; 0.05 % span</td>
<td>bis 100 bar; 0.05 % span</td>
</tr>
<tr>
<td></td>
<td>>2 bar; 0.05 % span/bar</td>
<td>>100 bar; 0.05 % span/100 bar</td>
</tr>
</tbody>
</table>

Supply voltage
Within voltage/load specified limits the total effect is less than 0.001% of URL per volt.

Load
Within load/voltage specified limits the total effect is negligible.

Radio frequency interference
Total effect: less than 0.05% of span from 20 to 1000MHz and for field strengths up to 10V/m when tested with unshielded conduit, with or without meter.

Common mode interference
No effect from 250Vrms @ 50Hz, or 50VDC

Mounting position
Rotations in plane of diaphragm have negligible effect. A tilt from 20°C (68°F) causes a zero shifts of 0.05% URL/100 bar.

Stability
±0.10% of URL over a thirty-six-month period

Vibration effect
±0.10% of URL (according to IEC 61298-3)
11.10 Performance specifications Model 269C
Stated at reference condition to IEC 60770 ambient temperature of 20°C (68°F), relative humidity of 65%, atmospheric pressure of 1013hPa (1013mbar), mounting position with vertical diaphragm and zero based range for transmitter with isolating diaphragms in Hastelloy and silicone oil fill and HART digital trim values equal to 4-20mA span end points.
Unless otherwise specified, errors are quoted as % of span.
Some performance data are affected by the actual turndown (TD) as ratio between Upper Range Limit (URL) and calibrated span.
IT IS RECOMMENDED TO SELECT THE TRANSMITTER SENSOR CODE PROVIDING THE TURNDOWN VALUE AS LOWEST AS POSSIBLE TO OPTIMIZE PERFORMANCE CHARACTERISTICS.
Dynamic performance (according to IEC 61298-1 definition)
Standard configuration for instruments with turndown up to 30:1.
Dead time: 30ms
Time constant (63.2% of total step change):
- sensors F to N: 150ms
- sensor C: 400ms
- sensor A: 1000ms
Accuracy rating
% of calibrated span, including combined effects of terminal based linearity, hysteresis and repeatability.
For fieldbus versions SPAN refer to analog input function block outscale range
For differential pressure sensor
±0.04% for TD from 1:1 to 10:1
± 0.04 × (0.005 × \frac{URL}{Span} – 0.05) % for TD greater than 10:1
For absolute pressure sensor
- 0.1% URL of absolute pressure sensor
Operating influences
Ambient temperature (for turndown up to 15:1)
per 20K (36°F) change between the limits of
-20°C to +65°C (-4 to +150°F)
for differential pressure sensor
- ±(0.03% URL + 0.05% span)
per 20K (36°F) change between the limits of -40°C to +80°C
(-40°F to +176°F)
for absolute pressure sensor
- ±(0.08% URL + 0.08% span)
limited to ±(0.1% URL + 0.1% span) per the complete temperature range of 120K (216°F)
Static pressure (zero errors can be calibrated out at line pressure)
<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Sensor A</th>
<th>Sensors C, F, L, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>on zero</td>
<td>bis 2 bar: 0,05 % URL</td>
<td>bis 100 bar: 0,05 % URL</td>
</tr>
<tr>
<td></td>
<td>>2 bar: 0,05 % URL/bar</td>
<td>>100 bar: 0,05 % URL/100 bar</td>
</tr>
<tr>
<td>on span</td>
<td>bis 2 bar: 0,05 % span</td>
<td>bis 100 bar: 0,05 % span</td>
</tr>
<tr>
<td></td>
<td>>2 bar: 0,05 % span/bar</td>
<td>>100 bar: 0,05 % span/100 bar</td>
</tr>
</tbody>
</table>
Supply voltage
Within voltage/load specified limits the total effect is less than 0.001% of URL per volt.
Load
Within load/voltage specified limits the total effect is negligible.
Radio frequency interference
Total effect: less than 0.05% of span from 20 to 1000MHz and for field strengths up to 10V/m when tested with unshielded conduit, with or without meter.
Common mode interference
No effect from 250Vrms @ 50Hz, or 50VDC
Mounting position
Rotations in plane of diaphragm have negligible effect. A tilt from vertical causes a zero shifts of sin a x 0.35kPa (3.5 mbar, 1.4inH2O) of URL which can be corrected with the zero adjustment. No span effect.
Stability
±0.10% of URL over a thirty-six-month period
Vibration effect
±0.10% of URL (according to IEC 61298-3)
11.11 Physical Specification
(Refer to ordering information sheets for variant availability related to specific model or versions code)
Materials
Process isolating diaphragms (*)
AISI 316 L ss; Hastelloy C276™; Monel 400™; Tantalum;
Process flanges, adapters, plugs and drain/vent valves (*)
AISI 316 L ss; Hastelloy C276™; Monel 400™, Kynar (PVDF)
Sensor fill fluid
Silicone oil; inert fill (Carbon Fluoride).
Mounting bracket (**)
AISI 316 L ss.
Gaskets (*)
Viton™; Perbunan (NBR); EPDM;
PTFE (for sensors C, F, L, N) or FEP coated Viton™ (for sensor A)
Sensor housing
AISI 316 L ss.
Bolts and nuts
Stainless steel bolts and nuts Class A4-70 per ISO 3506, in compliance with NACE MR0175 Class II.
Electronic housing and covers
Barrel version
- Low-copper content aluminium alloy with baked epoxy finish;
- AISI 316 L ss.
DIN version
- Low-copper content aluminium alloy with baked epoxy finish.
Covers O-ring
Viton™.
Local zero and span adjustments
Glass filled polycarbonate plastic (removable).
Tagging
AISI 316ss or plastic data plate attached to the electronics housing.
Calibration
Standard: at maximum span, zero based range, ambient temperature and pressure;
Optional: at specified range and ambient conditions.
Optional extras
Mounting brackets
For vertical and horizontal 60mm. (2in) pipes or wall mounting.
Integral display
plug-in rotatable LCD indicator.
Supplemental customer tag
AISI 316 ss tag fastened to the transmitter with stainless steel wire for customer’s tag data up to a maximum of 30 characters and spaces.
Cleaning procedure for oxygen service
Hydrogen preparation
Test Certificates (test, design, calibration, material traceability)
Tag and manual language
Communication connectors

Process connections
on flanges: 1/4 in NPT on process axis selectable with 7/16 in-20 UNF fixing threads or DIN 19213 connection with M10 fixing threads for working pressure up to 16MPa, 160bar, 2320psi or M12 fixing threads for greater working pressure up to 41MPa, 410bar, 6000psi
on adapters: 1/2 in NPT on process axis

centre distance: 54mm (2.13in) on flange;
51, 54 or 57mm (2.01, 2.13 or 2.24in) as per adapters fittings.

Electrical connections
Two 1/2 NPT or M20x1.5 threaded conduit entries, direct on housing.

Special communication connector (on request)
- HART : straight or angle Harting HAN connector and one plug.
- FOUNDATION Fieldbus and PROFIBUS PA: M12x1 or 7/8.

Terminal block
HART version: four terminals for signal/external meter plus four terminals for RTD connection wiring up to 2.5mm² (14AWG) and four connection points for test and communication purposes.
Fieldbus versions: two terminals for signal (bus connection) plus four terminals for RTD connection wiring up to 2.5mm² (14AWG).

Grounding
Internal and external 4mm² (12AWG) ground termination points are provided.

Mounting position
Transmitter can be mounted in any position.
Electronics housing may be rotated to any position. A positive stop prevents over travel.

Mass (without options)
3.5kg approx (8lb); add 1.5kg (3.4lb) for AISI housing.
Add 650g (1.5lb) for packing.

Packing
Carton 23 x 25 x 27cm approx (9 x 10 x 11in).

™ Hastelloy is a Cabot Corporation trademark
™ Monel is an International Nickel Co. trademark
™ Viton is a Dupont de Nemour trademark

(*) Wetted parts of the transmitter.
(**) U-bolt material: AISI 400 ss; screws material: AISI 316 ss.

1.12 Configuration
Transmitter with HART communication and 4 to 20 mA

Standard configuration
Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the type plate. If calibration range and tag data are not specified, the transmitter will be supplied configured as follows:

<table>
<thead>
<tr>
<th>Measure Profile</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Unit</td>
<td>mbar/bar</td>
</tr>
<tr>
<td>Output scale 0%</td>
<td>Lower Range Limit (LRL)</td>
</tr>
<tr>
<td>Output scale 100%</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Output</td>
<td>Linear</td>
</tr>
<tr>
<td>Hi-Hi Limit</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Hi Limit</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Low Limit</td>
<td>Lower Range Limit (URL)</td>
</tr>
<tr>
<td>Low-Low Limit</td>
<td>Lower Range Limit (URL)</td>
</tr>
<tr>
<td>Limits hysteresis</td>
<td>0.5% of output scale</td>
</tr>
<tr>
<td>PV filter</td>
<td>0.125s</td>
</tr>
<tr>
<td>Address</td>
<td>126</td>
</tr>
</tbody>
</table>

Any or all the above configurable parameters, including lower range value and upper range value can be easily changed using the PC based configuration tool Smart Vision. The transmitter database is customized with specified flange type and material, O-ring and filling liquid.

Transmitter with PROFIBUS PA communication
Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the type plate. If calibration range and tag data are not specified, the transmitter will be supplied configured as follows:

<table>
<thead>
<tr>
<th>Measure Profile</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Unit</td>
<td>mbar/bar</td>
</tr>
<tr>
<td>Output scale 0%</td>
<td>Lower Range Limit (LRL)</td>
</tr>
<tr>
<td>Output scale 100%</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Output</td>
<td>Linear</td>
</tr>
<tr>
<td>Hi-Hi Limit</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Hi Limit</td>
<td>Upper Range Limit (URL)</td>
</tr>
<tr>
<td>Low Limit</td>
<td>Lower Range Limit (URL)</td>
</tr>
<tr>
<td>Low-Low Limit</td>
<td>Lower Range Limit (URL)</td>
</tr>
<tr>
<td>Limits hysteresis</td>
<td>0.5% of output scale</td>
</tr>
<tr>
<td>PV filter</td>
<td>0.125s</td>
</tr>
<tr>
<td>Address</td>
<td>Not necessary</td>
</tr>
</tbody>
</table>

Any or all the above configurable parameters, including lower range value and upper range value can be easily changed using the PC based configuration tool Smart Vision. The transmitter database is customized with specified flange type and material, O-ring and filling liquid.
12 Certificates and approvals

Observe mounting conditions according to EN 60079-10; 1966ff!

Transmitters of the type of protection "Intrinsically safe EEx ia" according to the directions 94 / 9 / EC (ATEX)

Transmitters with 4...20 mA output signal and HART communication

Marking:
II 1/2 GD T 50°C EEx ia IIC T6
II 1/2 GD T 95°C EEx ia IIC T4

EC-Type-Examination Certificate no.:
ZELM 01 ATEX 0064
and 1st + 2nd Supplement

Supply and signal circuit type of protection Intrinsic Safety
EEx ib IIB/IIC resp. EEx ia IIB/IIC for connection to supply units with maximum values:
II 1/2 GD T 50°C EEx ia resp. ib IIC T6
II 1/2 GD T 95°C EEx ia resp. ib IIC T4

for Temperature class T4:
U_i = 30 V
I_i = 200 mA
P_i = 0.8 W for T4 with Ta = (-40...+85)°C / (-40...+185)°F
P_i = 1.0 W for T4 with Ta = (-40...+70)°C / (-40...+185)°F

for Temperature class T6:
P_i = 0.7 W for T6 with Ta = (-40...+40)°C / (-40...+104)°F

effective internal capacitance
C_i ≤ 10 nF

effective internal inductance
L_i = 0

Fieldbus-transmitters
(PROFIBUS PA / FOUNDATION Fieldbus)

Marking:
II 1/2 GD T 50°C EEx ia IIC T6
II 1/2 GD T 95°C EEx ia IIC T4

EC-Type-Examination Certificate no.:
ZELM 01 ATEX 0063
and 1. Supplement

Supply and signal circuit type of protection Intrinsic Safety
EEx ib IIB/IIC resp. EEx ia IIB/IIC for connection to FISCO supply units with rectangular or trapezoidal characteristics with maximum values:
II 1/2 GD T 50°C EEx ia resp. ib IIC T6
II 1/2 GD T 95°C EEx ia resp. ib IIC T4

for Temperature class T4:
U_i = 17.5 V
I_i = 360 mA
P_i = 2.52 W

for Temperature class T6:
U_i = 24 V
I_i = 250 mA
P_i = 1.2 W

effective internal capacitance
C_i = 0

effective internal inductance
L_i ≤ 10 µH

Maximum permissible ambient temperatures depending on the temperature class:
T4:
-40°C ... +85°C (-40°F ... +185°F)
-40°C ... +40°C (-40°F ... +104°F)

T5, T6:
-40°C ... +40°C (-40°F ... +104°F)

Transmitters of category 3 for the application in "Zone 2" according to the directions 94 / 9 / EC (ATEX)

Transmitters with 4...20 mA output signal and HART communication

Marking:
II 3 GD T 50°C EEx nL IIC T6
II 3 GD T 95°C EEx nL IIC T4

EC-Type-Examination Certificate no.:
ZELM 01 ATEX 3059
and 1. Supplement

Operating conditions:
Supply and signal circuit (terminals signal + /-):
U ≤ 45 V
I ≤ 22.5 mA

Maximum permissible ambient temperatures depending on the temperature class:
T4:
Ta = -40°C ... +85°C (-40°F ... +185°F)
T5, T6:
Ta = -40°C ... +40°C (-40°F ... +104°F)

Transmitters of the type of protection "flameproof enclosure EEx d" according to the directions 94 / 9 / EC (ATEX)

Transmitters with 4...20 mA output signal and HART communication and Fieldbus-transmitters (PROFIBUS PA / FOUNDATION Fieldbus)

Marking:
II 1/2 G EEx d IIC T6

EC-Type-Examination Certificate no.: PTB 00 ATEX 1018

Ambient temperature range: -40°C ... +75°C (-40°F ... +167°F)

Factory Mutual (FM)

Transmitters with 4...20 mA output signal and HART communication

Intrinsically Safe:
Class I; Division 1; Groups A, B, C, D;
Class I; Zone 0; Group IIC; AEx ia IIC

Degree of protection:
NEMA Type 4X (indoor or outdoor)

Maximum permissible ambient temperatures depending on the temperature class:

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>Temperature class</th>
<th>I_max</th>
<th>P_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 ... -10°C</td>
<td>T4</td>
<td>200 mA</td>
<td>0.80 W</td>
</tr>
<tr>
<td>-40 ... -20°C</td>
<td>T4</td>
<td>1.00 W</td>
<td>1.00 W</td>
</tr>
<tr>
<td>-40 ... -30°C</td>
<td>T4</td>
<td>0.75 W</td>
<td>0.75 W</td>
</tr>
<tr>
<td>-40 ... -40°C</td>
<td>T6</td>
<td>25 mA</td>
<td>0.50 W</td>
</tr>
<tr>
<td>-40 ... -50°C</td>
<td>T6</td>
<td>20 mA</td>
<td>0.20 W</td>
</tr>
<tr>
<td>-40 ... -60°C</td>
<td>T6</td>
<td>10 mA</td>
<td>0.10 W</td>
</tr>
<tr>
<td>-40 ... -70°C</td>
<td>T6</td>
<td>5.00 W</td>
<td>0.50 W</td>
</tr>
</tbody>
</table>

Fieldbus-transmitters (PROFIBUS PA / FOUNDATION Fieldbus)

Intrinsically Safe:
Class I, II, and III Division 1, Groups A, B, C, D, E, F, G;
Class I, Zone 0, AEx ia Group IIC T6; T4

Non- incendive Class I, II, and III, Division 2,
Groups A, B, C, D, F, G

Transmitters with 4...20 mA output signal and HART communication and Fieldbus-transmitters (PROFIBUS PA / FOUNDATION Fieldbus)

Explosion Proof:
Class I, Division 1, Groups A, B, C, D
Class II/III, Division 1, Groups E, F, G

Degree of protection:
NEMA Type 4X (indoor or outdoor)

Canadian Standard (CSA)

Transmitters with 4...20 mA output signal and HART communication and Fieldbus-transmitters (PROFIBUS PA / FOUNDATION Fieldbus)

Explosion Proof:
Class I, Division 1, Groups A, B, C, D
Class II/III, Division 1, Groups E, F, G

Degree of protection:
NEMA Type 4X (indoor or outdoor)
Multivariable Transmitter 267/269C
Flow Compensation

<table>
<thead>
<tr>
<th>Company</th>
<th>Order No.</th>
<th>Measuring point</th>
<th>In charge</th>
<th>Dept. / Phone</th>
<th>Date / Signature</th>
<th>ABB order no.</th>
<th>ABB Position no.</th>
<th>ABB in charge</th>
<th>Dept. phone</th>
</tr>
</thead>
</table>

Primary Device
- Orifice Corner Taps, ISO
- Orifice Flange Taps, ISO
- Orifice D- and D/2-Taps, ISO
- Orifice Corner Taps, ASME
- Orifice Flange Taps, ASME
- Orifice D- and D/2-Taps, ASME
- Orifice Flange Taps, AGA3
- Orifice 2.5D- and 8D-Taps
- Small bore orifice, flange taps
- Small bore orifice, corner taps taps
- Nozzle ISA 1932
- Nozzle, Long Radius Wall Tap, ISO
- Nozzle, Long Radius Wall Tap, ASME
- Venturi, Rough Cast Inlet, ISO
- Venturi, Machined Inlet, ISO
- Venturi, Welded Inlet, ISO
- Venturi, Rough Cast Inlet, ASME
- Venturi, Machined Inlet, ASME
- Venturi, Welded Inlet, ASME
- Venturi, Nozzle, ISO
- Area Averaging Meter
- Pitot tube, ISO 3966
- V-Cone
- Wedge Element
- Integral Orifice Assembly
- Density Correction (unknown Primary Element)

Pipe Diameter

<table>
<thead>
<tr>
<th>Material Primary Element</th>
<th>Material Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steels</td>
<td>Carbon steels</td>
</tr>
<tr>
<td>Stainless steels, ferritic</td>
<td>Stainless steels, ferritic</td>
</tr>
<tr>
<td>Stainless steels, austenitic</td>
<td>Stainless steels, austenitic</td>
</tr>
<tr>
<td>Copper-base alloys</td>
<td>Copper-base alloys</td>
</tr>
<tr>
<td>Brass</td>
<td>Brass</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nickel</td>
</tr>
<tr>
<td>Hastelloy C</td>
<td>Hastelloy C</td>
</tr>
<tr>
<td>Monel</td>
<td>Monel</td>
</tr>
</tbody>
</table>
Measuring Range

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Saturated Steam</th>
<th>Heated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. measuring range</td>
<td>limits of compensation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differencial pressure</td>
<td>mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs. pressure</td>
<td>0 ... 20 bar</td>
<td>0 ... 100 bar</td>
<td>0 ... 411 bar</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>bar</td>
<td>bar</td>
</tr>
<tr>
<td>Hydrostatic pressure of liquid column (condensate)</td>
<td>mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature measurement (not for saturated steam)</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>-50 ... +650 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed value for temperature</td>
<td>°C</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Calculation values primary element

<table>
<thead>
<tr>
<th>Medium</th>
<th>Water</th>
<th>Saturated Steam</th>
<th>Heated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs. pressure</td>
<td>P_{abs,r} =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature measurement (not for saturated steam)</td>
<td>t_r =</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass flow rate</td>
<td>Q_{m,r} =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential pressure</td>
<td>∆p_r =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mbar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Isentropic exponent (not for saturated steam and heated steam) \(\kappa = \)
- Ratio of diameters (not for Integral Orifice Assembly, Area Averaging Meter, Pitot tube, Density Correction) \(\beta = d/D = \)
- Reynolds number (only for nozzles and orifices) \(Re_D = \)
- Correction Factor Area Averaging Meter \(^1\) (not for water)

Calculation done for flow

\[% \times Q_r \]

\(^1\) Only necessary if Area Averaging Meter is used as primary element.
If factor should not be taken into consideration or is unknown, please add "0".
Measuring Range

<table>
<thead>
<tr>
<th>Differential pressure</th>
<th>Lower range value</th>
<th>Upper range value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. pressure</td>
<td>0 ... 20 bar bar</td>
<td>0 ... 100 bar bar</td>
</tr>
<tr>
<td>Hydrostatic pressure of liquid column (requires zero shift for absolute pressure measurement)</td>
<td>mbar</td>
<td></td>
</tr>
<tr>
<td>Temperature measurement</td>
<td>-50 ... +650 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Fixed value for temperature</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Calculation values primary element

<table>
<thead>
<tr>
<th>Medium (Flüssigkeit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. pressure P_{abs,r} = bar</td>
</tr>
<tr>
<td>Temperature t_r = °C</td>
</tr>
<tr>
<td>Density (\rho_r) kg/m³</td>
</tr>
<tr>
<td>Mass flow rate Q_{m,r} = kg/s</td>
</tr>
<tr>
<td>Differential pressure (\Delta p_r) mbar</td>
</tr>
</tbody>
</table>

| Ratio of diameters (not for Integral Orifice Assembly, Area Averaging, Meter, Pitot tube, Density Correction) \(\beta = d/D = \) |
| Reynolds number (only for nozzles and orifices) \(Re_D = \) |

| Calculation done for flow % x Q_r |

Measurement of liquid

<table>
<thead>
<tr>
<th>Density = f(t), (p = \text{const.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (°C)</td>
</tr>
</tbody>
</table>

Min.2, max. 6 value pairs necessary
Measuring Range

<table>
<thead>
<tr>
<th>Differential Pressure</th>
<th>Max. range</th>
<th>Limits of compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower range value</td>
<td>Upper range value</td>
</tr>
<tr>
<td>Abs. pressure</td>
<td>0 ... 20 bar</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td>0 ... 411 bar</td>
<td>bar</td>
</tr>
<tr>
<td>Temperature measurement</td>
<td>0 ... 200 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Fixed value for temperature</td>
<td>-50 ... +650 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Calculation values primary element

<table>
<thead>
<tr>
<th>Medium (Gas)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. pressure</td>
<td>$p_{abs,r}$</td>
<td>bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>t_r</td>
<td>°C</td>
</tr>
<tr>
<td>Standard density</td>
<td>ρ_n</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Density</td>
<td>ρ_r</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Standard volume flow rate</td>
<td>$Q_{m,r}$</td>
<td>kg/s</td>
</tr>
<tr>
<td>Differential pressure</td>
<td>Δpr</td>
<td>mbar</td>
</tr>
</tbody>
</table>

Ratio of diameters

(Not for Integral Orifice Assembly, Area Averaging Meter, Pitot tube, Density Correction)

<table>
<thead>
<tr>
<th>Ratio of diameters</th>
<th>$\beta = \frac{d}{D}$</th>
</tr>
</thead>
</table>

Reynolds number

(Only for nozzles and orifices)

<table>
<thead>
<tr>
<th>Reynolds number</th>
<th>Re_D</th>
</tr>
</thead>
</table>

Isentropic exponent

<table>
<thead>
<tr>
<th>Isentropic exponent</th>
<th>κ</th>
</tr>
</thead>
</table>

Correction Factor Area Averaging Meter

(calculation done for flow $% \times Q_r$)

<table>
<thead>
<tr>
<th>Correction Factor Area Averaging Meter</th>
<th>K-factor should be also compensated, please add '0'</th>
</tr>
</thead>
</table>

If the influence of temperature and pressure on real gas factor / compressibility factor:

Real gas factor

$Z = f(p,t)$

<table>
<thead>
<tr>
<th>Real gas factor</th>
<th>$Z = f(p,t)$</th>
</tr>
</thead>
</table>

Compressibility factor

$K = \frac{Z}{Z_n}$

<table>
<thead>
<tr>
<th>Compressibility factor</th>
<th>$K = \frac{Z}{Z_n}$</th>
</tr>
</thead>
</table>

Temperature

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>min</th>
<th>average</th>
<th>max</th>
</tr>
</thead>
</table>

Pressure

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>min</th>
<th>average</th>
<th>max</th>
</tr>
</thead>
</table>

1) Only necessary if Area Averaging Meter is used as primary element. If factor should not be taken into consideration or is unknown, please add '0'.
Linearization Primary Element

If the non-linearity is known for a primary element, e.g. from calibration, a linearization can be done with max. 22 pairs of values. Enter these values (actual differential pressure and ideal theoretical differential pressure) into the table below.

<table>
<thead>
<tr>
<th>Input</th>
<th>Differential Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>act. value [%]</td>
<td>set point [%]</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

12.1 Compliance with pressure device rules (97/23/EC)

12.1.1 Devices with PS >200 bar

Devices with a permissible pressure PS >200 bar have been subject to a conformity validation by TÜV NORD (0045) acc. to module H. They may be used for liquids of group 1 (PED:1G).

The data label contents the following specifications:

- PED: 1G
- Model: Transmitter xx HART
- S/N xxxxxxxx Year 2003
- PED:1G PS: 410 bar IP ≥ 65
- Flange 1.4404 Gasket Buna
- Diaph Hast. C Fill Siliconel
- LRL -2.5 bar 10.5 ... 30V DC
- URL +2.5 bar 4 ... 20 mA
- MWP 410 bar P: 0 ... 410 bar abs.
- min. Span 0.025 bar
- adjusted: +0.00...+0.650 bar
- TAG: /

12.1.2 Devices with PS ≤ 200 bar

Devices with a permissible pressure PS ≤ 200 bar correspond to article 3 paragraph (3). They have not been subject to a conformity validation. These instruments were designed and manufactured acc. to the proven and practical engineer experiences (SEP).

The CE-label on the data label does not apply for the pressure device rules.

In this case the data label contents the following specification:

PED: SEP.
13 Dimensional Drawings
Transmitter with barrel-type amplifier housing
Errors and omissions excepted. All dimensions in inches; mm in brackets.

Figure 22.

1 1/4-18 NPT female thread for process connection or screw plug
2 Thread for fastening screws:
 7/16-20 UNF, 16mm deep. Minimum screw-in length: 12mm; however, 15mm for MWP 410.
 For flange acc. to DIN 19 213: M10 with MWP 6, MWP 20 and MWP 100
 M12 with MWP 410. Minimum screw-in length acc. to DIN 19 213
3 Electrical connection:
 M 20x1.5 cable gland or
 1/2-14 NPT female thread or
 plug Han 8U
 (PROFIBUS PA and FOUNDATION Fieldbus: M12x1 or 7/8)
4 Type plate
5 Sensor plate
6 Threaded hole 1/4-18 NPT for drain or vent valve
7 Captive screw for key unit cover
8 Housing rotation stop screw
9 Blind plug
10 Enclosure cover
11 Tie-on plate, e.g., for measuring point identification (optional)
12 Plate, also with key legend.
13 Fastener for seal ring (cover and key-board cover)

Space must be available to rotate the key-board cover

(Enlarged drawing)
Transmitter with DIN-type amplifier housing

Errors and omissions excepted. All dimensions in inches; mm in brackets.

1/4-18 NPT female thread for process connection or screw plug

Thread for fastening screws:
7/16-20 UNF, 16mm deep. Minimum screw-in length:
12mm; however, 15mm for MWP 410.

For flange acc. to DIN 19 213: M10 with MWP 6, MWP 20 and MWP 100, M12 with MWP 410.

Minimum screw-in length acc. to DIN 19 213.

Electrical connection:
M 20x1.5 cable gland or
1/2-14 NPT female thread or plug Han 8U
(PROFIBUS PA and FOUNDATION Fieldbus: M12x1 or 7/8)

Type plate

Sensor plate

Captive screw for key unit cover

Housing rotation stop screw

Blind plug

Enclosure cover

Tie-on plate, e.g. for measuring point identification (optional).

Plate, also with key legend

Fastener for seal ring (cover and key-board cover)
14 Mounting Options
With bracket for barrel type electronic housing.
(optional, code B2/B4)
Errors and omissions excepted. All dimensions in mm.

Fig. 24:
Vertical pipe mounting Horizontal pipe mounting Vertical pipe mounting and transmitter above the mounting bracket Horizontal pipe mounting and transmitter above the mounting bracket

Fig. 25: 1 U-bolt for pipe mounting.
Pipe: 2" (int. diam.)
Permissible pipe diam.
53...64 mm
15 EC Declaration of Conformity

EC-KONFORMITÄTSERLÄRUNG
EC DECLARATION OF CONFORMITY
ATTESTATION DE CONFORMITE C.E.

Hersteller: ABB Automation Products GmbH
Manufacturer / Fabricant: Minden
Anschrift: Schillerstraße 72
Address / Adresse: D-32425 Minden

Das Produkt stimmt mit den Vorschriften folgender Europäischer Richtlinien überein:
This product meets the requirements of the following European directives:
Les produits répondent aux exigences des Directives C.E. suivantes:

89/336/EWG EMV-Richtlinie *
89/336/EEC Electromagnetic Compatibility Directive *
89/336/C.E. Directives concernant la compatibilité électromagnétique *

73/23/EWG Niederspannungsrichtlinie *
73/23/EEC EC-Low-Voltage Directive *
73/23/C.E. Directives concernant la basse tension *

97/23/EG Druckgeräte-Richtlinie, Kategorie III Modul H (für Druck PS > 200bar)
97/23/EEC Pressure Equipment Directive, Category III Module H (for pressure PS > 200 bar)
97/23/C.E. Directive Equipements sous Pression, Catégorie III Module H (pour pression PS > 200 bar)

Druck/Pressure/Pression PS ≤ 200bar: SEP

Für Geräte in Ex-Ausführung gemäß Kennzeichnung auf Typschild gilt zusätzlich:
For products in Ex design according to identification on nameplate the following is additionally applicable:
Pour les produits en exécution Ex selon marque sur plaque signalétique le suivant est aussi applicable:

94/9/EG ATEX-Richtlinie
94/9/EEC ATEX Directive
94/9/C.E. ATEX Directive

* einschließlich Änderungen und deutscher Umsetzung durch das EMVG und Gerätesicherheitsgesetz
* including alterations and German realization by the EMC law and the instruments safety law
* y compris les modifications et la réalisation allemande par la loi concernant la compatibilité électromagnétique et la sécurité d’appareils

Die Übereinstimmung mit den Vorschriften dieser Richtlinien wird nachgewiesen durch die vollständige Einhaltung folgender Normen:
Conformity with the requirements of these Directives is proven by complete adherence to the following standards:
La conformité avec les exigences de ces directives est prouvée par l’observation complète des normes suivantes:

EN 50 081-1 / EN 50 082-2 / EN 61 010-1
Ex: EN 50 014 / EN 50 284 / EN 50 018 / EN 50 020

Datum
Date
Dr. Wolfgang Scholz
Head of R&D
Leiter &D
Responsible R&D

24.06.2003

Bernhard Kruse
Leiter Qualitätsmanagement
Head of Quality Management
Responsible Assurance de la Qualité

ABB Automation Products GmbH

Postanschrift:
Schillerstr. 72
D-32425 Minden

Besuchsadresse:
Schillerstr. 72
D-32425 Minden
Telefon: +49 (0) 571 830 0
Telefax: +49 (0) 571 830 1646
Internet: http://www.abb.com/de

Sitz der Gesellschaft:
Esborn
Registerrichter:
Amtsgericht Frankfurt/Main
Handelsregister:
HRB 45651
USt-Idnr.: DE 115 300 097

Vorsitz des Aufsichtsrates:
Bernhard Jucker
Geschäftsführung:
Heinz-Peter Pattanholz (Vorstand)
Joachim Braun
Erik Huggens
Dr. Peter Tenkeisch

Bankverbindung:
Commerzbank AG Frankfurt
Konto: 589 035 220
BLZ: 500 400 00