

# Process Power Manager 5 Library for 800xA PMS 5.6.5 Circuit Breaker Control Library Manual

Version 5.6-5





# Process Power Manager 5 Library for 800xA

Library for 800xA PMS 5.6.5 Circuit Breaker Control Library Manual

Version 5.6-5

#### NOTICE

This document contains information about one or more ABB products and may include a description of or a reference to one or more standards that may be generally relevant to the ABB products. The presence of any such description of a standard or reference to a standard is not a representation that all of the ABB products referenced in this document support all of the features of the described or referenced standard. In order to determine the specific features supported by a particular ABB product, the reader should consult the product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

This product is designed to be connected to and to communicate information and data via a network interface. It is the reader's sole responsibility to provide and continuously ensure a secure connection between the product and the reader's network or any other network (as the case may be). The reader shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license. This product meets the requirements specified in EMC Directive 2004/108/EC and in Low Voltage Directive 2006/95/EC.

#### TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2002 – 2022 by ABB. All Rights Reserved.

Release: September 2022 Document number: 3BNP100234-0391 B

# **Table of Contents**

| Table of Contents |                                                       |                |  |
|-------------------|-------------------------------------------------------|----------------|--|
| List of Figures7  |                                                       |                |  |
| List of           | Tables                                                | . 8            |  |
| About This        | User Manual                                           | 11             |  |
| Gener             | al                                                    | 11             |  |
| Docun             | nent Conventions                                      | 11             |  |
| Warnir            | ng. Caution. Information, and Tip Icons.              | 11             |  |
| Termir            | nology                                                | 12             |  |
| Relate            | d Documentation                                       | 15             |  |
| Target            | Audience                                              | 15             |  |
| Compa             | atibility                                             | 15             |  |
| Syster            | n Security                                            | 15             |  |
| Section 1         | Function                                              | 17             |  |
| Soction 2         | Control Modulo pmsCBStandardM                         | 10             |  |
|                   |                                                       | 13<br>04       |  |
| 2.1 Int           | roduction                                             | 21             |  |
| 2.2 De            | talled Engineering                                    | 23             |  |
| 4                 | 2.2.1 Operator Note                                   | 23             |  |
| 4                 | 2.2.2 Measurements                                    | 24             |  |
| 4                 | 2.2.3 Breaker Position                                | 25             |  |
| 4                 | 2.2.4 Graphic Symbol Standard                         | 21             |  |
| 4                 | 2.2.5 Indications for Breaker Status, Mode, Alarm and | ഹ              |  |
|                   |                                                       | 20             |  |
| 4                 | 2.2.0 Output commanus                                 | 29<br>24       |  |
| 4                 | 2.2.7 Interlocking                                    | 31<br>24       |  |
|                   | 2.2.0 Polific of Control medeo                        | 34<br>25       |  |
| 4                 | 2.2.9 Control modes                                   | 30<br>20       |  |
| 4                 | 2.2.10 Operation continands                           | 20<br>20       |  |
| 4                 |                                                       | 29<br>70       |  |
| 4                 | 2.2.12 Ald1115                                        | 40             |  |
| 4                 | 2.2.13 Events                                         | 45             |  |
| 4                 | 2.2.14 Required 1/0                                   | 40             |  |
| 2302              | rameters                                              | 40<br>1 Q      |  |
| 2.51 a            | 2 3 1 Parameter details                               | 40<br>/ 0      |  |
| 2                 |                                                       | +3             |  |
| Section 3         | Control Module pmsCBIndM                              | 57             |  |
| 3.1 Int           | roduction                                             | 60             |  |
| 3.2 De            | tailed Engineering                                    | 61             |  |
| 3                 | 3.2.1 Measurements                                    | 61             |  |
| 3                 | 3.2.2 Position status                                 | 62             |  |
| 3                 | 3.2.3 Graphic Symbol Standard                         | 64             |  |
| 3                 | 3.2.4 Alarms                                          | 65             |  |
| 3                 | 3.2.6 Events                                          | 67             |  |
| 3.3 Pa            | rameters                                              | 67             |  |
| 3                 | 3.3.1 Parameter details                               | 69             |  |
| Section 4         | Control Module pmsCBSyncM                             | 72             |  |
| 4 1 Int           | roduction                                             | -<br>7/        |  |
| 7.1111            |                                                       | , <del>+</del> |  |

| 4.2 D      | etailed Engineering            | 76 |
|------------|--------------------------------|----|
| Section 5  | Capacity & Performance         | 77 |
| 5.1 H      | eap Utilization                | 77 |
|            | 5.1.1 pmsCBStandardM           | 77 |
|            | 5.1.2 pmsCBIndM                | 77 |
|            | 5.1.3 pmsCBSyncM               | 77 |
| 5.2 E      | xecution Time                  |    |
|            | 5.2.1 pmsCBStandardM           |    |
|            | 5.2.2 pmsCBIndM                |    |
|            | 5.2.3 pmsCBSyncM               |    |
| Appendix / | A Appendix1                    | 79 |
| A.1 B      | reaker Open/Closed indications | 79 |
| A.3 T      | ruck Position Indications      | 80 |
| A.4 T      | ruck Position Indications      |    |
| A.5 T      | ruck Position Indications      |    |
| Appendix / | A Revision table               | 83 |
|            |                                |    |

# List of Figures

| Figure 1 Control module pmsCBStandardM                            | 19 |
|-------------------------------------------------------------------|----|
| Figure 2 Operator note                                            | 23 |
| Figure 3 Faceplate tab Main and Extended faceplate, Edit          | 24 |
| Figure 4 Circuit breaker status                                   | 25 |
| Figure 5 Breaker indications                                      | 28 |
| Figure 6 Faceplate tab Parameters - Pulse time configuration      | 29 |
| Figure 7 Presentation of interlock in the main faceplate          | 31 |
| Figure 8 Override of interlock A                                  | 32 |
| Figure 9 Faceplate tab Edit for Interlocks                        | 33 |
| Figure 10 Local point of control                                  | 34 |
| Figure 11 Extended faceplate, maintenance mode                    | 35 |
| Figure 12 Faceplate tab Simulation                                | 36 |
| Figure 13 Auto and Manual status connected back to AutoPar input  | 37 |
| Figure 14 Main faceplate, Auto mode                               | 37 |
| Figure 15 Main faceplate, Manual mode                             | 38 |
| Figure 16 Faceplate tab Maintenance, Number of operations counter | 39 |
| Figure 17 Faceplate tab Alarms                                    | 40 |
| Figure 18 Faceplate tab Alarms for customized alarms              | 42 |
| Figure 19 Faceplate tab Events / Edit for customized events       | 43 |
| Figure 20 Faceplate tab Trend                                     | 46 |
| Figure 21 Control Module pmsCBIndM                                | 57 |
| Figure 22 pmsCBIndM Faceplate tab Main                            | 61 |
| Figure 23 Position status pmsCBIndM                               | 62 |
| Figure 24 Faceplate tab Alarms for pmsCBIndM                      | 65 |
| Figure 25 Control module pmsCBSyncM                               | 72 |

## **List of Tables**

| Table 1 Terminology                                                             | 12 |
|---------------------------------------------------------------------------------|----|
| Table 2 Related Documentation                                                   | 15 |
| Table 3 Parameters of the control module pmsCBStandardM                         | 19 |
| Table 4 Parameter configuration for measurement signals                         | 24 |
| Table 5 Parameter configuration for circuit breaker status                      | 25 |
| Table 6 Configuration values for the FBConfig parameter                         | 26 |
| Table 7 Breaker indications                                                     | 28 |
| Table 8 Output open and close commands from pmsCBStandardM                      | 29 |
| Table 9 Time configuration for intermediate pos. alarms and open/close commands |    |
| Table 10 Configuration values for the FollowLocalFB parameter                   |    |
| Table 11 Configuration parameters for interlock                                 | 31 |
| Table 12 Parameter configuration for interlocking behaviour                     | 32 |
| Table 13 Faceplate configuration for overriding an interlock                    | 33 |
| Table 14 Parameter configuration for interlock time-out                         |    |
| Table 15 Configuration parameters for interlock                                 |    |
| Table 16 Parameter and faceplate configuration for local point of control       |    |
| Table 17 Faceplate configuration for Maintenance mode                           |    |
| Table 18 Faceplate configuration for simulation mode                            |    |
| Table 19 Faceplate configuration for Auto mode                                  | 37 |
| Table 20 Faceplate configuration for Manual mode                                | 38 |
| Table 21 Faceplate configuration for Number of operations                       |    |
| Table 221 ist of alarms and message configuration                               | 40 |
| Table 22 Eist of alarms and message configuration                               |    |
| Table 24 Parameter and faceplate configuration for customized alarms            |    |
| Table 25 List of standard events and massage configuration                      |    |
| Table 26 Significance of IODer components                                       |    |
| Table 20 Significance of IOPar components                                       |    |
| Table 27 Parameter and Taceplate configuration for Trend                        |    |
| Table 28 Parameters of pmsCBStandardM                                           |    |
| Table 29 Name and description                                                   |    |
| Table 30 Voltage Level                                                          |    |
| Table 31 CBT ype and FBConfig                                                   |    |
| Table 32 NormalMode                                                             |    |
| Table 33 FollowLocalFB                                                          |    |
| Table 34 EvSeverity, AlSeverity and Class                                       |    |
| Table 35 IOPar                                                                  |    |
| Table 36 Digital I/O for pmsCBStandardM                                         | 51 |
| Table 37 Analogue Inputs for pmsCBStandardM                                     | 51 |
| Table 38 FBConfig values                                                        | 51 |
| Table 39 Circuit breaker commands                                               |    |
| Table 40 AutoPar                                                                | 52 |
| Table 41 AutoPar components                                                     | 52 |
| Table 42 AlarmPar                                                               | 52 |
| Table 43 AlarmPar components                                                    | 53 |
| Table 44 IlockPar                                                               | 53 |
| Table 45 IlockPar components                                                    | 53 |
| Table 46 IlockConfig values                                                     | 54 |
| Table 47 ErrPar                                                                 | 54 |
| Table 48 ErrPar for pmsCBStandardM                                              | 54 |
| Table 49 Status                                                                 | 54 |
| Table 50 Status parameters                                                      | 54 |
| Table 51 Checked positions and position related alarms (FBConfig=3)             | 55 |
| Table 52 Parameters of the control module pmsCBIndM                             | 58 |
| Table 53 Parameter configuration for measurement signals                        | 61 |
| Table 54 Position status pmsCBIndM                                              | 62 |
| Table 55 Configuration values for the FBConfig parameter                        |    |
| Table 56 List of alarms and message configuration.                              |    |
| Table 57 List of standard events and message configuration                      |    |
| Table 58 Parameters of pmsCBIndM                                                |    |
| Table 59 Position feedbacks for pmsCBIndM                                       | 69 |
|                                                                                 |    |

| Table 60 Measurement connections                                 | . 69 |
|------------------------------------------------------------------|------|
| Table 61 Error signals                                           | . 70 |
| Table 62 Status (output)                                         | . 71 |
| Table 63 Control module pmsCBSyncM parameters                    | . 72 |
| Table 64 Firmware version downloaded on the utilized controllers | . 77 |
| Table 65 Heap utilization of pmsCBStandardM                      | . 77 |
| Table 66 Heap utilization of pmsCBIndM                           | . 77 |
| Table 67 Heap utilization of pmsCBSyncM                          | . 77 |
| Table 68 Execution time of pmsCBStandardM                        | . 78 |
| Table 69 Execution time of pmsCBIndM                             | . 78 |
| Table 70 Execution time of pmsCBSyncM                            | . 78 |
| Table 71 Breaker open/closed indications                         | . 79 |
| Table 72 Truck position indications, IEC                         | . 80 |
| Table 73 Truck position indications, ANSI                        | . 81 |
| Table 74 Truck position indications, ANSI                        | . 82 |
|                                                                  |      |

# **About This User Manual**

### General

This User Manual provides the configuration information for the Circuit Breaker control modules, which are part of the PMS Library. The information in this manual is directed towards the project engineers.

The reader should be familiar with the Control IT for AC 800M/C and Operate IT environment.

## **Document Conventions**

Microsoft Windows conventions are normally used for the standard presentation of material when entering text, key sequences, prompts, messages, menu items, screen elements, and so on.

The following conventions are used for the presentation of material:

- The words in names of screen elements (for example, the title in the title bar of a window, the label for a field in a dialog box) are initially capitalized.
- Capital letters are used for the name of a keyboard key if it is labelled on the keyboard. For example, press the ENTER key.
- Lowercase letters are used for the name of a keyboard key that is not labelled on the keyboard. For example, the space bar, comma key, and so on.
- Press CTRL+C indicates that you must hold down the CTRL key while pressing the C key (to copy a selected object in this case).
- The names of push and toggle buttons are boldfaced. For example, click OK.
- The names of menus and menu items are boldfaced. For example, the File menu.
- The following convention is used for menu operations: MenuName > MenuItem > CascadedMenuItem. For example: choose File > New > Type.
- The Start menu name always refers to the Start menu on the Windows Task Bar.
- System prompts/messages are shown in the Courier font, and user responses/input in boldfaced Courier font. For example, if you enter a value out of range, the following message is displayed:

Entered value is not valid. The value must be 0 to 30.

• You may be instructed to enter the string TIC132 in a field. The string is shown as follows in the procedure:

**TIC132** 

• Variables are shown in italics:

IOPar.Govmode8.value

• Faceplate tabs are boldfaced:

AVR Mode handler

### Warning, Caution, Information, and Tip Icons

This publication includes **Warning**, **Caution**, and **Information** if/where appropriate to point out safety related or other important information. It also includes **Tip** to point out useful hints to the reader. The corresponding symbols should be interpreted as follows:



Electrical warning icon indicates the presence of a hazard which could result in *electrical shock*.

Warning icon indicates the presence of a hazard which could result in personal injury.

Caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in *corruption of software or damage to equipment/property*.



Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

# Terminology

 Table 1 lists terms used in this document and associated with the Process Power Manager 5.

 The reader should be familiar with these terms before proceeding further in this user manual.

| Term                              | Description                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC 800M/C<br>Connect              | Name of the connection/integration between Control IT for AC 800M/C and Operate IT.<br>The following software packages are included under this name:<br>- Aspect System for AC 800M/C<br>- Graphics Object Type Library for AC 800M/C                                                                                                    |
| Aspect                            | A description of some properties of an Aspect Object. Some examples of aspects are name, circuit diagram, process display and control logic.                                                                                                                                                                                             |
| Aspect Object                     | A computer representation of a real object, such as a pump, a valve, an order or a virtual object, such as a service or an object type. An Aspect Object is described by its aspects and these aspects are organized in structures.                                                                                                      |
| Aspect<br>System for<br>AC 800M/C | One part of the AC 800M/C Controller Integration product (the other part is the Graphics Type Library for AC 800M/C, see below). Gives access to the controllers AC 800M, AC 800C and Advant Controller 250, by mirroring all functions in the controllers and their I/O to Operate IT Process Portal from Control Builder Professional. |

#### Table 1 Terminology

| Connectivity<br>Server                       | Provides the integration between the Operate IT system and a controller or a device capable of sourcing data.                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contingency                                  | An electrical network within the plant consists of at least one load busbar to which loads, generation and the public grid can be connected. Several of these electrical networks can exist at the same time within the plant electrical network. Each combination is called a contingency.                                                                                                     |
| Control<br>Builder M                         | Name of the Control Builder M software products. Available in three versions: Control Builder Basic, Control Builder Standard and Control Builder Professional.<br>These are fully integrated Windows 2000 Professional / Windows XP applications for efficient configuration and programming of the ABB controllers AC 800M, AC 800C and Advant Controller 250.                                |
| Control<br>Builder<br>Professional           | The powerful programming version of the Control Builder M software.                                                                                                                                                                                                                                                                                                                             |
| Control<br>Builder<br>Project<br>Explorer    | The name of the project navigator in the Control Builder M software, which is used to navigate through, create or modify an automation project.                                                                                                                                                                                                                                                 |
| Control IT for<br>AC 800M/C                  | The name of the collection of ABB hardware and software products for AC 800M/C.                                                                                                                                                                                                                                                                                                                 |
| Control<br>Network                           | Product name of the ABB network between AC 800M/C controllers, tools and Operator workplaces.                                                                                                                                                                                                                                                                                                   |
| Critical<br>breaker                          | A breaker the position of which determines the electrical network configuration.                                                                                                                                                                                                                                                                                                                |
| Display<br>Element                           | A graphical element, which illustrates an object (motor, regulator etc.). In general, clicking on the element will show a faceplate for supervision and control of the object.                                                                                                                                                                                                                  |
| Electrical<br>network                        | A combination of components such as load busbars, generators, transformers and cables connected electrically. A network contains at least one load busbar.                                                                                                                                                                                                                                      |
| Faceplate                                    | A configurable type of graphic interface normally used by operators for process supervision and control.                                                                                                                                                                                                                                                                                        |
| Graphics<br>Type Library<br>for AC<br>800M/C | One part of the AC 800M/C Controller Integration product (the other part is the Aspect System for AC 800M/C, see above). Graphic aspects such as display elements, faceplates and dialogs are available for use in Operate IT Workplace. The graphic aspects correspond to the types delivered in the Control Builder library.                                                                  |
| HSI                                          | Human System Interface.                                                                                                                                                                                                                                                                                                                                                                         |
|                                              | An individual description of the type.                                                                                                                                                                                                                                                                                                                                                          |
| Instance                                     | Every instance has the characteristics defined by the type, but each instance has its own individual behaviour.                                                                                                                                                                                                                                                                                 |
| I/O                                          | Input / Output signals.                                                                                                                                                                                                                                                                                                                                                                         |
| IT                                           | Information Technologies.                                                                                                                                                                                                                                                                                                                                                                       |
| LVS                                          | Low Voltage Switchgear.                                                                                                                                                                                                                                                                                                                                                                         |
| MCC                                          | Motor Control Center.                                                                                                                                                                                                                                                                                                                                                                           |
| MMS                                          | Manufacturing Message Specification. Specifies the structure of messages used for<br>industrial communication (manufacturing, process robotics, etc.). This is the application<br>layer used within MAP (Manufacturing Automation Protocol), a specification for open<br>communication based on the OSI model.<br>MMS for AC 800M/C is a protocol used in ABB Control<br>Network communication. |

| Object              | Objects represent the combination of data and associated procedures (operations that can be applied to the data) are represented. Objects represent significant elements or functions in the process control/process automation domain. Combining these objects creates applications. |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPC                 | OLE for Process Control. The Control IT for AC 800M/C software contains an OPC Server for AC 800M/C.                                                                                                                                                                                  |
| Operate IT          | The name of the collection of ABB products for daily operation and supervision of an automated process.<br>These products provide an environment for different user categories, such as engineers, operators and maintenance personnel.                                               |
| Plant<br>Explorer   | The name of the project or plant navigator in the Operate IT workplace for creating the Aspect Objects that are used for assembling various components of the plant. Can also be used for browsing and searching the structures of the plant.                                         |
| PMS                 | Power Management System.                                                                                                                                                                                                                                                              |
| PPM                 | Process Power Manager                                                                                                                                                                                                                                                                 |
| Process<br>Panel    | The name of the ABB product for local process monitoring and control. The key functionality is presentation of process information (numerical, text or graphical) on local operator or process panels including functional control keys.                                              |
| Process<br>Portal A | The name of the ABB product for process monitoring and control. The key functionality is presentation of process graphics, usage of faceplates, presentation of trends, and presentation of alarms.                                                                                   |
| Structure           | A hierarchical tree organization of Aspect Objects that describes the dependencies between the real objects. An Aspect Object can exist in multiple structures, e.g. both in a functional structure and in a location structure.                                                      |
| System<br>Extension | A plug-in software package, which provides the Operate IT system with extended functions and properties.                                                                                                                                                                              |
| Туре                | A general description of a unit that defines the behaviour of an individual unit called Instance. See also Instance.                                                                                                                                                                  |
| DCS                 | Distributed Control System                                                                                                                                                                                                                                                            |
| ENMC                | Electrical Network Monitoring & Control                                                                                                                                                                                                                                               |

## **Related Documentation**

Related documentation includes, but is not limited to, the table below. Other ABB 800xA documentation may also be relevant when configuring an 800xA Process Power Manager.

| Document ID     | Title                                      |
|-----------------|--------------------------------------------|
| 3BNP100234-0390 | PMS Library 5.6-5 Release Notes            |
| 3BNP100234-0391 | PMS Library 5.6-5 Circuit Breaker Control  |
| 3BNP100234-0392 | PMS Library 5.6-5 Generator Control        |
| 3BNP100234-0393 | PMS Library 5.6-5 Transformer Control      |
| 3BNP100234-0394 | PMS Library 5.6-5 Loadshedding             |
| 3BNP100234-0395 | PMS Library 5.6-5 Power Control            |
| 3BNP100234-0396 | PMS Library 5.6-5 Restart & Reacceleration |
| 3BNP100234-0397 | PMS Library 5.6-5 Report Data Collector    |
| 3BNP100234-0398 | PMS Library 5.6-5 Synchronization          |
| 3BSE037410      | Administration and Security                |

#### Table 2 Related Documentation

## **Target Audience**

This user manual is primarily intended for technical sales personnel, application, system engineers and maintenance personnel within ABB, external users and customers.



This user manual does not contain last-minute product information and updates which might affect functionality and/or performance. For information on last revisions, late changes and restrictions the user shall refer to *Release Notes*.



Some graphics have been carried over from previous loadshedding manuals, hence Windows frames, aspect names, library versions, etc. might be different than in current 800xA and PMS version. (e.g. PG2 suffix in aspect names is no longer present, etc.)

# Compatibility

For compatibility with previous versions of the product, refer to the *Release Notes*.

## **System Security**

The supplier of automation systems, based on PMS libraries, is responsible for the system integrity and security. We strongly recommend that strict password policies are applied.



Reference is made to document *Administration and Security*. The whole manual must be carefully consulted, with special attention given to *Security Planning* and *Security Configurations* for guidelines regarding system security, user authentication and password policies and setting up audit trails.

# **Section 1 Function**

There are three types of circuit breaker control modules in the PMS Library pmsCBLib:

- *pmsCBStandardM* Circuit breaker with control and supervision features.
- *pmsCBIndM* Circuit breaker with no control, only supervision features.
- *pmsCBSyncM* Circuit breaker with control, supervision and synchronization features.

The three control modules are described in the following chapters.

# Section 2 Control Module pmsCBStandardM

The *pmsCBStandardM* control module is included in the *pmsCBLib* library. A block presentation of the control module is shown in Figure 1. The parameters are briefly described in Table 3.



Figure 1 Control module pmsCBStandardM

| Parameter     | Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name          | Name of the circuit breaker. With the name upload tool from the process portal, this property will be used for identifying the object in 800xA. The name will be used to group the alarms and events and to identify the faceplate of the object. The name must be unique in the project.                                                                                                                                                                                     |  |  |  |
| Description   | Description of the circuit breaker. With the name upload tool of process portal, this property will be used for identifying the object in 800xA.                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Voltage level | Voltage level for object colouring. This property gives the object a colour in Single<br>Line Diagrams. Default settings for the colours are:<br>Level 1 - RGB N(0,176,232) - D(0,126,182) - L(50,226,255)<br>Level 2 - RGB N(232,160,168) - D(182,110,118) - L(255,210,218)<br>Level 3 - RGB N(176,232,176) - D(126,182,126) - L(226,255,226)<br>Level 4 - RGB N(255,255,128) - D(205,205,78) - L(255,255,178)<br>Level 5 - RGB N(64,128,128) - D(14,78,78) - L(114,178,178) |  |  |  |
|               | Level 6 - RGB N(198,101,0) - D(140,70,0) - L(255,154,53)<br>Level 7 - RGB N(240,160,13) - D(182,121,10) - L(249,209,136)<br>Level 8 - RGB N(207,204,73) - D(153,150,40) - L(227,225,149)<br>Level 9 - RGB N(81,181,171) - D(53,125,120) - L(174,221,217)<br>Level10- RGB N(185,157,91) - D(135,112,58) - L(223,210,181)                                                                                                                                                       |  |  |  |

| Table 3 Parameters | of the | control | module | pmsCBStandardM |
|--------------------|--------|---------|--------|----------------|
|--------------------|--------|---------|--------|----------------|

| Parameter     | Significance                                                                                                                                                                                                                                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СВТуре        | The parameter is used for configuring the graphical presentation of the circuit breaker;<br>'1'= circuit breaker, '3'= isolator (disconnector), '11'= circuit breaker with earthing,<br>'13'= isolator (disconnector) with earthing.                                                                                                       |
| FBConfig      | Configuration parameter for position status signals applicable for the circuit breaker;<br>'0'= Open and Closed positions, '1'= Closed position, '2'= Open, Closed and Service<br>positions, '3'= Closed and Service positions, '4'= Open, Closed, Service position and<br>Test Position, '5'= Closed, Service position and Test position. |
| NormalMode    | The parameter is used to configure the graphical presentation of normal mode; '1'= Manual, '2'= Auto, '3'= Local, ref. Table 7 Breaker indications                                                                                                                                                                                         |
| FollowLocalFB | Configuration parameter for the circuit breaker when in local point of control<br>'False'= Cmd0\Cmd1Level output is reset in local, 'True' = Cmd0\Cmd1Level follows<br>FB in local.                                                                                                                                                        |
| AlSeverity    | Alarm severity.<br>The alarm severity can be used for filtering the alarm list. Range 1-1000.                                                                                                                                                                                                                                              |
| EvSeverity    | Event severity.<br>The event severity can be used for filtering the event list. Range 1-1000.                                                                                                                                                                                                                                              |
| Class         | Alarm and Event Class.<br>This property can be used for grouping objects to appear in separate alarm/event<br>lists. Range 1-9999.                                                                                                                                                                                                         |
| IOPar         | Input/Output signals.<br>This parameter is used for connecting the I/O signals to the object. This parameter is a structured data type.                                                                                                                                                                                                    |
| AutoPar       | Structured parameter for connecting auto open/close commands to the circuit breaker.                                                                                                                                                                                                                                                       |
| AlarmPar      | Structured parameter for 16 user defined alarms.                                                                                                                                                                                                                                                                                           |
| EventPar      | Structured parameter for 16 user defined events.                                                                                                                                                                                                                                                                                           |
| llockPar      | Structured parameter for and configuring interlock signals.                                                                                                                                                                                                                                                                                |
| ErrPar        | Structured parameter for error signals to the circuit breaker.                                                                                                                                                                                                                                                                             |
| MeasPar       | Structured parameter for 16 user defined analogue measurements.                                                                                                                                                                                                                                                                            |
| ExtPar        | External parameters for application interaction. With this parameter it is possible to disable standard alarms and to disable the mode command buttons of the faceplate.                                                                                                                                                                   |
| Status        | Status indication for the checked closed/open position and the manual/auto mode of the breaker.                                                                                                                                                                                                                                            |

## **2.1 Introduction**

The control module type *pmsCBStandardM* provides control and supervision of circuit breakers. Following features are supported:

#### • Measurements

There are two kinds of mesurements, standard and customized:

- Standard measurements: Important electrical measurements displayed in the main faceplate tab:
  - Voltage
  - Frequency
  - Active power
  - Reactive power
  - Power factor
  - Current
- Customized measurements: Additionally, up to 16 customized measurements can be displayed numerically in another faceplate tab.

#### Position status

The following feedback signals facilitates supervision of circuit breaker position status:

- o Open indication
- o Closed indication
- Service position
- Test position
- o Earthed position

#### • Graphical Standard - IEC, ANSI

The graphical element can be configured to follow either the IEC or ANSI graphical standard.

#### • Output commands

Open and close commands can be issued as pulsed or as steady outputs:

- Open command (level)
- Open command (edge)
- Close command (level)
- Close command (edge)

Pulsed outputs remain high for a configurable time period. Steady outputs remain active until the opposite command is initiated. The control module checks for discrepancies between output commands and position status. Conflicts will raise alarms after a configurable period.

In local point of control steady outputs follow local feedback if the parameter 'Follow LocalFB' is set to 'True'.

#### • Interlocking

The circuit breaker can be interlocked for operation by conditions arising from supervisory programs or other objects. Five interlocks are available; one A-interlock (which can be overridden) and four B-interlocks.

#### • Point of Control (PoC)

The circuit breaker can be controlled from two locations:

- o Remote point of control: PMS-level of control via ABB's graphical aspects.
- Local point of control: equipment-level of control via vendor's local panel.

#### Control modes

Different control modes affect the operability:

- Maintenance mode: No operation commands are allowed.
- Simulation mode: The operation commands are simulated.
- Auto mode: Operation commands are controlled by application logic.
- Manual mode: Operation commands are issued via the faceplate.

#### • Operation commands

Following operations are available to the operator via the circuit breaker faceplate:

- Change of control modes
- Open/Close commands
- Override interlock

#### • Operations counter

A counter is provided to calculate how many times the circuit breaker is operated. It only counts when the circuit breaker is opened and it does not count when the maintenance or simulation mode are activated.

#### • Alarms

Alarms are divided in two categories:

- Standard alarms: : Alarms informing the operator of essential alarm conditions, and conditions arising from internal control module logic.
- Customized alarms: Up to 16 customized alarms can be raised through the control module although they originate from external logic.

#### • Events

Events are divided in two categories:

- Standard events: Default events informing the operator of operational status changes according to internal logic of the control module.
- Customized events: Up to 16 customized events informing the operator of status/events programmed outside the control module logic.

# 2.2 Detailed Engineering

#### 2.2.1 Operator Note



Figure 2 Operator note

The Operator Note is an aspect in the Control Structure that can contain information that an operator may wish to share with other operators. When the operator presses the button (1), a window with an editor will be opened, in which the operator can write a message. When the aspect contains information, this will be indicated with an envelope (2) in the faceplate and with an "I" (3) in the graphic element.



Only users with operator role can write to the Operator Note aspect.

#### 2.2.2 Measurements

The faceplate tab **Main** presents the standard measurements, as shown in Figure 3. These analogue signals are configured via the IOPar parameter of the control module, as shown in Table 4.

|                            | 👑 CBSt                       | andardM : Faceplate_PG2                                                     | _                                                                                                                                       |   | 🙀 CBStandardM : Faceplate_PG2                                                       |   |
|----------------------------|------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------|---|
|                            | $\overset{\frown}{\bigcirc}$ | CBStanda<br>pmsCBStan                                                       | ndM<br>dardM                                                                                                                            |   | CBStandardM<br>pmsCBStandardM                                                       |   |
|                            |                              |                                                                             |                                                                                                                                         | / |                                                                                     |   |
|                            | Main                         | Trend Alarms Events                                                         | Measurements                                                                                                                            |   | Maintenance Parameters Simulation Edit                                              |   |
| 1<br>2<br>3<br>4<br>5<br>6 | U<br>f<br>P<br>Q<br>F<br>I   | M<br>I<br>I<br>132.0 kV<br>50.0 Hz<br>22.0 MW<br>5.0 MVAr<br>0.97<br>50.0 A | Active Interlocks<br>Interlock A<br>Interlock B1<br>Interlock B2<br>Interlock B3<br>Interlock B4<br>Commands<br>Open<br>Close<br>M Mode |   | Selection<br>Meas. Handler ▼<br>1 ♥ U<br>2 ♥ f<br>3 ♥ P<br>4 ♥ Q<br>5 ♥ PF<br>6 ♥ I |   |
|                            |                              | ◊                                                                           |                                                                                                                                         | B | 00 000                                                                              | ß |

Figure 3 Faceplate tab Main and Extended faceplate, Edit

| Table 4 Parameter configur | ation for measurement signals |
|----------------------------|-------------------------------|
|----------------------------|-------------------------------|

| Field | Indication     | Parameter configuration | Description                |
|-------|----------------|-------------------------|----------------------------|
| 1     | Voltage        | IOPar.MeaInput.Voltage  | Voltage measurement        |
| 2     | Frequency      | IOPar.MeaInput.Freq     | Frequency measurement      |
| 3     | Active power   | IOPar.MeaInput.ActPow   | Active power measurement   |
| 4     | Reactive power | IOPar.MeaInput.RePow    | Reactive power measurement |
| 5     | Power factor   | IOPar.MeaInput.PowFact  | Power factor measurement   |
| 6     | Current        | IOPar.MeaInput.Cur      | Current measurement        |

The measurements which are not available can be hidden by deselecting them from the extended faceplate tab **Edit** in the extended faceplate.



There is no built in signal error handling for measurements inside the control module logic. External collection of relevant IO signal status must be made. The external code must set the ErrPar.IOErr to TRUE in case of signal error detection.

#### 2.2.3 Breaker Position

The circuit breaker position is presented in the Main tab of the faceplate, as shown in Figure 4.



Figure 4 Circuit breaker status

| ltem | Indication          | Parameter configuration | Description                              |
|------|---------------------|-------------------------|------------------------------------------|
| 1    | Opened position     | IOPar.OI                | Feedback from open limit switch.         |
| 2    | Closed position     | IOPar.Cl                | Feedback from close limit switch.        |
| 3    | Racked-Out position | IOPar.SP, (IOPar.TP)    | Feedback from 'in-service' limit switch. |
| 4    | Earthed position    | IOPar.FBE               | Feedback from earth-switch.              |

The *FBConfig* parameter shall be used for enabling the open and/or service position feedbacks, as shown in Table 6.



**Open, Closed** and **Test Position** feedback raise the IOError alarm automatically if faulty. The circuit breaker is not forced to **Manual** mode if rased through these signals.

The status of other relevant digital signal must be collected. The external code must set the ErrPar.IOErr to TRUE in case of signal error detection.



The control module is forced to **Manual** as long as the ErrPar.IOErr remains TRUE. When returning to FALSE the circuit breaker will return to **Auto** mode, if initially selected.

| FBConfig value | Applicable feedback<br>signals                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | - Feedback Opened<br>- Feedback Closed                                                                                          | Two limit switches are monitored; the Service Position<br>input is not included.<br>Note: service position is the opposite of racked out<br>position.                                                                                                                                                               |
| 1              | - Feedback Closed                                                                                                               | Only closed limit switch feedback is considered.                                                                                                                                                                                                                                                                    |
| 2              | <ul> <li>Feedback Opened</li> <li>Feedback Closed</li> <li>Feedback Service Position</li> </ul>                                 | Both opened and closed limit switches are considered<br>in conjunction with the service position.<br>Note: that if the service position is '0', i.e. the circuit<br>breaker is racked out; the checked open indication is<br>always true to indicate an electrical disconnection.                                   |
| 3              | - Feedback Closed<br>- Feedback Service Position                                                                                | The close limit switch and the service position feedbacks are monitored.                                                                                                                                                                                                                                            |
| 4              | <ul> <li>Feedback Opened</li> <li>Feedback Closed</li> <li>Feedback Service Position</li> <li>Feedback Test Position</li> </ul> | Both opened and closed limit switches are considered<br>in conjunction with the service position.<br>Both the service position and the test position is<br>monitored before the circuit breaker is considered<br>racked out; the checked open indication is always true<br>to indicate an electrical disconnection. |
| 5              | - Feedback Closed<br>- Feedback Service Position<br>- Feedback Test Position                                                    | The close limit switch and both service position and test position feedbacks are monitored.                                                                                                                                                                                                                         |

Table 6 Configuration values for the FBConfig parameter

#### 2.2.4 Graphic Symbol Standard

The graphic symbols standard (IEC or ANSI) used in the faceplates can be configured by setting the project constant **pmsConstants.cGraphicSymbolStd\_IEC\_ANSI**.

| Value Standard |              | Symbols |  |
|----------------|--------------|---------|--|
| 0              |              | γ° Ϊ    |  |
| 1(default)     | IEC(default) | × *     |  |
| 2              | ANSI         |         |  |

When ANSI is selected, the fill color of the symbol can be configured by setting

#### the project constant pmsConstants.cANSI\_FillColouring.

| Value      | Remarks                              | Symbols |  |
|------------|--------------------------------------|---------|--|
| 0(default) | Green = Open<br>Red = Closed         | •       |  |
| 1          | Not filled = Open<br>Filled = Closed |         |  |

The position of the breaker symbol when racked out can be configured by setting

#### the project constant pmsConstants.cBreaker\_RackoutConfig.

| Value      | Remarks                                   | Symbols        |         |  |
|------------|-------------------------------------------|----------------|---------|--|
| 0(default) | Move symbol outside line when racked out. | \$<br>\$<br>}  |         |  |
| 1          | Keep symbol on line<br>when racked out.   | (*,~)<br>(*,~) | < ← → → |  |

See Appendix1 for detailed table with configuration and corresponding symbols.

### 2.2.5 Indications for Breaker Status, Mode, Alarm and Synchronization



Figure 5 Breaker indications

#### Table 7 Breaker indications

| Item | Indication | Symbol     |   | Description                      |
|------|------------|------------|---|----------------------------------|
|      |            | B          |   | Maintenance                      |
|      |            | F          |   | Forced                           |
| 1    | Status     | S          |   | Simulation                       |
|      |            | Ι          |   | Interlocked                      |
|      |            | B          |   | Blocked                          |
|      | Mode       | ÷          |   | Earthed                          |
|      |            | NormalMode |   |                                  |
|      |            | 1 2        | 3 |                                  |
| 2    |            | M M        | Μ | Manual                           |
|      |            | A A        | Α | Auto                             |
|      |            | LL         | L | Local                            |
| 3    | Alarm/Sync | Α          |   | Alarm                            |
|      |            | Ι          |   | Information (Operator note)      |
|      |            | S          |   | Indicates synchronizable breaker |
|      |            | S          |   | Synchronization request active   |

#### 2.2.6 Output commands

The commands can be either pulsed or steady outputs. The pulsed open and close commands are available through the output parameters *IOPar.Cmd0Edge* and *IOPar.Cmd1Edge*, respectively. The pulse time is configurable, as shown in Figure 6. The steady open and close commands are available through the output parameters *IOPar.Cmd0Level* and *IOPar.Cmd1Level*, respectively.

Table 8 Output open and close commands from pmsCBStandardM

| Item | Output        | Parameter configuration | Description              |
|------|---------------|-------------------------|--------------------------|
|      |               |                         |                          |
| 1    | Open command  | IOPar.Cmd0Edge          | Pulsed open command      |
|      |               | IOPar.Cmd0Level         | Continuous open command  |
| 2    | Close command | IOPar.Cmd1Edge          | Pulsed close command     |
|      |               | IOPar.Cmd1Level         | Continuous close command |



Figure 6 Faceplate tab Parameters - Pulse time configuration

| Field | Indication             | Faceplate configuration | Description                                                               |
|-------|------------------------|-------------------------|---------------------------------------------------------------------------|
| 1     | Switch over<br>time    | Numerical input field   | Time duration before intermediate position alarm is activated.            |
| 2     | Truck switch over time | Numerical input field   | Time duration before intermediate position alarm for truck is activated.  |
| 3     | Pulse Time             | Numerical input field   | Time duration for open/close pulsed type commands to the circuit breaker. |

The *FollowLocalFB* parameter shall be used for configuring the behavior of the steady open and close commands *IOPar.Cmd0Level* and *IOPar.Cmd1Level* when the circuit breaker is in local point of control. The open and close steady commands behavior is described according to Table 10.

| FollowLocalFB value | IOPar.POCLoc value | Remarks                                                                                            |
|---------------------|--------------------|----------------------------------------------------------------------------------------------------|
| false               | false              | <i>IOPar.Cmd0Level</i> and <i>IOPar.Cmd1Level</i> are not following the position feedback signals. |
| true                | false              | <i>IOPar.Cmd0Level</i> and <i>IOPar.Cmd1Level</i> are not following the position feedback signals. |
| true                | true               | <i>IOPar.Cmd0Level</i> and <i>IOPar.Cmd1Level</i> are following the position feedback signals.     |

Table 10 Configuration values for the FollowLocalFB parameter

If the circuit breaker is in remote point of control, the steady output commands remain active until the opposite command is initiated.

#### 2.2.7 Interlocking

The interlocking function prevents the operation of the open/close command buttons in the circuit breaker faceplate. This function does not have any impact on the actual position of the breaker; it is an operation restriction for the open or close commands.

One process interlock (Interlock A) and four safety interlock (Interlock B1, B2, B3 and B4) are available for interconnection with other control modules or dedicated digital input signals. The interlock status is presented to the operator through the faceplate, as shown in Figure 7.

| un costanuaru | M : Faceplate_PG2                          |                   | 1                               |
|---------------|--------------------------------------------|-------------------|---------------------------------|
|               | CBStandard<br>pmsCBStanda                  | IM<br>ardM        |                                 |
| Main Trend    | d   Alarms   Events   M                    | easurements       | ]                               |
| U<br>f<br>Q   | 132.0 kV<br>50.0 Hz<br>22.0 MW<br>5.0 MVAr | Active Interlocks | - 1<br>- 2<br>- 3<br>- 4<br>- 5 |
| PF<br>I       | 0.97<br>50.0 A                             | M Mode            |                                 |

Figure 7 Presentation of interlock in the main faceplate

| Table 11 Configuration parameters for interlock |              |                                       |                                                          |  |
|-------------------------------------------------|--------------|---------------------------------------|----------------------------------------------------------|--|
| Field                                           | Indication   | n Parameter Description configuration |                                                          |  |
| 1                                               | Interlock A  | llockPar.llockA                       | Interlock condition active when IlockPar.IlockA = true.  |  |
| 2                                               | Interlock B1 | llockPar.llockB1                      | Interlock condition active when IlockPar.IlockB1 = true. |  |
| 3                                               | Interlock B2 | llockPar.llockB2                      | Interlock condition active when IlockPar.IlockB2 = true. |  |
| 4                                               | Interlock B3 | llockPar.llockB3                      | Interlock condition active when IlockPar.IlockB3 = true. |  |
| 5                                               | Interlock B4 | llockPar.llockB4                      | Interlock condition active when IlockPar.IlockB4 = true. |  |

110

The parameter *llockPar* must be used for configuring how an interlock condition shall affect the open or close command buttons. It is possible to assign a condition as an interlock for opening or closing or both opening/closing, as shown in Table 12.

| ltem | Parameter configuration | Description                                                                                                                                                                                      |
|------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | llockPar.llockAConfig   | When parameter is 1, the open command button is disabled.<br>When parameter is 2, the close command button is disabled.<br>When parameter is 3, the open and close command buttons are disabled. |
| 2    | llockPar.llockB1Config  | When parameter is 1, the open command button is disabled.<br>When parameter is 2, the close command button is disabled.<br>When parameter is 3, the open and close command buttons are disabled. |
| 3    | llockPar.llockB2Config  | When parameter is 1, the open command button is disabled.<br>When parameter is 2, the close command button is disabled.<br>When parameter is 3, the open and close command buttons are disabled. |
| 4    | llockPar.llockB3Config  | When parameter is 1, the open command button is disabled.<br>When parameter is 2, the close command button is disabled.<br>When parameter is 3, the open and close command buttons are disabled. |
| 5    | llockPar.llockB4Config  | When parameter is 1, the open command button is disabled.<br>When parameter is 2, the close command button is disabled.<br>When parameter is 3, the open and close command buttons are disabled. |





If any of the parameters in Table 12 is configured with a value different than 1, 2 or 3, the interlocking function will not work.

It is possible for an operator to override the interlock A, as shown in Figure 8.

| 👑 CBSt | andardM : Faceplate_PG2 |                    | 🕍 CBSI  | andardM : Faceplat | te_PG2             |                   | ×        |
|--------|-------------------------|--------------------|---------|--------------------|--------------------|-------------------|----------|
|        | CBStanda<br>pmsCBStan   | ndM<br>dardM       |         | C<br>pm:           | BStanda<br>sCBStan | ardM<br>dardM     |          |
|        |                         |                    |         |                    |                    |                   | <u>/</u> |
| Main   | Trend Alarms Events     | Measurements       | Main    | Trend Alarms       | Events             | Measurements      |          |
|        |                         | Active Interlocks  |         |                    |                    | Active Interlocks |          |
|        |                         | I Bypass on Bypass | off     |                    |                    | I Interlock A     |          |
|        | 1                       | Interlock B1       |         | Ţ                  |                    | Interlock B1      |          |
|        | M                       | Interlock B2       |         | мŢ                 |                    | Interlock B2      |          |
|        | 1                       | Interlock B3       |         |                    |                    | Interlock B3      |          |
|        |                         | Interlock B4       |         |                    |                    | Interlock B4      |          |
| U      | 132.0 kV                | Commands           | U       | 132                | .0 kV              | Commands          |          |
| f      | 50.0 Hz                 | Open               | f       | 50                 | .0 Hz              | <b>O</b>          |          |
| Р      | 22.0 MW                 | Open               | Р       | 22                 | .0 MW              | U Open            |          |
| Q      | 5.0 MVAr                | Close              | Q       | 5                  | .0 MVAr            | Close             |          |
| T      | 50.0A                   | M Mode             | PF<br>I | 50                 | 97<br>10 A         | M Mode            |          |
|        | outri                   |                    |         | 50                 |                    |                   |          |
|        |                         |                    |         |                    |                    |                   |          |
|        | 0 00                    | <br> کر  ∞         |         | 0                  | 00                 | 000               | 8        |

Figure 8 Override of interlock A

| Field | Indication Configuration method |               | Description             |  |
|-------|---------------------------------|---------------|-------------------------|--|
| 1     | Bypass                          | Option button | Override of interlock A |  |

The override of interlock A can be automatically reset, after a timer has elapsed while the faceplate is selected for control (via the object-lock icon). The configuration is done via the *llockPar*, as shown in Table 14. In this way, the override function will not be active continuously, but only when an operation is required.

| Table 14 Parameter configuration for interlock time- | out |
|------------------------------------------------------|-----|
|------------------------------------------------------|-----|

| Item | Parameter configuration | Description                                                                   |
|------|-------------------------|-------------------------------------------------------------------------------|
| 1    | llockPar.llockAtimed    | If parameter is true, then the reset is enabled by timeout or selection.      |
| 2    | llockPar.llockAtimeout  | Timer duration for the override reset, if <i>llockPar.llockAtimed</i> = true. |

The text description of the interlock conditions can be configured via the extended faceplate tab **Edit > Interlocks**, as shown in Figure 9.

|    | CBStandardM<br>pmsCBStandardM                                                                                                 |  |
|----|-------------------------------------------------------------------------------------------------------------------------------|--|
| 1) | Maintenance Parameters Simulation Edit Selection Interlocks Interlock A Interlock B1 Interlock B2 Interlock B3 S Interlock B4 |  |
|    |                                                                                                                               |  |

Figure 9 Faceplate tab Edit for Interlocks

| Field | Indication   | Configuration method | Description                                                            |
|-------|--------------|----------------------|------------------------------------------------------------------------|
| 1     | Interlock A  | Text input field     | Interlock description. Empty field hides the interlock from faceplate. |
| 2     | Interlock B1 | Text input field     | Interlock description. Empty field hides the interlock from faceplate. |
| 3     | Interlock B2 | Text input field     | Interlock description. Empty field hides the interlock from faceplate. |
| 4     | Interlock B3 | Text input field     | Interlock description. Empty field hides the interlock from faceplate. |
| 5     | Interlock B4 | Text input field     | Interlock description. Empty field hides the interlock from faceplate. |

#### Table 15 Configuration parameters for interlock

#### 2.2.8 Point of Control

The circuit breaker can be controlled from two different levels, either locally or remotely:

The Local point of control is the equipment-level. This is any kind of panel located locally at the field equipment.

The Remote point of control is the PMS-level of control. This is the OperateIT graphical aspects of the control module provided by ABB's PMS Library.

When the parameter *IOPar.POCLoc.Value* is True, the circuit breaker is expected to be locally controlled (e.g. via local panel).



Figure 10 Local point of control

| Field | Indication | Configuration<br>method | Description                                                                                                                     |
|-------|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1     | Local icon | IOPar.POCLoc.Value      | When <i>IOPar.POCLoc.Value</i> = True, the breaker is in local point of control and a graphic symbol is shown in the faceplate. |

#### 2.2.9 Control modes

The circuit breaker supports the following control modes (listed in order of priority):

- o Maintenance mode
- o Simulation mode
- $\circ \quad \text{Auto mode} \quad$
- o Manual mode

#### 2.2.9.1 Maintenance Mode

If the circuit breaker is being serviced by an electrician, unnecessary alarms can be inhibited and operational commands can be blocked by activating the maintenance mode. This mode is enabled from the faceplate tab **Block**, as shown in Figure 11. It is also possible to block the control/alarms/events, without enabling the maintenance mode, by utilizing the **Block control**, **Block alarms** and **Block events** check boxes.

| CBStandardM<br>pmsCBStandardM                                                                                                                                                                                                                                                                                                 | CBStandardM<br>pmsCBStandardM                                                                                                                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Maintenance       Parameters       Simulation       Edit         Maintenance       Maintenance on Maintenance off       Block control         Block alarms       Block events         Operations       1         Actual Operations       100         Preset operations       0         Reset number of operations       Reset | Main Trend Alarms Events Measurements<br>Active Interlocks<br>Active Interlocks<br>Interlock B1<br>Interlock B2<br>Interlock B3<br>Interlock B4<br>U 132.0 kV<br>f 50.0 Hz<br>P 22.0 MW<br>Q 5.0 MVAr<br>PF 0.97<br>I 50.0 A<br>M Mode |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |  |

Figure 11 Extended faceplate, maintenance mode

| Field | Indication       | Parameter configuration | Description                                 |
|-------|------------------|-------------------------|---------------------------------------------|
| 1     | Maintenance mode | Option button           | Enables/disables the maintenance mode.      |
| 2     | Block control    | Option button           | Enables/disables the Block control.         |
| 3     | Block alarms     | Option button           | Enables/disables the Block alarms.          |
| 4     | Block events     | Option button           | Enables/disables the Block events.          |
| 5     | Maintenance icon | Graphic symbol          | Indication that maintenance mode is active. |

Table 17 Faceplate configuration for Maintenance mode

#### 2.2.9.2 Simulation Mode

The simulation is a practical mode that allows software functionality testing in a controlled environment (for example during Factory Acceptance Test) without creating application logic outside the control module. The simulation is accessible from the faceplate tab **Simulation**, as shown in Figure 12.

| 🔀 CBStandardM : Faceplate_PG2                     |   | 🚾 CBStandardM : Faceplate_PG2                                                                                                                                                                                                                            |
|---------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CBStandardM<br>pmsCBStandardM                     |   | CBStandardM<br>pmsCBStandardM                                                                                                                                                                                                                            |
| Maintenance Parameters Simulation Edit Simulation | 6 | Main Trend Alarms Events Measurements Alarms Events Measurements Active Interlocks<br>Interlock A<br>Interlock B1<br>Interlock B2<br>Interlock B3<br>Interlock B4<br>U 132.0 kV<br>f 50.0 Hz<br>P 22.0 MW<br>Q 5.0 MVAr<br>PF 0.97<br>I 50.0 A<br>M Mode |
| 00 000                                            | R | جر 👐 💿                                                                                                                                                                                                                                                   |

Figure 12 Faceplate tab Simulation

| Field | Indication                    | Configuration<br>method | Description                                |
|-------|-------------------------------|-------------------------|--------------------------------------------|
| 1     | Simulation mode               | Option button           | Enables/disables the simulation.           |
| 2     | Simulate feedback             | Option button           | Feedback follows issued commands.          |
| 3     | Simulation limit switch Open  | Option button           | Selects simulated open position.           |
| 4     | Simulation limit switch Close | Option button           | Selects simulated closed position.         |
| 5     | Simulation racked out         | Option button           | Selects simulated racked-out position.     |
| 6     | Simulation icon               | Graphic symbol          | Indication that simulation mode is active. |

| Table 18 Faceplate configuration for simulation mod |
|-----------------------------------------------------|
|-----------------------------------------------------|

If the **Simulate feedback** checkbox is checked, the feedback positions will follow the open/close commands. Auto or manual mode can be selected. By selecting either **Simulation limit switch Open / Close / Racked-out** the feedbacks will be forced into the desired position. This allows simulation of position error alarms. No actual commands are being issued to the circuit breaker outputs.



The simulation must not be activated during normal operation of the plant. This may lead to dangerous situations for equipment and personnel.

#### 2.2.9.3 Auto Mode

The **Auto** mode is intended for open or close commands issued by an external code.

As long as there are no relevant interlocks active and parameter AutoPar.AutoSel is TRUE then parameters AutoPar.AutoCmd0 and AutoPar.AutoCmd1 will open or close the circuit breaker, respectively, on rising flank. Automatic open or close commands are accepted as long as the circuit breaker is in remote point of control. Open and close command pushbuttons are disabled in Auto mode, as shown in Figure 14.

Auto mode can be activated from the mode option button in the faceplate or when the parameter AutoPar.AutoSel is set from False to TRUE. The Auto mode option will be disabled (dimmed) when the parameter ExtPar.ExtDimAutoMode is TRUE or if Auto mode is active.



Selecting Auto/Manual from faceplate does not change status on AutoPar.AutoSel.

Writing to AutoPar.AutoSel, however, changes mode indicated in the faceplate.

If mode selection shall be done via faceplate the output parameters Status. AutoMode and Status.ManMode must be connected to the input parameters AutoPar.AutoSel and AutoPar.ManSel respectively.

기 ( 그와 그와 비비 ) 20 ( 🔚 드리 ) then \*\*\* 147 ( 전\* 167)

Ref example in Figure 13 Auto and Manual status connected back to AutoPar input.

pCBPar.CB18\_BusTieEF.AutoPar.AutoSel := pCBPar CB18\_BusTieEF Status AutoMode; pCBPar.CB18\_BusTieEF.AutoPar.ManSel

:= pCBPar.CB18\_BusTieEF.Status.ManMode;





Figure 14 Main faceplate, Auto mode

Table 19 Faceplate configuration for Auto mode

| Field | Indication       | Configuration method | Description                                           |
|-------|------------------|----------------------|-------------------------------------------------------|
| 1     | Auto/manual icon | Graphic symbol       | Indicates that Auto (A) or Manual (M) mode is active. |
| 2     | Auto/Manual      | Option button        | Button for selecting Auto/Manual.                     |
#### 2.2.9.4 Manual Mode

The Manual mode shall be used when the open or close commands are issued from the faceplate command buttons. The open or close command buttons will be enabled when the circuit breaker is in remote point of control and there is no active interlock condition.

The Manual mode can be activated from the Manual/Auto mode button in the faceplate or when the parameter *AutoPar.ManSel* is set from False to True. The Manual mode button will be disabled (dimmed) when the parameter *ExtPar.ExtDimManMode* is True or when the Manual mode is already active, as shown in Figure 15.



Figure 15 Main faceplate, Manual mode

| Table 20 | Faceplate | configuration | for | Manual | mode |
|----------|-----------|---------------|-----|--------|------|
|----------|-----------|---------------|-----|--------|------|

| Field | Indication       | Configuration method | Description                                           |
|-------|------------------|----------------------|-------------------------------------------------------|
| 1     | Auto/manual icon | Graphic symbol       | Indicates that Auto (A) or Manual (M) mode is active. |
| 2     | Open button      | Push button          | Open command button.                                  |
| 3     | Close button     | Push button          | Close command button.                                 |
| 4     | Auto/Manual      | Option button        | Button for selecting Auto/Manual.                     |

# 2.2.10 Operation commands

The following operation features are provided the operator via the circuit breaker faceplate:

- Change of control modes (refer to section 2.2.9)
- Open and Close commands (refer to section 2.2.6)
- View the circuit breaker status (refer to section 2.2.5)
- View and override interlocks (refer to section 2.2.7)

# 2.2.11 Operations counter

Every time the circuit breaker is opened a counter is activated, accumulating the number of circuit breaker opening operations. A configurable limit is provided to aid in the maintenance planning. An alarm is generated, when the number of operations has been exceeded. The counter should be reset after maintenance is carried out.

| 🕊 CBStandardM : Faceplate_PG2          | 1    | 👑 CBSta | ndardM : Fa  | aceplate_PG2        |                  | _ 🗆 X |
|----------------------------------------|------|---------|--------------|---------------------|------------------|-------|
| CBStandardM<br>pmsCBStandardM          |      | $\sim$  |              | CBStand<br>pmsCBSta | dardM<br>andardM |       |
|                                        |      |         |              |                     |                  |       |
| Maintenance Parameters Simulation Edit |      | Main    | Trend Ala    | arms Events         | Measurements     |       |
| Maintenance                            |      | O Bre   | eaker inter  | r. pos. (00)        | 🔘 Alarm text 4   |       |
| Maintenance mode                       |      | O Bre   | eaker pos.   | . error (11)        | Alarm text 5     |       |
|                                        |      | O Tru   | uck inter.   | pos. (00)           | 🔘 Alarm text 6   |       |
| Block control                          |      | O Tru   | uck pos. e   | error (11)          | 🔘 Alarm text 7   |       |
| Block alarms                           |      | O AC    | OF Error     | -                   | Alarm text 8     |       |
| Block events                           |      | O IO    | Error        |                     | 🔘 Alarm text 9   |       |
| Occurting                              |      | O Cor   | mm. Error    | r (                 | 🔘 Alarm text 10  |       |
| Operations                             |      | O Pro   | otection tri | rip                 | Alarm text 11    |       |
| Actual Operations 5                    |      | O Spi   | urious ope   | eration             | 🔘 Alarm text 12  |       |
| Max. number of operations 4            | -25- | - O Ma  | ax no. of o  | operations          | Alarm text 13    |       |
| Preset operations 3                    | _3 _ | O She   | ed comma     | and                 | Alarm text 14    |       |
| Reset number of operations Reset       | -4   | O Ala   | arm text 1   |                     | Alarm text 15    |       |
|                                        |      | O Ala   | arm text 2   | 2                   | Alarm text 16    |       |
|                                        |      | O Ala   | arm text 3   | 1                   |                  |       |
| اکر 🚥 💿                                |      |         |              | 0                   | ·                | ß     |

Figure 16 Faceplate tab Maintenance, Number of operations counter

| Field | Indication                 | Configuration<br>method | Description                             |
|-------|----------------------------|-------------------------|-----------------------------------------|
| 1     | Actual operation           | Numerical field         | Operations counter.                     |
| 2     | Max. allowed operations    | Numerical input field   | Limit of allowed operations.            |
| 3     | Preset operations          | Numerical input field   | Start value of the counter after reset. |
| 4     | Reset number of operations | Push button             | Resets the operations counter.          |
| 5     | Max. number of operations  | Status box              | The limit of operations is exceeded.    |

| Table 2 | 1 Faceplate | configuration     | for Number | of operations |
|---------|-------------|-------------------|------------|---------------|
|         |             | o o ning an a don |            |               |

# 2.2.12 Alarms

The control module supports standard and customized alarms:

- The standard alarms represent alarm conditions that are monitored by the internal logic of the control module.
- The customized alarms represent 16 free programmable alarm conditions that must be configured outside the control module.

Alarms presented in the tab Alarms of the circuit breaker faceplate, as shown in Figure 17.

| CBSta<br>pmsCBS            | andardM<br>StandardM  |
|----------------------------|-----------------------|
|                            | 1                     |
| Main Trend Alarms Eve      | nts Measurements      |
| Breaker inter. pos. (0     | 0) O Alarm text 4     |
| - 🔘 Breaker pos. error (11 | l) 🔘 Alarm text 5 ——— |
| - O Truck inter. pos. (00) | Alarm text 6          |
| Truck pos. error (11)      | Alarm text 7          |
| - O ACOF Error             | Alarm text 8          |
| O IO Error                 | Alarm text 9          |
| - O Comm. Error            | Alarm text 10         |
| Protection trip            | O Alarm text 11       |
| - O Spurious operation     | 🔘 Alarm text 12       |
| Max no. of operations      | Alarm text 13         |
| - 🔘 Shed command           | O Alarm text 14       |
| O Alarm text 1             | Alarm text 15         |
| O Alarm text 2             | O Alarm text 16       |
| O Alarm text 3             |                       |

Figure 17 Faceplate tab Alarms

| Field | Indication                             | Alarm condition                                                                                                                                                                    | Alarm message<br>(Resource Id) | Note |
|-------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|
| 1     | Intermediate<br>position (00)          | When neither the open nor the closed position feedbacks are received; the parameters <i>IOPar.OI.Value</i> and <i>IOPar.CI.Value</i> are False for more than a configurable time.  | NLSID_CBPosError               |      |
| 2     | Position error<br>(11)                 | When both the open and closed position feedbacks are received; the parameters <i>IOPar.OI.Value</i> and <i>IOPar.CI.Value</i> are True.                                            | NLSID_CBFault                  |      |
| 3     | Truck<br>intermediate<br>position (00) | When neither the service nor the test position feedbacks are received; the parameters <i>IOPar.SP.Value</i> and <i>IOPar.TP.Value</i> are False for more than a configurable time. | NLSID_CBTruckPo<br>sError      |      |

| Table 22 List of alarms and | I message configuration |
|-----------------------------|-------------------------|
|-----------------------------|-------------------------|

| Field | Indication                      | Alarm condition                                                                                                                                                                                                                                                                                  | Alarm message<br>(Resource Id)        | Note |
|-------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| 4     | Truck<br>position error<br>(11) | When both the service and test position feedbacks are received; the parameters <i>IOPar.SP.Value</i> and <i>IOPar.TP.Value</i> are True.                                                                                                                                                         | NLSID_CBTruckPo<br>sFault             |      |
| 5     | ACOF error                      | When a close or open command is issued and the proper change of position feedbacks has not occurred within a configurable time.                                                                                                                                                                  | NLSID_CmdError                        | S    |
| 6     | IO Error                        | The parameter <i>ErrPar.IOErr</i> is dedicated to receive<br>any error indication from IO related to the circuit<br>breaker. The alarm is activated when this parameter<br>is True. The alarm is also activated when the position<br>feedback signals are not reporting healthy status.          | NLSID_IOError                         |      |
| 7     | Communicati-<br>on error        | The parameter <i>ErrPar.ComErr</i> is dedicated to receive<br>any error indication from communication links related<br>to the circuit breaker. The alarm is activated when the<br>parameter is True.                                                                                             | NLSID_ComError                        |      |
| 8     | Protection                      | The parameter <i>ErrPar.ProtTrp</i> is dedicated to receive<br>any trip indication from protection relays related to the<br>circuit breaker. The parameter <i>ErrPar.LO</i> is used for<br>receiving the hardwired trip signal. The alarm is<br>activated when either of the parameters is True. | NLSID_ProtectionTr<br>ip              |      |
| 9     | Spurious<br>operation           | When the position feedbacks are changing status without any command being issued, unless the circuit breaker is in local point of control.                                                                                                                                                       | NLSID_CBSpur                          |      |
| 10    | Max. number<br>of operations    | When the circuit breaker is opened, a counter is increasing the number of operations. The alarm is activated when a configurable limit has exceeded.                                                                                                                                             | NLSID_NoHL                            |      |
| 11    | Shed<br>command                 | The parameter <i>ErrPar.Shed</i> is dedicated to receive a shed indication from a load shedding application. The alarm is activated when the parameter is True.                                                                                                                                  | NLSID_ShedCmd                         |      |
| 12    | Alarm text 1                    | AlarmPar.UserDefAlm01stat.Signal                                                                                                                                                                                                                                                                 | AlarmPar.UserDefAl<br>m01stat.Message |      |
|       | Alarm text 16                   | AlarmPar.UserDefAlm16stat.Signal                                                                                                                                                                                                                                                                 | AlarmPar.UserDefAl<br>m16stat.Message |      |



Note: S = Supressed in Local control.

Each standard alarm can be disabled by configuring the corresponding parameter *ExtPar.DisAlmIntermedPos...*ExtPar.DisAlmShedCmd. When the value is set to True, the relevant alarm is disabled.

The parameter AlarmPar shall be used for implementing up to 16 user defined alarms. The alarm descriptions can be changed by editing the text fields in the extended faceplate tab **Edit** > **Alarms**, as shown in Figure 18.

| 2      | y<br>pn                                 | CBStanda<br>nsCBStand | rdM<br>JardM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mai    | ntenance   Paramete                     | rs Simul              | stion Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 Your | Selection                               | •                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ 1    | Alarm text 1                            | 9                     | Alarm text 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 2    | Alarm text 2                            | 10                    | Alarm text 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 3    | Alarm text 3                            | 11                    | Alarm text 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 4    | Alarm text 4                            | 12                    | Alarm text 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 5    | Alarm text 5                            | 13                    | Alarm text 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 6    | Alarm text 6                            | 14                    | Alarm text 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | Alarm text 7                            | 15                    | Alarm text 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - /    | 1 · · · · · · · · · · · · · · · · · · · | - Aller               | and the second se |

Figure 18 Faceplate tab Alarms for customized alarms

| Table 23 Parameter and faceplate configuration for customized alarms |                    |               |                 |                 |          |
|----------------------------------------------------------------------|--------------------|---------------|-----------------|-----------------|----------|
|                                                                      | Table 22 Darameter | and faconiato | configuration f | or oustamized a | Jarma    |
|                                                                      |                    | and laceplate | connguiation i  |                 | aiaiiiis |

| Field | Indication                    | Configuration method | Description                                                                       |
|-------|-------------------------------|----------------------|-----------------------------------------------------------------------------------|
| 1     | Alarm text 1<br>Alarm text 16 | Text input field     | Customized alarms description.<br>Empty field hides the alarm from the faceplate. |

# 2.2.13 Events

The control module supports standard and customized events:

- The standard events represent operational changes that are monitored by the internal logic of the control module.
- The customized events represent 16 free programmable status/event conditions that can be configured outside the control module.

The events are presented in the Event List. The customized events are also presented in the tab **Status** of the circuit breaker faceplate, as shown in Figure 19. The purpose of the customized events is mainly for user defined on/off type of status signals.

| CBStandardM : Faceplate_PG2           |   | 🔀 CBStandardM : Facepla | ite_PG2                      | - I X |
|---------------------------------------|---|-------------------------|------------------------------|-------|
| CBStandardM<br>pmsCBStandardM         |   | ا<br>pn                 | CBStandardM<br>nsCBStandardM |       |
|                                       |   |                         |                              |       |
| Main Trend Alarms Events Measurements |   | Maintenance Paramete    | rs Simulation Edit           |       |
| - O Status text 1 O Status text 15    | 8 | Selection               |                              |       |
| - O Status text 2 O Status text 16    | 8 |                         |                              |       |
| — 🔘 Status text 3                     |   | Events                  |                              |       |
| — 🔘 Status text 4                     |   | 1                       |                              |       |
| — 🔘 Status text 5                     |   | - 1 Status text 1       | 9 Status text 9              | 1     |
| — 🔘 Status text 6                     |   | - 2 Status text 2       | 10 Status text 10            |       |
| — 🔘 Status text 7                     |   | 2 Chattan text 2        |                              |       |
| — 🔘 Status text 8                     |   | - 3 Status text 3       | II Status text II            |       |
| - O Status text 9                     | 2 | 4 Status text 4         | 12 Status text 12            |       |
| - O Status text 10                    |   | - 5 Status text 5       | 13 Status text 13            |       |
| - O Status text 11                    |   | - 6 Status text 6       | 14 Status text 14            | 1     |
| - O Status text 12                    |   | 7 Status text 7         | 15 Status text 15            | 1     |
| - O Status text 13                    |   | 9 Status text 9         | 16 Status text 16            |       |
| - O Status text 14                    |   | o Status text o         |                              |       |
| 0 00 000                              | 8 | 9                       | 00 000                       | 3     |

Figure 19 Faceplate tab Events / Edit for customized events

| Field | Indication     | Configuration method             | Description                                                                    |
|-------|----------------|----------------------------------|--------------------------------------------------------------------------------|
| 1     | Status text 1  | EventPar.UserDefEvt01stat.Signal | Status of the event condition (i.e. On, Off).                                  |
|       |                |                                  |                                                                                |
|       | Status text 16 | EventPar.UserDefEvt16stat.Signal |                                                                                |
| 2     | Status text 1  | Text input field                 | Customized events description. Empty field hides the event from the faceplate. |
|       | Status text 16 |                                  |                                                                                |

| Table 24 Parameter an | d faceplate | configuration | for custor | <i>mized events</i> |
|-----------------------|-------------|---------------|------------|---------------------|
|-----------------------|-------------|---------------|------------|---------------------|

The text messages (i.e. in Event List) for the standard events are configurable via the Alarm and Event Translator aspect in Plant Explorer under Library Structure > Preferences & Customizations > PMS\_Alarm&Event. The messages can be changed from English language to another language by modifying the text description of a relevant Resource Id (NLSID\_), as shown in Figure 12, to a desired message (a text string up to 60 characters).

| No. | Indication | Event condition                               | Event message On                                                        |
|-----|------------|-----------------------------------------------|-------------------------------------------------------------------------|
| 1   | Opened     | Position feedback opened                      | NLSID_OpenPosition+ NLSID_EventOn<br>(or NLSID_EventOff)                |
| 2   | Closed     | Position feedback closed                      | NLSID_ClosePosition+ NLSID_EventOn<br>(or NLSID_EventOff)               |
| 3   | RackedOut  | Position feedback racked-out (not in service) | NLSID_RackedOutOn<br>(or NLSID_RackedOutOff)                            |
| 4   | BlkAlm     | Block alarms<br>command button                | NLSID_BlkAlarmOn<br>(or NLSID_BlkAlarmOff)                              |
| 5   | BlkEvent   | Block events<br>command button                | NLSID_BlkEventOn<br>(or NLSID_BlkEventOff)                              |
| 6   | BlkCntrl   | Block control command button                  | NLSID_BlkControlOn<br>(or NLSID_BlkControlOff)                          |
| 7   | POC        | Local point of control                        | NLSID_POCNumber+NLSID_Local<br>(or NLSID_POCNumber+NLSID_CentralPortal) |
| 8   | RstOpCnt   | Reset the number of operations counter        | NLSID_RstOpCounter                                                      |
| 9   | SelMode    | Mode change to Manual, Auto,<br>Maintenance.  | NLSID_Manual or NLSID_Auto or<br>NLSID_Maintenance                      |
| 10  | OpenCmd    | Open circuit breaker<br>command button        | NLSID_CmdOpen                                                           |
| 11  | CloseCmd   | Close circuit breaker<br>command button       | NLSID_CmdClose                                                          |
| 12  | IntlBypass | Inhibit interlock A<br>check box              | NLSID_InterLockByPassOn<br>(or NLSID_InterLockByPassOff)                |
| 13  | llockAact  | Interlock A active                            | NLSID_IlockA+NLSID_EventOn<br>(or NLSID_EventOff)                       |
| 14  | llockB1act | Interlock B1 active                           | NLSID_IlockB1+NLSID_EventOn<br>(or NLSID_EventOff)                      |
| 15  | llockB2act | Interlock B2 active                           | NLSID_IlockB2+NLSID_EventOn<br>(or NLSID_EventOff)                      |
| 16  | llockB3act | Interlock B3 active                           | NLSID_IlockB3+NLSID_EventOn<br>(or NLSID_EventOff)                      |
| 17  | IlockB4act | Interlock B4 active                           | NLSID_IlockB4+NLSID_EventOn (or<br>NLSID_EventOff)                      |

# Table 25 List of standard events and message configuration



It is possible to suppress each standard event from appearing in the Event List. This configuration is done via the input parameter *ExtPar* and the data type components starting with *DisEvt* (e.g. when the parameter *ExtPar.DisEvtOpenCmd* is set to true, the event for circuit breaker open command is disabled).

It is possible to assign another interlock event message, different from the standard, via the input parameter *ExtPar.ExtIlockEvtMsg*.

# 2.2.14 Required I/O

An overview of the *IOPar* components is listed in Table 26, with respect to significance when setting up the interface connections for the circuit breaker control module. The description "mandatory" implies that the internal logic of the control modules requires data from the variable in order to function properly. The description "optional" implies that the internal logic of the control modules can also handle data from the variable, but it could be omitted without affecting the functionality of the module.

| Field | IO_Input               | Importance | Description                |
|-------|------------------------|------------|----------------------------|
| 1     | IOPar.Cl               | Mandatory  | Closed position            |
| 2     | IOPar.OI               | Optional   | Opened position            |
| 3     | IOPar.SP               | Optional   | Racked-In position         |
| 4     | IOPar.TP               | Optional   | Racked-Out position        |
| 5     | IOPar.FBE              | Optional   | Earthed position           |
| 6     | IOPar.DeadNetRelease   | Optional   | Dead net release condition |
| 7     | IOPar. POCLoc          | Optional   | Local point of control     |
| 8     | IOPar.LO               | Optional   | Lock-out condition         |
| 9     | IOPar.Cmd0Edge         | Mandatory  | Open command               |
| 10    | IOPar.Cmd1Edge         | Mandatory  | Close command              |
| 11    | IOPar.Cmd0Level        | Optional   | Open command               |
| 12    | IOPar.Cmd1Level        | Optional   | Close command              |
| 13    | IOPar.MeaInput.ActPow  | Optional   | Active Power               |
| 14    | IOPar.MeaInput.RePow   | Optional   | Reactive Power             |
| 15    | IOPar.MeaInput.Voltage | Optional   | Voltage                    |
| 16    | IOPar.MeaInput.Freq    | Optional   | Frequency                  |
| 17    | IOPar.MeaInput.Cur     | Optional   | Current                    |

Table 26 Significance of IOPar components

# 2.2.15 Trend

The **Trend** tab is used to monitor and display the historical data for the 6 main measurements:

- Active power
- Reactive power
- Voltage
- Current
- Frequency
- Power factor

It is possible to set which measurements to be displayed in the trend area. The check boxes shall show/hide the measurement signals, as shown in Table 27. A user with *Operator* role and *Operate* permission rights can perform the configuration of these parameters.



Figure 20 Faceplate tab Trend

| Field | Indication     | Configuration method | Description                                       |
|-------|----------------|----------------------|---------------------------------------------------|
| 1     | Trend          | Trend field          | Used to display the historical data               |
| 2     | Current        | Check box            | Show/hide the trace pen for I in the Trend field  |
| 3     | Frequency      | Check box            | Show/hide the trace pen for F in the Trend field  |
| 4     | Power factor   | Check box            | Show/hide the trace pen for Pf in the Trend field |
| 5     | Active power   | Check box            | Show/hide the trace pen for P in the Trend field  |
| 6     | Reactive power | Check box            | Show/hide the trace pen for Q in the Trend field  |
| 7     | Voltage        | Check box            | Show/hide the trace pen for U in the Trend field  |
| 8     | Max range      | Input field          | Y max margin                                      |
| 9     | Min range      | Input field          | Y min margin                                      |
| 10    | Max time       | Input field          | Max time value visible in the trend               |
| 11    | Min time       | Text field           | Min time value visible in the trend               |

| Table 27 | ' Parameter | and fa | aceplate | configuration  | for | Trend |
|----------|-------------|--------|----------|----------------|-----|-------|
|          | i aramotor  | and re | acoprato | ooningan ation |     |       |

# 2.3 Parameters

This chapter describes the parameters and configuration settings for the control module *pmsCBStandardM*.

|    | Name            | Туре           | Initial value | Description                                                                                                   |
|----|-----------------|----------------|---------------|---------------------------------------------------------------------------------------------------------------|
| 1  | Name            | string[30]     | 'Name'        | IN EDIT:Name of the object                                                                                    |
| 2  | Description     | string[40]     | 'Description' | IN EDIT:Description of the object                                                                             |
| 3  | VoltageLevel    | tageLevel dint |               | IN EDIT:Voltage level [110], for object colouring                                                             |
| 4  | CBType dint     |                | 1             | IN EDIT:[1=Circuit Breaker]<br>[3=Disconnector]<br>[11=Circuit Breaker w/Earth] [13=<br>Disconnector w/Earth] |
| 5  | FBConfig dint   |                | 0             | IN EDIT:Configuration of position<br>feedbacks                                                                |
| 6  | NormalMode dint |                | 1             | IN EDIT: [1=Manual][2=Auto][3=Local]                                                                          |
| 7  | FollowLocalFB   | bool           | false         | IN EDIT: Configuration of<br>Cmd0\Cmd1Level output                                                            |
| 8  | AlSeverity      | dint           | 900           | IN EDIT:Alarm severity                                                                                        |
| 9  | EvSeverity      | dint           | 400           | IN EDIT:Event severity                                                                                        |
| 10 | Class           | dint           | 50            | IN EDIT: Alarm and Event Class                                                                                |
| 11 | IOPar           | pmsCBIOPar     | default       | IN_OUT:Circuit Breaker I/O signals                                                                            |
| 12 | AutoPar         | pmsCBAutoPar   | default       | IN:Parameters for Auto mode control                                                                           |
| 13 | AlarmPar        | pmsExtAll      | default       | IN:For Extended Alarm indication In<br>Faceplate                                                              |
| 14 | EventPar        | pmsExtEvt      | default       | IN:For Extended Event indication in<br>Faceplate                                                              |
| 15 | llockPar        | pmslLockPar    | default       | IN:Interlock input signals and<br>configuration                                                               |
| 16 | ErrPar          | pmsErrPar      | default       | IN:Error Indication                                                                                           |
| 17 | MeasPar         | pmsExtIO       | default       | IN:For Extended Measurements in<br>Faceplate                                                                  |
| 18 | ExtPar          | pmsCBExtPar    | default       | IN:External parameters, for application interaction                                                           |
| 19 | Status          | pmsCBstatus    | default       | OUT:Circuit Breaker status                                                                                    |

# Table 28 Parameters of pmsCBStandardM

# 2.3.1 Parameter details

#### 2.3.1.1 Name and Description

#### Table 29 Name and description

|   | Name        | Туре       | Initial value    | Description                        |
|---|-------------|------------|------------------|------------------------------------|
| 1 | Name        | string[30] | 'pmsCBStandardM' | IN EDIT:Name of the object         |
| 2 | Description | string[40] | 'pmsCBStandardM' | IN EDIT: Description of the object |

The parameters Name and Description of the control module must be unique in the project. The text can be assigned directly.

e.g. : Name : 'CB3401A'

: Description : 'Circuit breaker 3401A'

#### 2.3.1.2 Voltage level

#### Table 30 Voltage Level

|   | Name         | Туре | lnitial<br>value | Description                 |
|---|--------------|------|------------------|-----------------------------|
| 3 | VoltageLevel | Dint | 1                | IN EDIT VoltageLevel [1-10] |

The VoltageLevel is used for the colour of the circuit breaker graphic object in 800xA displays.

#### e.g. : VoltageLevel: 3

In this example the colour of the breaker will be light green.

## 2.3.1.3 CBType and FBConfig

#### Table 31 CBType and FBConfig

|   | Name     | Туре | Initial<br>value | Description                                                                          |
|---|----------|------|------------------|--------------------------------------------------------------------------------------|
| 4 | СВТуре   | dint | 1                | IN EDIT:[1=CB][3=Disc][11=CB w/Earth][13=Disc.<br>w/Earth]                           |
| 5 | FBConfig | dint | 0                | IN EDIT:[0=FB0,FB1][1=FB1][2=FB0,FB1,SP][3=FB1,SP]<br>[4=FB0,FB1,SP,TP][5=FB1,SP,TP] |

The CBType parameter is used for determining the graphical presentation of the circuit breaker object in the 800xA displays. The FBConfig parameter is used for determining the combination of position signals that are applicable for a certain breaker.

e.g. : CBType: 3

# FBConfig: 0

In this example the circuit breaker will be shown as a disconnector with open and close position signals.

### 2.3.1.4 NormalMode

|   | Name       | Туре | Initial<br>value | Description                          |
|---|------------|------|------------------|--------------------------------------|
| 6 | NormalMode | dint | 1                | IN EDIT: [1=Manual][2=Auto][3=Local] |

Table 32 NormalMode

The *NormalMode* parameter is used for determining the graphical presentation of the mode indication in the 800xA displays. The mode which is configured as normal will be indicated in green, while the two other modes which are not the normal mode will be indicated in white/blue.

i.e. : NormalMode=1: A M L NormalMode=2: A M L NormalMode=3: A M L

#### 2.3.1.5 FollowLocalFB

#### Table 33 FollowLocalFB

|   | Name          | Туре | Initial<br>value | Description                                                                                                    |
|---|---------------|------|------------------|----------------------------------------------------------------------------------------------------------------|
| 7 | FollowLocalFB | bool | false            | IN EDIT: [False = Cmd0\Cmd1Level output is reset in<br>local, True = Cmd0\Cmd1Level output follow FB in local] |

The *FollowLocalFB* parameter is used to configure the value of the steady open and close commands *IOPar.Cmd0Level* and *IOPar.Cmd1Level* when the circuit breaker is in local point of control

e.g. : FollowLocalFB: true

IOPar.POCLoc: true

In this example the circuit breaker *IOPar.Cmd0Level* and *IOPar.Cmd1Level* will follow the value of the configured position feedback signals.

## 2.3.1.6 EvSeverity, AlSeverity and Class

## Table 34 EvSeverity, AlSeverity and Class

|    | Name       | Туре | Initial<br>value | Description                    |
|----|------------|------|------------------|--------------------------------|
| 8  | EvSeverity | Dint | 900              | IN EDIT: Event severity        |
| 9  | AlSeverity | Dint | 400              | IN EDIT: Alarm severity        |
| 10 | Class      | Dint | 50               | IN EDIT: Alarm and Event Class |

The *EvSeverity* and *AlSeverity* parameters are used for determining the severity of the internal alarms and events. The Class parameter determines the alarm and event class in the 800xA system.

## 2.3.1.7 IOPar

|    | Name  | Туре       | Initial<br>value | Description                            |
|----|-------|------------|------------------|----------------------------------------|
| 11 | IOPar | pmsCBIOPar |                  | IN_OUT: IO signals for Circuit breaker |

Table 35 IOPar

Table 36 Digital I/O for pmsCBStandardM

The following components from the structured data type *IOPar* are used for the *pmsCBStandardM* connections to digital I/O signals:

| POCLoc    | Point of control set to Local (input)          |
|-----------|------------------------------------------------|
| OI        | Feedback open limit switch (input)             |
| CI        | Feedback close limit switch (input)            |
| SP        | Feedback Service Position limit switch (input) |
| ТР        | Feedback Test Position limit switch (input)    |
| FBE       | Feedback Earthed limit switch (input)          |
| LO        | Locked-out indication (input)                  |
| Cmd0Edge  | Command open output pulse (output)             |
| Cmd1Edge  | Command close output pulse (output)            |
| Cmd0Level | Command open output continuous (output)        |
| Cmd1Level | Command close output continuous (output)       |

The parameter *IOPar.MeaInput* is used for connecting the standard analogue measurements to the control module. The measured values are presented in the faceplate.

| Voltage  | Voltage, U          |
|----------|---------------------|
| Freq     | Frequency, f        |
| ActPower | Active Power, P     |
| RePow    | Reactive Power, Q   |
| PowFact  | Power Factor, cos φ |
| Cur      | Current, I          |
|          |                     |

#### Table 37 Analogue Inputs for pmsCBStandardM

The control module must be configured for the actual available position I/O of the circuit breaker. The parameter *FBConfig* value is 0-5, representing six possible configurations, as shown in the table below.

| FBConfig | OI | CI | SP | ТР |
|----------|----|----|----|----|
| 0        | OI | CI | -  |    |
| 1        | -  | CI | -  |    |
| 2        | OI | CI | SP |    |
| 3        | -  | CI | SP |    |
| 4        | OI | CI | SP | ТР |
| 5        |    | CI | SP | TP |

#### Table 38 FBConfig values

As indicated in Table 38, configuration 0 or 1 is to be implemented when there is no racked out functionality required.

The parameters Out0Puls and Out1Puls (or Out0Continous and Out1Continous) shall be used for the opening or closing commands and must be connected to the output signals of the physical breaker.

| Table 39 Circuit breaker command |
|----------------------------------|
|----------------------------------|

| Out0Puls      | OUT Command Open Pulse       |
|---------------|------------------------------|
| Out1Puls      | OUT Command Close Pulse      |
| Out0Continous | OUT Continuous Open command  |
| Out1Continous | OUT Continuous Close command |

## 2.3.1.8 AutoPar

#### Table 40 AutoPar

|    | Name    | Туре         | Initial<br>value | Description                          |
|----|---------|--------------|------------------|--------------------------------------|
| 12 | AutoPar | pmsCBAutoPar |                  | IN: Parameters for Auto mode control |

The components from the parameter *AutoPar* are used for the *pmsCBStandardM* control module to create application logic for automatic open/close commands and manual/auto mode change.

#### Table 41 AutoPar components

| AutoSel  | Select Auto Mode   |
|----------|--------------------|
| AutoCmd0 | Auto open command  |
| AutoCmd1 | Auto close command |
| ManSel   | Select Manual Mode |

#### 2.3.1.9 AlarmPar

The parameter *AlarmPar* contains components for up to 16 user defined alarms. These alarms will have no effect on the control module functionality.

#### Table 42 AlarmPar

|    | Name     | Туре      | Initial<br>value | Description                                    |
|----|----------|-----------|------------------|------------------------------------------------|
| 13 | AlarmPar | pmsExtAll | default          | IN: For Extended Alarm indication In Faceplate |

| UserDefAlm01stat | Status for User defined Alarm1  |
|------------------|---------------------------------|
| UserDefAlm02stat | Status for User defined Alarm2  |
| UserDefAlm03stat | Status for User defined Alarm3  |
| UserDefAlm04stat | Status for User defined Alarm4  |
| UserDefAlm05stat | Status for User defined Alarm5  |
| UserDefAlm06stat | Status for User defined Alarm6  |
| UserDefAlm07stat | Status for User defined Alarm7  |
| UserDefAlm08stat | Status for User defined Alarm8  |
| UserDefAlm09stat | Status for User defined Alarm9  |
| UserDefAlm10stat | Status for User defined Alarm10 |
| UserDefAlm11stat | Status for User defined Alarm11 |
| UserDefAlm12stat | Status for User defined Alarm12 |
| UserDefAlm13stat | Status for User defined Alarm13 |
| UserDefAlm14stat | Status for User defined Alarm14 |
| UserDefAlm15stat | Status for User defined Alarm15 |
| UserDefAlm16stat | Status for User defined Alarm16 |

#### Table 43 AlarmPar components

#### 2.3.1.10 llockPar

The circuit breaker can be interlocked for operation by signals from supervisory programs or other objects. A total of five interlocks are available: one A-interlock and four B-interlocks.

The A-interlock or process interlock has a lower priority than safety interlocks. The operator can override (or bypass) the A-interlock. Therefore careful consideration needs to be made before an interlock is implemented as A-interlock.

B-interlocks or safety interlocks have highest priority. The operator can not override the B-interlocks.

| Table 44 I | llockPar |
|------------|----------|
|------------|----------|

|    | Name     | Туре        | Initial<br>value | Description                                          |
|----|----------|-------------|------------------|------------------------------------------------------|
| 15 | llockPar | pmsILockPar | default          | Parameter for connecting and configuring Interlocks. |

#### Table 45 llockPar components

| llockAConfig  | IN EDIT Interlock A Configuration  |
|---------------|------------------------------------|
| IlockB1Config | IN EDIT Interlock B1 Configuration |
| llockB2Config | IN EDIT Interlock B2 Configuration |
| llockB3Config | IN EDIT Interlock B3 Configuration |
| IlockB4Config | IN EDIT Interlock B4 Configuration |
| llockA        | IN Interlock A input               |
| llockB1       | IN Interlock B1 input              |
| llockB2       | IN Interlock B2 input              |
| llockB3       | IN Interlock B3 input              |
| llockB4       | IN Interlock B4 input              |

The interlocks must be configured to either interlock the open, close or both open/close operations of the circuit breaker. The parameter llockXConfig value is 0-3, representing four possible configurations as shown in the table below.

|   | llockXConfig | Interlock Open command | Interlock Close<br>Command |
|---|--------------|------------------------|----------------------------|
| 0 |              | -                      | -                          |
| 1 |              | х                      | -                          |
| 2 |              | -                      | х                          |
| 3 |              | Х                      | Х                          |

# Table 46 llockConfig values

#### 2.3.1.11 ErrPar

It is possible to connect externally triggered error signals to the control module. These error signals only give error indications on the object and in the faceplate; no action is taken by the control module.

Table 47 ErrPar

|    | Name   | Туре      | Initial<br>value | Description                             |
|----|--------|-----------|------------------|-----------------------------------------|
| 16 | ErrPar | pmsErrPar | Default          | Parameter for connecting Error signals. |

The following components from the parameter *ErrPar* are used for the control module *pmsCBStandardM*.

#### Table 48 ErrPar for pmsCBStandardM

| Shed    | IN Load shed action by load shedding function |
|---------|-----------------------------------------------|
| IOErr   | IN IO Error                                   |
| ComErr  | IN Communication Error                        |
| ProtTrp | IN Protection trip                            |

#### 2.3.1.12 Status

The opened or closed status and the manual or automatic mode of the circuit breaker are indicated from the parameter *Status*.

#### Table 49 Status

|    | Name   | Туре        | Initial<br>value | Description                          |
|----|--------|-------------|------------------|--------------------------------------|
| 19 | Status | pmsCBstatus | default          | Status of breaker Checked positions. |

The following components from the parameter Status are applicable for the control module *pmsCBStandardM*.

#### Table 50 Status parameters

| OX       | Checked open position  |
|----------|------------------------|
| CX       | Checked close position |
| AutoMode | Auto mode is active    |
| ManMode  | Manual mode is active  |

Depending on the *FBConfig* settings, the position status is determined according to the table below.

| Open<br>feedback<br>IOPar.OI | Closed<br>feedback<br>IOPar.Cl | Service<br>Position<br>IOPar.SP | Checked<br>opened<br>IOPar.OX | Checked<br>closed<br>IOPar.CX | Position<br>error Alarm | Intermediate<br>position<br>alarm |
|------------------------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------|-----------------------------------|
| 0                            | 0                              | 0                               | 1                             | 0                             | 0                       | 1                                 |
| 1                            | 0                              | 0                               | 1                             | 0                             | 0                       | 0                                 |
| 0                            | 1                              | 0                               | 1                             | 0                             | 0                       | 0                                 |
| 1                            | 1                              | 0                               | 1                             | 0                             | 1                       | 0                                 |
| 0                            | 0                              | 1                               | 0                             | 0                             | 0                       | 1                                 |
| 1                            | 0                              | 1                               | 1                             | 0                             | 0                       | 0                                 |
| 0                            | 1                              | 1                               | 0                             | 1                             | 0                       | 0                                 |
| 1                            | 1                              | 1                               | 0                             | 0                             | 1                       | 0                                 |

| Table 51 Checked position | ns and position related | l alarms (FBConfig=3) |
|---------------------------|-------------------------|-----------------------|
|---------------------------|-------------------------|-----------------------|

# Section 3 Control Module pmsCBIndM

The *pmsCBIndM* control module is included in the *pmsCBLib* library. A block presentation of the control module is shown in Figure 21. The parameters are briefly described in Table 52.



Figure 21 Control Module pmsCBIndM

| Parameter     | Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name          | Name of the circuit breaker. With the name upload tool of process portal, this property will be used for identifying the object in 800xA. The name will be used to group the alarms and events and to identify the faceplate of the object. The name must be unique in the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Description   | Description of the circuit breaker. With the name upload tool of process portal, this property will be used for identifying the object in 800xA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Voltage level | Voltage level for object colouring. This property gives the object a colour in Single Line Diagrams. Default settings for the colours are:<br>Level 1 - RGB N(0,176,232) - D(0,126,182) - L(50,226,255)<br>Level 2 - RGB N(232,160,168) - D(182,110,118) - L(255,210,218)<br>Level 3 - RGB N(176,232,176) - D(126,182,126) - L(226,255,226)<br>Level 4 - RGB N(255,255,128) - D(205,205,78) - L(255,255,178)<br>Level 5 - RGB N(64,128,128) - D(14,78,78) - L(114,178,178)<br>Level 6 - RGB N(198,101,0) - D(140,70,0) - L(255,154,53)<br>Level 7 - RGB N(240,160,13) - D(182,121,10) - L(249,209,136)<br>Level 8 - RGB N(207,204,73) - D(153,150,40) - L(227,225,149)<br>Level 9 - RGB N(81,181,171) - D(53,125,120) - L(174,221,217)<br>Level10- RGB N(185,157,91) - D(135,112,58) - L(223,210,181) |  |  |
| AlSeverity    | Alarm severity. The alarm severity can be used for filtering the alarm list. Range 1-<br>1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| EvSeverity    | Event severity. The event severity can be used for filtering the event list. Range 1-1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Class         | Alarm and Event Class.<br>This property can be used for grouping objects to appear in separate alarm/event<br>lists. Range 1-9999.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| СВТуре        | The parameter is used for configuring the graphical presentation of the circuit breaker; '1'= circuit breaker, '3'= isolator (disconnector), '4'= circuit breaker without service position feedback.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| FBConfig      | Configuration parameter for the position status signals that are applicable for the circuit breaker; '0'= Open and Closed positions, '1'= Closed position, '2'= Open, Closed and Service positions, '3'= Closed and Service positions, '4'= Open, Closed, Service position and Test Position, '5'= Closed, Service position and Test position                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| NormalMode    | The parameter is used for configuring the graphical presentation of the normal mode; '1'= Manual, '2'= Auto, '3'= Local, '4'= Remote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| OI            | Feedback open indication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| CI            | Feedback close indication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| SP            | IN: Feedback service position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ТР            | IN: Feedback Test position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| LO            | Lockout (Trip) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Shed          | Indication that breaker has been shed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Meas_V        | Measurement input for Voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Meas_F        | Measurement input for Frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Meas_P        | Measurement input for Active power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| Table 52 Parameters | of the control | l module pmsCBIndM |  |
|---------------------|----------------|--------------------|--|
|                     |                |                    |  |

| Parameter       | Significance                                                        |  |
|-----------------|---------------------------------------------------------------------|--|
| Meas_Q          | Measurement input for Reactive power.                               |  |
| En_Meas_PF_Calc | Power factor calculated value from Meas_P and Meas_Q.               |  |
| Meas_PF         | Measurement input for Power factor.                                 |  |
| En_Meas_I_Calc  | Current calculated value from Meas_P, Meas_PF and Meas_V.           |  |
| Meas_I          | Measurement input for Current.                                      |  |
| IOErr           | Indication that an IO error is active.                              |  |
| CommErr         | Indication that a Communication error is active.                    |  |
| PosAlarmEnable  | Enable the position error alarms.                                   |  |
| PosAlarmTimer   | Time delay for position error alarms.                               |  |
| POS_OX          | Checked open position.                                              |  |
| POS_CX          | Checked close position.                                             |  |
| EvPar           | Parameter for configuring external timestamp for events [NOT USED]. |  |
| AlarmPar        | Structured parameter for 16 user defined alarms.                    |  |
| EventPar        | Structured parameter for 16 user defined events.                    |  |
| MeasPar         | Structured parameter for 16 user defined analogue measurements.     |  |
| DisEvtOpened    | External disabling of event condition for OI.                       |  |
| DisEvtClosed    | External disabling of event condition for CI.                       |  |
| DisEvtRackedOut | External disabling of event condition for SP.                       |  |

# **3.1 Introduction**

The control module pmsCBIndM is used for monitoring of non-controllable circuit breakers (i.e. no remote open/close operation). The following features are supported:

#### • Measurements

Two kinds of mesurements are featured, standard and customized:

- Standard measurements: Important electrical available for monitoring in the main faceplate tab:
  - Voltage
  - Frequency
  - Active power
  - Reactive power
  - Power factor
  - Current
- Customized measurements: Additionally, up to 16 customized measurements can be displayed numerically in another faceplate tab).

#### Position status

The following feedback signals facilitates supervision of circuit breaker position status:

- Open indication
- Closed indication
- Service position
- Test position

#### Graphical Standard - IEC, ANSI

The graphical element can be configured to follow either the IEC or ANSI graphical standard.

#### Alarms

Alarms are divided in two categories:

- Standard alarms: Default alarms informing the operator of alarm conditions, according to the internal logic of the control module.
- Customized alarms: Up to 16 customized alarms can be raised through the control module although they originate from external logic.

#### • Events

Events are divided in two categories:

- Standard events: Default events informing the operator of operational status changes.
- Customized events: Up to 16 customized events informing the operator of status/events programmed outside the control module logic.

# **3.2 Detailed Engineering**

Engineering details of the control module *pmsCBIndM* are similar to *pmsCBStandardM*. The following chapters will point out the differences compared to chapter 2.2

#### **3.2.1 Measurements**

The faceplate tab Main presents the standard measurements, as shown in Figure 22. These analogue signals are configured via the parameters of the control module, as shown in Table 53.



Figure 22 pmsCBIndM Faceplate tab Main

| Table 53 Parameter configuration for | or measurement signals |
|--------------------------------------|------------------------|
|--------------------------------------|------------------------|

| Field | Indication     | Parameter configuration   | Description                                                                                                                                                                |
|-------|----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Voltage        | Meas_V                    | Voltage measurement.                                                                                                                                                       |
| 2     | Frequency      | Meas_F                    | Frequency measurement.                                                                                                                                                     |
| 3     | Active power   | Meas_P                    | Active power measurement.                                                                                                                                                  |
| 4     | Reactive power | Meas_Q                    | Reactive power measurement.                                                                                                                                                |
| 5     | Power factor   | Meas_PF                   | Power factor measurement.<br>If <i>En_Meas_PF_Calc</i> =True, the power factor value will be calculated based on the parameters <i>Meas_P</i> and <i>Meas_Q</i> .          |
| 6     | Current        | Meas_I                    | Current measurement.<br>If <i>En_Meas_I_Calc</i> =True, the Current value will be calculated based<br>on the parameters <i>Meas_P</i> , <i>Meas_PF</i> and <i>Meas_V</i> . |
| 7     | Meas text 1    | MeasPar.UserDefMea<br>s01 | User defined measurement 1.                                                                                                                                                |
| 8     | Meas text 2    | MeasPar.UserDefMea<br>s02 | User defined measurement 2.                                                                                                                                                |

# 3.2.2 Position status

The position status of the circuit breaker is presented by the graphic symbol of the circuit breaker in the faceplate tab **Main**.



Figure 23 Position status pmsCBIndM

| Table 54 | Position | status | pmsCBIndM |
|----------|----------|--------|-----------|
|----------|----------|--------|-----------|

| Field | Parameter configuration | Description                                           |  |
|-------|-------------------------|-------------------------------------------------------|--|
| 1     | CI=1 and OI=0 and SP =1 | Circuit breaker closed.                               |  |
| 2     | CI=0 and OI=1 and SP =1 | Circuit breaker opened.                               |  |
| 3     | CI=0 and OI=0 and SP =1 | Circuit breaker intermediate position.                |  |
| 4     | CI=1 and OI=0 and SP=0  | Circuit breaker closed and racked-out.                |  |
| 5     | CI=0 and OI=1 and SP=0  | Circuit breaker open and racked-out.                  |  |
| 6     | CI=0 and OI=0 and SP=0  | Circuit breaker intermediate position and racked-out. |  |

The FBConfig parameter shall be used for enabling the open and/or service position feedbacks, as shown in Table 55.

| FBConfig<br>value | Applicable feedback signals                                                                                                     | Remarks                                                                                                                                                                                                                                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | - Feedback Opened<br>- Feedback Closed                                                                                          | Two limit switches are monitored; the Service Position input<br>is not included.<br>Note: service position is the opposite of racked out position                                                                                                                                                                   |
| 1                 | - Feedback Closed                                                                                                               | Only closed limit switch feedback is considered.                                                                                                                                                                                                                                                                    |
| 2                 | - Feedback Opened<br>- Feedback Closed<br>- Feedback Service Position                                                           | Both opened and closed limit switches are considered in conjunction with the service position.<br>Note: that if the service position is '0', i.e. the circuit breaker is racked out; the checked open indication is always true to indicate an electrical disconnection.                                            |
| 3                 | - Feedback Closed<br>- Feedback Service Position                                                                                | The close limit switch and the service position feedbacks are monitored.                                                                                                                                                                                                                                            |
| 4                 | <ul> <li>Feedback Opened</li> <li>Feedback Closed</li> <li>Feedback Service Position</li> <li>Feedback Test Position</li> </ul> | Both opened and closed limit switches are considered in<br>conjunction with the service position.<br>Both the service position and the test position is monitored<br>before the circuit breaker is considered racked out; the<br>checked open indication is always true to indicate an<br>electrical disconnection. |
| 5                 | - Feedback Closed<br>- Feedback Service Position<br>- Feedback Test Position                                                    | The close limit switch and both service position and test position feedbacks are monitored.                                                                                                                                                                                                                         |

 Table 55 Configuration values for the FBConfig parameter

# 3.2.3 Graphic Symbol Standard

The graphic symbols standard (IEC or ANSI) used in the faceplates can be configured by setting the project constant **pmsConstants.cGraphicSymbolStd\_IEC\_ANSI**.

| Value      | Standard     | Symbols |
|------------|--------------|---------|
| 0          |              | γ°°,    |
| 1(default) | IEC(default) | * *     |
| 2          | ANSI         |         |

# When ANSI is selected, the fill color of the symbol can be configured by setting the project constant **pmsConstants.cANSI\_FillColouring**.

| Value      | Remarks                              | Symbols |
|------------|--------------------------------------|---------|
| 0(default) | Green = Open<br>Red = Closed         |         |
| 1          | Not filled = Open<br>Filled = Closed |         |

The position of the breaker symbol when racked out can be configured by setting

the project constant pmsConstants.cBreaker\_RackoutConfig.

| Value      | Remarks                                   | Symbols          |
|------------|-------------------------------------------|------------------|
| 0(default) | Move symbol outside line when racked out. | < <sup>←</sup>   |
| 1          | Keep symbol on line<br>when racked out.   | < <b>← ■ →</b> > |

See Appendix A for detailed table with configuration and corresponding symbols.

#### 3.2.4 Alarms

The control module supports standard and customized alarms:

- The standard alarms represent alarm conditions that are monitored by the internal logic of the control module.
- The customized alarms represent 16 free programmable alarm conditions that must be configured outside the control module.

All alarms are presented in the tab Alarms of the circuit breaker faceplate, as shown in Figure 24.

| CB) CB) pmsC                                                                                                                                                                                                                                                                                 | indM<br>:BIndM                                                                                                                                                                                    | 4 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Trend Alarms Events Mea<br>Breaker inter. pos. (00<br>Breaker pos. error (11<br>Truck inter. pos. (00)<br>Truck pos. error (11)<br>IO Error<br>Comm. Error<br>Comm. Error<br>Protection trip<br>Shed command<br>Alarm text 1<br>Alarm text 2<br>Alarm text 3<br>Alarm text 4<br>Alarm text 5 | surements<br>Alarm text 7<br>Alarm text 8<br>Alarm text 9<br>Alarm text 10<br>Alarm text 11<br>Alarm text 11<br>Alarm text 12<br>Alarm text 13<br>Alarm text 14<br>Alarm text 15<br>Alarm text 16 |   |

Figure 24 Faceplate tab Alarms for pmsCBIndM

The alarm for the intermediate position is enabled if the parameter *PosAlarmEnable* is set to True. An alarm delay can be configured via the parameter *PosAlarmTimer* for the allowed changeover time of the position signals.

| Field | Indication                             | Alarm condition                                                                                                                                                                                                                                                                    | Alarm message (Resource Id)       |
|-------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1     | Intermediate<br>position (00)          | When neither the open nor the closed position feedbacks are received; the parameters <i>OI.Value</i> and <i>CI.Value</i> are false for more than a configurable time.                                                                                                              | NLSID_CBPosError                  |
| 2     | Position error<br>(11)                 | When both the open and closed position feedbacks are received; the parameters <i>OI.Value</i> and <i>CI.Value</i> are True.                                                                                                                                                        | NLSID_CBFault                     |
| 3     | Truck<br>intermediate<br>position (00) | When neither the service nor the test<br>position feedbacks are received; the<br>parameters <i>IOPar.SP.Value</i> and<br><i>IOPar.TP.Value</i> are False for more than a<br>configurable time.                                                                                     | NLSID_CBTruckPosError             |
| 4     | Truck<br>position error<br>(11)        | When both the service and test position feedbacks are received; the parameters <i>IOPar.SP.Value</i> and <i>IOPar.TP.Value</i> are True.                                                                                                                                           | NLSID_CBTruckPosFault             |
| 5     | IO Error                               | The parameter <i>IOErr</i> is dedicated to receive<br>any error indication from IO related to the<br>circuit breaker. The alarm is activated when<br>the parameter is True. The alarm is also<br>activated when the position feedback signals<br>are not reporting healthy status. | NLSID_IOError                     |
| 6     | Communication<br>error                 | The parameter <i>ComErr</i> is dedicated to<br>receive any error indication from<br>communication links related to the circuit<br>breaker. The alarm is activated when the<br>parameter is True.                                                                                   | NLSID_ComError                    |
| 7     | Protection                             | The parameter <i>LO</i> is used for receiving the hardwired trip signal. The alarm is activated when the parameter is True.                                                                                                                                                        | NLSID_ProtectionTrip              |
| 8     | Shed<br>command                        | The parameter <i>Shed</i> is dedicated to receive<br>a shed indication from a load shedding<br>application. The alarm is activated when the<br>parameter is True.                                                                                                                  | NLSID_ShedCmd                     |
| 9     | Alarm text 1                           | AlarmPar.UserDefAlm01stat.Signal                                                                                                                                                                                                                                                   | AlarmPar.UserDefAlm01stat.Message |
|       | Alarm text 16                          | AlarmPar.UserDefAlm16stat.Signal                                                                                                                                                                                                                                                   | AlarmPar.UserDefAlm16stat.Message |

# Table 56 List of alarms and message configuration

# 3.2.6 Events

The control module supports standard and customized events:

- The standard events represent operational changes that are monitored by the internal logic of the control module.
- The customized events represent 16 free programmable status/event conditions that can be configured outside the control module.

The events are presented in the Event List. The purpose of the customized events is mainly for user defined on/off type of status signals.

| No. | Indication | Event condition                                | Event message On                                          |
|-----|------------|------------------------------------------------|-----------------------------------------------------------|
| 1   | Opened     | Position feedback opened.                      | NLSID_OpenPosition+ NLSID_EventOn<br>(or NLSID_EventOff)  |
| 2   | Closed     | Position feedback closed.                      | NLSID_ClosePosition+ NLSID_EventOn<br>(or NLSID_EventOff) |
| 3   | RackedOut  | Position feedback racked-out (not in service). | NLSID_RackedOutOn<br>(or NLSID_RackedOutOff)              |

Table 57 List of standard events and message configuration

# 3.3 Parameters

This chapter describes the parameters and configuration settings for the control module *pmsCBIndM*. In practice the *pmsCBIndM* is a simplified version of the *pmsCBStandardM* module therefore only the differences will be highlighted.

|    | Name         | Туре       | Initial value | Description                                                                                  |
|----|--------------|------------|---------------|----------------------------------------------------------------------------------------------|
| 1  | Name         | string[30] | 'pmsCBIndM'   | IN EDIT: Name of the object                                                                  |
| 2  | Description  | string[40] | 'pmsCBIndM'   | IN EDIT: Description of the object                                                           |
| 3  | VoltageLevel | dint       | 1             | IN EDIT: Voltage level for object<br>colouring [110]                                         |
| 4  | AlSeverity   | dint       | 900           | IN EDIT: Alarm severity                                                                      |
| 5  | EvSeverity   | dint       | 400           | IN EDIT: Event severity                                                                      |
| 6  | Class        | dint       | 50            | IN EDIT: Alarm and Event Class                                                               |
| 7  | СВТуре       | dint       | 1             | IN EDIT: [1=CB] [3=Disconnector, no<br>SP] [4=CB, no SP]                                     |
| 8  | FBConfig     | dint       | 0             | IN EDIT: [0=FB1,FB0] [1=FB1]<br>[2=FB1,FB0,SP] [3=FB1,SP]<br>[4=FB1,FB0,SP,TP] [5=FB1,SP,TP] |
| 9  | NormalMode   | dint       | 3             | IN EDIT:<br>[1=Manual][2=Auto][3=Local][4=Rem<br>ote]                                        |
| 10 | OI           | BoollO     | default       | IN: Feedback open                                                                            |
| 11 | CI           | BoollO     | default       | IN: Feedback closed                                                                          |

Table 58 Parameters of pmsCBIndM

|    | Name                | Туре               | Initial value | Description                                                                 |
|----|---------------------|--------------------|---------------|-----------------------------------------------------------------------------|
| 12 | SP                  | BoollO             | default       | IN: Feedback service position                                               |
| 13 | ТР                  | BoollO             | default       | IN: Feedback Test position [NOT<br>USED]                                    |
| 14 | LO                  | BoollO             | default       | IN: Trip Input, Lockout                                                     |
| 15 | Shed                | bool               | default       | IN: Load shed action by load<br>shedding function                           |
| 16 | Meas_V              | ReallO             | default       | IN: Measurement Voltage                                                     |
| 17 | Meas_F              | ReallO             | default       | IN: Measurement Frequency                                                   |
| 18 | Meas_P              | ReallO             | default       | IN: Measurement Power                                                       |
| 19 | Meas_Q              | ReallO             | default       | IN: Measurement Reactive Power                                              |
| 20 | En_Meas_PF_Calc     | bool               | false         | IN EDIT: Enable PF calculated out of<br>P, Q, PF: P / {sqrt[(P)^2 + (Q)^2]} |
| 21 | Meas_PF             | ReallO             | default       | IN: Measurement Power factor                                                |
| 22 | En_Meas_I_Calc      | bool               | false         | IN EDIT: Enable I calculated out of P,<br>PF, V: I = P / (PF x V x sqrt(3)) |
| 23 | Meas_I              | ReallO             | default       | IN: Measurement Current                                                     |
| 24 | lOErr               | bool               | default       | IN: IO Error                                                                |
| 25 | ComErr              | bool               | default       | IN: Communication Error                                                     |
| 26 | PosAlarmEnable      | bool               | true          | IN: Enable alarm condition                                                  |
| 27 | PosAlarmTimer       | time               | 5s            | IN: Time setting for alarm condition                                        |
| 28 | TruckPosAlarmEnable | bool               | true          | IN: Enable alarm condition                                                  |
| 29 | TruckPosAlarmTimer  | time               | 5s            | IN: Time setting for alarm condition                                        |
| 30 | POS_OX              | bool               | default       | OUT: Circuit Breaker position open<br>checked                               |
| 31 | POS_CX              | bool               | default       | OUT: Circuit Breaker position closed<br>checked                             |
| 32 | EvPar               | pmsCustom<br>EvPar | default       | IN_OUT: Circuit Breaker custom<br>defined SOE events [NOT USED]             |
| 33 | AlarmPar            | pmsExtAll          | default       | IN: For Extended Alarm indication in<br>Faceplate                           |
| 34 | EventPar            | pmsExtEvt          | default       | IN: For Extended Event indication in<br>Faceplate                           |
| 35 | MeasPar             | pmsExtIO           | default       | IN: For Extended Measurements<br>indication in Faceplate                    |
| 36 | DisEvtOpened        | bool               | false         | IN: External disabling of event condition for CI                            |
| 37 | DisEvtClosed        | bool               | false         | IN: External disabling of event<br>condition for OI                         |
| 38 | DisEvtRackedOut     | bool               | false         | IN: External disabling of event condition for RO                            |

# 3.3.1 Parameter details

#### 3.3.1.1 Position status

#### Table 59 Position feedbacks for pmsCBIndM

|   | Name | Туре   | Initial value | Description                                |
|---|------|--------|---------------|--------------------------------------------|
| 1 | OI   | BoollO | default       | IN: Feedback open limit switch             |
| 2 | CI   | BoollO | default       | IN: Feedback close limit switch            |
| 3 | SP   | BoollO | default       | IN: Feedback service position limit switch |
| 4 | TP   | BoollO | default       | IN: Feedback test position limit switch    |

These position feedbacks are normally connected to digital I/O signals. They shall be handled in the same manner as the relevant components found in the parameter IOPar of the *pmsCBStandardM* control module.

#### Example:

Global variable: IO (structured type) with component CB4301A (type pmsCBIndPar)

- OI : IO.CB4301A.OI
- CI : IO.CB4301A.CI
- SP : IO.CB4301A.SP
- TP : IO.CB4301A.TP

#### 3.3.1.2 Measurements

#### Table 60 Measurement connections

|    | Name    | Туре   | Initial value | Description                    |
|----|---------|--------|---------------|--------------------------------|
| F  | Maga V/ | DeallO | defecult      |                                |
| Э  | weas_v  | ReallO | derault       | IN: Measurement voltage        |
| 6  | Meas_F  | ReallO | default       | IN: Measurement Frequency      |
| 7  | Meas_P  | ReallO | default       | IN: Measurement Power          |
| 9  | Meas_Q  | ReallO | default       | IN: Measurement Reactive Power |
| 10 | Meas_PF | ReallO | default       | IN: Measurement Power factor   |
| 11 | Meas_I  | ReallO | default       | IN: Measurement Current        |

These input measurements are typically connected to analogue I/O signals. They shall be handled in the same manner as the relevant components found in the parameter *IOPar.MeaInput* of the *pmsCBStandardM* control module

Example:

Global variable: IO (structured type) with component CB4301A (type pmsCBIndPar)

- Meas\_V : IO.CB4301A.Meas\_V
- Meas\_F : IO.CB4301A.Meas\_F
- Meas\_P : IO.CB4301A.Meas\_P
- Meas\_Q : IO.CB4301A.Meas\_Q
- Meas\_PF : IO.CB4301A.Meas\_PF
- Meas\_I : IO.CB4301A.Meas\_I

## 3.3.1.3 Error parameters

|    | Name   | Туре   | Initial value | Description                                    |
|----|--------|--------|---------------|------------------------------------------------|
| 12 | LO     | BoollO | default       | IN: Trip Input, Lockout                        |
| 13 | Shed   | bool   | default       | IN: Load shed action by load shedding function |
| 14 | IOErr  | bool   | default       | IN: IO Error                                   |
| 15 | ComErr | bool   | default       | IN: Communication Error                        |

Table 61 Error signals

Example:

Global variable: IO (structured type) with component CB4301A (type pmsCBIndPar).

The parameter *Shed* should be connected to a Load Shedding function.

e.g.

Shed : IO.CB4301A.Shed

The parameter *IOErr* should be a summation of the signal errors applicable for the circuit breaker.

e.g.

IO.CB4301A.IOErr := IO.CB4301A. Meas\_F.Status ≠ 16#C0 or

IO.CB4301A. Meas\_P.Status ≠ 16#C0 or

IO.CB4301A.Meas\_V.Status  $\neq$  16#C0;

The *CommErr* can be used to monitor the MMS communication status and/or serial link communication status to protection relays.

e.g.

CommErr : IO.CB4301A. CommErr

# 3.3.1.4 Status

| Table 62 Status ( | ′output) |
|-------------------|----------|
|-------------------|----------|

|    | Name   | Туре | Initial value | Description                             |
|----|--------|------|---------------|-----------------------------------------|
| 16 | POS_OX | bool | default       | OUT: Circuit breaker pos open checked   |
| 17 | POS_CX | bool | default       | OUT: Circuit breaker pos closed checked |

These outputs indicate the confirmed open or closed position of the circuit breaker for use by other control modules or programs. They shall be handled in the same manner as the parameters *Status.OX* and *Status.CX* of the *pmsCBStandardM* control module.

Example:

Global variable: IO (structured type) with component CB4301A (type pmsCBIndPar)

POS\_CX : IO.CB4301A.POS\_CX POS\_OX : IO.CB4301A.POS\_OX

# Section 4 Control Module pmsCBSyncM

The *pmsCBSyncM* control module is included in the *pmsCBLib* library. A block presentation of the control module is shown in Figure 25. The parameters are briefly described in Table 63.



Figure 25 Control module pmsCBSyncM

| Table 63 Control module | e pmsCBSyncM | l parameters |
|-------------------------|--------------|--------------|
|-------------------------|--------------|--------------|

| Parameter     | Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name          | Name of the circuit breaker. With the name upload tool of process portal, this property will be used to identify the object in 800xA. The name will be used to group the alarms and events and for identifying the faceplate of the object. The name must be unique in the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Description   | Description of the circuit breaker. With the name upload tool of process portal, this property will be used for identifying the object in 800xA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Voltage level | $\begin{array}{l} \mbox{Voltage level for object colouring. This property gives the object a colour in Single Line Diagrams. Default settings for the colours are: \\ \mbox{Level 1 - RGB N(0,176,232) - D(0,126,182) - L(50,226,255) \\ \mbox{Level 2 - RGB N(232,160,168) - D(182,110,118) - L(255,210,218) \\ \mbox{Level 3 - RGB N(176,232,176) - D(126,182,126) - L(226,255,226) \\ \mbox{Level 4 - RGB N(255,255,128) - D(205,205,78) - L(255,255,178) \\ \mbox{Level 5 - RGB N(64,128,128) - D(14,78,78) - L(114,178,178) \\ \mbox{Level 6 - RGB N(198,101,0) - D(140,70,0) - L(255,154,53) \\ \mbox{Level 7 - RGB N(240,160,13) - D(182,121,10) - L(249,209,136) \\ \mbox{Level 8 - RGB N(207,204,73) - D(153,150,40) - L(227,225,149) \\ \mbox{Level 9 - RGB N(185,157,91) - D(135,112,58) - L(223,210,181) \\ \end{array}$ |  |  |

| Parameter     | Significance                                                                                                                                                                                                                                                                                                                                       |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СВТуре        | The parameter is used for configuring the graphical presentation of the circuit breaker;<br>'1'= circuit breaker, '2'= circuit breaker synch, '11'= circuit breaker with earthing, '12'=<br>circuit breaker synch. with earthing.                                                                                                                  |
| FBConfig      | Configuration parameter for the position status signals that are applicable for the circuit breaker; '0'= Open and Closed positions, '1'= Closed position, '2'= Open, Closed and Service position, '3'= Closed and Service position, '4'= Open, Closed and Service position and Test position, '5'= Closed and Service position and Test position. |
| NormalMode    | The parameter is used for configuring the graphical presentation of the normal mode;<br>'1'= Manual, '2'= Auto, '3'= Local.                                                                                                                                                                                                                        |
| FollowLocalFB | Configuration parameter for the circuit breaker when in local point of control<br>'False'= Cmd0\Cmd1Level output is reset in local, 'True' = Cmd0\Cmd1Level follows<br>FB in local.                                                                                                                                                                |
| Index         | The index shall be unique for each circuit breaker in the synchronization function. This parameter shall identify the breaker to the Synchronization module (pmsSNSyncSuperv) from the pmsSNLib library.                                                                                                                                           |
| AlSeverity    | Alarm severity.<br>The alarm severity can be used for filtering the alarm list.<br>Range 1-1000.                                                                                                                                                                                                                                                   |
| EvSeverity    | Event severity.<br>The event severity can be used for filtering the event list.<br>Range 1-1000.                                                                                                                                                                                                                                                   |
| Class         | Alarm and Event Class.<br>This property can be used for grouping objects to appear in separate alarm/event lists.<br>Range 1-9999.                                                                                                                                                                                                                 |
| IOPar         | Input/Output signals.<br>This parameter is used for connecting the I/O signals to the object. This parameter is a structured data type.                                                                                                                                                                                                            |
| AutoPar       | Structured parameter for connecting auto open/close commands to the circuit breaker.                                                                                                                                                                                                                                                               |
| AlarmPar      | Structured parameter for 16 user defined alarms.                                                                                                                                                                                                                                                                                                   |
| EventPar      | Structured parameter for 16 user defined events.                                                                                                                                                                                                                                                                                                   |
| llockPar      | Structured parameter for and configuring interlock signals.                                                                                                                                                                                                                                                                                        |
| ErrPar        | Structured parameter for error signals to the circuit breaker.                                                                                                                                                                                                                                                                                     |
| SyncPar       | Configuration settings for the network determination.                                                                                                                                                                                                                                                                                              |
| SynCBPar      | Structured parameter for receiving data from the Synchronization module.                                                                                                                                                                                                                                                                           |
| MeasPar       | Structured parameter for 16 user defined analogue measurements.                                                                                                                                                                                                                                                                                    |
| ExtPar        | External parameters for application interaction. With this parameter it is possible to disable standard alarms and to disable the mode command buttons of the faceplate.                                                                                                                                                                           |
| Status        | Status indication for the checked closed/open position and the manual/auto mode of the breaker.                                                                                                                                                                                                                                                    |
| CBSynPar      | Structured parameter for sending data to the Synchronization module.                                                                                                                                                                                                                                                                               |
## 4.1 Introduction

The control module type pmsCBSyncM is used for the control and supervision of circuit breakers involved in a synchronization scheme. The following features are supported:

### • Measurements

Two kinds of mesurements are featured, standard and customized:

- Standard measurements: Important electrical available for monitoring in the main faceplate tab:
  - Voltage
  - Frequency
  - Active power
  - Reactive power
  - Power factor
  - Current
- Customized measurements: Additionally, up to 16 customized measurements can be displayed numerically in another faceplate tab

### • Position status

The following feedback signals facilitates supervision of circuit breaker position status:

- Open indication
- Closed indication
- Service position
- Test position
- Earthed position

#### • Graphical Standard - IEC, ANSI

The graphical element can be configured to follow either the IEC or ANSI graphical standard.

#### Outputs

Open and close commands can be issued as pulsed or as steady outputs:

- Open command (level)
- Open command (edge)
- Close command (level)
- Close command (edge)

The pulsed outputs remain high for a configurable time period. The steady outputs remain active until the opposite command is initiated. The control module checks for discrepancies between output commands and position status. The conflicts are generating alarms after a configurable timeout setting.

• Interlocking

The circuit breaker can be interlocked for operation by conditions received from supervisory programs or other objects. Five interlocks are available; one A-interlock (which can be overridden) and four B-interlocks.

#### Point of Control (PoC)

The circuit breaker can be controlled from two locations:

- Remote point of control: PMS-level of control via ABB's graphical aspects.
- o Local point of control: equipment-level of control via vendor's local panel.

#### Control modes

Different control modes affect the operability:

- o Maintenance mode: No operation commands are allowed.
- o Simulation mode: The operation commands are simulated.
- o Auto mode: Operation commands are controlled by application logic.
- Manual mode: Operation commands are issued via the faceplate.

#### • Operation commands

Following operations are available to the operator via the circuit breaker faceplate:

- Change of control modes
- Open/Close commands
- o Initiate synchronization
- Override interlock

#### • Operations counter

A counter is provided to calculate how many times the circuit breaker is operated. It only counts when the circuit breaker is opened and it does not count when the maintenance or simulation mode are activated.

#### Alarms

Alarms are divided in two categories:

- Standard alarms: Default alarms informing the operator of alarm conditions, according to the internal logic of the control module.
- Customized alarms: Up to 16 customized alarms can be raised through the control module although they originate from external logic.

#### Events

- Events are divided in two categories:
- Standard events: Default events informing the operator of operational status changes according to internal logic of the control module.
- Customized events: Up to 16 customized events informing the operator of status/events programmed outside the control module logic.

# 4.2 Detailed Engineering

The control module *pmsCBSyncM* includes the same functionality implemented in the *pmsCBStandardM* module. In addition, the *pmsCBSyncM* module supports the synchronization function.



The features related to the synchronization function are described in a separate document "User Manual, Synchronization", 3BNP100234-0338.

# Section 5 Capacity & Performance

Table 64 Firmware version downloaded on the utilized controllers

| Unit  | Firmware version                              |
|-------|-----------------------------------------------|
| PM866 | FW866 5.1.48.40 2010-07-02 (BasicHwLib 5.1-0) |
| PM891 | FW891 5.1.48.40 2010-07-02 (BasicHwLib 5.1-0) |

## 5.1 Heap Utilization

## 5.1.1 pmsCBStandardM

### Table 65 Heap utilization of pmsCBStandardM

|                               | First instance | 2 <sup>nd</sup> and following instances |
|-------------------------------|----------------|-----------------------------------------|
| Heap utilization(MB) in PM866 | 0.185          | 0.123                                   |
| Heap utilization(MB) in PM891 | 0.187          | 0.125                                   |

## 5.1.2 pmsCBIndM

### Table 66 Heap utilization of pmsCBIndM

|                               | First instance | 2 <sup>nd</sup> and following instances |
|-------------------------------|----------------|-----------------------------------------|
| Heap utilization(MB) in PM866 | 0.159          | 0.113                                   |
| Heap utilization(MB) in PM891 | 0.16           | 0.113                                   |

## 5.1.3 pmsCBSyncM

Table 67 Heap utilization of pmsCBSyncM

|                               | First instance | 2 <sup>nd</sup> and following instances |
|-------------------------------|----------------|-----------------------------------------|
| Heap utilization(MB) in PM866 | 0.188          | 0.125                                   |
| Heap utilization(MB) in PM891 | 0.19           | 0.124                                   |

## **5.2 Execution Time**

## 5.2.1 pmsCBStandardM

## Table 68 Execution time of pmsCBStandardM

| Execution time (ms) | Notes                     |
|---------------------|---------------------------|
| 0.6 ms              | For one instance in PM866 |
| 0.4 ms              | For one instance in PM891 |

## 5.2.2 pmsCBIndM

## Table 69 Execution time of pmsCBIndM

| Execution time (ms) | Notes                     |  |  |  |
|---------------------|---------------------------|--|--|--|
| 0.3 ms              | For one instance in PM866 |  |  |  |
| 0.25 ms             | For one instance in PM891 |  |  |  |

## 5.2.3 pmsCBSyncM

## Table 70 Execution time of pmsCBSyncM

| Execution time (ms) | Notes                     |
|---------------------|---------------------------|
| 0.7 ms              | For one instance in PM866 |
| 0.44 ms             | For one instance in PM891 |

# Appendix A Appendix1

# A.1 Breaker Open/Closed indications

Table 71 Breaker open/closed indications

|                                     | Open        | Closed       | Inter-mediate | Faulty |
|-------------------------------------|-------------|--------------|---------------|--------|
| IOPar.OI.Value                      | True        | False        | False         | True   |
| IOPar.CI.Value                      | False       | True         | False         | True   |
|                                     | IEC         |              |               |        |
| CBType = 1 or 11Circuit Breaker     | ×           | *            | ×<br>T        | *      |
| CBType = 3 or 13<br>Disconnector    |             | +            | L<br>T        | ,<br>▼ |
| ANSI                                | cAnsi_FillC | olouring = 0 |               |        |
| CBType = 1 or 11<br>Circuit Breaker | •           | +            | ×             | +      |
| CBType = 3 or 13<br>Disconnector    |             |              | ×             |        |
| ANSI                                | cAnsi_FillC | olouring = 1 |               |        |
| CBType = 1 or 11<br>Circuit Breaker | <b>P</b>    | •            | ×             | +      |
| CBType = 3 or 13<br>Disconnector    |             |              | ×             | N      |

# **A.3 Truck Position Indications**

| IEC                        |                                               |              |                   |        |                    |
|----------------------------|-----------------------------------------------|--------------|-------------------|--------|--------------------|
|                            | Racked<br>Out                                 | Racked<br>In | Inter-<br>mediate | Faulty |                    |
| IOPar.SP.Value             | False                                         | True         | False             | True   |                    |
| IOPar.TP.Value             | True                                          | False        | False             | True   |                    |
| cBreaker_RackoutConfig = 0 |                                               | ÷.           | × *、              | +*     | Circuit Breaker    |
| cBreaker_RackoutConfig = 1 | )<br>)                                        | ų į          | ×                 | 1      | Open               |
| cBreaker_RackoutConfig = 0 |                                               | *            | *                 | + *    | Circuit Breaker    |
| cBreaker_RackoutConfig = 1 | (*+)                                          | Ų            | ×                 | 1      | Closed             |
| cBreaker_RackoutConfig = 0 | $- \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$ | Ť            | ×                 | ţ      | Isolator           |
| cBreaker_RackoutConfig = 1 | <u> </u>                                      | ې<br>۲       | ×                 | 1      | Open               |
| cBreaker_RackoutConfig = 0 | )<br>t                                        | \$           | ×<br>+            | +      | Isolator<br>Closed |
| cBreaker_RackoutConfig = 1 | ŧ                                             | ţ            | ×                 | +      |                    |

Table 72 Truck position indications, IEC

# **A.4 Truck Position Indications**

| ANSI cBreaker_ANSI_FillColouring = 0 |                            |              |                   |        |                    |            |          |                 |
|--------------------------------------|----------------------------|--------------|-------------------|--------|--------------------|------------|----------|-----------------|
|                                      | Racked<br>Out              | Racked<br>In | Inter-<br>mediate | Faulty |                    |            |          |                 |
| IOPar.SP.Value                       | False                      | True         | False             | True   |                    |            |          |                 |
| IOPar.TP.Value                       | True                       | False        | False             | True   |                    |            |          |                 |
| cBreaker_RackoutConfig = 0           | ↓<br>↓<br>↓                | *            | ×                 | +      | Circuit Breaker    |            |          |                 |
| cBreaker_RackoutConfig = 1           | (←■))                      |              | -×                |        | Open               |            |          |                 |
| cBreaker_RackoutConfig = 0           | ↓<br>↓<br>↓                |              | <b></b>           |        |                    | <b>→</b> × | <u>+</u> | Circuit Breaker |
| cBreaker_RackoutConfig = 1           | ÷                          | ¥            | ×                 | Ţ      | Closed             |            |          |                 |
| cBreaker_RackoutConfig = 0           | $\downarrow^{\uparrow}$    | <b>*</b>     | ×                 | + \    | Isolator           |            |          |                 |
| cBreaker_RackoutConfig = 1           | $\langle \uparrow \rangle$ | À            | ×                 |        | Open               |            |          |                 |
| cBreaker_RackoutConfig = 0           |                            |              | ×                 | +      | Isolator<br>Closed |            |          |                 |
| cBreaker_RackoutConfig = 1           | Ĵ                          | *            | ×                 | +      |                    |            |          |                 |

Table 73 Truck position indications, ANSI

# **A.5 Truck Position Indications**

| ANSI cBreaker_ANSI_FillColouring = 1 |                        |              |                   |          |                    |
|--------------------------------------|------------------------|--------------|-------------------|----------|--------------------|
|                                      | Racked<br>Out          | Racked<br>In | Inter-<br>mediate | Faulty   |                    |
| IOPar.SP.Value                       | False                  | True         | False             | True     |                    |
| IOPar.TP.Value                       | True                   | False        | False             | True     |                    |
| cBreaker_RackoutConfig = 0           |                        | -«-[         | ×                 |          | Circuit Breaker    |
| cBreaker_RackoutConfig = 1           | ( ←□+ )                | ]->          | Ъ×                | J+       | Open               |
| cBreaker_RackoutConfig = 0           |                        | <del>~</del> | ×-                | Ť        | Circuit Breaker    |
| cBreaker_RackoutConfig = 1           | < ← ■ → >              | ₩            | -x                | ÷        | Closed             |
| cBreaker_RackoutConfig = 0           |                        | 余、           | ×                 | <b>†</b> | Isolator           |
| cBreaker_RackoutConfig = 1           | < <i>←,</i> ,,} >      | ~*           | ×                 | 1        | Open               |
| cBreaker_RackoutConfig = 0           |                        | Ŷ            | ×                 | Ť        | lsolator<br>Closed |
| cBreaker_RackoutConfig = 1           | $\widehat{\downarrow}$ | ₩            | ×                 | +        |                    |

Table 74 Truck position indications, ANSI

# Appendix A Revision table

| Rev. ind. | Page (P) /<br>Chapter © | Description                        | Date           |
|-----------|-------------------------|------------------------------------|----------------|
| А         |                         | Initial document release for 5.6-5 | 2022.08.30/KAA |
|           |                         |                                    |                |
|           |                         |                                    |                |

# Contact us

ABB AS **PA Energy Industries** Oslo, Norway E-mail: power.management@no.abb.com ABB Oil and Gas

Copyright  $\ensuremath{\textcircled{C}}$  2002 – 2022 by ABB. All Rights Reserved.

