VSN800 Weather Station

This manual covers the details for installing the VSN800 Weather Station hardware to sense environmental variables. Through the VSN800 Weather Station, the Aurora Vision Plant Management Platform can collect and analyze environmental data for comparison to predicted environmental data and actual inverter/solar panel output.

The RS485 port of the VSN800 Weather Station is attached via low-voltage wires to the monitoring or management system and communicates information to the management system using the Modbus protocol. The weather station is powered via 24VDC power, which is typically available from the data collection hardware of the management system.

Once the hardware is installed, you will need to login to the management system website to verify the Internet is connected properly and verify that the data in being received.

The VSN800 Weather Station is SunSpec compliant and uses a 2-wire half duplex serial port for Modbus communication to a host. Contact ABB if you need to modify or program the unit or change the Modbus address.

VSN800 series installation overview

VSN800-14

Vane for Wind Speed and Direction
Ambient Temperature Sensor
Second Pyranometer (For Solar Panel Plane)
Pyranometer
PV Panel Temperature Sensor
Connector Case
Mounting Mast
**VSN800-12**

![Diagram of VSN800 Weather Station]

**Installation steps**
1. Select Location for the VSN800
2. Make Connections to 24VDC Power
3. Make Connections to Management System through RS485
4. Install PV Panel Temperature Sensor; For the VSN800-14 Model, Install Secondary Pyranometer
5. Complete Mounting of the VSN800
6. Verify and validate the Installation via the Management System

**Equipment and supplies**

<table>
<thead>
<tr>
<th>We supply:</th>
<th>You supply:</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN800 Weather Station, which includes:</td>
<td>Mounting Hardware</td>
</tr>
<tr>
<td>Pyranometer</td>
<td>Tripod or pole mount base</td>
</tr>
<tr>
<td>Ambient Temperature Sensor</td>
<td>Guy wire kit, if necessary</td>
</tr>
<tr>
<td>External PV Panel Temperature Sensor</td>
<td>24VDC Power</td>
</tr>
<tr>
<td>External Second Pyranometer (VSN800-14 Model Only)</td>
<td>Twisted Pair Wires</td>
</tr>
<tr>
<td>Wind Speed and Wind Direction Sensor (VSN800-14 Model Only)</td>
<td></td>
</tr>
</tbody>
</table>

**Site selection and mounting**

**Weather station location**

The ideal site is level and well away from obstructions such as buildings, trees, and steep slopes. The weather station is typically pole or tripod mounted.
Take into account the needs for all attached sensors to determine the optimal mounting location. Ambient air temperature and irradiance measurements can be affected by obstructions, local topography, and surface type. Each site is different and presents unique challenges. By far the most important consideration is obstruction.

- Objects that are 10 degrees or more above the horizontal plane must not block irradiance.
- Ambient air temperature measurement should be placed away from any dark, heat-absorbing surface (asphalt, dark-colored surfaces) and should be no closer than 4 times the obstruction’s height.

A simple way to think of obstruction is the rule of 10. If the obstruction is at a distance of at least 10 times its height above the weather station, you’re good.

Towers can be used to raise the weather station above low-lying obstructions.

Weather station mounting requirements

Mount the support mast securely to a support structure. Mounting equipment is sold as an accessory. The mast may also be attached to a support structure using U-Bolts. Do not tighten the support structure to the unit, as directional orientation will be required.

Rotate the assembled unit until the electronics enclosure faces TRUE SOUTH or TRUE NORTH if you are in the northern or southern hemisphere, respectively. Secure the support mast to the assembly. Lining up the two holes in each mast prevents rotation. At this point the entire unit should be secured to the support structure.

It is crucial that the device be oriented as precisely as possible. For the VSN800-14 version, the wind direction measurement is directly related to this positioning.

Regardless of how you mount the system, the bottom of the electronic enclosure should not extend more than 12” or less than 7” above the support of the mounting tube.

Other Mounting Considerations

The exact method of mounting the weather station is left to the installer. However, there are some guidelines and recommendations to consider.

- The environmental unit is designed to withstand very harsh weather conditions. Refer to the data for individual sensors for the ranges at which measurements remain accurate.
- The environmental unit weighs approximately 7 lbs. Pole mounts in the ground or attached to structures that support up to 50 lbs. are recommended.
• For ground tripod mounts, the ground should be as level as possible.
• For roof mounts, avoid locating the station near any heat sources such as chimneys or vents. Do not install on an existing mast unless you know the mast can take the additional weight of the weather station. When roof-mounting the sensor assembly, the unit should be mounted toward an edge of the roof preferably on the prevailing wind side of the building and should be at least 2-1/2 feet above the roofline.
• The weather station unit should be mounted at least 5 feet off the ground. Surrounding terrain and structures may dictate a much higher mount.
• If the weather station is mounted more than 10 feet off the ground, guy wires should be used to secure the mount. Guy wire attachments must not interfere with instruments.
• Wall-mounting, pole-mounting, or tripod kits are available. Contact your ABB distributor.
• Test the system at ground level and make sure it operates properly prior to final mounting.

Sensor mounting requirements

Global Irradiance
The pyranometer is attached to the sensor assembly and is oriented to measure global irradiance. To accurately measure this quantity the sensor must be level, orientated either TRUE SOUTH or TRUE NORTH if you are in the northern or southern hemisphere, respectively, and objects above 10° above the horizontal plane must not block the sensor.

Be sure to remove the protective green cap from all pyranometers so they can measure insolation.

Plane-of-Array Irradiance (VSN800-14 Model Only)
The plane-of-array pyranometer is mounted on the side of the solar array. The sensor should be at the same zenith and azimuth angle as solar array to correctly measure the plane-of-array irradiance.

Anemometer (VSN800-14 Model Only)
The anemometer is directly attached to the top of the sensor assembly. For correct wind direction operation the VSN800-14 must be oriented correctly.

By default the weather station is configured for operation in the Northern hemisphere. This requires that the irradiance sensor faces due south. If the weather station is going to be used in the Southern hemisphere it must be mounted with the irradiance sensor facing north. In addition, the hemisphere jumper inside the VSN800-14 must be changed from Northern to Southern.

PV Temperature Sensor
This sensor is designed to attach directly to any solar panel. When placed on the center back side of the panel, it accurately measures the temperature of the panel.

Prior to installation of the PV temperature sensor onto the PV panel, the installation area of the panel back should be thoroughly cleaned. This cleaning will ensure a good bond between sensor and panel and allow for accurate panel temperature readings.

After cleaning, peel off the protective adhesive tape on the temperature sensor and stick it onto the back of the panel. Firmly press the sensor into place. Refer to the picture on the right. The cable should be secured within 8 inches of the temperature-sensing element.
Run the cable back to the weather station unit and connect to the PV temperature sensor terminals.

If the cable length is insufficient for the installation, additional cable can be added to the existing cable. If this is done, an accuracy derating factor must be added to the overall temperature accuracy of this sensor. For every 100ft of cable added, an accuracy derating factor of -0.125°C must be taken into account.

Cabling requirements to management system

The maximum cable distance between weather station and the SunSpec-compliant management system is 1000 m (3000 ft.).

High-voltage areas of power plants are “electrically noisy” environments so shielded cable is advised for connection from the weather station to RS485. If outdoor exposure or proximity to a noise source is a concern, Beldon 1120A or equivalent cabling should be used.

Cables to external sensors are supplied with the sensor.

Wiring instructions for the VSN800 series

Supply 24VDC Power

1. Run wire from the 24VDC power source to the weather station.
2. Find the back of the connection case on the weather station. Unscrew the four retaining screws at the corners with a Philips screwdriver. See the figure below.
3. Flip the unit over and remove the cover. Find the 24VDC power connectors on the electronics board in the case. Connect power to the 3-pin screw terminal inside the connection case.

The power supply is nominally rated for 24VDC but can accept a voltage in the range of 10 to 30VDC. The inputs are reverse polarity, surge, over-voltage, and over-current protected. The power supply is not isolated.

**Power Supply Terminals**

- **Earth Gnd:** Earth or Chassis Ground
- **Gnd:** Negative Supply Voltage
- **24VDC:** Positive Supply Voltage

**Weather Station Electronics Board**

4. Leave the case open to install the other wires as described in the next section.

**Southern hemisphere adjustment**

For the VSN800-14 model, if you are in the southern hemisphere, the jumper at J11 must be set to Southern. If you are in the northern hemisphere, no adjustment is required. J11 is located in upper left section of the circuit board.

**Connect to the monitoring or management system**

The Modbus (RS485) connection is same as with any other RS485 device connected to a SunSpec-compliant management system. Refer to your management system documentation of any unique installation requirements.

1. String cable between the weather station and the management system to complete the physical connection. The connection to the management system can be as a single RS485 device or as part of a daisy chain of RS485 devices. Cable is not supplied with the unit. Use twisted pair wire for connections.

2. Wiring connections are made using the 3-pin screw terminal inside the connection case. See the figure below.
3. The RS485 line must be terminated with a 120-ohm resistor. If the device is the only
device in the chain or at the end of the chain, you must set the jumper (J8) to
terminate the RS485 line. The factory setting for RS485 line termination is OFF.

4. Placement can be other than the end of the chain if the RS485 termination is disabled.
   To locate the device in the middle of a daisy chain, set the jumper at location J8
   between the pins Common and Off to disable RS485 termination.

   **Weather Station Electronics Board, Jumper for RS485 Termination**
   The default address of the weather station is 60. Contact Customer Support if it is required to
   change the address. You cannot have two weather stations in the same RS 485 chain unless
   the address of one of the weather stations is changed.

   **RS485 Terminals**

<table>
<thead>
<tr>
<th>Terminal Label</th>
<th>RS485 Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485 A (-)</td>
<td>Negative RS485</td>
</tr>
<tr>
<td>RS485 B (+)</td>
<td>Positive RS485</td>
</tr>
<tr>
<td>GND:</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>RS-485 Shield</td>
<td>Shield Ground</td>
</tr>
</tbody>
</table>

   **SunSpec and Modbus Communication Settings**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Modbus ID</td>
<td>60</td>
</tr>
</tbody>
</table>
SunSpec register map

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0002</td>
<td>2</td>
<td>C_SunSpec_ID</td>
<td>uint32</td>
<td>N/A</td>
<td>N/A</td>
<td>&quot;SunS&quot;</td>
<td>Well-known value. Uniquely identifies this as a SunSpec Modbus Map</td>
</tr>
<tr>
<td>0003</td>
<td>0003</td>
<td>1</td>
<td>C_SunSpec_DID</td>
<td>uint16</td>
<td>N/A</td>
<td>N/A</td>
<td>0x0001</td>
<td>Well-known value. Uniquely identifies this as a SunSpec Common Model block</td>
</tr>
<tr>
<td>0004</td>
<td>0004</td>
<td>1</td>
<td>C_SunSpec_Length</td>
<td>uint16</td>
<td>N/A</td>
<td>65</td>
<td></td>
<td>Length of common model block</td>
</tr>
<tr>
<td>0005</td>
<td>0020</td>
<td>16</td>
<td>C-Manufacturer</td>
<td>String(32)</td>
<td>N/A</td>
<td>N/A</td>
<td>&quot;ABB&quot;</td>
<td>Well-known value</td>
</tr>
<tr>
<td>0021</td>
<td>0036</td>
<td>16</td>
<td>C-Model</td>
<td>String(32)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Manufacturer specific value</td>
</tr>
<tr>
<td>0037</td>
<td>0044</td>
<td>8</td>
<td>C-Options</td>
<td>String(16)</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>Manufacturer specific value</td>
</tr>
<tr>
<td>0045</td>
<td>0052</td>
<td>8</td>
<td>C-Version</td>
<td>String(16)</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>Manufacturer specific value</td>
</tr>
<tr>
<td>0053</td>
<td>0068</td>
<td>16</td>
<td>C_Serial Number</td>
<td>String(32)</td>
<td>N/A</td>
<td>N/A</td>
<td>&quot;Serial&quot;</td>
<td>Manufacturer specific value</td>
</tr>
<tr>
<td>0069</td>
<td>0069</td>
<td>1</td>
<td>C_DeviceAddress</td>
<td>uint16</td>
<td>N/A</td>
<td>60</td>
<td></td>
<td>Modbus Id</td>
</tr>
<tr>
<td>0070</td>
<td>0070</td>
<td>1</td>
<td>C_SunSpec_DID</td>
<td>int16</td>
<td>N/A</td>
<td>N/A</td>
<td>307</td>
<td>Start of next Device</td>
</tr>
<tr>
<td>0071</td>
<td>0071</td>
<td>1</td>
<td>C_SunSpec_Length</td>
<td>int16</td>
<td>N/A</td>
<td>N/A</td>
<td>11</td>
<td>Device Model Block Size</td>
</tr>
<tr>
<td>0072</td>
<td>0072</td>
<td>1</td>
<td>E_BaseMet_Air Temperature</td>
<td>int16</td>
<td>°C</td>
<td>-1</td>
<td></td>
<td>Measured Ambient Air Temperature</td>
</tr>
<tr>
<td>0073</td>
<td>0073</td>
<td>1</td>
<td>E_BaseMet_Relative Humidity</td>
<td>int16</td>
<td>%</td>
<td>0</td>
<td>N/A</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>0074</td>
<td>0074</td>
<td>1</td>
<td>E_BaseMet_Barometric Pressure</td>
<td>int16</td>
<td>Hpa</td>
<td>0</td>
<td>N/A</td>
<td>Barometric Pressure</td>
</tr>
<tr>
<td>0075</td>
<td>0075</td>
<td>1</td>
<td>E_BaseMet_Wind_Speed</td>
<td>int16</td>
<td>m/s</td>
<td>0</td>
<td></td>
<td>Measured Wind Speed</td>
</tr>
<tr>
<td>0076</td>
<td>0076</td>
<td>1</td>
<td>E_BaseMet_Wind_Direction</td>
<td>int16</td>
<td>Degrees</td>
<td>0</td>
<td></td>
<td>Measured Wind Direction</td>
</tr>
<tr>
<td>0077</td>
<td>0077</td>
<td>1</td>
<td>E_BaseMet_Rain</td>
<td>int16</td>
<td>Inches</td>
<td>0</td>
<td>N/A</td>
<td>Rainfall</td>
</tr>
<tr>
<td>0078</td>
<td>0078</td>
<td>1</td>
<td>E_BaseMet_Snow</td>
<td>int16</td>
<td>Inches</td>
<td>0</td>
<td>N/A</td>
<td>Snowfall since last poll</td>
</tr>
<tr>
<td>0079</td>
<td>0079</td>
<td>1</td>
<td>E_BaseMet_PPT_Type</td>
<td>int16</td>
<td>Inches</td>
<td>N/A</td>
<td>N/A</td>
<td>Precipitation Type (WMO 4680 SYNOP code reference)</td>
</tr>
<tr>
<td>0080</td>
<td>0080</td>
<td>1</td>
<td>E_BaseMet_Electric_Field</td>
<td>int16</td>
<td>V/m</td>
<td>0</td>
<td>N/A</td>
<td>Electric Field</td>
</tr>
<tr>
<td>0081</td>
<td>0081</td>
<td>1</td>
<td>E_BaseMet_Surface_Wetness</td>
<td>int16</td>
<td>kOhms</td>
<td>0</td>
<td>N/A</td>
<td>Surface Wetness</td>
</tr>
<tr>
<td>0082</td>
<td>0082</td>
<td>1</td>
<td>E_BaseMet_Soil_Moisture</td>
<td>int16</td>
<td>%</td>
<td>0</td>
<td>N/A</td>
<td>Soil Moisture</td>
</tr>
</tbody>
</table>
## SunSpec Irradiance Model Registers

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0083</td>
<td>0083</td>
<td>1</td>
<td>C_SunSpec_DID</td>
<td>int16</td>
<td>N/A</td>
<td>0</td>
<td>302</td>
<td>Well-known value. Uniquely identifies this as a SunSpec Irradiance Model</td>
</tr>
<tr>
<td>0084</td>
<td>0084</td>
<td>1</td>
<td>C_Sunspec_Length</td>
<td>int16</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
<td>Variable length model block =((5\times n)), where (n)=number of sensors blocks</td>
</tr>
<tr>
<td>0085</td>
<td>0085</td>
<td>1</td>
<td>E_Irradiance_Global_Horizontal_1</td>
<td>uint16</td>
<td>W/m²</td>
<td>0</td>
<td>Measured</td>
<td>Global Horizontal Irradiance</td>
</tr>
<tr>
<td>0086</td>
<td>0086</td>
<td>1</td>
<td>E_Irradiance_Plane-of-Array_1</td>
<td>uint16</td>
<td>W/m²</td>
<td>0</td>
<td>Measured</td>
<td>Plane-of-Array Irradiance</td>
</tr>
<tr>
<td>0087</td>
<td>0087</td>
<td>1</td>
<td>E_Irradiance_Diffuse_1</td>
<td>uint16</td>
<td>W/m²</td>
<td>0</td>
<td>N/A</td>
<td>Diffuse Irradiance</td>
</tr>
<tr>
<td>0088</td>
<td>0088</td>
<td>1</td>
<td>E_Irradiance_Direct_1</td>
<td>uint16</td>
<td>W/m²</td>
<td>0</td>
<td>N/A</td>
<td>Direct Irradiance</td>
</tr>
<tr>
<td>0089</td>
<td>0089</td>
<td>1</td>
<td>E_Irradiance_Other_1</td>
<td>uint16</td>
<td>W/m²</td>
<td>0</td>
<td>N/A</td>
<td>Some other type Irradiance</td>
</tr>
</tbody>
</table>

## SunSpec Back of Module Temperature Registers

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0090</td>
<td>0090</td>
<td>1</td>
<td>C_SunSpec_DID</td>
<td>int16</td>
<td>N/A</td>
<td>0</td>
<td>303</td>
<td>Well-known value. Uniquely identifies this as a SunSpec Back of Module Temperature Model</td>
</tr>
<tr>
<td>0091</td>
<td>0091</td>
<td>1</td>
<td>C_Sunspec_Length</td>
<td>int16</td>
<td>N/A</td>
<td>0</td>
<td>2</td>
<td>Variable length model block =((5\times n)), where (n)=number of sensors blocks</td>
</tr>
<tr>
<td>0092</td>
<td>0092</td>
<td>1</td>
<td>E_BOM_Temp_1</td>
<td>int16</td>
<td>°C</td>
<td>-1</td>
<td>Measured</td>
<td>Back of module temperature</td>
</tr>
<tr>
<td>0093</td>
<td>0093</td>
<td>1</td>
<td>E_BOM_Temp_2</td>
<td>int16</td>
<td>°C</td>
<td>-1</td>
<td>Measured</td>
<td>Back of module temperature</td>
</tr>
</tbody>
</table>

## End of Block Registers

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0094</td>
<td>0094</td>
<td>1</td>
<td>EndOfSunspecBlock</td>
<td>uint16</td>
<td>N/A</td>
<td>N/A</td>
<td>0xFFFF</td>
<td>End of SunSpec Block</td>
</tr>
<tr>
<td>0095</td>
<td>0095</td>
<td>1</td>
<td>C_Sunspec_Length</td>
<td>uint16</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>Terminate length, zero</td>
</tr>
</tbody>
</table>

### Device Address Write Register

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>0200</td>
<td>1</td>
<td>Modbus Id - Write Register</td>
<td>int16</td>
<td>N/A</td>
<td>N/A</td>
<td>60</td>
<td>Modbus device address, write register</td>
</tr>
</tbody>
</table>

---

**Connect secondary sensors (VSN800-14 model only)**

If you are not planning to connect the PV panel temperature sensor and the secondary Pyranometer, skip this section.

1. Attach the second Pyranometer to your array. The sensor should be attached so top of the sensor is in the same plane as the PV panels. The sensor comes pre-attached to a bracket for easy installation.

2. Attach the PV panel temperature sensor so it registers the temperature on the backside of a PV panel. See [Sensor Mounting Requirements](#) for location and mounting considerations.

3. Connect the sensor(s) to the proper location on the circuit board. Connect the Pyranometer cable to terminals **Pyranometer #2** and **GND**. Connect the PV Panel temperature sensor cable to the two terminals labeled **PV Temp #1**.
Weather Station Electronics Board, Connect Secondary Sensors (VSN800-14 Model)

The Pyranometer sensors are not interchangeable. The Pyranometer sensor supplied with the weather stations must be wired to Pyranometer #2.

The PV temperature sensor is not polarity sensitive. Therefore, each signal wire is interchangeable. The sensor comes with a 25ft length of cable. If the temperature sensor is not used, it should be terminated with a 0-ohm shunt between the positive and negative signal.

**Plane-of-Array Sensor Terminals**

Pyranometer #2: Positive Signal (Red)
Ground: Negative Signal (Black)
Shield: Cable Shield and Drain (clear)

**PV Temperature Terminal, 1st Sensor**

PV Temp #1: Signal (Black or White)
PV Temp #1: Signal (Black or White)
Shield: Cable Shield and Drain (bare)

Connect PV panel sensor (VSN800-12 only)

If you are not planning to connect the PV panel temperature sensor, skip this section.

1. Attach the PV panel temperature sensor so it registers the temperature on the backside of a PV panel. See [Sensor Mounting Requirements](#) for location and mounting considerations.

2. Connect the sensor to the proper location on the circuit board. Note that the PV Temp #2 connectors are not used for the VSN800-12 Model.
Connect PV Panel Sensor (VSN800-12 Model)

The PV panel temperature sensor is not polarity sensitive. Therefore, each signal wire is interchangeable. The sensor comes with a 25ft length of cable. If a temperature sensor is not used, it should be terminated with a 0-ohm shunt between the positive and negative signal.

**PV Temperature Terminal, 1st Sensor**

- PV Temp #1: Signal (Black or White)
- PV Temp #1: Signal (Black or White)
- Shield: Cable Shield and Drain (bare)

### Complete the Installation

1. Properly ground the weather station by connecting the Earth GND terminal at the Weather Station to an earth ground. Connecting the Earth GND helps ensure the accuracy of weather instruments.

2. Re-attach the cover to the connection case using the four screws. Make sure not to pinch the newly connected 24VDC or RS485 wires coming out of the case bottom. Note that the cover only goes on one way with the opening for wires at the bottom.

3. If necessary, complete the pole mounting of the weather station.

### Connections to VSN750 series products

This section shows how to tap the 24VDC power and make RS485 connections from a VSN750 series management system. Most other monitoring systems will have a means of supplying 24VDC power. Consult your monitoring system documentation for information.

1. After making the correct 24VDC and RS485 attachments to the weather station, run cable from the weather station to the VSN750. Note that connections for power can be made to the VSN750 or directly to another 24 VDC power supply.

2. Connect the wires for the 24VDC power and RS485 to the VSN750. See the figure below. Note that some VSN750 models may have RS485 connection points in other locations.
Weather Station Connection to VSN750 Series

System activation and validation

If you acquired the VSN800 series as part of a product bundle, please refer to the information that came with your VSN750 series package. This information will describe the next steps for product installation and system validation.

The management system must be properly installed and communicating before you can verify that data is flowing from the VSN800 series weather station.

If you are using VSN800 series in conjunction with Plant Portfolio Manager software, go to www.auroravision.net and log in to Plant Portfolio Manager with your account name and password. Using your product license key, set up the connection to the VSN800 series weather station.
Specifications

Material Specifications

Sensor Assembly:
RoHS Compliant
Mast: Polyvinyl Chloride
Heat Shields: Acrylonitrile Butadiene Styrene
Insolation Sensor Bracket: Delrin
Hardware: Stainless Steel and Nylon Locknut
Foam Gasket: Vinyl and Acrylic

Enclosure:
RoHS Compliant
IP65 Rated Outdoor Enclosures
UL 94 V-2
Polycarbonate Body

Pyranometer Sensor:
RoHS Compliant
Body: Anodized Aluminum with Cast Acrylic Lens
Cable: Santoprene Jacket

Ambient Air Temperature Sensor:
RoHS Compliant

PV Panel Temperature Sensors:
RoHS Compliant
Body: Anodized Aluminum
Adhesive Tape: Acrylic, Titanium Diboride, and Aluminum
Cable: Polyvinyl Chloride Jacket

Power and Communications Cable:
Cable: Polyvinyl Chloride

Physical:
Packaged Weight: 7 lbs.
Packaged Dimensions: 6cm x 20.3cm x 20.3cm (10.25” x 8” x 8”)

Electronics:
RoHS Compliant
Hardware Specifications

**Power Specifications:**
- **Power Requirements:** 10 to 30VDC at 50mA

**Operating Environment:**
- **Temperature:** -40°C to 60°C (-40 to 140°F)
- **Humidity:** 0-100% Condensing

**Pyranometer Sensors:**
- **Range:** 0 to 1750 W/m²
- **Accuracy:** +/-5%
- **Cosine Response 45°:** +/-1%
- **Cosine Response 75°:** +/-5%
- **Operational Temperature:** -25 to 55°C (-13 to 131°F)

**Ambient Air Temperature Sensor:**
- **Range:** -40° to 80°C (-40 to 176°F)
- **Accuracy:** +/- 0.3°C (0.54°F)
- **Thermal Time Constant:** 30 sec.

**PV Panel Temperature Sensor:**
- **Range:** -40° to 80°C (-40 to 176°F)
- **Accuracy:** +/- 0.3°C (0.54°F)
- **Cable Length:** 7.62m (25 ft.)

**Anemometer:**
- **Operational Temperature:** -40 to 60°C (-40 to 140°F)

**Speed**
- **Range:** 0 to 67 meters per second (150 mph)
- **Accuracy:** Greater of 0.45m/sec. (1 mph) or 5%
- **Threshold:** 0.89m/sec. (2 mph)

**Direction**
- **Range:** 360°
- **Resolution:** 22.5°
- **Accuracy:** +/- 22.5°
- **Threshold:** 0.9 m/sec. (2 mph) at a 10° deflection.

**RS-485/422 Serial Specifications:**
- **Mode:** 2-wire half duplex
- **Connector:** 4-position screw terminal
- **Max Speed:** 19200 bps
- **Max. Modbus Poll Rate:** 100 ms
- **Termination:** 120 ohms (internal jumper enable)
Contact us

www.abb.com/solar