XFCG4 Linear flow computer
Overview

XSeriesG4 devices, from the Totalflow division of ABB provide functionality only possible through the convergence of RTU, PLC and flow computer concepts. Representing a unique milestone in the development of remote, low power, powerful measurement and control devices, ABB Totalflow’s XSeriesG4 products are available in one of two product families:
• eXtendable Flow Computers (XFCG4)
• eXtendable Remote Controllers (XRCG4)

This datasheet focuses on the XFCG4 products for linear meters. The XFCG4 is the “fourth generation” of Totalflow flow computers. Benefits and features of this particular product includes:
• Smart Integral Multivariable Transducer (XIMV)
• Comprehensive custody quality data history
• Automation, control, alarming and data logging capability
• Base I/O targeted at low cost automation projects
• Local display and optional keypad
• Quick, easy installation
• Flexible communications options
• Onboard Ethernet port
• Backward compatibility
• Extendable hardware and software

With low power, accuracy and system integrity built in, these devices are proven daily on thousands of sites. Totalflow products provide users the best opportunity for successful projects – site by site or system by system.

Description

The XFCG4 includes an Integral Multivariable Transducer (XIMV) to measure static pressure and temperature from a single linear pressure meter run. The XIMV is housed in a shielded environmentally protected enclosure which is mounted inside the flow computer enclosure and is characterized and calibrated at Totalflow’s factory. Multi-tube capability is available in each unit and is easily invoked with a few configuration changes and interface connection to external transmitters. The transmitters can be either digital or analog.

The XFCG4 features a powerful 203Mhz, ARM920T, 32-bit microprocessor and Windows® CE operating system. The XFCG4 utilizes a unique “engine card” design. The engine card contains the processor, application firmware and memory components. This allows the user to move the engine card with all programming intact from one device to another if necessary. The processing and memory capability of this device, allows the user to run more applications faster than ever before. Combinations of up to twenty (20) AGA-7, AGA-3, or ISO5167 measurement applications performing full calculations once a second may be running in a single XFCG4.

The number of High Speed frequency inputs (up to 20 kHz) is limited to the two (2) onboard pulse inputs. Any additional AGA7 measurement applications will be limited to 2850 Hz maximum (TFIO modules) or the uncorrected volume must be obtained serially for calculation of the corrected volume and data logging.

In addition to the basic flow computer inputs (pressure and temperature), the standard device includes: two (2) analog inputs (0-10 volts DC), two (2) digital outputs and two (2) digital inputs which can be configured as either status inputs or high speed pulse accumulator inputs.

I/O modules can be added to extend the hardware I/O capability. The XFCG4 6414 accommodates up to three (3) TFIO modules and the XFCG4 6714 accommodates up to six (6). The XFCG4 6411 does not support TFIO modules due to it’s smaller enclosure.

Each unit is powered by an internal battery that can be solar charged (or other suitable DC supply) for remote unattended operation. Several charging options are available. Communications interface cables and equipment can be installed at the factory, ready for quick field installation. Checking and modifying configuration and calibration is accomplished with ABB Totalflow’s PCCU32 laptop software running on a 32-bit Windows operating system.

In addition to the local configuration port, two communications ports are supplied with the standard unit. These ports are modular and user selectable for RS232 and/or RS485. An additional port may be added using a TFIO Communications Module. Available protocols include Totalflow native low power, Modbus RTU or ASCII, LevelMaster, as well as several others.

One integrated 10Base-T Ethernet port for network connectivity is standard and a USB port for Flash download and local configuration is available as an option.
Hardware modularity

Hardware functionality of XSeries G4 devices is easily expanded by adding modular I/O as your requirements expand.

Totalflow’s TFIO modules are designed to accommodate low power, harsh environments at economical cost. The system recognizes the module types automatically and configures the I/O Scanner subsystem accordingly.

- Totalflow I/O Modules (TFIO)
- Analog In (8 channel)
- Analog Out (4 channel)
- Combo DI/PI/DO (8 channels, software selectable)
- RTD (4 channel)
- Thermocouple (4 channel)
- Valve Control (digital or analog)
- Communications (software selectable RS-232, -485, -422-1 channel)

For more detailed information about TFIO modules, request information on data sheets 2101105 through 2101112.

Software modularity

The software design represents significant modularization through use of object oriented design principles. This allows a flexible and stable real time environment. Totalflow supplied objects (applications) can be enabled in our factory or by the user, one or more times on the same device. It is this framework that allows the support for multi-tube measurement.

Supported software applications continually grow. A sample of applications that the user can enable include:

- AGA-7 (rotary/turbine/ultrasonic)
- AGA-3 orifice application
- ISO 5167 orifice application
- VCone application
- Coriolis gas application
- Real-time data logger (trending)
- Valve control (feedback controller)
- PID controller
- RAMS (alarming, exception reporting)
- Operators (native math/logic application)
- IEC 61131 (ISaGRAF environment)
- Selectable units AGA-7/AGA-3/ISO 5167 (user selectable engineering units)
- Display / Keypad handler
- I/O subsystem Handler
- Tank level application
- Therms master application
- Therms slave application
- XMV (multivariable transmitter) application
- Wireless I/O application
- Advanced plunger lift control application
- PAD controller application
- Safety system application
- Pump interface application
- Pulse accumulator application
- Multiple protocols (Totalflow native low power, Modbus slave (RTU/ASCII), Modbus master (RTU/ASCII), Enron Modbus, LevelMaster, ABB 267CS/269CS XMV Multivariable, and others)
XSeries4 flow computer features

- 203MHz, ARM920T, 32-bit microprocessor
- Windows CE operating system (allows for a single software development environment for all G4 products)
- Integrated Ethernet 10Base-T port (full networking capabilities)
- USB host and USB device ports (ver 1.1): may be used as a high speed port for flashing new firmware, local data collection and device configuration
- Significant hardening against over-current transients:
 - Positive Temperature Coefficient, resetting fuses and transient protection on
 - VBATT and SWVBATT outputs
 - Each of the digital outputs
 - Battery charger input
 - Power supply circuit designed to protect XIMV from hot insertion
- Base I/O on XFC4 main electronics board:
 - 2 analog inputs
 - 2 digital inputs (all can be configured as hi speed PI inputs)
 - 2 digital outputs
 - Battery voltage
 - Charger voltage
- Low power design operating as low as 8 mA (<100 mW)
- Aluminum, powder-coated enclosure (3R)
- Flexible accommodation of communications hardware
- Cost-effective communications kits
- Stable time base (accurate integration)
- Rechargeable, lead acid batteries
- Solar, AC or DC charging options
- User-selectable, simple dual-level security code data protection or enhanced user-configurable Role Based Access Control (RBAC)
- Custody transfer applications
 - Monitors user limits for detection, and reporting of abnormal conditions
 - Defaults to 40 days of hourly data and 50 Days of daily data, user configurable.
 - Defaults to 200 Events. User configurable.
 - Complies with API 21.1 standard for custody transfer measurement devices
 - Flow and energy calculations per AGA-7, AGA3-85, AGA3-92, ISO 5167, and AGA-5
 - Meets flow computer requirements as stated in AGA Report No. 9, ‘Measurement of Gas by Multi-path Ultrasonic Meters’
 - Super compressibility calculations per NX-19, AGA8-92
 - Gross or Detail, ISO 12213
 - Smart (temperature and pressure compensated) integral, factory calibrated, multivariable transducer (XIMV)
 - All calculations performed once per second (user-configurable to longer period)
 - Flow retention during user transducer calibration
 - Selectable 3 or 5 point user calibration of analog inputs
 - User-definable DP, no flow cut-off
 - 100 ohm platinum RTD resistance curve fit with user programmable single point offset or 3/5 point user calibration for RTD input
 - 100 ohm platinum RTD
- Hazardous Area Certification: CSA C/US, ATEX and IECEx
- Real-time clock that continues running on lithium battery (maintains data backup)
- Advanced embedded data logger (trending)
- Programmable alarm filtering
- Exception reporting capability
- Multiple protocol options including Totalflow packet protocol, various Modbus protocols and others
- User-programmable Modbus register maps (both slave and master)
- User-programmable math and logic sequences
- IEC 6-1131 capability (IsaGRAF)
- Valve control and nominations capability
- PID controller
- Plunger lift (up to 20 applications per unit)
A. XFC™ board
B. Ethernet port
C. Communications equipment compartment
D. Battery compartment
E. USB (host & device)
F. TFIO expansion modules
G. Integrated multivariable transducer

<table>
<thead>
<tr>
<th>Model comparison</th>
<th>XFC™ 6411</th>
<th>XFC™ 6414</th>
<th>XFC™ 6714</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>10” wide x 11.81” high x 9.37” tall</td>
<td>12.76” wide x 16.51” high x 10.27” tall</td>
<td>14.92” wide x 20.44” high x 13.71” tall</td>
</tr>
<tr>
<td></td>
<td>254 mm x 299.97 mm x 233 mm</td>
<td>324 mm x 419.40 mm x 260.83 mm</td>
<td>379.53 mm x 519.17 mm x 348.23 mm</td>
</tr>
<tr>
<td>Installed depth (pipe mount)</td>
<td>10.680” / 271.27 mm</td>
<td>11.584” / 294.23 mm</td>
<td>14.560” / 369.82 mm</td>
</tr>
<tr>
<td>Installed depth (wall mount)</td>
<td>10.120” / 257.05 mm</td>
<td>11.019” / 279.88 mm</td>
<td>14.000” / 355.60 mm</td>
</tr>
<tr>
<td>Approx. weight (w/o battery)</td>
<td>11.5 lbs / 5.0 Kg</td>
<td>12 lbs / 5.9 Kg</td>
<td>27 lbs / 12.25 Kg</td>
</tr>
<tr>
<td>Max I/O modules</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Max battery capacity</td>
<td>26AH</td>
<td>26AH</td>
<td>52AH</td>
</tr>
</tbody>
</table>
General specifications

Enclosure
- Powder-coated aluminum; Type 3R

Certification (hazardous location classification)
- CSA C/US Class 1, Division 2, Groups C & D T4 -40°F to +140°F
- ATEX Zone 2, Sira 10ATEX4138X, II 3G Ex na IIB T3 Ta = -40°C to +60°C (meets European Union Directive 94/9/EC)
- IECEx CSA09.0013X, Ex na IIB T3 (-40°C ≤ Tamb ≤ +60°C)

Mounting
- Wall, pipe, or direct

Operating temperature (ambient)
- -40°F to 140°F (-40°C to 60°C)

Humidity
- 0 – 95% non-condensing

EMC requirements

Emissions: European Regions:
- EN55022: 1996 Class B Emissions (Radiated & Conducted)

North America regions
- ICES-003 Issue 4 CAN/CSA-CEI/IEC CISPR 22:02, Class B
- ITE Emissions
- AS/NZS CISPR 22:2004 (Australia/New Zealand)

Immunity: European regions
- EN61000-6-1: 2001 Immunity
- EN61000-4-2 ESD: 1995 ± 8 kV Air, ± 4 kV Contact
- EN61000-4-3: 2005 RF Immunity, 3/10 V/m
- EN61000-4-4 EFT: 2004, 1 kV
- EN61000-4-6: 2005, Conducted Susceptibility, 3/10 Vrms
- EN61000-4-8: 1994, Power Frequency Magnetic Field 10 A/m

Integral Multivariable (XIMV) Specifications

Temperature limits
- Compensated: -20 to 140°F (-29 to 60°C)
- Operational: -40 to 140°F (-40 to 60°C)
- Storage: -40 to 185°F (-40 to 85°C)

Analog-to-digital resolution (XIMV & onboard AI’s)
- 18 Bit maximum resolution (0.00038% FS)

16 Bit nominal resolution (0.0015%FS) Vibration performance
- Less than 0.025 psi per G (2G maximum) at 1 Hz, decreasing to zero at 1 KHz in straight line mode

Mounting specification
- AP specification can be met in any orientation along any plane

Reference conditions
- Temperature at most recent factory or user calibration;
- Static pressure ≤ 100% of URL

Static pressure

Accuracy (including linearity, hysteresis & repeatability at reference conditions)
- ± 0.05% (also available in ± 0.20%) of user calibrated spans from 20% to 100% of URL

Ambient temperature effect within the operational temperature limit
- ± 0.075% of URL ± 0.06% of reading

Stability (for 12 months)
- ± 0.1% of URL

Temperature

Process range
- -80 to +230°F (-62 to 110°C)

Accuracy (as shipped from factory)
- ± 0.35°F (± 0.2°C) over operating range

Accuracy (after single point field calibration)
- ± 0.2°F (± 0.12°C) repeatability over operating range

Available absolute pressure ranges (psia)
- 100
- 150
- 250
- 500
- 1000
- 1500
- 2000
- 3200
XFCG4 specifications

Power
Nominal 12 VDC battery

Charger
Solar or 15 VDC, 30 W maximum

Memory
Windows CE operating system, application programs and configuration files stored in 32 megabyte Flash memory. Program execution and data stored in 16 megabyte pseudo static RAM. (lithium battery backup)

Communications ports
1 – dedicated – PCCU (local configuration port)
2 – RS-232 or RS-485 (via board insertion modules) baud rates up to 115,200
1 – USB 1.1 host port – optional
1 – USB 1.1 device port (may be used as high-speed local configuration port) – optional
1 – 10 Base-T Ethernet port (may be used as high speed local port or network port)

LCD interface
Dedicated interface for 2 X 24 Liquid Crystal Display (LCD)

Keypad interface
Dedicated interface for optional ABB supplied keypad

I/O expansion
I2C bus interface for TFIO modules

Security switch
On/Off dual-level on-board security switch; also supports enhanced Role Based Access Control (user configurable, multilevel, multi-user security)

Time base stability
± 7.5 ppm (parts per million)

I/O scan rate
1 time per second (1 Hz)

AGA-3/AGA-7/ISO5167/V Cone
Calculations are tested and verified to be within ± 50 parts per million as stated in API 14.3.4

Analog inputs (onboard)
- 18 bit maximum resolution (0.00038% FS);
 16 bit nominal resolution (0.0015%FS)
- 2 single-ended channels*
- Open circuit voltage: 0 VDC
- Short circuit leakage current: 0 µA typical
- Input impedance: 21 kΩΩ typical (0 to 7.5V)
- Measurable input voltage range: - 0.5V to 7.5V
- Maximum voltage on input line: 30 VDC

* For 4 to 20 mA inputs, an external power source may be required if device requires more than 12 VDC nominal.

Digital inputs/pulse inputs (onboard)
2 inputs configurable as active or passive with optional software de-bounce.
- Open circuit voltage: 5 VDC
 (Internally pulled up to 5 VDC nominal)
- Short circuit leakage current: – 395 µA typical
- Input capacitance: 0.1 Ufd typical
- Maximum allowable voltage range on input:
 - 0.5 VDC to 15 VDC
- Maximum frequency input 100 Hz @ 50% duty cycle with de-bounce enabled
- Maximum frequency input 20 kHz @ 50% duty cycle with de-bounce disabled
- Dry contact (Form A), open collector or active voltage
- Minimum contact resistance to activate input: 1000 Ω
- Voltage threshold to deactivate the input: 3.1 V
 (referenced to GND terminal)
- Voltage threshold to activate the input: 0.5 V
 (referenced to GND terminal)
- Conductor pairs must be shielded to prevent spurious signals

Digital outputs (onboard)
2 open channel FET transistor switches:
- Open circuit voltage: 0 VDC
- Short circuit leakage current: 0 µA typical
- Output capacitance: 1000 pF typical
- Maximum allowable voltage range on output:
 - 0.5 VDC to 6.4 VDC
- Open drain FET type
- ‘ON’ resistance: 0.1 Ω typical
 (including PTC fuse resistance)
- Maximum pulse current: 3 A for 5 seconds
- Maximum continuous sink current: 2 A