Generator protection REG670
Installation and commissioning manual
Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB AB
Substation Automation Products
SE-721 59 Västerås
Sweden
Telephone: +46 (0) 21 32 50 00
Facsimile: +46 (0) 21 14 69 18
http://www.abb.com/substationautomation
The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Table of contents

Section 1 Introduction

Introduction to the installation and commissioning manual
About the complete set of manuals for an IED
About the installation and commissioning manual
Intended audience
Related documents
Revision notes

Section 2 Safety information

Symbols on the product
Warnings
Note signs

Section 3 Overview

Commissioning and installation overview

Section 4 Unpacking and checking the IED

Taking delivery, unpacking and checking

Section 5 Installing the IED

Checking environmental conditions and mounting space
Dimensions
Case without rear cover
Case with rear cover
Flush mounting dimensions
Side-by-side flush mounting dimensions
Wall mounting dimensions
Mounting methods and details
Mounting the IED
Flush mounting
Overview
Mounting procedure for flush mounting
19" panel rack mounting
Overview
Mounting procedure for 19" panel rack mounting
Wall mounting
Overview
Mounting procedure for wall mounting
How to reach the rear side of the IED
Side-by-side 19" rack mounting
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>38</td>
</tr>
<tr>
<td>Mounting procedure for side-by-side rack mounting</td>
<td>39</td>
</tr>
<tr>
<td>IED in the 670 series mounted with a RHGS6 case</td>
<td>39</td>
</tr>
<tr>
<td>Side-by-side flush mounting</td>
<td>40</td>
</tr>
<tr>
<td>Overview</td>
<td>40</td>
</tr>
<tr>
<td>Mounting procedure for side-by-side flush mounting</td>
<td>41</td>
</tr>
<tr>
<td>Mounting the injection unit REX060</td>
<td>42</td>
</tr>
<tr>
<td>Mounting the coupling capacitor unit REX061 and shunt resistor unit REX062</td>
<td>42</td>
</tr>
<tr>
<td>Coupling capacitor unit REX061</td>
<td>42</td>
</tr>
<tr>
<td>Shunt resistor unit REX062</td>
<td>43</td>
</tr>
<tr>
<td>Making the electrical connection to REG670</td>
<td>44</td>
</tr>
<tr>
<td>IED connectors</td>
<td>44</td>
</tr>
<tr>
<td>Overview</td>
<td>44</td>
</tr>
<tr>
<td>Front side connectors</td>
<td>46</td>
</tr>
<tr>
<td>Rear side connectors</td>
<td>47</td>
</tr>
<tr>
<td>Connection examples for high impedance differential protection</td>
<td>56</td>
</tr>
<tr>
<td>Connecting to protective earth</td>
<td>59</td>
</tr>
<tr>
<td>Connecting the power supply module</td>
<td>60</td>
</tr>
<tr>
<td>Connecting to CT and VT circuits</td>
<td>61</td>
</tr>
<tr>
<td>Configuration for analog CT inputs</td>
<td>61</td>
</tr>
<tr>
<td>Connecting the binary input and output signals</td>
<td>61</td>
</tr>
<tr>
<td>Making the screen connection</td>
<td>63</td>
</tr>
<tr>
<td>Making the electrical connection to the rotor and stator injection equipment</td>
<td>65</td>
</tr>
<tr>
<td>Connectors for injection unit REX060, coupling capacitor unit REX061 and shunt resistor unit REX062</td>
<td>65</td>
</tr>
<tr>
<td>Injection unit REX060</td>
<td>65</td>
</tr>
<tr>
<td>Coupling capacitor unit REX061</td>
<td>67</td>
</tr>
<tr>
<td>Shunt resistor unit REX062</td>
<td>68</td>
</tr>
<tr>
<td>Connecting injection unit REX060, coupling capacitor unit REX061 and shunt resistor unit REX062</td>
<td>69</td>
</tr>
<tr>
<td>Connecting and setting voltage inputs</td>
<td>74</td>
</tr>
<tr>
<td>Making the optical connections</td>
<td>76</td>
</tr>
<tr>
<td>Connecting station communication interfaces</td>
<td>76</td>
</tr>
<tr>
<td>Connecting remote communication interfaces LDCM</td>
<td>77</td>
</tr>
<tr>
<td>Installing the serial communication cable for RS485</td>
<td>77</td>
</tr>
<tr>
<td>RS485 serial communication module</td>
<td>77</td>
</tr>
<tr>
<td>Installing the serial communication cable for RS485 SPA/IEC</td>
<td>81</td>
</tr>
<tr>
<td>Data on RS485 serial communication module cable</td>
<td>83</td>
</tr>
<tr>
<td>Installing the GPS antenna</td>
<td>83</td>
</tr>
<tr>
<td>Antenna installation</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>Checking the external optical and electrical connections</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
</tr>
<tr>
<td></td>
<td>Checking VT circuits</td>
</tr>
<tr>
<td></td>
<td>Checking CT circuits</td>
</tr>
<tr>
<td></td>
<td>Checking the power supply</td>
</tr>
<tr>
<td></td>
<td>Checking the binary I/O circuits</td>
</tr>
<tr>
<td></td>
<td>Binary input circuits</td>
</tr>
<tr>
<td></td>
<td>Binary output circuits</td>
</tr>
<tr>
<td></td>
<td>Checking optical connections</td>
</tr>
<tr>
<td>7</td>
<td>Energizing the IED and REX060</td>
</tr>
<tr>
<td></td>
<td>Checking the IED operation</td>
</tr>
<tr>
<td></td>
<td>Energizing the IED</td>
</tr>
<tr>
<td></td>
<td>Design</td>
</tr>
<tr>
<td></td>
<td>Checking the self supervision signals</td>
</tr>
<tr>
<td></td>
<td>Reconfiguring the IED</td>
</tr>
<tr>
<td></td>
<td>Setting the IED time</td>
</tr>
<tr>
<td></td>
<td>Checking the self supervision function</td>
</tr>
<tr>
<td></td>
<td>Determine the cause of an internal failure</td>
</tr>
<tr>
<td></td>
<td>Self supervision HMI data</td>
</tr>
<tr>
<td></td>
<td>REX060 start up sequence</td>
</tr>
<tr>
<td>8</td>
<td>Set up the PCM600 communication link per IED</td>
</tr>
<tr>
<td></td>
<td>Setting up communication between PCM600 and the IED</td>
</tr>
<tr>
<td>9</td>
<td>Configuring the IED and changing settings</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
</tr>
<tr>
<td></td>
<td>Entering settings through the local HMI</td>
</tr>
<tr>
<td></td>
<td>Configuring analog CT inputs</td>
</tr>
<tr>
<td></td>
<td>Writing settings and configuration from a PC</td>
</tr>
<tr>
<td></td>
<td>Writing an application configuration to the IED</td>
</tr>
<tr>
<td>10</td>
<td>Calibrating injection based sensitive rotor earth fault protection</td>
</tr>
<tr>
<td></td>
<td>Commissioning process</td>
</tr>
<tr>
<td></td>
<td>Commissioning tool ICT</td>
</tr>
<tr>
<td></td>
<td>Launching injection commissioning tool (ICT)</td>
</tr>
<tr>
<td></td>
<td>Performing calibration</td>
</tr>
<tr>
<td></td>
<td>Acquiring references</td>
</tr>
<tr>
<td></td>
<td>Verifying calibration</td>
</tr>
<tr>
<td></td>
<td>Auditing</td>
</tr>
</tbody>
</table>
Section 11 Calibrating injection based 100% stator earth fault protection

Commissioning process
Commissioning tool ICT
Launching injection commissioning tool (ICT)
Performing calibration
Acquiring references
Verifying calibration
Auditing
Editing features in graph
Logging measurements to file

Section 12 Establishing connection and verifying the SPA/IEC-communication

Entering settings
Entering SPA settings
Entering IEC settings
Verifying the communication
Verifying SPA communication
Verifying IEC communication
Fibre optic loop
Optical budget calculation for serial communication with SPA/IEC

Section 13 Establishing connection and verifying the LON communication

Communication via the rear ports
LON communication
The LON Protocol
Hardware and software modules
Optical budget calculation for serial communication with LON

Section 14 Establishing connection and verifying the IEC 61850 communication

Overview
Setting the station communication
Verifying the communication

Section 15 Verifying settings by secondary injection

Overview
Preparing for test
Preparing the IED to verify settings
Preparing the connection to the test equipment
Activating the test mode .. 150
Connecting the test equipment to the IED 151
Verifying analog primary and secondary measurement 151
Releasing the function to be tested 152
Disturbance report ... 153
 Introduction ... 153
 Disturbance report settings .. 153
 Disturbance recorder (DR) .. 153
 Event recorder (ER) and Event list (EL) 154
Identifying the function to test in the technical reference
 manual .. 155
Exit test mode ... 155
Basic IED functions ... 155
 Parameter setting group handling SETGRPS 155
 Verifying the settings .. 155
 Completing the test ... 156
Differential protection ... 156
 Generator differential protection GENPDIF 156
 Verifying the settings .. 156
 Completing the test ... 157
Transformer differential protection T2WPDIF and
 T3WPDIF .. 157
 Verifying the settings .. 157
 Completing the test ... 158
Restricted earth-fault protection, low impedance REFPDIF 158
 Verifying the settings .. 158
 Completing the test ... 159
High impedance differential protection HZPDIF 159
 Verifying the settings .. 159
 Completing the test ... 160
Impedance protection .. 160
 Full scheme distance protection, mho characteristic
 ZMHPDIS .. 160
 Phase-to-phase faults .. 161
 Phase-to-earth faults ... 161
 Pole slip protection PSPPPAM 162
 Verifying the settings .. 163
 Completing the test .. 165
Loss of excitation LEXPDIS .. 165
 Verifying the settings .. 165
 Completing the test ... 167
Current protection ... 167
 Instantaneous phase overcurrent protection PHPIOC 167
 Measuring the operate limit of set values 168
Verifying settings by secondary injection 189
Completing the test .. 190

Accidental energizing protection for synchronous generator
AEGGAPC ... 191
Verifying the settings .. 191
Voltage protection ... 191
Two step undervoltage protection UV2PTUV 191
Verifying the settings .. 191
Completing the test .. 192
Two step overvoltage protection OV2PTOV 192
Verifying the settings .. 192
Completing the test .. 192
Two step residual overvoltage protection ROV2PTOV 193
Verifying the settings .. 193
Completing the test .. 193
Overexcitation protection OEXPVPH 193
Verifying the settings .. 193
Completing the test .. 194
Voltage differential protection VDCPTOV 194
Check of undervoltage levels ... 194
Check of voltage differential trip and alarm levels 196
Check of trip and trip reset timers .. 197
Final adjustment of compensation for VT ratio differences 198
Completing the test .. 198

100% Stator earth fault protection, 3rd harmonic based
STEFPHIZ .. 198
Testing .. 199
Verifying settings .. 200
Completing the test .. 201

Frequency protection .. 201
Underfrequency protection SAPTUF .. 201
Verifying the settings .. 201
Completing the test .. 202
Overfrequency protection SAPTOF .. 202
Verifying the settings .. 202
Completing the test .. 203
Rate-of-change frequency protection SAPFRC 203
Verifying the settings .. 203
Completing the test .. 204

Multipurpose protection .. 204
General current and voltage protection CVGAPC 204
Built-in overcurrent feature (non-directional) 204
Overcurrent feature with current restraint 205
Overcurrent feature with voltage restraint............................ 205
Overcurrent feature with directionality.................................. 206
Over/Undervoltage feature... 207
Completing the test.. 207
Rotor earth fault protection with RXTTE4 and general current and voltage protection CVGAPC................................... 207
Testing.. 207
Completing the test.. 209
Secondary system supervision...209
Current circuit supervision CCSRDIF209
Verifying the settings... 209
Completing the test.. 210
Fuse failure supervision SDDRFUF.. 210
Checking that the binary inputs and outputs operate as expected .. 210
Measuring the operate value for the negative sequence function .. 211
Measuring the operate value for the zero-sequence function .. 211
Checking the operation of the du/dt and dl/dt based function .. 212
Completing the test.. 212
Control.. 213
Synchrocheck, energizing check, and synchronizing SESRSYN.. 213
Testing the synchronizing function... 215
Testing the synchrocheck check... 215
Testing the energizing check.. 218
Testing the voltage selection.. 219
Completing the test.. 220
Apparatus control APC.. 220
Interlocking.. 221
Single command SingleCommand16Signals............................ 221
Logic... 221
Tripping logic SMPPTRC .. 221
Three phase operating mode.. 221
1ph/3ph operating mode... 222
1ph/2ph/3ph operating mode.. 223
Circuit breaker lockout.. 224
Completing the test.. 224
Monitoring...225
Event function EVENT.. 225
Metering.. 225
Pulse counter PCGGIO... 225
Station communication.. 225
 Multiple command and transmit MultiCmd/MultiTransm............................ 225
Remote communication.. 226
 Binary signal transfer BinSignReceive, BinSignTransm.............................. 226

Section 17 Checking the directionality.. 231
 About this chapter.. 231
 Overview... 231
 Testing the directionality of the distance protection.................................... 231

Section 18 Commissioning and maintenance of the fault clearing system........ 235
 Commissioning tests.. 235
 Periodic maintenance tests... 235
 Visual inspection... 236
 Maintenance tests... 236
 Preparation... 237
 Recording... 237
 Secondary injection.. 237
 Alarm test... 237
 Self supervision check.. 238
 Trip circuit check... 238
 Measurement of service currents... 238
 Restoring.. 239

Section 19 Fault tracing and repair... 241
 Fault tracing... 241
 Information on the local HMI... 241
 Using front-connected PC.. 242
 Repair instruction... 244
 Repair support.. 245
 Maintenance... 245

Section 20 Glossary... 247
Section 1 Introduction

About this chapter
This chapter introduces the user to the manual.

1.1 Introduction to the installation and commissioning manual

1.1.1 About the complete set of manuals for an IED

The user’s manual (UM) is a complete set of five different manuals:

The Application Manual (AM) contains application descriptions, setting guidelines and setting parameters sorted per function. The application manual should be used to find out when and for what purpose a typical protection function could be used. The manual should also be used when calculating settings.

The Technical Reference Manual (TRM) contains application and functionality descriptions and it lists function blocks, logic diagrams, input and output signals,
setting parameters and technical data sorted per function. The technical reference manual should be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

The Installation and Commissioning Manual (ICM) contains instructions on how to install and commission the protection IED. The manual can also be used as a reference during periodic testing. The manual covers procedures for mechanical and electrical installation, energizing and checking of external circuitry, setting and configuration as well as verifying settings and performing directional tests. The chapters are organized in the chronological order (indicated by chapter/section numbers) in which the protection IED should be installed and commissioned.

The Operator’s Manual (OM) contains instructions on how to operate the protection IED during normal service once it has been commissioned. The operator’s manual can be used to find out how to handle disturbances or how to view calculated and measured network data in order to determine the cause of a fault.

The Engineering Manual (EM) contains instructions on how to engineer the IEDs using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and DNP3.

1.1.2 About the installation and commissioning manual

The installation and commissioning manual contains the following chapters:

- The chapter Safety information presents warning and note signs, that the user should pay attention to.
- The chapter Overview is a summary of the major tasks faced when installing and commissioning an IED.
- The chapter Unpacking and checking the IED explains how to take delivery of the IED.
- The chapter Installing the IED explains how to install the IED.
- The chapter Checking the external optical and electrical connections explains how to check that the IED is properly connected to the protection system.
- The chapter Energizing the IED explains how to start the IED.
- The chapter Set up PCM 600 communication link per IED describes the communication between PCM600 and the IED.
- The chapter Establishing connection and verifying the SPA/IEC-communication contains explains how to enter SPA/IEC settings and verifying the communication.
- The chapter Establishing connection and verifying the LON communication contains a reference to another document.
- The chapter Establishing connection and verifying the IEC 61850 communication contains explains how to enter IEC 61850 settings and verifying the communication.
- The chapter Configuring the IED and changing settings explains how to write settings and configure the IED.
• The chapter *Verifying settings by secondary injection* contains instructions on how to verify that each included function operates correctly according to the set values.
• The chapter *Commissioning and maintenance of the fault clearing system* discusses maintenance tests and other periodic maintenance measures.
• The chapter *Fault tracing and repair* explains how to troubleshoot.
• The chapter *Glossary* is a list of terms, acronyms and abbreviations used in ABB technical documentation.

1.1.3 Intended audience

General

The installation and commissioning manual addresses the personnel responsible for the installation, commissioning, maintenance and taking the protection in and out of normal service.

Requirements

The installation and commissioning personnel must have a basic knowledge in handling electronic equipment. The commissioning and maintenance personnel must be well experienced in using protection equipment, test equipment, protection functions and the configured functional logics in the protection.

1.1.4 Related documents

<table>
<thead>
<tr>
<th>Documents related to REG670</th>
<th>Identity number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s manual</td>
<td>1MRK 502 028-UEN</td>
</tr>
<tr>
<td>Installation and commissioning manual</td>
<td>1MRK 502 029-UEN</td>
</tr>
<tr>
<td>Technical reference manual</td>
<td>1MRK 502 027-UEN</td>
</tr>
<tr>
<td>Application manual</td>
<td>1MRK 502 030-UEN</td>
</tr>
<tr>
<td>Product guide customized</td>
<td>1MRK 502 031-BEN</td>
</tr>
<tr>
<td>Product guide pre-configured</td>
<td>1MRK 502 032-BEN</td>
</tr>
<tr>
<td>Rotor Earth Fault Protection with Injection Unit RXTTE4 and REG670</td>
<td>1MRG001910</td>
</tr>
<tr>
<td>Connection and Installation components</td>
<td>1MRK 513 003-BEN</td>
</tr>
<tr>
<td>Test system, COMBITEST</td>
<td>1MRK 512 001-BEN</td>
</tr>
<tr>
<td>Accessories for 670 series IEDs</td>
<td>1MRK 514 012-BEN</td>
</tr>
<tr>
<td>670 series SPA and signal list</td>
<td>1MRK 500 092-WEN</td>
</tr>
<tr>
<td>IEC 61850 Data objects list for 670 series</td>
<td>1MRK 500 091-WEN</td>
</tr>
<tr>
<td>Engineering manual 670 series</td>
<td>1MRK 511 240-UEN</td>
</tr>
<tr>
<td>Buyer’s guide REG 216</td>
<td>1MRB520004-BEN</td>
</tr>
<tr>
<td>Communication set-up for Relion 670 series</td>
<td>1MRK 505 260-UEN</td>
</tr>
</tbody>
</table>
More information can be found on www.abb.com/substationautomation.

1.1.5 Revision notes

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>First issue for 670 series version 1.2</td>
</tr>
<tr>
<td>A</td>
<td>Minor corrections made</td>
</tr>
<tr>
<td>B</td>
<td>Maintenance updates, PR corrections</td>
</tr>
<tr>
<td>C</td>
<td>Maintenance updates, PR corrections</td>
</tr>
</tbody>
</table>
Section 2 Safety information

2.1 Symbols on the product

All warnings must be observed.

Read the entire manual before doing installation or any maintenance work on the product. All warnings must be observed.

Do not touch the unit in operation. The installation shall take into account the worst case temperature.

2.2 Warnings

Observe the warnings during all types of work related to the product.

Only electrically skilled persons with the proper authorization and knowledge of any safety hazards are allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed. Working in a high voltage environment requires serious approach to avoid human injuries and damage to equipment.

Do not touch circuitry during operation. Potentially lethal voltages and currents are present.

Always use suitable isolated test pins when measuring signals in open circuitry. Potentially lethal voltages and currents are present.
Never connect or disconnect a wire and/or a connector to or from a IED during normal operation. Hazardous voltages and currents are present that may be lethal. Operation may be disrupted and IED and measuring circuitry may be damaged.

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Always connect the IED to protective earth, regardless of the operating conditions. This also applies to special occasions such as bench testing, demonstrations and off-site configuration. This is class 1 equipment that shall be earthed.

Never disconnect the secondary connection of current transformer circuit without short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build-up that may damage the transformer and may cause injuries to humans.

Never remove any screw from a powered IED or from a IED connected to powered circuitry. Potentially lethal voltages and currents are present.

Take adequate measures to protect the eyes. Never look into the laser beam.

The IED with accessories should be mounted in a cubicle in a restricted access area within a power station, substation or industrial or retail environment.

Whenever changes are made in the IED, measures should be taken to avoid inadvertent tripping.

The IED contains components which are sensitive to electrostatic discharge. ESD precautions shall always be observed prior to touching components.
Always transport PCBs (modules) using certified conductive bags.

Do not connect live wires to the IED. Internal circuitry may be damaged.

Always use a conductive wrist strap connected to protective ground when replacing modules. Electrostatic discharge (ESD) may damage the module and IED circuitry.

Take care to avoid electrical shock during installation and commissioning.

Changing the active setting group will inevitably change the IEDs operation. Be careful and check regulations before making the change.

Avoid touching the enclosure of the coupling capacitor REX061 unit and the shunt resistor REX062 unit. The surface may be hot during normal operation. The temperature can rise 50°C in REX061 and 65°C in REX062 above the ambient temperature.

2.3 Note signs

Observe the maximum allowed continuous current for the different current transformer inputs of the IED. See technical data.
Section 3 Overview

About this chapter
This chapter outlines the installation and commissioning of the IED.

3.1 Commissioning and installation overview

The settings for each function must be calculated before the commissioning task can start. A configuration, done in the configuration and programming tool, must also be available if the IED does not have a factory configuration downloaded.

The IED is unpacked and visually checked. It is preferably mounted in a cubicle or on a wall. The connection to the protection system has to be checked in order to verify that the installation is successful.
Section 4 Unpacking and checking the IED

About this chapter
This chapter describes the delivery and the unpacking of the IED

4.1 Taking delivery, unpacking and checking

Procedure

1. Remove the transport casing.
2. Visually inspect the IED.
3. Check that all items are included in accordance with the delivery documents. Once the IED has been started make sure that the software functions ordered have been included in the delivery.
4. Check for transport damages. If transport damage is discovered appropriate action must be taken against the latest carrier and the nearest ABB office or representative should be informed. ABB should be notified immediately if there are any discrepancies in relation to the delivery documents.
5. Storage
 If the IED is to be stored before installation, this must be done in the original transport casing in a dry and dust free place. Observe the environmental requirements stated in the technical data.
Section 5 Installing the IED

About this chapter

This chapter describes how to install the IED.

5.1 Checking environmental conditions and mounting space

The mechanical and electrical environmental conditions at the installation site must be within the limits described in the technical manual and IEC61255-1, normal environment.

- Avoid installation in dusty, damp places.
 Avoid places susceptible to rapid temperature variations, powerful vibrations and shocks, surge voltages of high amplitude and fast rise time, strong induced magnetic fields or similar extreme conditions.
- Check that sufficient space is available.
 Sufficient space is needed at the front and rear of the IED to allow access to wires and optical fibres and to enable maintenance and future modifications.
- Ensure that convection cooling through the ventilation holes at the top and bottom of the case is possible to minimize the heating effect within the IED.

1. Ensure that the amount of dust around the IED is minimized, so that the cooling effect is not reduced.
 It is recommended to install the 670 series IED in a cubicle with an IP4X ingress protection according to IEC 60529, at least at the top surface, to prevent dust and limited size materials from falling through the ventilation holes at top and bottom of the IED case. The effect of airborne contaminants will also be reduced if ventilation of the cubicle is limited.

2. Check that no combustible materials are present in the cubicle.
Section 5
Installing the IED

5.2 Dimensions

5.2.1 Case without rear cover

Figure 1: Case without rear cover

xx08000164.vsd
Figure 2: Case without rear cover with 19" rack mounting kit

<table>
<thead>
<tr>
<th>Case size (mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6U, 1/2 x 19"</td>
<td>265.9</td>
<td>223.7</td>
<td>201.1</td>
<td>252.9</td>
<td>205.7</td>
<td>190.5</td>
<td>203.7</td>
<td>-</td>
<td>187.6</td>
<td>-</td>
</tr>
<tr>
<td>6U, 3/4 x 19"</td>
<td>265.9</td>
<td>336.0</td>
<td>201.1</td>
<td>252.9</td>
<td>318.0</td>
<td>190.5</td>
<td>316.0</td>
<td>-</td>
<td>187.6</td>
<td>-</td>
</tr>
<tr>
<td>6U, 1/1 x 19"</td>
<td>265.9</td>
<td>448.3</td>
<td>201.1</td>
<td>252.9</td>
<td>430.3</td>
<td>190.5</td>
<td>428.3</td>
<td>465.1</td>
<td>187.6</td>
<td>482.6</td>
</tr>
</tbody>
</table>

The H and K dimensions are defined by the 19" rack mounting kit
5.2.2 Case with rear cover

Figure 3: Case with rear cover
Figure 4: Case with rear cover and 19" rack mounting kit

Figure 5: Rear cover case with details

<table>
<thead>
<tr>
<th>Case size (mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6U, 1/2 x 19"</td>
<td>265.9</td>
<td>223.7</td>
<td>242.1</td>
<td>255.8</td>
<td>205.7</td>
<td>203.7</td>
<td>-</td>
<td>228.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6U, 3/4 x 19"</td>
<td>265.9</td>
<td>336.0</td>
<td>242.1</td>
<td>255.8</td>
<td>318.0</td>
<td>190.5</td>
<td>316.0</td>
<td>-</td>
<td>228.6</td>
<td>-</td>
</tr>
<tr>
<td>6U, 1/1 x 19"</td>
<td>265.9</td>
<td>448.3</td>
<td>242.1</td>
<td>255.8</td>
<td>430.3</td>
<td>190.5</td>
<td>428.3</td>
<td>465.1</td>
<td>228.6</td>
<td>482.6</td>
</tr>
</tbody>
</table>

The H and K dimensions are defined by the 19" rack mounting kit.
5.2.3 Flush mounting dimensions

Figure 6: Flush mounting

<table>
<thead>
<tr>
<th>Case size</th>
<th>Cut-out dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>6U, 1/2 x 19"</td>
<td>210.1</td>
<td>254.3</td>
</tr>
<tr>
<td>6U, 3/4 x 19"</td>
<td>322.4</td>
<td>254.3</td>
</tr>
<tr>
<td>6U, 1/1 x 19"</td>
<td>434.7</td>
<td>254.3</td>
</tr>
</tbody>
</table>

E = 188.6 mm without rear protection cover, 229.6 mm with rear protection cover
5.2.4 Side-by-side flush mounting dimensions

Figure 7: A 1/2 x 19” size 670 series IED side-by-side with RHGS6.

Figure 8: Panel-cut out dimensions for side-by-side flush mounting

<table>
<thead>
<tr>
<th>Case size (mm)</th>
<th>A ±1</th>
<th>B ±1</th>
<th>C ±1</th>
<th>D ±1</th>
<th>E ±1</th>
<th>F ±1</th>
<th>G ±1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6U, 1/2 x 19”</td>
<td>214.0</td>
<td>259.3</td>
<td>240.4</td>
<td>190.5</td>
<td>34.4</td>
<td>13.2</td>
<td>6.4 diam</td>
</tr>
<tr>
<td>6U, 3/4 x 19”</td>
<td>326.4</td>
<td>259.3</td>
<td>352.8</td>
<td>190.5</td>
<td>34.4</td>
<td>13.2</td>
<td>6.4 diam</td>
</tr>
<tr>
<td>6U, 1/1 x 19”</td>
<td>438.7</td>
<td>259.3</td>
<td>465.1</td>
<td>190.5</td>
<td>34.4</td>
<td>13.2</td>
<td>6.4 diam</td>
</tr>
</tbody>
</table>
5.2.5 Wall mounting dimensions

![Wall mounting dimensions diagram]

Figure 9: Wall mounting

<table>
<thead>
<tr>
<th>Case size (mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>6U, 1/2 x 19”</td>
<td>292.0</td>
<td>267.1</td>
<td>272.8</td>
<td>390.0</td>
<td>243.0</td>
</tr>
<tr>
<td>6U, 3/4 x 19”</td>
<td>404.3</td>
<td>379.4</td>
<td>272.8</td>
<td>390.0</td>
<td>243.0</td>
</tr>
<tr>
<td>6U, 1/1 x 19”</td>
<td>516.0</td>
<td>491.1</td>
<td>272.8</td>
<td>390.0</td>
<td>243.0</td>
</tr>
</tbody>
</table>

5.3 Mounting methods and details

5.3.1 Mounting the IED

The IED can be rack, wall or flush mounted with the use of different mounting kits, see figure 10.

An additional box of type RHGS can be mounted to one side of a 1/2 or 3/4 IED.
The different mounting kits contain all parts needed including screws and assembly instructions. The following mounting kits are available:

- Flush mounting kit
- 19” Panel (rack) mounting kit
- Wall mounting kit
- Side-by-side mounting kit

The same mounting kit is used for side-by-side rack mounting and side-by-side flush mounting.

The mounting kits must be ordered separately when ordering an IED. They are available as options on the ordering sheet in *Accessories for 670 series IED*, see section “Related documents”.

Generally, all the screws included in delivered mounting kits are of Torx type and a screwdriver of the same type is needed (Tx10, Tx15, Tx20 and Tx25).

If other type of screws are to be used, be sure to use the dimensions of the screws that are given in this guide.

![Diagram of different mounting methods](image)

Figure 10: Different mounting methods

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

- A Flush mounting
- B 19” Panel rack mounting
- C Wall mounting
- D Side-by-side rack or flush mounting
5.3.2 Flush mounting

5.3.2.1 Overview

The flush mounting kit are utilized for case sizes:

- 1/2 x 19"
- 3/4 x 19"
- 1/1 x 19"
- 1/4 x 19" (RHGS6 6U)

Only a single case can be mounted in each cut-out on the cubicle panel, for class IP54 protection.

Flush mounting cannot be used for side-by-side mounted IEDs when IP54 class must be fulfilled. Only IP20 class can be obtained when mounting two cases side-by-side in one (1) cut-out.

To obtain IP54 class protection, an additional factory mounted sealing must be ordered when ordering the IED.
5.3.2.2 Mounting procedure for flush mounting

Figure 11: Flush mounting details.

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
<th>Quantity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sealing strip, used to obtain IP54 class. The sealing strip is factory mounted between the case and front plate.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Fastener</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Groove</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Screw, self tapping</td>
<td>4</td>
<td>2.9x9.5 mm</td>
</tr>
<tr>
<td>5</td>
<td>Joining point of sealing strip</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Panel</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedure

1. Cut an opening in the panel (6).
See section “Flush mounting dimensions” regarding dimensions.

2. Carefully press the sealing strip (1) around the IEDs collar. Cut the end of the sealing strip a few mm to long to make the joining point (5) tight. The sealing strip is delivered with the mounting kit. The strip is long enough for the largest available IED.

3. Insert the IED into the opening (cut-out) in the panel.

4. Add and lock the fasteners (2) to the IED. Thread a fastener into the groove at the back end of the IED. Insert and lightly fasten the locking screw (4). Next, thread a fastener on the other side of the IED, and lightly fasten its locking screw. Lock the front end of the fastener in the panel, using the M5x25 screws. Repeat the procedure with the remaining two fasteners.

5.3.3 19” panel rack mounting

5.3.3.1 Overview

All IED sizes can be mounted in a standard 19” cubicle rack by using the for each size suited mounting kit which consists of two mounting angles and fastening screws for the angles.

The mounting angles are reversible which enables mounting of IED size 1/2 x 19” or 3/4 x 19” either to the left or right side of the cubicle.

Please note that the separately ordered rack mounting kit for side-by-side mounted IEDs, or IEDs together with RHGS cases, is to be selected so that the total size equals 19”.

When mounting the mounting angles, be sure to use screws that follows the recommended dimensions. Using screws with other dimensions than the original may damage the PCBs inside the IED.
5.3.3.2 Mounting procedure for 19" panel rack mounting

![Diagram of 19" panel rack mounting](xx08000160.vsd)

Figure 12: 19" panel rack mounting details

<table>
<thead>
<tr>
<th>Pos</th>
<th>Description</th>
<th>Quantity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a, 1b</td>
<td>Mounting angels, which can be mounted, either to the left or right side of the case.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Screw</td>
<td>8</td>
<td>M4x6</td>
</tr>
</tbody>
</table>

Procedure

1. Carefully fasten the mounting angles (1a, 1b) to the sides of the IED. Use the screws (2) supplied in the mounting kit.
2. Place the IED assembly in the 19" panel.
3. Fasten the mounting angles with appropriate screws.
5.3.4 Wall mounting

5.3.4.1 Overview

All case sizes, 1/2 x 19”, 3/4 x 19”, 1/1 x 19”, can be wall mounted. It is also possible to mount the IED on a panel or in a cubicle.

When mounting the side plates, be sure to use screws that follow the recommended dimensions. Using screws with other dimensions than the original may damage the PCBs inside the IED.

If fiber cables are bent too much, the signal can be weakened. Wall mounting is therefore not recommended for communication modules with fiber connection; Serial SPA/IEC 60870-5-103, DNP3 and LON communication module (SLM), Optical Ethernet module (OEM) and Line data communication module (LDCM).

5.3.4.2 Mounting procedure for wall mounting

![Wall mounting details](xx04000453.vsd)

Figure 13: Wall mounting details.
<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
<th>Quantity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bushing</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Screw</td>
<td>8</td>
<td>M4x10</td>
</tr>
<tr>
<td>3</td>
<td>Screw</td>
<td>4</td>
<td>M6x12 or corresponding</td>
</tr>
<tr>
<td>4</td>
<td>Mounting bar</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Screw</td>
<td>6</td>
<td>M5x8</td>
</tr>
<tr>
<td>6</td>
<td>Side plate</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedure

1. Mount the mounting bars onto the wall (4).
 See section "Wall mounting dimensions" for mounting dimensions.
 Depending on the wall different preparations may be needed like drilling and inserting plastic or expander plugs (concrete/plasterboard walls) or threading (metal sheet wall).
2. Make all electrical connections to the IED terminal.
 It is much easier to do this without the unit in place.
3. Mount the side plates to the IED.
4. Mount the IED to the mounting bars.

5.3.4.3 How to reach the rear side of the IED

The IED can be equipped with a rear protection cover, which is recommended to use with this type of mounting. See figure 14.

To reach the rear side of the IED, a free space of 80 mm is required on the unhinged side.
Figure 14: How to reach the connectors on the rear side of the IED.

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screw</td>
<td>M4x10</td>
</tr>
<tr>
<td>2</td>
<td>Screw</td>
<td>M5x8</td>
</tr>
<tr>
<td>3</td>
<td>Rear protection cover</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedure

1. Remove the inner screws (1), upper and lower on one side.
2. Remove all three fixing screws (2), on the opposite side, from wall support.
3. The IED can now be swung out for access to the connectors, after removing any rear protection.

5.3.5 Side-by-side 19” rack mounting

5.3.5.1 Overview

IED case sizes, 1/2 x 19” or 3/4 x 19” and RHGS cases, can be mounted side-by-side up to a maximum size of 19”. For side-by-side rack mounting, the side-by-side mounting kit together with the 19” rack panel mounting kit must be used. The mounting kit has to be ordered separately.

When mounting the plates and the angles on the IED, be sure to use screws that follows the recommended dimensions. Using screws with other dimensions than the original may damage the PCBs inside the IED.
5.3.5.2 Mounting procedure for side-by-side rack mounting

Figure 15: Side-by-side rack mounting details.

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
<th>Quantity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mounting plate</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2, 3</td>
<td>Screw</td>
<td>16</td>
<td>M4x6</td>
</tr>
<tr>
<td>4</td>
<td>Mounting angle</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedure

1. Place the two IEDs next to each other on a flat surface.
2. Fasten a side-by-side mounting plate (1).
 Use four of the delivered screws (2, 3).
3. Carefully turn the two IEDs up-side down.
4. Fasten the second side-by-side mounting plate.
 Use the remaining four screws.
5. Carefully fasten the mounting angles (4) to the sides of the IED.
 Use the screws available in the mounting kit.
6. Place the IED assembly in the rack.
7. Fasten the mounting angles with appropriate screws.

5.3.5.3 IED in the 670 series mounted with a RHGS6 case

An 1/2 x 19” or 3/4 x 19” size IED can be mounted with a RHGS (6 or 12 depending on IED size) case. The RHGS case can be used for mounting a test switch of type RTXP 24. It also has enough space for a terminal base of RX 2 type for mounting of, for example, a DC-switch or two trip IEDs.
5.3.6 Side-by-side flush mounting

5.3.6.1 Overview

It is not recommended to flush mount side by side mounted cases if IP54 is required. If your application demands side-by-side flush mounting, the side-by-side mounting details kit and the 19” panel rack mounting kit must be used. The mounting kit has to be ordered separately. The maximum size of the panel cut out is 19”.

With side-by-side flush mounting installation, only IP class 20 is obtained. To reach IP class 54, it is recommended to mount the IEDs separately. For cut out dimensions of separately mounted IEDs, see section "Flush mounting".

When mounting the plates and the angles on the IED, be sure to use screws that follows the recommended dimensions. Using screws with other dimensions than the original may damage the PCBs inside the IED.
5.3.6.2 Mounting procedure for side-by-side flush mounting

![Diagram of mounting procedure](xx06000181.vsd)

Figure 17: Side-by-side flush mounting details (RHGS6 side-by-side with 1/2 x 19” IED).

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
<th>Quantity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mounting plate</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2, 3</td>
<td>Screw</td>
<td>16</td>
<td>M4x6</td>
</tr>
<tr>
<td>4</td>
<td>Mounting angle</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedure

1. Make a panel cut-out. For panel cut out dimension, see section "Side-by-side flush mounting dimensions".
2. Carefully press the sealing strip around the IED collar. Cut the end of the sealing strip a few mm to long to make the joining point tight. Repeat the same procedure with the second case. The sealing strip is delivered with the mounting kit. The strip is long enough for the largest available IED.
3. Place the two IEDs next to each other on a flat surface.
4. Fasten a side-by-side mounting plate (1).
 Use four of the delivered screws (2, 3).
5. Carefully turn the two IEDs up-side down.
6. Fasten the second side-by-side mounting plate.
 Use the remaining four screws.
7. Carefully fasten the mounting angles (4) to the sides of the IED.
 Use the fixing screws available in the mounting kit.
8. Insert the IED into the cut-out.
9. Fasten the mounting angles with appropriate screws.

5.3.7 Mounting the injection unit REX060

The injection unit REX060 case size is 6U, 1/2 x 19”. REX060 can be rack, wall or
flush mounted in the same way as the IED. See the particular mounting instructions
for guidance.

REX060 shall be mounted close to the IED. It is recommended that they are
mounted in the same cubicle.

5.3.8 Mounting the coupling capacitor unit REX061 and shunt
resistor unit REX062

5.3.8.1 Coupling capacitor unit REX061

Figure 18: Coupling capacitor unit REX061
Figure 19: Measure and drilling plan

REX061 shall be mounted close to the generator in order to limit the exposure of the field circuit. Alternatively it can be located in the excitation cubicle.

5.3.8.2 Shunt resistor unit REX062

Figure 20: Shunt resistor unit REX062
REX062 shall be mounted close to the IED. It is recommended that REX060 and REX062 are mounted in the same cubicle as the IED.

5.4 Making the electrical connection to REG670

5.4.1 IED connectors

5.4.1.1 Overview

The quantity and designation of connectors depend upon the type and size of the IED. The rear cover plates are prepared with space for the maximum of HW options for each case size and the cut-outs that are not in use are covered with a plate from factory.
Overview

Table 1: Basic modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined backplane module (CBM)</td>
<td>A backplane PCB that carries all internal signals between modules in an IED. Only the TRM (when included) is not connected directly to this board.</td>
</tr>
<tr>
<td>Universal backplane module (UBM)</td>
<td>A backplane PCB that forms part of the IED backplane with connectors for TRM (when included), ADM etc.</td>
</tr>
<tr>
<td>Power supply module (PSM)</td>
<td>Including a regulated DC/DC converter that supplies auxiliary voltage to all static circuits. An internal fail alarm output is available.</td>
</tr>
<tr>
<td>Numerical module (NUM)</td>
<td>Module for overall application control. All information is processed or passed through this module, such as configuration, settings and communication.</td>
</tr>
<tr>
<td>Local Human machine interface (LHMI)</td>
<td>The module consists of LED’s, an LCD, a push button keyboard and an ethernet connector used to connect a PC to the IED.</td>
</tr>
<tr>
<td>Transformer input module (TRM)</td>
<td>Transformer module that galvanically separates the internal circuits from the VT and CT circuits. It has 12 analog inputs.</td>
</tr>
<tr>
<td>Analog digital conversion module (ADM)</td>
<td>Slot mounted PCB with A/D conversion.</td>
</tr>
</tbody>
</table>

Table 2: Application specific modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary input module (BIM)</td>
<td>Module with 16 optically isolated binary inputs</td>
</tr>
<tr>
<td>Binary output module (BOM)</td>
<td>Module with 24 single outputs or 12 double-pole command outputs including supervision function</td>
</tr>
<tr>
<td>Binary I/O module (IOM)</td>
<td>Module with 8 optically isolated binary inputs, 10 outputs and 2 fast signalling outputs.</td>
</tr>
<tr>
<td>Line data communication modules (LDCM), short range, medium range, long range, X21</td>
<td>Modules used for digital communication to remote terminal.</td>
</tr>
<tr>
<td>Serial SPA/LON/IEC 60870-5-103/DNP3 communication modules (SLM)</td>
<td>Used for SPA/LON/IEC 60870–5–103/DNP3 communication</td>
</tr>
<tr>
<td>Optical ethernet module (OEM)</td>
<td>PMC board for IEC 61850 based communication.</td>
</tr>
<tr>
<td>mA input module (MIM)</td>
<td>Analog input module with 6 independent, galvanically separated channels.</td>
</tr>
<tr>
<td>IRIG-B Time synchronization module (IRIG-B)</td>
<td>Module with 2 inputs. One is used for handling both pulse-width modulated signals and amplitude modulated signals and one is used for optical input type ST for PPS time synchronization.</td>
</tr>
</tbody>
</table>
5.4.1.2 Front side connectors

![Diagram of IED front side connector](xx06000179.jpg)

Figure 22: IED front side connector

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IED serial communication port with RJ45 connector</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet cable with RJ45 connectors</td>
</tr>
</tbody>
</table>

The cable between PC and the IED serial communication port shall be a crossed-over Ethernet cable with RJ45 connectors. If the connection are made via a hub or switch, a standard Ethernet cable can be used.
5.4.1.3 Rear side connectors

Table 3: Designations for 1/2 x 19" casing with 1 TRM slot

<table>
<thead>
<tr>
<th>Module</th>
<th>Rear Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>X11</td>
</tr>
<tr>
<td>BIM, BOM, SOM, IOM or MIM</td>
<td>X31 and X32 etc. to X51 and X52</td>
</tr>
<tr>
<td>SLM</td>
<td>X301:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, IRIG-B or RS485</td>
<td>X302</td>
</tr>
<tr>
<td>LDCM or RS485</td>
<td>X303</td>
</tr>
<tr>
<td>OEM</td>
<td>X311:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, RS485 or GTM</td>
<td>X312, 313</td>
</tr>
<tr>
<td>TRM</td>
<td>X401</td>
</tr>
</tbody>
</table>
Table 4: Designations for 3/4 x 19" casing with 1 TRM slot

<table>
<thead>
<tr>
<th>Module</th>
<th>Rear Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>X11</td>
</tr>
<tr>
<td>BIM, BOM, SOM, IOM or MIM</td>
<td>X31 and X32 etc. to X101 and X102</td>
</tr>
<tr>
<td>SLM</td>
<td>X301:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, IRIG-B or RS485</td>
<td>X302</td>
</tr>
<tr>
<td>LDCM or RS485</td>
<td>X303</td>
</tr>
<tr>
<td>OEM</td>
<td>X311:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, RS485 or GTM</td>
<td>X312, X313</td>
</tr>
<tr>
<td>TRM</td>
<td>X401</td>
</tr>
</tbody>
</table>

![Diagram of casing with module designations and rear positions]
Table 5: Designations for 3/4 x 19" casing with 2 TRM slot

<table>
<thead>
<tr>
<th>Module</th>
<th>Rear Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>X11</td>
</tr>
<tr>
<td>BIM, BOM, SOM, IOM or MIM</td>
<td>X31 and X32 etc. to X71 and X72</td>
</tr>
<tr>
<td>SLM</td>
<td>X301:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, IRIG-B or RS485</td>
<td>X302</td>
</tr>
<tr>
<td>LDCM or RS485</td>
<td>X303</td>
</tr>
<tr>
<td>OEM</td>
<td>X311:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, RS485 or GTM</td>
<td>X312, X313, X322, X323</td>
</tr>
<tr>
<td>TRM 1</td>
<td>X401</td>
</tr>
<tr>
<td>TRM 2</td>
<td>X411</td>
</tr>
</tbody>
</table>
Table 6: Designations for 1/1 x 19" casing with 1 TRM slot

<table>
<thead>
<tr>
<th>Module</th>
<th>Rear Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>X11</td>
</tr>
<tr>
<td>BiM, BOM, SOM, IOM or MIM</td>
<td>X31 and X32 etc. to X161 and X162</td>
</tr>
<tr>
<td>SLM</td>
<td>X301:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, IRIG-B or RS485</td>
<td>X302</td>
</tr>
<tr>
<td>LDCM or RS485</td>
<td>X303</td>
</tr>
<tr>
<td>OEM</td>
<td>X311:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, RS485 or GTM</td>
<td>X312, X313</td>
</tr>
<tr>
<td>TRM</td>
<td>X401</td>
</tr>
</tbody>
</table>
Table 7: Designations for 1/1 x 19" casing with 2 TRM slots

<table>
<thead>
<tr>
<th>Module</th>
<th>Rear Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>X11</td>
</tr>
<tr>
<td>BIM, BOM, SOM, IOM or MIM</td>
<td>X31 and X32 etc. to X131 and X132</td>
</tr>
<tr>
<td>SLM</td>
<td>X301:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, IRIG-B or RS485</td>
<td>X302</td>
</tr>
<tr>
<td>LDCM or RS485</td>
<td>X303</td>
</tr>
<tr>
<td>OEM</td>
<td>X311:A, B, C, D</td>
</tr>
<tr>
<td>LDCM, RS485 or GTM</td>
<td>X312, X313, X322, X323</td>
</tr>
<tr>
<td>TRM 1</td>
<td>X401</td>
</tr>
<tr>
<td>TRM 2</td>
<td>X411</td>
</tr>
</tbody>
</table>

Figure 23: Transformer input module (TRM)

- ■ Indicates high polarity

CT/VT-input designation according to figure 23

Table continues on next page
<table>
<thead>
<tr>
<th>Current/voltage configuration (50/60 Hz)</th>
<th>AI01</th>
<th>AI02</th>
<th>AI03</th>
<th>AI04</th>
<th>AI05</th>
<th>AI06</th>
<th>AI07</th>
<th>AI08</th>
<th>AI09</th>
<th>AI10</th>
<th>AI11</th>
<th>AI12</th>
</tr>
</thead>
<tbody>
<tr>
<td>12I, 1A</td>
<td>1A</td>
</tr>
<tr>
<td>12I, 5A</td>
<td>5A</td>
</tr>
<tr>
<td>9I+3U, 1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
</tr>
<tr>
<td>9I+3U, 5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
</tr>
<tr>
<td>5I, 1A+4I, 5A+3U</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
</tr>
<tr>
<td>7I+5U, 1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7I+5U, 5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6I, 5A+1I, 1A+5U</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3I, 5A+4I, 1A+5U</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
</tr>
<tr>
<td>3M, 1A+4IP, 1A+5U</td>
<td>1AM *)</td>
<td>1AM *)</td>
<td>1AM *)</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M, 5A+4IP, 5A+5U</td>
<td>5AM *)</td>
<td>5AM *)</td>
<td>5AM *)</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6I+6U, 1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6I+6U, 5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3I, 5A+3I, 1A+6U</td>
<td>5 A</td>
<td>5 A</td>
<td>5 A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td>110-220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6I, 1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6I, 5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>5A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*) Metering

Note that internal polarity can be adjusted by setting of analog input CT neutral direction and/or on SMAI pre-processing function blocks.
Figure 24: Binary input module (BIM). Input contacts named XA corresponds to rear position X31, X41, and so on, and input contacts named XB to rear position X32, X42, and so on.

Figure 25: mA input module (MIM)
Figure 26: IED with basic functionality and communication interfaces

Figure 27: Power supply module (PSM)
Figure 28: Binary output module (BOM). Output contacts named XA corresponds to rear position X31, X41, and so on, and output contacts named XB to rear position X32, X42, and so on.

Figure 29: Static output module (SOM)
5.4.1.4 Connection examples for high impedance differential protection

WARNING! USE EXTREME CAUTION! Dangerously high voltages might be present on this equipment, especially on the plate with resistors. Do any maintenance ONLY if the primary object protected with this equipment is de-energized. If required by national law or standard, enclose the plate with resistors with a protective cover or in a separate box.

Connections for three-phase high impedance differential protection
Generator, reactor or busbar differential protection is a typical application for three-phase high impedance differential protection. Typical CT connections for three-phase high impedance differential protection scheme are shown in figure 31.
Figure 31: CT connections for high impedance differential protection

<table>
<thead>
<tr>
<th>Pos</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scheme earthing point</td>
</tr>
<tr>
<td></td>
<td>Note that it is of outmost importance to insure that only one earthing point exist in such scheme.</td>
</tr>
<tr>
<td>2</td>
<td>Three-phase plate with setting resistors and metrosils.</td>
</tr>
<tr>
<td>3</td>
<td>Necessary connection for three-phase metrosil set. Shown connections are applicable for both types of three-phase plate.</td>
</tr>
<tr>
<td>4</td>
<td>Position of optional test switch for secondary injection into the high impedance differential IED.</td>
</tr>
<tr>
<td>5</td>
<td>Necessary connection for setting resistors. Shown connections are applicable for both types of three-phase plate.</td>
</tr>
<tr>
<td>6</td>
<td>The factory made star point on a three-phase setting resistor set. Shall be removed for installations with 650 and 670 series IEDs. This star point is required for RADHA schemes only.</td>
</tr>
<tr>
<td>7</td>
<td>How to connect three individual phase currents for high impedance scheme to three CT inputs in the IED.</td>
</tr>
</tbody>
</table>
Transformer input module, where the current inputs are located.

Note that the CT ratio for high impedance differential protection application must be set as one.

- For main CTs with 1A secondary rating the following setting values shall be entered:
 \[CTPrim = 1A \text{ and } CTsec = 1A \]
- For main CTs with 5A secondary rating the following setting values shall be entered:
 \[CTPrim = 5A \text{ and } CTsec = 5A \]
- The parameter CTStarPoint shall be always left to the default value ToObject.

Three connections made in the Signal Matrix, which connect these three current inputs to the first three input channels of the preprocessing function block (10). For high impedance differential protection preprocessing function block in 3ms task shall be used.

Connections for 1Ph High impedance differential protection HZPDIF

Restricted earth fault protection REFPDIF is a typical application for 1Ph High impedance differential protection HZPDIF. Typical CT connections for high impedance based REFPDIF protection scheme are shown in figure 32.

Figure 32: CT connections for restricted earth fault protection
Pos	Description
1 | Scheme earthing point

 Note that it is of outmost importance to insure that only one earthing point exist in such scheme.

2 | One-phase plate with stabilizing resistor and metrosil.
3 | Necessary connection for the metrosil. Shown connections are applicable for both types of one-phase plate.
4 | Position of optional test switch for secondary injection into the high impedance differential IED.
5 | Necessary connection for stabilizing resistor. Shown connections are applicable for both types of one-phase plate.
6 | How to connect REFPDIF high impedance scheme to one CT input in IED.
7 | Transformer input module where this current input is located.

 Note that the CT ratio for high impedance differential protection application must be set as one.

 - For main CTs with 1A secondary rating the following setting values shall be entered:
 \[CT_{prim} = 1A \text{ and } CT_{sec} = 1A \]
 - For main CTs with 5A secondary rating the following setting values shall be entered:
 \[CT_{prim} = 5A \text{ and } CT_{sec} = 5A \]
 - The parameter CTStarPoint shall always be left to the default value ToObject

8 | Connection made in the Signal Matrix, which connects this current input to first input channel of the preprocessing function block (9). For high impedance differential protection preprocessing function block in 3ms task shall be used.

9 | Preprocessing block, which has a task to digitally filter the connected analogue inputs. Preprocessing block output AI1 shall be connected to one instances of 1Ph high impedance differential protection function HZPDIF (for example, instance 1 of HZPDIF in the configuration tool).

5.4.2 Connecting to protective earth

Connect the protective earthing screw (pos 1 in figure 33) on the rear of the IED to the closest possible earthing point in the cubicle. Electrical codes and standards require that protective earth cables are green/yellow conductors with a cross section area of at least 2.5 mm² (AWG14). The Power supply module (PSM), Transformer input modules (TRM) and the enclosure are all separately earthed, see figure 33 below.

The cubicle must be properly connected to the station earthing system. Use a conductor with a core cross section area of at least 4 mm² (AWG 12).
Use the main protective earth screw (1) for connection to the stations earthing system. Earthing screws for PSM module (2) and TRM module (3) must be fully tightened to secure protective earth connection of these modules.

5.4.3 Connecting the power supply module

The wiring from the cubicle terminal block to the IED terminals (see Figure 27 for PSM connection diagram) must be made in accordance with the established guidelines for this type of equipment. The wiring should have a minimum cross-sectional area of 1.0 mm² and a voltage rating of 250 V. Branch circuit protection must be provided in the power supply wiring to the IED, and if necessary it must be possible to disconnect manually from the power supply. Fuse or circuit breaker up to 6 A and 250 V should be close to the equipment. It is recommended to separate the instrument transformer leads from the other cables, that is, they should not be run in the same cable ducts or loom. The connections are made on connector X11. For location of connector X11, refer to section "Rear side connectors".
5.4.4 Connecting to CT and VT circuits

CTs and VTs are connected to the 24–pole connector of the Transformer input module (TRM) on the rear side of the IED. Connection diagram for TRM is shown in figure 23.

Use a solid conductor with a cross section area between 2.5–6 mm² (AWG14-10) or a stranded conductor with a cross section area between 2.5–4 mm² (AWG14-12).

If the IED is equipped with a test-switch of type RTXP 24, COMBIFLEX wires with 20 A sockets must be used to connect the CT and VT circuits.

Connectors on TRM (for location see section “Rear side connectors”) for current and voltage transformer circuits are so called “feed-through IED blocks” and are designed for conductors with cross sectional area up to 4 mm² (AWG 12). The screws used to fasten the conductors should be tightened with a torque of 1Nm.

Connector terminals for CT and VT circuits, as well as terminals for binary input and output signals, can be of either ringlug or compression connection type, depending on ANSI/IEC standards, or customers choice.

Table 8: CT and VT circuit connectors

<table>
<thead>
<tr>
<th>Connector type</th>
<th>Rated voltage and current</th>
<th>Maximum conductor area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw compression type</td>
<td>250 V AC, 20 A</td>
<td>4 mm² (AWG12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x 2.5 mm² (2 x AWG14)</td>
</tr>
<tr>
<td>Terminal blocks suitable for</td>
<td>250 V AC, 20 A</td>
<td>4 mm² (AWG12)</td>
</tr>
<tr>
<td>ring lug terminals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4.4.1 Configuration for analog CT inputs

The secondary rated current of the CT (that is, 1A or 5A) determines the choice of TRM in the IED. Two TRMs are available, One is dimensioned for an input current of 5A and the other for an input of 1A. If the CT rated secondary current does not match the TRM input current rating adjustments can be made in settings depending on the tolerance of the TRM.

5.4.5 Connecting the binary input and output signals

Auxiliary power and signals are connected using voltage connectors. Signal wires are connected to a female connector, see figure 34, which is then plugged into the corresponding male connector, see figure 35, located at the rear of the IED. For location of BIM, BOM and IOM refer to section “Rear side connectors”. Connection diagrams for BIM, BOM and IOM are shown in figure 24, figure 28 and figure 30.
If the IED is equipped with a test-switch of type RTXP 24, COMBIFLEX wires with 20 A sockets, 1.5mm² (AWG16) conductor area must be used to connect the auxiliary power.

Procedure

1. Connect signals to the female connector
 All wiring to the female connector should be done before it is plugged into the male part and screwed to the case. The conductors can be of rigid type (solid, stranded) or of flexible type. The female connectors accept conductors with a cross section area of 0.2-2.5 mm² (AWG 24-14). If two conductors are used in the same terminal, the maximum permissible cross section area is 0.2-1 mm² (AWG 24-18). If two conductors, each with area 1.5 mm² (AWG 16) need to be connected to the same terminal, a ferrule must be used, see figure 36. This ferrule, is applied with the by Phoenix recommended crimping tool. The fastening screw shall be tightened with a torque of 0.4 Nm (This torque applies to all binary connectors).

2. Plug the female connector to the corresponding back-side mounted male connector

3. Lock the female connector by fastening the lock screws

Figure 34: A female connector

Figure 35: Board with male connectors
Figure 36: Cable connectors

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is ferrule,</td>
</tr>
<tr>
<td>2</td>
<td>A bridge connector, is used to jump terminal points in a connector.</td>
</tr>
</tbody>
</table>

Table 9: Binary I/O connection system

<table>
<thead>
<tr>
<th>Connector type</th>
<th>Rated voltage</th>
<th>Maximum conductor area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw compression type</td>
<td>250 V AC</td>
<td>2.5 mm² (AWG14) 2 x 1 mm² (2 x AWG18)</td>
</tr>
<tr>
<td>Terminal blocks suitable for ring lug terminals</td>
<td>300 V AC</td>
<td>3 mm² (AWG14)</td>
</tr>
</tbody>
</table>

Because of limitations of space, when ring lug terminal is ordered for Binary I/O connections, one blank slot is necessary between two adjacent IO cards. Please refer to the ordering particulars for details.

5.4.6 Making the screen connection

When using screened cables always make sure screens are earthed and connected according to applicable engineering methods. This may include checking for appropriate earthing points near the IED, for instance, in the cubicle and/or near the source of measuring. Ensure that earth connections are made with short (max. 10
Section 5
Installing the IED

cm) conductors of an adequate cross section, at least 6 mm2 (AWG10) for single screen connections.

![Figure 37: Communication cable installation.](en06000190.vsd)

<table>
<thead>
<tr>
<th>PosNo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outer shield</td>
</tr>
<tr>
<td>2</td>
<td>Protective earth screw</td>
</tr>
<tr>
<td>3</td>
<td>Inner shield</td>
</tr>
</tbody>
</table>

Inner shielding of the cable shall be earthed at the external equipment end only. At the IED terminal end, the inner shield must be isolated from protective earth.
5.5 Making the electrical connection to the rotor and stator injection equipment

5.5.1 Connectors for injection unit REX060, coupling capacitor unit REX061 and shunt resistor unit REX062

5.5.1.1 Injection unit REX060

Figure 38: Designation for REX060 unit casing

Figure 39: Power supply module
Section 5
Installing the IED

Figure 40: Stator injection module

Figure 41: Rotor injection module

1) Alternative connections to optional Shunt resistor unit (REX682) for high-resistance grounding via a distribution transformer or terminal earthing transformer.
5.5.1.2 Coupling capacitor unit REX061

Figure 42: Designation for capacitor unit casing

Figure 43: Coupling capacitor module

1) Rotor voltage divided by 1000
5.5.1.3 Shunt resistor unit REX062

Figure 44: Designation for shunt resistor unit casing

Figure 45: Shunt resistor module
5.5.2 Connecting injection unit REX060, coupling capacitor unit REX061 and shunt resistor unit REX062

The figures below show typical installations for rotor and stator earth fault protection, where injection unit REX060, coupling capacitor unit REX061 and with and without shunt resistor unit REX062.

The injection unit REX060 should be installed close to the IED in the same cubicle, in any case within 10 m distance of the IED.

The shunt resistor unit, REX062, should preferably also be installed in the same cubicle, if used in the application.

Cable length between REX060 and generator should preferably not exceed 75 m, in any case not exceed 150 m. The recommended cable area for distances up to 75 m is 2.5 mm2. The cable area should be increased to 4 mm2 for distances between 75 m and 150 m.

Cable length between REX062 and generator should preferably not exceed 75 m, in any case not exceed 150 m. The recommended cable area for distances up to 75 m is 2.5 mm2. The cable area should be increased to 4 mm2 for distances between 75 m and 150 m.

![Rotor connection example](IEC11000224.ai)
For connection details regarding REX060, REX061 and REX062, refer to REG670 Technical Reference manual, section Connection diagram.
REX060 connections

Table 10: Power X11

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ready, Power off NO binary out</td>
</tr>
<tr>
<td>2</td>
<td>Power off common binary out</td>
</tr>
<tr>
<td>3</td>
<td>Fail, Power off NC binary out</td>
</tr>
<tr>
<td>4</td>
<td>Power input positive</td>
</tr>
<tr>
<td>5</td>
<td>Power input negative</td>
</tr>
</tbody>
</table>

Table 11: Stator IED and sense connection X61

<table>
<thead>
<tr>
<th>No</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Block injection, 220V binary in</td>
</tr>
<tr>
<td>2</td>
<td>Block injection, 110V binary in</td>
</tr>
<tr>
<td>3</td>
<td>Block injection, 48V binary in</td>
</tr>
<tr>
<td>4</td>
<td>Block injection, Common binary in</td>
</tr>
<tr>
<td>5</td>
<td>Injection Blocked NC binary out</td>
</tr>
<tr>
<td>6</td>
<td>Voltage/Current Saturation NO binary out</td>
</tr>
<tr>
<td>7</td>
<td>Common binary out</td>
</tr>
<tr>
<td>8</td>
<td>Voltage A, analog out</td>
</tr>
<tr>
<td>9</td>
<td>Voltage B analog out</td>
</tr>
<tr>
<td>10</td>
<td>Current A analog out</td>
</tr>
<tr>
<td>11</td>
<td>Current B analog out</td>
</tr>
<tr>
<td>12</td>
<td>Voltage sense A</td>
</tr>
<tr>
<td>13</td>
<td>Voltage sense B</td>
</tr>
<tr>
<td>14</td>
<td>Current sense A (same as 16)</td>
</tr>
<tr>
<td>15</td>
<td>Current sense B</td>
</tr>
<tr>
<td>16</td>
<td>Current sense A (same as 14)</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 12: Stator injection connection X62

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injection, via extern shunt resistor</td>
</tr>
<tr>
<td>2</td>
<td>Injection return, via extern shunt resistor</td>
</tr>
<tr>
<td>3</td>
<td>Injection</td>
</tr>
<tr>
<td>4</td>
<td>Injection return (same as 5)</td>
</tr>
<tr>
<td>5</td>
<td>Injection return (same as 4)</td>
</tr>
</tbody>
</table>
Table 13: Rotor injection and IED connection X81

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Block injection, 220V binary in</td>
</tr>
<tr>
<td>2</td>
<td>Block injection, 110V binary in</td>
</tr>
<tr>
<td>3</td>
<td>Block injection, 48V binary in</td>
</tr>
<tr>
<td>4</td>
<td>Block injection, Common binary in</td>
</tr>
<tr>
<td>5</td>
<td>Injection Blocked NC binary out</td>
</tr>
<tr>
<td>6</td>
<td>Voltage/Current Saturation NO binary out</td>
</tr>
<tr>
<td>7</td>
<td>Common binary out</td>
</tr>
<tr>
<td>8</td>
<td>Voltage A, analog out</td>
</tr>
<tr>
<td>9</td>
<td>Voltage B analog out</td>
</tr>
<tr>
<td>10</td>
<td>Current A analog out</td>
</tr>
<tr>
<td>11</td>
<td>Current B analog out</td>
</tr>
<tr>
<td>12</td>
<td>Voltage sense A</td>
</tr>
<tr>
<td>13</td>
<td>Voltage sense B</td>
</tr>
<tr>
<td>14</td>
<td>Current sense A (same as 16)</td>
</tr>
<tr>
<td>15</td>
<td>Current sense B</td>
</tr>
<tr>
<td>16</td>
<td>Current sense A (same as 14)</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 14: Rotor injection connection X82

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injection (same as 3)</td>
</tr>
<tr>
<td>2</td>
<td>Injection, inside shunt resistor</td>
</tr>
<tr>
<td>3</td>
<td>Injection (same as 1)</td>
</tr>
<tr>
<td>4</td>
<td>Injection return (same as 5)</td>
</tr>
<tr>
<td>5</td>
<td>Injection return (same as 4)</td>
</tr>
</tbody>
</table>

Connect each signal connector terminal of screw compression type with one 0.5 to 2.5 mm² wire or with two 0.5 to 1.0 mm² wires.

Grounding (PE), protective earth is a separate 4 mm screw terminal, as a part of the metallic chassis.
REX061 Capacitor unit connections

Table 15: Injection and rotor connection X1

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rotor positive pole</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Positive pole</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Negative pole</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Rotor negative pole</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Rotor injection</td>
</tr>
<tr>
<td>10</td>
<td>Injection ground. Internally connected to chassis and PE</td>
</tr>
</tbody>
</table>

REX062 Shunt resistor unit connections

Table 17: Injection via shunt resistors connection X1

<table>
<thead>
<tr>
<th>No</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Injection</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Injection return</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Current sense output</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Current sense output</td>
</tr>
<tr>
<td>9</td>
<td>Injection input, External shunt</td>
</tr>
<tr>
<td>10</td>
<td>Injection input return, External shunt</td>
</tr>
</tbody>
</table>

X1 connector. Connect each signal connector terminal of screw compression type with one 0.14 to 6 mm² wire or with two 0.14 to 1.5 mm² wires.

X2 connector. Connect each signal connector terminal of screw compression type with one 0.5 to 2.5 mm² wire or with two 0.5 to 1.0 mm² wires.

Grounding (PE). Protective earth is a separate 4 mm screw terminal.
X1 connector. Connect each signal connector terminal of screw compression type with one 0.14 to 6 mm2 wire or with two 0.14 to 1.5 mm2 wires.

Grounding (PE). Protective earth is a separate 4 mm screw terminal.

5.5.3 Connecting and setting voltage inputs

There are two different methods for connecting the IED to the REX060 injection unit if both stator and rotor protection is used, either using two analog input channels on the IED for both rotor and stator voltage and current measurements, or two analog IED input channels for the rotor and another two IED channels for the stator measurements.

1. The same voltage input is used for both stator and rotor voltage measurement and another voltage input is used for both stator and rotor current measurement. The REX060 outputs to IED are connected in series.

2. Two different voltage inputs are used for stator and rotor voltage measurement and two other voltage inputs are used for stator and rotor current measurement. This means that the inputs for STTIPHIZ is separated from the inputs for ROTIPHIZ.

Figure 49: Connection to IED with two analogue voltage inputs
If sufficient number of analog voltage inputs are available in IED, alternative 2 with separate inputs for STTIPHIZ and ROTIPHIZ is recommended.

Some settings are required for the analog voltage inputs. Set the voltage ratio for the inputs to 1/1, for example, VTSecx = 100 V VTPrimx = 0.1 kV

The analogue inputs are linked to a pre-processor block in the Signal Matrix Tool. This pre-processor block must have the same cycle time, 8 ms, as the function blocks for STTIPHIZ and ROTIPHIZ.

The default parameter settings are used for the pre-processor block.

Note that it is possible to connect two REG670 in parallel to the REX060 injection unit in order to obtain redundant measurement in two separate IEDs. However, at commissioning both REG670 IEDs must be connected during calibration procedure.

It is of outmost importance that REX060, REX061 and REX062 chassis are all solidly grounded. Grounding (PE), protective earth is a separate 4 mm screw terminal, as a part of the metallic chassis.
5.6 Making the optical connections

5.6.1 Connecting station communication interfaces

The IED can be equipped with an optical ethernet module (OEM), see figure 26, needed for IEC 61850 communication and a serial communication module (SLM), see figure 26 for LON, SPA, IEC 60870–5–103 or DNP3 communication. In such cases optical ports are provided on the rear side of the case for connection of the optical fibers. For location of OEM and SLM, refer to section "Rear side connectors".

- Optical ports X311: A, B (Tx, Rx) and X311: C, D (Tx, Rx) on OEM are used for IEC 61850-8-1 communication. Both ports AB and CD shall be connected when redundant IEC 61850-8-1 communication is used. Connectors are of ST type. When OEM is used, the protection plate for the galvanic connection must not be removed.
- Optical port X301: A, B (Tx, Rx) on SLM module is used for SPA, IEC 60870-5-103 or DNP3 communication. Connectors are of ST type (glass) or HFBR Snap in (plastic).
- Optical port X301: C, D (Tx, Rx) on SLM module is used for LON communication. Connectors are of ST type (glass) or HFBR Snap in (plastic).

The optical fibers have Transmission (Tx) and Reception (Rx) connectors, and they should be attached to the Tx and Rx connectors of OEM and SLM module (Tx cable to Rx connector, Rx cable to Tx connector).

Connectors are generally color coded; connect blue or dark grey cable connectors to blue or dark grey (receive) back-side connectors. Connect black or grey cable connectors to black or grey (transmit) back-side connectors.

The fiber optical cables are very sensitive to handling. Do not bend too sharply. The minimum curvature radius is 15 cm for the plastic fiber cables and 25 cm for the glass fiber cables. If cable straps are used to fix the cables, apply with loose fit. Always hold the connector, never the cable, when connecting or disconnecting optical fibers. Do not twist, pull or bend the fiber. Invisible damage may increase fiber attenuation thus making communication impossible.

Please, strictly follow the instructions from the manufacturer for each type of optical cables/connectors.
5.6.2 Connecting remote communication interfaces LDCM

The Line Data Communication Module (LDCM), see figure 26, is the hardware used for the transfer of binary and analog signal data between IEDs in different protection schemes on the IEEE/ANSI C37.94 protocol. The optical ports on the rear side of the IED are X312 and X313. For location of LDCM, refer to section "Rear side connectors".

5.7 Installing the serial communication cable for RS485

5.7.1 RS485 serial communication module

![Diagram of RS485 connection plate](en07000140.vsd)

Figure 51: The connection plate to the backplate with connectors and screws. This figure also shows the pin numbering from the component side.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name 2-wire</th>
<th>Name 4-wire</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3:1</td>
<td>soft ground</td>
<td>soft ground</td>
<td></td>
</tr>
<tr>
<td>x3:2</td>
<td>soft ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1:1</td>
<td>RS485 +</td>
<td>TX+</td>
<td>Receive/transmit high or transmit high</td>
</tr>
<tr>
<td>x1:2</td>
<td>RS485 –</td>
<td>TX-</td>
<td>Receive/transmit low or transmit low</td>
</tr>
<tr>
<td>x1:3</td>
<td>Term</td>
<td>T-Term</td>
<td>Termination resistor for transmitter (and receiver in 2-wire case) (connect to TX+)</td>
</tr>
<tr>
<td>x1:4</td>
<td>reserved</td>
<td>R-Term</td>
<td>Termination resistor for receiver (connect to RX+)</td>
</tr>
<tr>
<td>x1:5</td>
<td>reserved</td>
<td>RX-</td>
<td>Receive low</td>
</tr>
<tr>
<td>x1:6</td>
<td>reserved</td>
<td>RX+</td>
<td>Receive high</td>
</tr>
</tbody>
</table>

Table continues on next page
Pin Configuration

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name 2-wire</th>
<th>Name 4-wire</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-wire:</td>
<td>Connect pin X1:1 to pin X1:6 and pin X1:2 to pin X1:5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination (2-wire):</td>
<td>Connect pin X1:1 to pin X1:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination (4-wire):</td>
<td>Connect pin X1:1 to pin X1:3 and pin X1:4 to pin X1:6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The distance between earth points should be < 1200 m (3000 ft), see figure 52 and 53. Only the outer shielding is connected to the protective earth at the IED. The inner and outer shieldings are connected to the protective earth at the external equipment. Use insulating tape for the inner shield to prevent contact with the protective earth. Make sure that the terminals are properly earthed with as short connections as possible from the earth screw, for example to an earthed frame.

The IED and the external equipment should preferably be connected to the same battery.
Figure 52: Communication cable installation, 2-wire

Where:

1. The inner shields shall be connected together (with an isolated terminal block) and only have one earthing point in the whole system, preferably at the external equipment (PC). The outer shield shall be connected to Protective Earth (PE) in every cable end that is, to PE at all IED terminals and to PE at External equipment (PC). The first IED will have only one cable end but all others of course two.

2. Connect according to installation instructions for the actual equipment, observe the 120 ohms termination.

3. The protective earth should be close to the external equipment (< 2m)

Cc Communication cable
PE Protective earth screw
Figure 53: Communication cable installation, 4-wire

Where:

1. The inner shields shall be connected together (with an isolated terminal block) and only have one earthing point in the whole system, preferably at the external equipment (PC). The outer shield shall be connected to Protective Earth (PE) in every cable end that is, to PE at all IED terminals and to PE at External equipment (PC). The first IED will have only one cable end but all others of course two.

2. Connect according to installation instructions for the actual equipment, observe the 120 ohms termination.

3. The protective earth should be close to the external equipment (< 2m)

Cc Communication cable
PE Protective earth screw
Figure 54: Cable contact, Phoenix: MSTB2.5/6-ST-5.08 1757051

Where:

1 is cable
2 is screw

Figure 55: Cross section of communication cable

The EIA standard RS-485 specifies the RS485 network. An informative excerpt is given in section "Installing the serial communication cable for RS485 SPA/IEC".

5.7.2 Installing the serial communication cable for RS485 SPA/IEC

Informative excerpt from EIA Standard RS-485 - Electrical Characteristics of Generators and Receivers for Balanced Digital Multipoint Systems

RS-485 Wire - Media dependent Physical layer
1 Normative references
EIA Standard RS-485 - Electrical Characteristics of Generators and Receivers for Balanced Digital Multipoint Systems

2 Transmission method
RS-485 differential bipolar signaling

2.1 Differential signal levels
Two differential signal levels are defined:
- $A^+ =$ line A positive with respect to line B
- A^- = line A negative with respect to line B

2.2 Galvanic isolation
The RS485 circuit shall be isolated from earth by:
- $R_{iso} \geq 10 \, \text{M} \Omega$
- $C_{iso} \leq 10 \, \text{pF}$

Three isolation options exist:
- a) The entire node electronics can be galvanically isolated
- b) The bus interface circuit can be isolated form the rest of node electronics by optoisolators, transformer coupling or otherwise.
- c) The RS485 chip can include built-in isolation

2.3 Bus excitation and signal conveyance

2.3.1 Requirements
- a) The RS485 specification requires the Signal A and Signal B wires.
- b) Each node also requires (5 V) Excitation of the RS485 termination network.
- c) V_{im} - the common mode voltage between any pair of RS485 chips may not exceed 10 V.
- d) A physical ground connection between all RS485 circuits will reduce noise.

2.3.2 Bus segment termination network
The termination network below required at each end of each Bus Ph-segment.

![Bus segment termination network diagram](en03000112.vsd)

ExV+ --- Ru = 390 ohm
1/4 W, 2%

Signal B --- Rt = 220 ohm
1/4 W, 2%

Signal A --- Rd = 390 ohm
1/4 W, 2%

DGND

ExV is supplied by the Node at end of the Bus Segment

Figure 56: RS-485 bus segment termination

Table continues on next page
ExV is supplied by the Node at end of the Bus Segment

The specifications of the components are:

a) Ru + 5 V to Signal B = 390 Ω, 0.25 W ±2.5%
b) Rt Signal B to Signal A = 220 Ω, 0.25 W ±2.5%
c) Rd Signal A to GND = 390 Ω, 0.25 W ±2.5%

2.3.3 Bus power distribution

The end node in each Ph-segment applies 5 V bus excitation power to the Termination network via the Excitation pair (ExV+ and GND) used in the Type 3 Physical layer specification.

5.7.3 Data on RS485 serial communication module cable

<table>
<thead>
<tr>
<th>Type:</th>
<th>Twisted-pair S-STP (Screened – Screened Twisted Pair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield:</td>
<td>Individual foil for each pair with overall copper braid</td>
</tr>
<tr>
<td>Length:</td>
<td>Maximum 1200 m (3000 ft) from one system earth to the next system earth (includes length from platform point to system earth on both sides)</td>
</tr>
<tr>
<td>Temp:</td>
<td>According to application</td>
</tr>
<tr>
<td>Impedance:</td>
<td>120 Ω</td>
</tr>
<tr>
<td>Capacitance:</td>
<td>Less than or equal to 42 pF/m</td>
</tr>
<tr>
<td>Example:</td>
<td>Belden 9841, Alpha wire 6412, 6413</td>
</tr>
</tbody>
</table>

5.8 Installing the GPS antenna

5.8.1 Antenna installation

The antenna is mounted on a console for mounting on a horizontal or vertical flat surface or on an antenna mast.
Mount the antenna and console clear of flat surfaces such as buildings, walls, roofs and windows to avoid signal reflections. If necessary, protect the antenna from animals and birds which can affect signal strength. Also protect the antenna against lightning.

Always position the antenna and its console so that a continuous clear line-of-sight visibility to all directions is obtained, preferably more than 75%. A minimum of 50% clear line-of-sight visibility is required for un-interrupted operation.
5.8.2 Electrical installation

Use a 50 ohm coaxial cable with a male TNC connector on the antenna end and a male SMA connector on the receiver end to connect the antenna to the IED. Choose cable type and length so that the total attenuation is max. 26 dB at 1.6 GHz. A suitable antenna cable is supplied with the antenna.

The antenna has a female TNC connector to the antenna cable. For location of GPS time module (GTM), refer to section "Rear side connectors". Connection diagram for GTM is shown in figure 26.

Make sure that the antenna cable is not charged when connected to the antenna or to the receiver. Short-circuit the end of the antenna cable with some metal device, then connect to the antenna. When the antenna is connected to the cable, connect the cable to the receiver. The IED must be switched off when the antenna cable is connected.

5.8.3 Lightning protection

The antenna should be mounted with adequate lightning protection, that is the antenna mast must not rise above a neighboring lightning conductor.
Section 6 Checking the external optical and electrical connections

About this chapter
This chapter describes what to check to ensure correct connection to the external circuitry, such as the auxiliary power supply, CT’s and VT’s. These checks must be made with the protection IED de-energized.

6.1 Overview
The user must check the installation which includes verifying that the IED is connected to the other parts of the protection system. This is done with the IED and all connected circuits de-energized.

6.2 Checking VT circuits
Check that the wiring is in strict accordance with the supplied connection diagram.

- Polarity check
- VT circuit voltage measurement (primary injection test)
- Earthing check
- Phase relationship
- Insulation resistance check

The polarity check verifies the integrity of circuits and the phase relationships. The check must be performed as close to the IED as possible.

The primary injection test verifies the VT ratio and the wiring all the way from the primary system to the IED. Injection must be performed for each phase-to-neutral circuit and each phase-to-phase pair. In each case, voltages in all phases and neutral are measured.
6.3 Checking CT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

The CTs must be connected in accordance with the circuit diagram provided with the IED, both with regards to phases and polarity. The following tests shall be performed on every primary CT connected to the IED:

- Primary injection test to verify the current ratio of the CT, the correct wiring up to the protection IED and correct phase sequence connection (that is L1, L2, L3.)
- Polarity check to prove that the predicted direction of secondary current flow is correct for a given direction of primary current flow. This is an essential test for the proper operation of the differential function.
- CT secondary loop resistance measurement to confirm that the current transformer secondary loop DC resistance is within specification and that there are no high resistance joints in the CT winding or wiring.
- CT excitation test in order to confirm that the current transformer is of the correct accuracy rating and that there are no shorted turns in the current transformer windings. Manufacturer's design curves must be available for the current transformer to compare the actual results.
- Earthing check of the individual CT secondary circuits to verify that each three-phase set of main CTs is properly connected to the station earth and only at one electrical point.
- Insulation resistance check.
- Phase identification of CT shall be made.

Both the primary and the secondary sides must be disconnected from the line and the IED when plotting the excitation characteristics.

If the CT secondary circuit earth connection is removed without the current transformer primary being de-energized, dangerous voltages may result in the secondary CT circuits.

6.4 Checking the power supply

Check that the auxiliary supply voltage remains within the permissible input voltage range under all operating conditions. Check that the polarity is correct before powering the IED.
6.5 Checking the binary I/O circuits

6.5.1 Binary input circuits
Preferably, disconnect the binary input connector from the binary input cards. Check all connected signals so that both input level and polarity are in accordance with the IED specifications.

6.5.2 Binary output circuits
Preferably, disconnect the binary output connector from the binary output cards. Check all connected signals so that both load and polarity are in accordance with IED specifications.

6.6 Checking optical connections
Check that the Tx and Rx optical connections are correct.

An IED equipped with optical connections requires a minimum depth of 180 mm for plastic fiber cables and 275 mm for glass fiber cables. Check the allowed minimum bending radius from the optical cable manufacturer.
Section 7 Energizing the IED and REX060

About this chapter

This chapter describes the start-up sequence and what to check once the IED has been energized.

7.1 Checking the IED operation

Check all connections to external circuitry to ensure correct installation, before energizing the IED and carrying out the commissioning procedures.

The user could also check the software version, the IED's serial number and the installed modules and their ordering number to ensure that the IED is according to delivery and ordering specifications.

Energize the power supply of the IED to start it up. This could be done in a number of ways, from energizing a whole cubicle to energizing a single IED. The user should re-configure the IED to activate the hardware modules in order to enable the self supervision function to detect possible hardware errors. Set the IED time if no time synchronization source is configured. Check also the self-supervision function in Main menu/Diagnostics/Monitoring menu in local HMI to verify that the IED operates properly.

7.2 Energizing the IED

When the IED is energized, the green LED starts flashing instantly. After approximately 55 seconds the window lights up and the window displays ‘IED Startup’. The main menu is displayed and the upper row should indicate ‘Ready’ after about 90 seconds. A steady green light indicates a successful startup.
Figure 58: Typical IED start-up sequence

1. IED energized. Green LED instantly starts flashing
2. LCD lights up and "IED startup" is displayed
3. The main menu is displayed. A steady green light indicates a successful startup.

If the upper row in the window indicates ‘Fail’ instead of ‘Ready’ and the green LED flashes, an internal failure in the IED has been detected. See section "Checking the self supervision function" in this chapter to investigate the fault.

An example of the local HMI is shown in figure 59.

7.3 Design

The different parts of the medium size local HMI are shown in figure 59. The local HMI exists in an IEC version and in an ANSI version. The difference is on the keypad operation buttons and the yellow LED designation.
Figure 59: Medium size graphic HMI

1. Status indication LEDs
2. LCD
3. Indication LEDs
4. Label
5. Local/Remote LEDs
6. RJ45 port
7. Communication indication LED
8. Keypad
7.4 Checking the self supervision signals

7.4.1 Reconfiguring the IED

I/O modules configured as logical I/O modules (BIM, BOM or IOM) are supervised.

I/O modules that are not configured are not supervised.

Each logical I/O module has an error flag that indicates signal or module failure. The error flag is also set when the physical I/O module of the correct type is not detected in the connected slot.

7.4.2 Setting the IED time

This procedure describes how to set the IED time from the local HMI.

1. Display the set time dialog.
 Navigate to Main menu/Settings/Time/System time
 Press the E button to enter the dialog.

2. Set the date and time.
 Use the Left and Right arrow buttons to move between the time and date values (year, month, day, hours, minutes and seconds). Use the Up and Down arrow buttons to change the value.

3. Confirm the setting.
 Press the E button to set the calendar and clock to the new values.

7.4.3 Checking the self supervision function

7.4.3.1 Determine the cause of an internal failure

This procedure describes how to navigate the menus in order to find the cause of an internal failure when indicated by the flashing green LED on the HMI module.

Procedure

1. Display the general diagnostics menu.
 Navigate the menus to:
 Diagnostics/IED status/General

2. Scroll the supervision values to identify the reason for the failure.
 Use the arrow buttons to scroll between values.
7.4.4 Self supervision HMI data

Table 18: Signals from the General menu in the diagnostics tree.

<table>
<thead>
<tr>
<th>Indicated result</th>
<th>Possible reason</th>
<th>Proposed action</th>
</tr>
</thead>
<tbody>
<tr>
<td>InternFail OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>InternFail Fail</td>
<td>A failure has occurred.</td>
<td>Check the rest of the indicated results to find the fault.</td>
</tr>
<tr>
<td>InternWarning OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>InternWarning Warning</td>
<td>A warning has been issued.</td>
<td>Check the rest of the indicated results to find the fault.</td>
</tr>
<tr>
<td>NUM-modFail OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>NUM-modFail Fail</td>
<td>The main processing module has failed.</td>
<td>Contact your ABB representative for service.</td>
</tr>
<tr>
<td>NUM-modWarning OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>NUM-modWarning Warning</td>
<td>There is a problem with:</td>
<td>Set the clock. If the problem persists, contact your ABB representative for service.</td>
</tr>
<tr>
<td></td>
<td>• the real time clock.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• the time synchronization.</td>
<td></td>
</tr>
<tr>
<td>ADC-module OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>ADC-module Fail</td>
<td>The AD conversion module has failed.</td>
<td>Contact your ABB representative for service.</td>
</tr>
<tr>
<td>CANP 9 BIM1 Fail</td>
<td>IO module has failed.</td>
<td>Check that the IO module has been configured and connected to the IOP1- block. If the problem persists, contact your ABB representative for service.</td>
</tr>
<tr>
<td>RealTimeClock OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>RealTimeClock Warning</td>
<td>The real time clock has been reset.</td>
<td>Set the clock.</td>
</tr>
<tr>
<td>TimeSync OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>TimeSync Warning</td>
<td>No time synchronization.</td>
<td>Check the synchronization source for problems. If the problem persists, contact your ABB representative for service.</td>
</tr>
</tbody>
</table>

7.5 REX060 start up sequence

When the injection unit REX060 is energized, the ABB logotype is shown followed by current REX060 revision status. When the start up sequence is completed, the main menu (normal display content) is shown. The duration of the start up sequence is a few seconds.
Section 8 Set up the PCM600 communication link per IED

About this chapter
This chapter describes the communication between the IED and PCM600.

8.1 Setting up communication between PCM600 and the IED

The communication between the IED and PCM600 is independent of the communication protocol used within the substation or to the NCC.

The communication media is always Ethernet and the used protocol is TCP/IP.

Each IED has an RJ-45 Ethernet interface connector on the front. The front Ethernet connector shall be used for communication with PCM600.

When an Ethernet-based station protocol is used, PCM600 communication can use the same Ethernet port and IP address.

To connect PCM600 to the IED, two basic variants must be considered.

• Direct point-to-point link between PCM600 and the IED front port. The front port can be seen as a service port.
• Indirect link via a station LAN or from remote via a network.

The physical connection and the IP address must be configured in both cases to enable communication.

The communication procedures are the same in both cases.

1. If needed, set the IP address for the IEDs.
2. Set up the PC or workstation for a direct link (point-to-point), or
3. Connect the PC or workstation to the LAN/WAN network.
4. Configure the IED IP addresses in the PCM600 project for each IED to match the IP addresses of the physical IEDs.

Setting up IP addresses
The IP address and the corresponding mask must be set via the LHMI for each available Ethernet interface in the IED. Each Ethernet interface has a default
factory IP address when the IED is delivered. This is not given when an additional Ethernet interface is installed or an interface is replaced.

- The default IP address for the IED front port is 10.1.150.3 and the corresponding subnet mask is 255.255.255.0, which can be set via the local HMI path **Main menu/Settings/General settings/Communication/Ethernet configuration/Front port**.
- The default IP address for the IED rear port is 192.168.1.10 and the corresponding subnet mask is 255.255.255.0, which can be set via the local HMI path **Main menu/Settings/General settings/Communication/Ethernet configuration/Rear OEM - port AB** and **Rear OEM - port CD**.

The front and rear port IP addresses cannot belong to the same subnet or communication will fail. It is recommended to change the IP address of the front port, if the front and rear port are set to the same subnet.

Setting up the PC or workstation for point-to-point access to IEDs front port

A special cable is needed to connect two physical Ethernet interfaces together without a hub, router, bridge or switch in between. The Tx and Rx signal wires must be crossed in the cable to connect Tx with Rx on the other side and vice versa. These cables are known as cross over cables. The maximum length should be about 2 m. The connector type is RJ-45.

![Diagram of point-to-point link between IED and PCM600 using a null-modem cable](IEC09000096-1-en.vsd)

Figure 60: Point-to-point link between IED and PCM600 using a null-modem cable

The following description is an example valid for standard PCs using Microsoft Windows operating system. The example is taken from a Laptop with one Ethernet interface.

Administrator rights are required to change the PC communication setup. Some PCs have the feature to automatically detect that Tx signals from the IED are received on the Tx pin on the PC. Thus, a straight (standard) Ethernet cable can be used.
1. Select **Network Connections** in the PC.

![Network Connections](image1)

Figure 61: Select: Network connections

2. Select **Properties** in the status window.

![Network Status Window](image2)

Figure 62: Right-click Local Area Connection and select Properties

3. Select the TCP/IP protocol from the list of configured components using this connection and click **Properties**.
Section 8
Set up the PCM600 communication link per IED

4. Select **Use the following IP address** and define **IP address** and **Subnet mask** if the front port is used and if the **IP address** is not set to be obtained automatically by the IED, see Figure 64. The IP address must be different from the IP address chosen for the IED.

5. Use the **ping** command to verify connectivity with the IED.
6. Close all open windows and start PCM600.
Setting up the PC to access the IED via a network

This task depends on the used LAN/WAN network.

The PC and IED must belong to the same subnetwork for this setup to work.
About this chapter

This chapter describes how to change IED settings, either through a PC or the local HMI, and download a configuration to the IED in order to make commissioning possible.

The chapter does not contain instructions on how to create a configuration or calculate settings. Please consult the application manual for further information about how to calculate settings.

9.1 Overview

The customer specific values for each setting parameter and a configuration file have to be available before the IED can be set and configured, if the IED is not delivered with a configuration.

Use the configuration tools in PCM600 to verify that the IED has the expected configuration. A new configuration is done with the application configuration tool. The binary outputs can be selected from a signal list where the signals are grouped under their function names. It is also possible to specify a user-defined name for each input and output signal.

Each function included in the IED has several setting parameters, which have to be set in order to make the IED behave as intended. A factory default value is provided for each parameter. A setting file can be prepared using the Parameter Setting tool, which is available in PCM600.

All settings can be

- Entered manually through the local HMI.
- Written from a PC, either locally or remotely using PCM600. Front or rear port communication has to be established before the settings can be written to the IED.

It takes a minimum of three minutes for the IED to save the new settings, during this time the DC supply must not be turned off.

The IED uses a FLASH disk for storing configuration data and process data like counters, object states, Local/Remote switch position etc. Since FLASH memory is used, measures have been taken in software to make sure that the FLASH disk is not worn out by too intensive storing of data. These mechanisms make it necessary
to think about a couple of issues in order to not loose configuration data, especially at commissioning time.

After the commissioning is complete, the configuration data is always stored to FLASH, so that is not an issue. But other things, like objects states and the Local/Remote switch position is stored in a slightly different way, where the save of data to FLASH is performed more and more seldom to eliminate the risk of wearing out the FLASH disk. In worst case, the time between saves of this kind of data is around one hour.

This means, that to be absolutely sure that all data have been saved to FLASH, it is necessary to leave the IED with auxiliary power connected after all the commissioning is done (including setting the Local/Remote switch to the desired position) for at least one hour after the last commissioning action performed on the IED.

After that time has elapsed, it will be safe to turn the IED off, no data will be lost.

9.2 Entering settings through the local HMI

Procedure

1. Set each function included in the IED in the local HMI.
2. Browse to the function to be set and enter the appropriate value.
3. Find the parameters for each function in the local HMI

The operator's manual is structured in a similar way to the local HMI and provides a detailed guide to the use of the local HMI including paths in the menu structure and brief explanations of most settings and measurements. See the technical reference manual for a complete list of setting parameters for each function. Some of the included functions may not be used. In this case the user can set the parameter \(\text{Operation} = \text{Off} \) to disable the function.

9.3 Configuring analog CT inputs

The analog input channels must be configured to get correct measurement results as well as correct protection functionality. Because all protection algorithms in the IED utilize the primary system quantities, it is extremely important to make sure that connected current transformer settings are done properly. These data are calculated by the system engineer and normally set by the commissioner from the local HMI or from PCM600.

The analog inputs on the transformer input module are dimensioned for either 1A or 5A. Each transformer input module has a unique combination of current and
voltage inputs. Make sure the input current rating is correct and that it matches the order documentation.

The primary CT data are entered via the HMI menu under **Main menu/Settings/General Settings/Analog modules/AnalogInputs**

The following parameter shall be set for every current transformer connected to the IED:

Table 19: **CT configuration**

<table>
<thead>
<tr>
<th>Parameter description</th>
<th>Parameter name</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated CT primary current in A</td>
<td>CT Prim Input</td>
<td>from -10000 to +10000</td>
<td>0</td>
</tr>
</tbody>
</table>

This parameter defines the primary rated current of the CT. For two set of CTs with ratio 1000/1 and 1000/5 this parameter is set to the same value of 1000 for both CT inputs. Negative values (that is -1000) can be used in order to reverse the direction of the CT current by software for the differential function. This might be necessary if two sets of CTs have different star point locations in relation to the protected busbar. It is recommended that this parameter is set to zero, for all unused CT inputs.

For main CTs with 2A rated secondary current, it is recommended to connect the secondary wiring to the 1A input and to set the rated primary current to one half times its true value. For example, a CT with a primary secondary current ratio of 1000/2A can be treated as a 500/1A CT.

Take the rated permissive overload values for the current inputs into consideration.

9.4 Writing settings and configuration from a PC

9.4.1 Writing an application configuration to the IED

When writing a configuration to the IED with the application configuration tool, the IED is automatically set in configuration mode. When the IED is set in configuration mode, all functions are blocked. The red LED on the IED flashes, and the green LED is lit while the IED is in the configuration mode.

When the configuration is written and completed, the IED is automatically set into normal mode. For further instructions please refer to the users manuals for PCM600.
Section 10 Calibrating injection based sensitive rotor earth fault protection

10.1 Commissioning process

The commissioning process utilizes the commissioning tool ICT. The instructions for the process cover installation, calibration, commissioning, monitoring and auditing for the sensitive rotor earth fault ROTIPHIZ function.

10.2 Commissioning tool ICT

The sensitive rotor earth fault protection function in IED require a number of settings. The settings $k1$, $k2$ and the reference impedance require measurements on the generator performed by the ICT (injection commissioning tool). The factors are derived in connection to the calibration measurements during commissioning. ICT is an integrated part of the PCM600 tool.

Furthermore, ICT also assists the commissioning engineer to perform a successful installation because of its structure and validating capabilities. During installation, commissioning and calibration, ICT performs various tests to verify that the installation is acceptable and the calibration successful. Besides carrying out the actual tests, ICT also provides the commissioning engineer with tips if needed during the commissioning.

When ICT is started, rotor earth fault protection is chosen.

There are five different parts of the ICT tool to be performed at commissioning and operation:

1. Installing
2. Calibrating
3. Commissioning
4. Monitoring
5. Auditing

Before proceeding make sure that all necessary connections are in place.

Installing

When the injection is started, check that the injected voltage and current are within the permissible limits. If not, adjust the settings in the injection unit REX060. The ICT tool will check automatically for slight differences between actual injected and
set injection frequency (for example, due to accuracy of the REX060 hardware). Set manually the actual frequency value measured by ICT in the IED via PST.

The high accuracy of this frequency is essential for proper operation of the protection under different operating conditions.

Calibrating

The calibration is based on three measurement steps:

1. The injection is made to the faultless generator and the measured complex impedance is stored.
2. A known resistance is connected between one rotor pole (see Figure 65) and earth. The injection is made to the generator and the measured complex impedance is stored.
3. The one rotor pole (see Figure 65) is directly short-circuited to the earth. The injection is made to the generator and the measured complex impedance is stored.

The sequence of the commissioning calibration measurements is shown in the figure below.

Figure 65: Different steps at calibration measurements

The sequence of the calibration session follows a scheme shown in the tool.

- Calibration sequence 1: The injection must be activated and the rotor must be left with no impedance connected. The ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a diagram. The user stops the sequence by acceptance of the measurement. The result is stored for later calculations.
- Calibration sequence 2: A known resistor is connected between the rotor winding and earth. The value of the resistance is the input to ICT. The ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a diagram. The user stops the sequence by acceptance of the measurement. The result is stored for later calculations.
- Calibration sequence 3: The generator rotor winding is now directly connected to earth. The ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a diagram. The
user stops the sequence by acceptance of the measurement. The result is stored for later calculations.

After the three measurements ICT calculates the complex factors $k1$ and $k2$. The reference impedance $RefR1 + jRefX1$ is also calculated. After this the values are downloaded to the parameter setting in PCM600. From PCM600 the settings are downloaded to IED.

During the three measurements described above a check is made that there are sufficient changes in the measured impedance in order to guarantee that there is no primary fault from the beginning or other problems due to the installation or calibration procedure.

Now the reference impedance is derived for one operational state. It might be necessary to make measurements to derive reference impedance for other operational cases. For information on this, see Commissioning below.

Commissioning

There is a possibility to have two different reference impedances. The need to change the reference impedance is due to different operating conditions of the machine.

In the commissioning part of ICT this can be done. For each operation state of interest a measurement is performed. If the reference impedance differs from the first one, calculated under the calibration session, the new reference impedance is stored by the command; *Submit to Parameter Setting*.

If more than one reference impedance are to be used, there must be a logic configured to detect such changes in the operation states that requires a change of reference impedance.

Monitoring

In the monitoring part the calibration can be checked by applying the known fault resistance and compare it with the actual function measurement. It is also possible to identify operational states where change of reference impedance is required.

Auditing

In the auditing part calibration and commissioning reports are made.

10.3 Launching injection commissioning tool (ICT)

1. To launch the Injection commissioning tool (ICT), right-click **REG670** in the PCM plant structure and select the **Injection commissioning**.

2. In the ICT toolbar, select the **Rotor Earth Fault** function.
3. Select the **Installing** tab if it was not already selected by default after the ICT was launched.

 The first thing that needs to be ensured prior to calibration is that the measured voltage and current signal on the injected frequency is present/found, and that the amplitude of these is within the permitted limits.

4. Make sure you have not attached any additional impedance in parallel with the stator circuit.

5. Activate the injection by turning the injection switch to on position on the injection unit REX060.

6. Select the **Start reading from IED** button from the ICT toolbar to start performing continuous measurements.

7. Verify that the bars/voltage levels for both the voltage and current on the injected frequency have acceptable level.

 The bars must be green and the function status field must also indicate OK.

8. Check that the actual injected frequency is close enough to the injection frequency set on the injection unit (REX060).

 If the voltage and/or current level(s)/frequencies are not reasonable, or the ICT indicates other warnings/abnormalities in the function status field, verify that the HW connections are proper (cables etc.), and selected gains and injection frequency on the REX060 is properly selected. Then repeat steps 3 to 6. Note that the **FreqInjected** setting in Parameter setting for the specific function must correspond with the chosen injection frequency on the REX060 HMI for that function.

9. When you are ready to perform calibration, select the **Submit and save in report** button. ICT will now forward a more accurate frequency to **Parameter setting**. In **Parameter setting**, write the newly acquired parameter to IED.

10.4 Performing calibration
1. From the Calibration tab, select the first sub tab, i.e. **Step1: Calibration step 1**.
2. Make sure you have not attached any additional impedance in parallel with the rotor.
3. From the ICT toolbar, select the **Start reading from IED** button.
ICT now performs continuous measurements and after the tenth measurement it starts to update the graph. Notice that the stability region indicator bar reduces in size.

 Figure 68: ICT calibration tab 1 including the stability region indicator bar

 It is very important that calibration steps 1 to 3 is performed in the proper order. If not, the calibration might fail.

4. When the bar has reached the stability region (turned green), select the **Submit** button.
 ICT automatically shifts to the second calibration sub tab, **Step2: Calibration step 2**.

5. Attach an 10kΩ known fault (10kΩ resistance to ground).
6. Type 10000 in the real part of the **Connected impedance** field and leave the imaginary part field empty.
 This informs the ICT that we have attached 10kΩ pure resistive impedance.
7. In the ICT toolbar, select the **Start reading from IED** button.
8. Once again, wait until the stability criteria is fulfilled, then select the **Submit** button.
 ICT automatically shifts to the third calibration tab, **Step3: Calibration step 3**.
9. Remove the known fault resistance attached earlier and apply a short circuit instead.
10. In the ICT toolbar, select the **Start reading from IED** button.
11. When the stability criteria are fulfilled, select the **Submit** button once again. ICT automatically shifts to the fourth calibration tab, **Step4: Save calibration factors**. Here the newly calculated k1, k2 and reference 1 are presented.
12. Check in the **Calibration result** field that all tests have been passed.
 12.1. If a failure is indicated during one or more check(s), follow the instructions/tips provided by the ICT in the **Calibration result** field.
 12.2. If these tips do not solve the issue, then contact ABB Support.

![ICT calibration tab 4](image)

Figure 69: ICT calibration tab 4

13. Before proceeding any further make sure that you have removed the short-circuit that was applied during calibration step 3.
14. To finish the calibration process, select the **Submit to Parameter setting** button.
15. In Parameter setting, write the newly acquired parameters to IED.
10.5 Acquiring references

To detect different operation conditions of the generator and select proper impedance reference requires logic outside the injection function. Therefore changing/switching impedance reference is not described here but in a separate application note 1MRG005030 Application example for injection based 100% Stator EF and Sensitive Rotor EF protection.

The injection commissioning tool (ICT) helps the commissioning engineer to acquire additional references for different conditions of the generator. The below description assumes that reference 1 was set during calibration and that a second reference must be set now.

1. Ensure that the generator is in a state where the reference must be set (for example normal operation).
2. To start, select the Commissioning tab.
4. To start reading the measurements, click the Start reading from IED button in the ICT toolbar.

ICT starts to read the selected viewed quantity from IED and plots values on the X/Y graph.

![Reference Impedance Selection dropdown menu](image)

Figure 70: Commissioning tab

Normally continuous readings are performed and the read absolute impedance is viewed in the plot.

By observing the standard deviation of the measured impedance, the commissioning engineer can decide if the impedance of the generator is stable/
settled, and also if the average impedance is based on enough values so that statistically the signal noise is “filtered out”. This results in a fairly accurate impedance measurement which can be used as an alternative reference.

5. Click the **Select** button when the standard deviation has converged so that its magnitude is within the noise level of the measured absolute impedance. In the second commissioning sub tab, Step2: Save Reference Impedance, the measured real and imaginary reference 2 impedance is presented.

6. Select the **Submit to Parameter setting** button.
 This forwards the newly acquired reference to Parameter setting.

7. Write the newly acquired real and imaginary parts of Reference 2 to IED.

10.6 Verifying calibration

After the calibration is performed, it is appropriate to verify that known faults are measured as expected and that the function is indicating trips and alarms when it should, in other words that the calibration was successful. For this purpose the monitoring feature can be used.

1. In the ICT toolbar, select the fourth tab, **Monitoring**.

![Monitoring tab](image)

Figure 71: Monitoring tab

2. Set the graph update period to one second by typing **1** into the **Graph update period** field.

3. To start continuously plotting values on the graph with one second interval, select **Start readings from IED**.
By default the measured absolute impedance is plotted, however there are several items that can be viewed when monitoring. To see these, select the available quantities under the **Viewed quantity** drop-down menu under the **Monitoring** tab.

4. Observe the fault conductance while applying known faults.
 Both the calibration factors and the reference that is used can be verified this way. In some cases though, it is desired to be able to measure/view other quantities.

5. Select **Fault conductance** in the **Viewed quantity** drop-down menu.
 The fault conductance is equal to 1/fault resistance, and is more suitable to view when no faults or very small faults are applied/measured.
 Due to the fact that no fault theoretically equals infinite fault resistance and viewing this only plots unreliable values, it is better to view the fault conductance, which is zero in this case.
 As no fault is applied, the measured fault conductance must be close to zero.
 Confirm this by viewing the graph.
 It may be necessary to zoom in or out to properly view the measurements. For instructions on this, see **Editing features in graph**.

6. Apply for example 10kΩ fault resistance.
 6.1. Make sure that it is correctly measured.
 6.2. Try to change the **Viewed quantity** to **Fault resistance** as 10kΩ is relatively small.
 You should be able to measure approximately 10kΩ here. If you choose to view fault conductance, the measurement corresponds to approximately 1×10^{-4} Mho.

7. Apply another known fault, say 1kΩ and verify that it is measured correctly.

8. When you are completely sure that the function measures correctly, stop the measurements and remove any applied faults.
 Previously it was verified that the function measures correctly by applying known faults and observing the graph during monitoring. Besides measuring the fault size a trip indication is required when a large fault is measured to prevent that a damage to the generator occurs. To allow the specific function to issue a trip indication, it must first be enabled:
 8.1. Select the **Enable Function Tripping** button in the ICT toolbar.
 8.2. Choose **Yes** in the pop-up message.
 ICT now writes this to IED.
 8.3. By default the trip level is set to 1kΩ. In other words, if the fault resistance is lower, then the function issue trips.

9. Verify the measurements by applying various faults.
 Trip indication shall be visible in the ICT toolbar.

10. Verify that TRIP and ALARM signals are connected to tripping/alarming/signaling/communication in accordance with the scheme design.

 ! It is very important that the Function Tripping is Enabled under the following situations:
10.7 Auditing

During installations, calibrations and commissions the ICT generates reports for each of the steps and collects them under the Auditing tab. See the procedures below on how to view and delete reports as well as generate logs from reports.

1. To view the reports, go to the Auditing tab.

2. Open and view each report.

3. View reports in one of the following ways:
 - In the short cut menu, right click and select View report.
 - Click the View report button in the upper right corner of the auditing screen.
 - Double click a report record.

4. Delete reports in one of the following ways:
 - In the short cut menu, right click and select Delete report.
 - Click the Delete report button in the upper right corner of the auditing screen.
 - Select a record with the mouse cursor then press the Delete key on the keyboard.

5. Generate logs in one of the following ways:
• In the short cut menu, right click and select **Generate log**.
• Click the **Generate log** button.

Besides generating a report you can also generate a log file with the same information as for the report. Open and see the details of the file in Notepad or MS Excel.
After a successful generation of the log, the system confirms with a message along with the path of the log file.

10.8 **Editing features in graph**

You can do the following operations on the graph during calibration, commissioning and monitoring:

• Zoom in
• Zoom out
• Cancel zoom
• Enable X-zooming
• Enable Y-zooming

1. **Zoom in one of the following ways:**
 • Right click a graph and select **Zoom in** or **Zoom out** in the shortcut menu.

 ![Zooming via the shortcut menu](image)

 Figure 73: **Zooming via the shortcut menu**

 • Use the mouse to zoom in and select a part of the graph area.
2. Cancel a zoom in the following ways:
 • Right click a graph and select **Cancel Zoom** in the shortcut menu. The graph area is squeezed to the original size.
 • Press **Esc**.

3. Enable X and Y zooming
 • To enable and disable X zooming, right click the graph and select or deselect **Enable X zooming** in the shortcut menu.
 • To enable and disable Y zooming, right click the graph and select or deselect **Enable Y zooming** in the shortcut menu.

10.9 Logging measurements to file

In addition to viewing online plotted data under the Monitoring tab, it is also possible to log quantities to a file (tabbed text file) that can be viewed in the graph. Besides this voltage levels measured by the function and also error codes are logged. This file can then be imported to other tools for deeper analysis when needed. The logger feature is available on the lower right corner of the Monitoring tab. Note that the logger is independent of graph plotting.

1. Select the **Browse** button.
 See figure [Monitoring tab](#).
2. Navigate to a desired folder.
3. Type a suitable file name for the .txt file and select **Save**.
4. To start logging to this file, select the **Start** button.
 ICT continuously logs data to this file with logging interval set under graph update period. Notice that there is a field named Log period and its default
value is 1 hour. The period can be adjusted before the logging is started, if needed.
5. The logging can be stopped by selecting the Stop button.
6. You can open the file in notepad or MS Excel.
Section 11 Calibrating injection based 100% stator earth fault protection

11.1 Commissioning process

The commissioning process utilizes the commissioning tool ICT. The instructions for the process cover installation, calibration, commissioning, monitoring and auditing for the 100% stator earth fault STTIPHIZ function.

11.2 Commissioning tool ICT

The 100% stator earth fault protection STTIPHIZ functions in IED require a number of settings. The settings $k1$, $k2$ and the reference impedance require measurements on the generator performed by the ICT (injection commissioning tool). The factors are derived in connection to the calibration measurements during commissioning. The ICT tool is an integrated part of the PCM600 tool.

Furthermore, ICT also assists the commissioning engineer to perform a successful installation because of its structure and validating capabilities. During installation, commissioning and calibration, ICT performs various tests to verify that the installation is acceptable and the calibration successful. Besides carrying out the actual tests, ICT also provides the commissioning engineer with tips if such are needed during the commissioning.

When ICT is started, 100% stator earth fault protection is chosen.

There are five different parts of the ICT tool to be performed during commissioning and operation:

1. Installing
2. Calibrating
3. Commissioning
4. Monitoring
5. Auditing

Before proceeding make sure that all necessary connections are in place.

Installing

When the injection is started, check that the injected voltage and current are within the permissible limits. If not, adjust the settings of the injection unit REX060. The ICT tool will check automatically for slight differences between actual injected and
set injection frequency (e.g. due to accuracy of the REX060 hardware). Set manually the actual frequency value measured by ICT in the IED via PST. Check that the selected injection frequency setting on REX060 is equal to the \textit{Freq Injected} setting in parameter setting. Also verify that the measured injection frequency is reasonable and continue by submitting the frequency value to parameter setting, then finish by writing it to IED.

The high accuracy of this frequency is essential for proper operation of the protection under different operating conditions.

Calibrating

The calibration is based on three measurement steps.

The sequence of the calibration measurements is shown in the figure below. The connection of the fault resistance and short circuit is here shown for the case with injection in the generator neutral point via the neutral point VT. The same principle is valid for any other principles of injection; with LV neutral point resistor connected via DT or injection via open delta connected VT group on the generator terminal, etc.

![Diagram of calibration steps](image)

Figure 75: Different steps at calibration measurements

For other injection point alternatives the connection of the test resistance (step 2) and short circuit (step 3) are made to the same points as shown in the figure above.

The sequence of the calibration session follows a scheme shown in the tool.

- Calibration sequence 1: The injection must be activated and the stator neutral point must be left with no additional impedance connected in parallel with the neutral point resistor. ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a
diagram. The user stops the sequence by acceptance of the measurement. The result is stored for later calculations.

• Calibration sequence 2: A known resistor is connected to the generator neutral point in parallel with the stator neutral point resistor. The value of the resistance is input to ICT. ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a diagram. The user stops the sequence by acceptance of the measurement. The result is stored for later calculations.

• Calibration sequence 3: The generator neutral point is now directly connected to the earth, that is, the neutral point resistor is short-circuited. ICT now makes consecutive measurements until the statistical error reaches an acceptable value. This is graphically shown in a diagram. The user stops the sequence by acceptance of the measurement. The result is stored for later calculations.

After the three measurements, ICT calculates the complex factors \(k_1 \) and \(k_2 \). The reference impedance \(\text{RefR}_1 + \text{jRefX}_1 \) is also calculated. After this the values are downloaded to the parameter setting part of the PCM600 tool. From PCM600 the setting can be downloaded to IED.

During the three measurements described above a check is made that there are sufficient changes in the measured impedance in order to guarantee that there is no primary fault from the beginning or other problems due to the installation or calibration procedure.

Now the reference impedance is derived for one operational state. It might be necessary to make measurements to derive reference impedance for other operational cases. For information on this, see Commissioning below.

Commissioning

There is a possibility to have up to five different reference impedances. The need to change the reference impedance is that there will be different operating conditions for the generator:

• Generator stand still
• Generator running up, not synchronized to the network (circuit breaker open)
• Generator normal operation (circuit breaker closed)

It might therefore be necessary to find reference impedances for different operation states. In the commissioning part of ICT this can be done. For each operation state of interest a measurement calibration as above is performed. If the reference impedance differs from the first one, calculated under the calibration session, the new reference impedance is stored by the command; *Submit to Parameter setting*. It is possible to store up to five different reference impedances to be used at different operation states of the generator.

ICT also performs verification between the newly acquired and existing reference impedance(s) and warn the user if the resulting estimated fault difference could cause alarm or trip when one reference is shifted from another during operation.
If more than one reference impedance is to be used there must be a logic configured to detect such changes in the operation states when the reference impedance must be changed, and when a change in the function block must be initiated. The following automatic choices can for example be made:

1. Generator voltage < set value and generator circuit breaker open: Reference impedance 1
2. Generator voltage > set value and generator circuit breaker open: Reference impedance 2
3. Generator voltage > set value and generator circuit breaker closed: Reference impedance 3

For more information see separate application note IMRG005030 Application example for injection based 100% Stator EF and Sensitive Rotor EF protection.

Monitoring

In the monitoring part the calibration can be checked by applying the known fault resistance and compare it with the actual function measurement. It is also possible to identify operational states where change of reference impedance is required.

Auditing

In the auditing part calibration and commissioning reports are made.

11.3 Launching injection commissioning tool (ICT)

1. To launch the Injection commissioning tool (ICT), right-click REG670 in the PCM plant structure and select the Injection commissioning.
2. In the ICT toolbar, select the 100% Stator Earth Fault function.

![Figure 76: ICT toolbar](image)

3. Select the Installing tab if it was not already selected by default after the ICT was launched.
 The first thing that needs to be ensured prior to calibration is that the measured voltage and current signal on the injected frequency is present/ found, and that the amplitude of these is within the permitted limits.
4. Make sure you have not attached any additional impedance in parallel with the stator circuit.
5. Activate the injection by turning the injection switch to on position on the injection unit REX060.

6. Select the **Start reading from IED** button from the ICT toolbar to start performing continuous measurements.

7. Verify that the bars/voltage levels for both the voltage and current on the injected frequency have acceptable level.
 The bars must be green and the function status field must also indicate OK.

8. Check that the actual injected frequency is close enough to the injection frequency set on the injection unit (REX060).
 If the voltage and/or current level(s)/frequencies are not reasonable, or the ICT indicates other warnings/abnormalities in the function status field, verify that the HW connections are proper (cables etc.), and selected gains and injection frequency on the REX060 is properly selected. Then repeat steps 3 to 6. Note that the `FreqInjected` setting in Parameter setting for the specific function must correspond with the chosen injection frequency on the REX060 HMI for that function.

9. When you are ready to perform calibration, select the **Submit and save in report** button. ICT will now forward a more accurate frequency to Parameter setting. In Parameter setting, write the newly acquired parameter to IED.

11.4 Performing calibration

1. From the **Calibration** tab, select the first sub tab, i.e. **Step1: Calibration step 1**.

2. Make sure you have not attached any additional impedance in parallel with the stator.

3. From the ICT toolbar, select the **Start reading from IED** button.
 ICT now performs continuous measurements and after the tenth measurement it starts to update the graph. Notice that the stability region indicator bar reduces in size.
It is very important that calibration steps 1 to 3 is performed in the proper order. If not, the calibration might fail.

4. When the bar has reached the stability region (turned green), select the Submit button. ICT automatically shifts to the second calibration sub tab, **Step2: Calibration step 2**.

5. Attach an 10kΩ known fault (10kΩ resistance to ground).
6. Type 10000 in the real part of the Connected impedance field and leave the imaginary part field empty. This informs the ICT that we have attached 10kΩ pure resistive impedance.
7. In the ICT toolbar, select the **Start reading from IED** button.
8. Once again, wait until the stability criteria is fulfilled, then select the **Submit** button. ICT automatically shifts to the third calibration tab, **Step3: Calibration step 3**.
9. Remove the known fault resistance attached earlier and apply a short circuit instead.
10. In the ICT toolbar, select the **Start reading from IED** button.
11. When the stability criteria are fulfilled, select the **Submit** button once again. ICT automatically shifts to the fourth calibration tab, **Step4: Save calibration factors**. Here the newly calculated k1, k2 and reference 1 are presented.
12. Check in the **Calibration result** field that all tests have been passed.

12.1. If a failure is indicated during one or more check(s), follow the instructions/tips provided by the ICT in the **Calibration result** field.
12.2. If these tips do not solve the issue, then contact ABB Support.

Figure 78: ICT calibration tab 1 including the stability region indicator bar
13. Before proceeding any further make sure that you have removed the short-circuit that was applied during calibration step 3.

14. To finish the calibration process, select the **Submit to Parameter setting** button.

15. In Parameter setting, write the newly acquired parameters to IED.

11.5 Acquiring references

To detect different operation conditions of the generator and select proper impedance reference requires logic outside the injection function. Therefore changing/switching impedance reference is not described here but in a separate application note 1MRG005030 Application example for injection based 100% Stator EF and Sensitive Rotor EF protection.

The injection commissioning tool (ICT) helps the commissioning engineer to acquire additional references for different conditions of the generator. The below description assumes that reference 1 was set during calibration and that a second reference must be set now.
1. Ensure that the generator is in a state where the reference must be set (for example normal operation).
2. To start, select the **Commissioning** tab.
3. In the **Reference impedance selection** drop-down menu, select **Reference 2**.
4. To start reading the measurements, click the **Start reading from IED** button in the ICT toolbar.
 ICT starts to read the selected viewed quantity from IED and plots values on the X/Y graph.

5. Click the **Select** button when the standard deviation has converged so that its magnitude is within the noise level of the measured absolute impedance.
 In the second commissioning sub tab, Step2 : **Save Reference Impedance**, the measured real and imaginary reference 2 impedance is presented.
6. Select the **Submit to Parameter setting** button.
 This forwards the newly acquired reference to Parameter setting.
7. Write the newly acquired real and imaginary parts of Reference 2 to IED.

Figure 80: Commissioning tab

Normally continuous readings are performed and the read absolute impedance is viewed in the plot.
By observing the standard deviation of the measured impedance, the commissioning engineer can decide if the impedance of the generator is stable/settled, and also if the average impedance is based on enough values so that statistically the signal noise is “filtered out”. This results in a fairly accurate impedance measurement which can be used as an alternative reference.
11.6 Verifying calibration

After the calibration is performed, it is appropriate to verify that known faults are measured as expected and that the function is indicating trips and alarms when it should, in other words that the calibration was successful. For this purpose the monitoring feature can be used.

1. In the ICT toolbar, select the fourth tab, Monitoring.

2. Set the graph update period to one second by typing 1 into the Graph update period field.

3. To start continuously plotting values on the graph with one second interval, select Start readings from IED.

 By default the measured absolute impedance is plotted, however there are several items that can be viewed when monitoring. To see these, select the available quantities under the Viewed quantity drop-down menu under the Monitoring tab.

4. Observe the fault conductance while applying known faults.

 Both the calibration factors and the reference that is used can be verified this way. In some cases though, it is desired to be able to measure/view other quantities.

5. Select Fault conductance in the Viewed quantity drop-down menu.

 The fault conductance is equal to 1/fault resistance, and is more suitable to view when no faults or very small faults are applied/measured.
Due to the fact that no fault theoretically equals infinite fault resistance and viewing this only plots unreliable values, it is better to view the fault conductance, which is zero in this case. As no fault is applied, the measured fault conductance must be close to zero. Confirm this by viewing the graph. It may be necessary to zoom in or out to properly view the measurements. For instructions on this, see Editing features in graph.

6. Apply for example 10kΩ fault resistance.
 6.1. Make sure that it is correctly measured.
 6.2. Try to change the Viewed quantity to Fault resistance as 10kΩ is relatively small. You should be able to measure approximately 10kΩ here. If you choose to view fault conductance, the measurement corresponds to approximately 1×10^{-4} Mho.

7. Apply another known fault, say 1kΩ and verify that it is measured correctly.
8. When you are completely sure that the function measures correctly, stop the measurements and remove any applied faults. Previously it was verified that the function measures correctly by applying known faults and observing the graph during monitoring. Besides measuring the fault size a trip indication is required when a large fault is measured to prevent that a damage to the generator occurs. To allow the specific function to issue a trip indication, it must first be enabled:
 8.1. Select the Enable Function Tripping button in the ICT toolbar.
 8.2. Choose Yes in the pop-up message. ICT now writes this to IED.
 8.3. By default the trip level is set to 1kΩ. In other words, if the fault resistance is lower, then the function issue trips.

9. Verify the measurements by applying various faults. Trip indication shall be visible in the ICT toolbar.
10. Verify that TRIP and ALARM signals are connected to tripping/alarming/signaling/communication in accordance with the scheme design.

It is very important that the Function Tripping is Enabled under the following situations:

- After completion of the calibration step
- Before leaving the ICT Tool

11.7 Auditing

During installations, calibrations and commissions the ICT generates reports for each of the steps and collects them under the Auditing tab. See the procedures below on how to view and delete reports as well as generate logs from reports.
1. To view the reports, go to the Auditing tab.

2. Open and view each report.

3. View reports in one of the following ways:
 - In the short cut menu, right click and select View report.
 - Click the View report button in the upper right corner of the auditing screen.
 - Double click a report record.

4. Delete reports in one of the following ways:
 - In the short cut menu, right click and select Delete report.
 - Click the Delete report button in the upper right corner of the auditing screen.
 - Select a record with the mouse cursor then press the Delete key on the keyboard.

5. Generate logs in one of the following ways:
 - In the short cut menu, right click and select Generate log.
 - Click the Generate log button.

Besides generating a report you can also generate a log file with the same information as for the report. Open and see the details of the file in Notepad or MS Excel.

After a successful generation of the log, the system confirms with a message along with the path of the log file.
11.8 Editing features in graph

You can do the following operations on the graph during calibration, commissioning and monitoring:

- Zoom in
- Zoom out
- Cancel zoom
- Enable X-zooming
- Enable Y-zooming

1. Zoom in one of the following ways:
 - Right click a graph and select **Zoom in** or **Zoom out** in the shortcut menu.
 - Use the mouse to zoom in and select a part of the graph area.
 - Press **PgUp** key on the keyboard to zoom in and **PgDn** to zoom out.

 Figure 83: Zooming via the shortcut menu

 Figure 84: Zooming via area selection of a part of the graph
2. Cancel a zoom in the following ways:
 • Right click a graph and select **Cancel Zoom** in the shortcut menu. The graph area is squeezed to the original size.
 • Press **Esc**.

3. Enable X and Y zooming
 • To enable and disable X zooming, right click the graph and select or deselect **Enable X zooming** in the shortcut menu.
 • To enable and disable Y zooming, right click the graph and select or deselect **Enable Y zooming** in the shortcut menu.

11.9 Logging measurements to file

In addition to viewing online plotted data under the Monitoring tab, it is also possible to log quantities to a file (tabbed text file) that can be viewed in the graph. Besides this voltage levels measured by the function and also error codes are logged. This file can then be imported to other tools for deeper analysis when needed. The logger feature is available on the lower right corner of the Monitoring tab. Note that the logger is independent of graph plotting.

1. Select the **Browse** button. See figure Monitoring tab.
2. Navigate to a desired folder.
3. Type a suitable file name for the .txt file and select **Save**.
4. To start logging to this file, select the **Start** button. ICT continuously logs data to this file with logging interval set under graph update period. Notice that there is a field named Log period and its default value is 1 hour. The period can be adjusted before the logging is started, if needed.
5. The logging can be stopped by selecting the **Stop** button.
6. You can open the file in notepad or MS Excel.
Section 12 Establishing connection and verifying the SPA/IEC- communication

About this chapter

This chapter contains instructions on how to establish connection and verify that the SPA/IEC-communication operates as intended, when the IED is connected to a monitoring or control system via the rear SPA/IEC port.

12.1 Entering settings

If the IED is connected to a monitoring or control system via the rear SPA/IEC port, the SPA/IEC port has to be set either for SPA or IEC use.

12.1.1 Entering SPA settings

The SPA/IEC port is located on the rear side of the IED. Two types of interfaces can be used:

- for plastic fibres with connector type HFBR
- for glass fibres with connectors type ST

When using the SPA protocol, the rear SPA/IEC port must be set for SPA use.

Procedure

1. Set the operation of the rear optical SPA/IEC port to “SPA”.
 The operation of the rear SPA port can be found on the local HMI under Main menu/Settings/General settings/Communication/SLM configuration/Rear optical SPA-IEC-DNP port/Protocol selection
 When the setting is entered the IED restarts automatically. After the restart the SPA/IEC port operates as a SPA port.

2. Set the slave number and baud rate for the rear SPA port
 The slave number and baud rate can be found on the local HMI under Main menu/Settings/General settings/Communication/SLM configuration/Rear optical SPA-IEC-DNP port/SPA
 Set the same slave number and baud rate as set in the SMS system for the IED.
12.1.2 **Entering IEC settings**

When using the IEC protocol, the rear SPA/IEC port must be set for IEC use.

Two types of interfaces can be used:

- for plastic fibres with connector type HFBR
- for glass fibres with connectors type ST

Procedure

1. Set the operation of the rear SPA/IEC port to “IEC”. The operation of the rear SPA/IEC port can be found on the local HMI under **Main menu/Settings/General settings/Communication/SLM configuration/Rear optical SPA-IEC-DNP port/Protocol selection**. When the setting is entered the IED restarts automatically. After the restart the selected IEC port operates as an IEC port.

2. Set the slave number and baud rate for the rear IEC port. The slave number and baud rate can be found on the local HMI under **Main menu/Settings/General settings/Communication/SLM configuration/Rear optical SPA-IEC-DNP port/IEC60870–5–103**. Set the same slave number and baud rate as set in the IEC master system for the IED.

12.2 **Verifying the communication**

To verify that the rear communication with the SMS/SCS system is working, there are some different methods. Choose one of the following.

12.2.1 **Verifying SPA communication**

Procedure

1. Use a SPA-emulator and send “RF” to the IED. The answer from the IED should be “”.

2. Generate one binary event by activating a function, which is configured to an event block where the used input is set to generate events on SPA. The configuration must be made with the PCM600 software. Verify that the event is presented in the SMS/SCS system.

During the following tests of the different functions in the IED, verify that the events and indications in the SMS/SCS system are as expected.
12.2.2 Verifying IEC communication

To verify that the IEC communication with the IEC master system is working, there are some different methods. Choose one of the following.

Procedure

1. Check that the master system time-out for response from the IED, for example after a setting change, is > 40 seconds.
2. Use a protocol analyzer and record the communication between the IED and the IEC master. Check in the protocol analyzer’s log that the IED answers the master messages.
3. Generate one binary event by activating a function that is configured to an event block where the used input is set to generate events on IEC. The configuration must be made with the PCM600 software. Verify that the event is presented in the IEC master system.

During the following tests of the different functions in the IED, verify that the events and indications in the IEC master system are as expected.

12.3 Fibre optic loop

The SPA communication is mainly used for SMS. It can include different numerical IEDs with remote communication possibilities. The fibre optic loop can contain < 20-30 IEDs depending on requirements on response time. Connection to a personal computer (PC) can be made directly (if the PC is located in the substation) or by telephone modem through a telephone network with ITU (CCITT) characteristics.

<table>
<thead>
<tr>
<th>Table 20: Max distances between IEDs/nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>glass</td>
</tr>
<tr>
<td>plastic</td>
</tr>
</tbody>
</table>
Remote monitoring system with PCM600

Optical to electrical converter, e.g. SPA-ZC 22 or Fiberdata modem

Local monitoring system with PCM600

Figure 85: Example of SPA communication structure for a station monitoring system

Where:

1 A separate minute pulse synchronization from station clock to obtain ± 1 ms accuracy for time tagging within the substation might be required.

12.4 Optical budget calculation for serial communication with SPA/IEC

Table 21: Example

<table>
<thead>
<tr>
<th></th>
<th>Distance 1 km Glass</th>
<th>Distance 25 m Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attenuation</td>
<td>- 11 dB</td>
<td>- 7 dB</td>
</tr>
<tr>
<td>4 dB/km multi mode: 820 nm - 62.5/125 um</td>
<td>4 dB</td>
<td>-</td>
</tr>
<tr>
<td>0.16 dB/m plastic: 620 nm - 1 mm</td>
<td>-</td>
<td>4 dB</td>
</tr>
<tr>
<td>Margins for installation, aging, and so on</td>
<td>5 dB</td>
<td>1 dB</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (0.5 dB/contact)</td>
<td>1 dB</td>
<td>-</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (1 dB/contact)</td>
<td>-</td>
<td>2 dB</td>
</tr>
<tr>
<td>Margin for 2 repair splices (0.5 dB/splice)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maximum total attenuation</td>
<td>11 dB</td>
<td>7 dB</td>
</tr>
</tbody>
</table>
Section 13 Establishing connection and verifying the LON communication

About this chapter
This chapter explains how to set up LON communication and how to verify that LON communication is up and running.

13.1 Communication via the rear ports

13.1.1 LON communication

LON communication is normally used in substation automation systems. Optical fiber is used within the substation as the physical communication link.

The test can only be carried out when the whole communication system is installed. Thus, the test is a system test and is not dealt with here.

The communication protocol Local Optical Network (LON) is available for 670 IED series as an option.
Figure 86: Example of LON communication structure for a substation automation system

An optical network can be used within the substation automation system. This enables communication with the IEDs in the 670 series through the LON bus from the operator’s workplace, from the control center and also from other IEDs via bay-to-bay horizontal communication.

The fibre optic LON bus is implemented using either glass core or plastic core fibre optic cables.

<table>
<thead>
<tr>
<th></th>
<th>Glass fibre</th>
<th>Plastic fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable connector</td>
<td>ST-connector</td>
<td>snap-in connector</td>
</tr>
<tr>
<td>Cable diameter</td>
<td>62.5/125 m</td>
<td>1 mm</td>
</tr>
<tr>
<td>Max. cable length</td>
<td>1000 m</td>
<td>10 m</td>
</tr>
<tr>
<td>Wavelength</td>
<td>820-900 nm</td>
<td>660 nm</td>
</tr>
<tr>
<td>Transmitted power</td>
<td>-13 dBm (HFBR-1414)</td>
<td>-13 dBm (HFBR-1521)</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-24 dBm (HFBR-2412)</td>
<td>-20 dBm (HFBR-2521)</td>
</tr>
</tbody>
</table>

13.2.1 The LON Protocol

The LON protocol is specified in the LonTalkProtocol Specification Version 3 from Echelon Corporation. This protocol is designed for communication in control networks and is a peer-to-peer protocol where all the devices connected to the network can communicate with each other directly. For more information of the bay-to-bay communication, refer to the section Multiple command function.
Hardware and software modules

The hardware needed for applying LON communication depends on the application, but one very central unit needed is the LON Star Coupler and optical fibres connecting the star coupler to the IEDs. To interface the IEDs from MicroSCADA, the application library LIB670 is required.

The HV Control 670 software module is included in the LIB520 high-voltage process package, which is a part of the Application Software Library within MicroSCADA applications.

The HV Control 670 software module is used for control functions in IEDs in the 670 series. This module contains the process picture, dialogues and a tool to generate the process database for the control application in MicroSCADA.

Use the LON Network Tool (LNT) to set the LON communication. This is a software tool applied as one node on the LON bus. To communicate via LON, the IEDs need to know:

- The node addresses of the other connected IEDs.
- The network variable selectors to be used.

This is organized by LNT.

The node address is transferred to LNT via the local HMI by setting the parameter ServicePinMsg = Yes. The node address is sent to LNT via the LON bus, or LNT can scan the network for new nodes.

The communication speed of the LON bus is set to the default of 1.25 Mbit/s. This can be changed by LNT.

The setting parameters for the LON communication are set via the local HMI. Refer to the technical reference manual for setting parameters specifications.

The path to LON settings in the local HMI is Main menu/Settings/General settings/Communication/SLM configuration/Rear optical LON port.

If the LON communication from the IED stops, caused by setting of illegal communication parameters (outside the setting range) or by another disturbance, it is possible to reset the LON port of the IED.

By setting the parameter LONDefault = Yes, the LON communication is reset in the IED, and the addressing procedure can start from the beginning again.

Path in the local HMI under Main menu/Settings/General settings/Communication/SLM configuration/Rear optical LON port.

These parameters can only be set with the LON Network Tool (LNT).
Table 23: Setting parameters for the LON communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
<th>Unit</th>
<th>Parameter description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DomainID</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>Domain identification number</td>
</tr>
<tr>
<td>SubnetID*</td>
<td>0 - 255 Step: 1</td>
<td>0</td>
<td>-</td>
<td>Subnet identification number</td>
</tr>
<tr>
<td>NodeID*</td>
<td>0 - 127 Step: 1</td>
<td>0</td>
<td>-</td>
<td>Node identification number</td>
</tr>
</tbody>
</table>

*Can be viewed in the local HMI

Path in the local HMI under **Main menu/Settings/General settings/ Communication/SLM configuration/Rear optical LON port**

These parameters can only be set with the LON Network Tool (LNT).

Table 24: LON node information parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
<th>Unit</th>
<th>Parameter description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuronID*</td>
<td>0 - 12</td>
<td>Not loaded</td>
<td>-</td>
<td>Neuron hardware identification number in hexadecimal code</td>
</tr>
<tr>
<td>Location</td>
<td>0 - 6</td>
<td>No value</td>
<td>-</td>
<td>Location of the node</td>
</tr>
</tbody>
</table>

*Can be viewed in the local HMI

Path in the local HMI under **Main menu/Settings/General settings/ Communication/SLM configuration/Rear optical LON port**

Table 25: ADE Non group settings (basic)

<table>
<thead>
<tr>
<th>Name</th>
<th>Values (Range)</th>
<th>Unit</th>
<th>Step</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Off On</td>
<td>-</td>
<td>-</td>
<td>Off</td>
<td>Operation</td>
</tr>
<tr>
<td>TimerClass</td>
<td>Slow Normal Fast</td>
<td>-</td>
<td>-</td>
<td>Slow</td>
<td>Timer class</td>
</tr>
</tbody>
</table>

Path in the local HMI under **Main menu/Settings/General settings/ Communication/SLM configuration/Rear optical LON port**

Table 26: LON commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServicePinMsg</td>
<td>Command with confirmation. Transfers the node address to the LON Network Tool.</td>
</tr>
</tbody>
</table>
13.2 Optical budget calculation for serial communication with LON

Table 27: Example

<table>
<thead>
<tr>
<th>Distance</th>
<th>Glass</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 km</td>
<td>-11 dB</td>
<td>-7 dB</td>
</tr>
<tr>
<td>10 m</td>
<td>4 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>4 dB/km multi mode: 820 nm - 62.5/125 um</td>
<td>4 dB</td>
<td>-</td>
</tr>
<tr>
<td>0.3 dB/m plastic: 620 nm - 1mm</td>
<td>-</td>
<td>3 dB</td>
</tr>
<tr>
<td>Margins for installation, aging, and so on</td>
<td>5 dB</td>
<td>2 dB</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (0.75 dB/contact)</td>
<td>1.5 dB</td>
<td>-</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (1dB/contact)</td>
<td>-</td>
<td>2 dB</td>
</tr>
<tr>
<td>Margin for repair splices (0.5 dB/splice)</td>
<td>0.5 dB</td>
<td>-</td>
</tr>
<tr>
<td>Maximum total attenuation</td>
<td>11 dB</td>
<td>7 dB</td>
</tr>
</tbody>
</table>
Section 14 Establishing connection and verifying the IEC 61850 communication

About this chapter

This chapter contains instructions on how to establish connection and verify that the IEC 61850 communication operates as intended, when the IED is connected to an Ethernet network via the optical ports of the OEM.

14.1 Overview

The rear OEM ports are used for substation bus (IEC 61850-8-1) communication. For IEC 61850-8-1 redundant communication, both rear OEM ports are utilized. In this case IEC 61850-9-2LE communication can not be used.

IEC 61850-9-2LE process bus communication is not supported in the IED.

14.2 Setting the station communication

To enable IEC 61850 communication the corresponding OEM ports must be activated. The rear OEM port AB and CD is used for IEC 61850-8-1 communication. For IEC 61850-8-1 redundant communication, both OEM port AB and CD are used exclusively.

To enable IEC 61850 station communication:

1. Enable IEC 61850-8-1 (substation bus) communication for port AB.

 1.1. Set values for the rear port AB.
 Navigate to: Main menu/Settings/general settings/Communication/Ethernet configuration/Rear OEM - port AB
 Set values for Mode, IPAddress and IPMask. Mode must be set to Normal.
 Check that the correct IP address is assigned to the port.

1.2. Enable IEC 61850-8-1 communication.
 Navigate to: Main menu/Settings/General settings/Communication/Station communication/IEC 61850-8-1
Set *Operation* to *On* and *GOOSE* to the port used (for example *OEM311_AB*).

2. Enable redundant IEC 61850-8-1 communication for port AB and CD
 2.1. Enable redundant communication.
 Navigate to: **Main menu/Settings/general settings/Communication/Ethernet configuration/Rear OEM - redundant PRP**
 Set values for *Operation*, *IPAddress* and *IPMask*. *Operation* must be set to *On*.
 The IED will restart after confirmation. Menu items **Rear OEM - port AB** and **Rear OEM - port CD** are hidden in local HMI after restart but are visible in PST where the values for parameter *Mode* is set to *Duo*.

14.3 Verifying the communication

Connect your PC to the substation network and ping the connected IED and the Substation Master PC, to verify that the communication is working (up to the transport layer).

The best way to verify the communication up to the application layer is to use protocol analyzer ITT600 connected to the substation bus, and monitor the communication.

Verifying redundant IEC 61850-8-1 communication

Ensure that the IED receives IEC 61850-8-1 data on both port AB and CD. Browse in the local HMI to **Main menu/Diagnostics/Communication/Redundant PRP** and check that both signals LAN-A-STATUS and LAN-B-STATUS are shown as *Ok*. Remove the optical connection to one of the ports AB or CD. Verify that either signal LAN-A-STATUS or LAN-B-STATUS (depending on which connection that was removed) are shown as *Error* and the that other signal is shown as *Ok*. Be sure to re-connect the removed connection after completed verification.
Section 15 Verifying settings by secondary injection

About this chapter
This chapter describes how to verify that protection functions operate correctly and according to their settings. It is preferable that only the tested function is in operation.

15.1 Overview

IED test requirements:

- Calculated settings
- Application configuration diagram
- Signal matrix (SMT) configuration
- Terminal diagram
- Technical reference manual
- Three-phase test equipment
- PCM600

The setting and configuration of the IED must be completed before the testing can start.

The terminal diagram, available in the technical reference manual, is a general diagram of the IED.

Note that the same diagram is not always applicable to each specific delivery (especially for the configuration of all the binary inputs and outputs).

Therefore, before testing, check that the available terminal diagram corresponds to the IED.

The technical reference manual contains application and functionality summaries, function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function.

The test equipment should be able to provide a three-phase supply of voltages and currents. The magnitude of voltage and current as well as the phase angle between voltage and current must be variable. The voltages and currents from the test equipment must be obtained from the same source and they must have minimal harmonic content. If the test equipment cannot indicate the phase angle, a separate phase-angle measuring instrument is necessary.
Prepare the IED for test before testing a particular function. Consider the logic diagram of the tested protection function when performing the test. All included functions in the IED are tested according to the corresponding test instructions in this chapter. The functions can be tested in any order according to user preferences and the test instructions are therefore presented in alphabetical order. Only the functions that are used (Operation is set to *On*) should be tested.

The response from a test can be viewed in different ways:

- Binary outputs signals
- Service values on the local HMI (logical signals or phasors)
- A PC with PCM600 application configuration software in debug mode

All setting groups that are used should be tested.

This IED is designed for a maximum continuous current of four times the rated current.

Please observe the measuring accuracy of the IED, the test equipment and the angular accuracy for both of them.

Please consider the configured logic from the function block to the output contacts when measuring the operate time.

After intense testing, it is important that the IED is not immediately restarted, which might cause a faulty trip due to flash memory restrictions. Some time must pass before the IED is restarted. For more information about the flash memory, refer to section “Configuring the IED and changing settings”.

15.2 Preparing for test

15.2.1 Preparing the IED to verify settings

If a test switch is included, start preparation by making the necessary connections to the test switch. This means connecting the test equipment according to a specific and designated IED terminal diagram.

Put the IED into the test mode to facilitate the test of individual functions and prevent unwanted operation caused by other functions. The busbar differential
protection is not included in the test mode and is not prevented to operate during the test operations. The test switch should then be connected to the IED.

Verify that analog input signals from the analog input module are measured and recorded correctly by injecting currents and voltages required by the specific IED.

To make testing even more effective, use PCM600. PCM600 includes the Signal monitoring tool, which is useful in reading the individual currents and voltages, their amplitudes and phase angles. In addition, PCM600 contains the Disturbance handling tool. The content of reports generated by the Disturbance handling tool can be configured which makes the work more efficient. For example, the tool may be configured to only show time tagged events and to exclude analog information and so on.

Check the disturbance report settings to ensure that the indications are correct.

For test functions and test and signal parameter names, see the technical reference manual. The correct initiation of the disturbance recorder is made on start and/or release or trip from a function. Also check that the wanted recordings of analog (real and calculated) and binary signals are achieved.

Parameters can be entered into different setting groups. Make sure to test functions for the same parameter setting group. If needed, repeat the tests for all different setting groups used. The difference between testing the first parameter setting group and the remaining is that there is no need for testing the connections.

During testing, observe that the right testing method, that corresponds to the actual parameters set in the activated parameter setting group, is used.

Set and configure the function(s) before testing. Most functions are highly flexible and permit a choice of functional and tripping modes. The various modes are checked at the factory as part of the design verification. In certain cases, only modes with a high probability of coming into operation need to be checked when commissioned to verify the configuration and settings.

15.2.2 Preparing the connection to the test equipment

The IED can be equipped with a test switch of type RTXP8, RTXP18 or RTXP24. The test switch and its associated test plug handle (RTXH8, RTXH18 or RTXH24) are a part of the COMBITEST system, which provides secure and convenient testing of the IED.

When using the COMBITEST, preparations for testing are automatically carried out in the proper sequence, that is, for example, blocking of tripping circuits, short circuiting of CT’s, opening of voltage circuits, making IED terminals available for secondary injection. Terminals 1 and 8, 1 and 18 as well as 1 and 12 of the test switches RTXP8, RTXP18 and RTXP24 respectively are not disconnected as they supply DC power to the protection IED.
The RTXH test-plug handle leads may be connected to any type of test equipment or instrument. When a number of protection IEDs of the same type are tested, the test-plug handle only needs to be moved from the test switch of one protection IED to the test switch of the other, without altering the previous connections.

Use COMBITEST test system to prevent unwanted tripping when the handle is withdrawn, since latches on the handle secure it in the half withdrawn position. In this position, all voltages and currents are restored and any re-energizing transients are given a chance to decay before the trip circuits are restored. When the latches are released, the handle can be completely withdrawn from the test switch, restoring the trip circuits to the protection IED.

If a test switch is not used, perform measurement according to the provided circuit diagrams.

Never disconnect the secondary connection of a current transformer circuit without first short-circuiting the transformer's secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build up that may damage the transformer and cause personal injury.

15.2.3 Activating the test mode

Put the IED into the test mode before testing. The test mode blocks all protection functions and some of the control functions in the IED, and the individual functions to be tested can be unblocked to prevent unwanted operation caused by other functions. In this way, it is possible to test slower back-up measuring functions without the interference from faster measuring functions. The busbar differential protection is not included in the test mode and is not prevented to operate during the test operations. The test switch should then be connected to the IED. Test mode is indicated when the yellow StartLED flashes.

1. Browse to the **TestMode** menu and press E.
 - The TestMode menu is found on the local HMI under **Main menu/Test/IED test mode/TestMode**
2. Use the up and down arrows to choose **On** and press E.
3. Press the left arrow to exit the menu.
 - The dialog box **Save changes** appears.
4. Choose **Yes**, press E and exit the menu.
 - The yellow startLED above the LCD will start flashing when the IED is in test mode.
15.2.4 Connecting the test equipment to the IED

Connect the test equipment according to the IED specific connection diagram and the needed input and output signals for the function under test. An example of a connection is shown in figure 87.

Connect the current and voltage terminals. Pay attention to the current polarity. Make sure that the connection of input and output current terminals and the connection of the residual current conductor is correct. Check that the input and output logical signals in the logic diagram for the function under test are connected to the corresponding binary inputs and outputs of the IED under test.

To ensure correct results, make sure that the IED as well as the test equipment are properly earthed before testing.

![Diagram showing connection example](IEC09000652-1-en.vsd)

Figure 87: Connection example of the test equipment to the IED when test equipment is connected to the transformer input module

15.2.5 Verifying analog primary and secondary measurement

Verify that the connections are correct and that measuring and scaling is done correctly. This is done by injecting current and voltage to the IED.

Apply input signals as needed according to the actual hardware and the application configuration.
1. Inject a symmetrical three-phase voltage and current at rated value.
2. Compare the injected value with the measured values.
 The voltage and current phasor menu in the local HMI is located under **Main menu/Measurements/Analog primary values** and **Main menu/Measurements/Analog secondary values**.
3. Compare the frequency reading with the set frequency and the direction of the power.
 The frequency and active power are located under **Main menu/Measurements/Monitoring/ServiceValues(MMXN)/CVMMXN:x**. Then navigate to the bottom of the list to find the frequency.
4. Inject an unsymmetrical three-phase voltage and current, to verify that phases are correctly connected.

If some setting deviates, check the analog input settings under **Main menu/Settings/General settings/Analog modules**

15.2.6 Releasing the function to be tested

Release or unblock the function to be tested. This is done to ensure that only the function or the chain of functions to be tested are in operation and that other functions are prevented from operating. Release the tested function(s) by setting the corresponding **Blocked** parameter under Function test modes to **No** in the local HMI.

When testing a function in this blocking feature, remember that not only the actual function must be activated, but the whole sequence of interconnected functions (from measuring inputs to binary output contacts), including logic must be activated. Before starting a new test mode session, scroll through every function to ensure that only the function to be tested (and the interconnected ones) have the parameters **Blocked** and eventually **EvDisable** set to **No** and **Yes** respectively.

Remember that a function is also blocked if the BLOCK input signal on the corresponding function block is active, which depends on the configuration. Ensure that the logical status of the BLOCK input signal is equal to 0 for the function to be tested. Event function blocks can also be individually blocked to ensure that no events are reported to a remote station during the test. This is done by setting the parameter **EvDisable** to **Yes**.

Any function is blocked if the corresponding setting in the local HMI under **Main menu/Test/Function test modes** menu remains **On**, that is, the parameter **Blocked** is set to **Yes** and the parameter **TestMode** under **Main menu/Test/IED test mode** remains active.

All functions that were blocked or released in a previous test mode session, that is, the parameter **Test mode** is set to **On**, are reset when a new test mode session is started.

Procedure
1. Click the Function test modes menu. The Function test modes menu is located in the local HMI under Main menu/Test/Function test modes.
2. Browse to the function instance that needs to be released.
3. Set parameter Blocked for the selected function to No.

15.2.7 Disturbance report

15.2.7.1 Introduction

The following sub-functions are included in the disturbance report function:

- Disturbance recorder
- Event list
- Event recorder
- Trip value recorder
- Indications

If the disturbance report is set on, then its sub-functions are also set up and so it is not possible to only switch these sub-functions off. The disturbance report function is switched off (parameter Operation = Off) in PCM600 or the local HMI under Main menu/Settings/General settings/Monitoring/DisturbanceReport/ DisturbanceReport(RDRE).

15.2.7.2 Disturbance report settings

When the IED is in test mode, the disturbance report can be made active or inactive. If the disturbance recorder is turned on during test mode, recordings will be made. When test mode is switched off all recordings made during the test session are cleared.

Setting OpModeTest for the control of the disturbance recorder during test mode are located on the local HMI under Main menu/Settings/General settings/ Monitoring/DisturbanceReport/DisturbanceReport(RDRE).

15.2.7.3 Disturbance recorder (DR)

A Manual Trig can be started at any time. This results in a recording of the actual values from all recorded channels.

The Manual Trig can be initiated in two ways:

1. From the local HMI under Main menu/Disturbance records.
 1.1. Enter on the row at the bottom of the HMI called Manual trig.
The newly performed manual trig will result in a new row.

1.2. Navigate to General information or to Trip values to obtain more detailed information.

2. Open the Disturbance handling tool for the IED in the plant structure in PCM600.

2.1. Right-click and select Execute manual Trig in the window Available recordings in IED.

2.2. Read the required recordings from the IED.

2.3. Refresh the window Recordings and select a recording.

2.4. Right-click and select Create Report or Open With to export the recordings to any disturbance analyzing tool that can handle Comtrade formatted files.

Evaluation of the results from the disturbance recording function requires access to a PC either permanently connected to the IED or temporarily connected to the Ethernet port (RJ-45) on the front. The PCM600 software package must be installed in the PC.

Disturbance upload can be performed by the use of PCM600 or by any third party tool with IEC 61850 protocol. Reports can automatically be generated from PCM600. Disturbance files can be analyzed by any tool reading Comtrade formatted disturbance files.

It could be useful to have a printer for hard copies. The correct start criteria and behavior of the disturbance recording function can be checked when IED protective functions are tested.

When the IED is brought into normal service it is recommended to delete all recordings, made during commissioning to avoid confusion in future fault analysis.

All recordings in the IED can be deleted in two ways:

1. in the local HMI under Main menu/Reset/Reset disturbances, or
2. in the Disturbance handling tool in PCM600 by selecting Delete all recordings in the IED... in the window Available Recordings in IED.

15.2.7.4 Event recorder (ER) and Event list (EL)

The result from the event recorder and event list can be viewed on the local HMI or, after upload, in PCM600 as follows:

1. on the local HMI under Main menu/Events, or in more details via
2. the Event Viewer in PCM600.

The internal FIFO register of all events will appear when the event viewer is launched.
When the IED is brought into normal service it is recommended to delete all events resulting from commissioning tests to avoid confusion in future fault analysis. All event in the IED can be cleared in the local HMI under Main Menu/Reset/Reset internal event list or Main menu/Reset/Reset process event list. It is not possible to clear the event lists from PCM600.

When testing binary inputs, the event list (EL) might be used instead. No uploading or analyzing of registrations is then needed since the event list keeps running, independent of start of disturbance registration.

15.2.8 Identifying the function to test in the technical reference manual

Use the technical reference manual (to identify function blocks, logic diagrams, input and output signals, setting parameters and technical data).

15.2.9 Exit test mode

The following procedure is used to return to normal operation.

1. Navigate to the test mode folder.
2. Change the On setting to Off. Press the 'E' key and the left arrow key.
3. Answer YES, press the 'E' key and exit the menus.

15.3 Basic IED functions

15.3.1 Parameter setting group handling SETGRPS

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

15.3.1.1 Verifying the settings

1. Check the configuration of binary inputs that control the selection of the active setting group.
2. Browse to the ActiveGroup menu to achieve information about the active setting group. The ActiveGroup menu is located on the local HMI under Main menu/Test/Function status/Setting groups/ActiveGroup
3. Connect the appropriate dc voltage to the corresponding binary input of the IED and observe the information presented on the local HMI. The displayed information must always correspond to the activated input.
4. Check that the corresponding output indicates the active group.
Operating procedures for the PC aided methods of changing the active setting groups are described in the corresponding PCM600 documents and instructions for the operators within the SCS are included in the SCS documentation.

15.3.1.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.4 Differential protection

15.4.1 Generator differential protection GENPDIF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.4.1.1 Verifying the settings

1. Go to Main menu/Test/Function test modes/Differential protection and make sure all other functions, configured to the same current transformer inputs as the generator differential protection, are set off. Make sure that the generator differential function is unblocked.
2. Connect the test set for injection of three-phase current to the current IEDs, which are connected to the CTs on the HV side of the generator.
3. Increase the current in phase L1 until the protection function operates and note the operating current.
4. Check that trip and alarm contacts operate according to the configuration logic.
5. Decrease the current slowly from operate value and note the reset value.
6. Check in the same way the function by injecting current in phases L2 and L3.
7. Inject a symmetrical three-phase current and note the operate value.
8. Connect the timer and set the current to twice the operate value.
9. Switch on the current and note the operate time.
10. Check in the same way the functioning of the measuring circuits connected to the CTs on the neutral point side of the generator.
11. Finally check that trip information is stored in the event menu.

Information on how to use the event menu is found in the operator’s manual.

12. If available on the test set a second-harmonic current of about 20% (assumes 15% setting on I1/I2 ratio parameter) can be added to the fundamental tone in
Increase the current in phase L1 above the start value measured in step 3. Repeat test with current injection in phases L2 and L3 respectively. Fifth-harmonic blocking can be tested in a similar way. The balancing of currents flowing into and out of the differential zone is typically checked by primary testing.

15.4.1.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.4.2 Transformer differential protection T2WPDIF and T3WPDIF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.4.2.1 Verifying the settings

1. Go to Main menu/Test/Function test modes/Differential protection and make sure that the restricted earth fault protection, low impedance function REFPDIF is set to Off and that the four step residual overcurrent function EF4PTOC under Main menu/Test/Function test modes/Current protection is set to Off, since they are configured to the same current transformer inputs as the transformer differential protection. Make sure that the transformer differential functions T2WPDIF or T3WPDIF are unblocked.
2. Connect the test set for injection of three-phase currents to the current terminals of the IED, which are connected to the CTs on the HV side of the power transformer.
3. Increase the current in phase L1 until the protection function operates and note the operating current.
4. Check that the trip and alarm contacts operate according to the configuration logic.
5. Decrease the current slowly from operate value and note the reset value. Depending on the power transformer vector group (Yd and so on), the single-phase injection current may appear as differential current in one or two phases and the operating value of the injected single-phase current will be different.
6. Check in the same way the function by injecting current in phases L2 and L3 respectively.
7. Inject a symmetrical three-phase current and note the operate value.
8. Connect the timer and set the current to twice the operate value.
9. Switch on the current and note the operate time.
10. Check in the same way the measuring circuits connected to the CTs on the LV side and other current inputs to the transformer differential protection.
11. Finally check that trip information is stored in the event menu.
Information on how to use the event menu is found in the operator’s manual.

12. If available on the test set, a second harmonic current of about 20% (assumes 15% setting on I1/I2 ratio parameter) can be added to the fundamental tone in phase L1. Increase the current in phase L1 above the start value measured in step 6. Repeat test with current injection in phases L2 and L3 respectively. The balancing of currents flowing into and out of the differential zone is checked by primary injection testing, see section "". Fifth harmonic blocking can be tested in a similar way.

For more detailed formulas please refer to the application manual.

15.4.2.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.4.3 Restricted earth-fault protection, low impedance REFPDIF

Prepare the IED for verification of settings outlined in section ”Overview” and section ”Preparing for test” in this chapter.

15.4.3.1 Verifying the settings

1. Connect the test set for single-phase current injection to the protection terminals connected to the CT in the power transformer neutral-to-earth circuit.
2. Increase the injection current and note the operating value of the protection function.
3. Check that all trip and start contacts operate according to the configuration logic.
4. Decrease the current slowly from operate value and note the reset value.
5. Connect the timer and set the current to ten times the value of the IDMin setting.
6. Switch on the current and note the operate time.
7. Connect the test set to terminal L1 and neutral of the three-phase current input configured to REFPDIF. Also inject a current higher than half the Idmin setting in the neutral-to-earth circuit with the same phase angle and with polarity corresponding to an internal fault.
8. Increase the current injected in L1, and note the operate value. Decrease the current slowly and note the reset value.
9. Inject current into terminals L2 and L3 in the same way as in step 7 above and note the operate and reset values.
10. Inject a current equal to 10% of rated current into terminal L1.
11. Inject a current in the neutral-to-earth circuit with the same phase angle and with polarity corresponding to an external fault.
12. Increase the current to five times the operating value and check that the protection does not operate.
13. Finally check that trip information is stored in the event and disturbance recorder.

15.4.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.4.4 High impedance differential protection HZPDIF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.4.4.1 Verifying the settings

1. Connect single-phase or three-phase test set to inject the operating voltage. The injection shall be on the primary side of the stabilizing resistor.

As the operating voltage is adjusted on the stabilizing resistor and with the setting of the resistor value in the function this is essential for the measurement of the expected value. Normally a slightly higher operating value is no problem as the sensitivity is not influenced much.

2. Connect the trip contact to the test set to stop the test set for measurement of trip times below.
3. Increase the voltage and make note of the operate value \(U>\text{Trip} \). This is done with manual test and without trip of the test set.
4. Reduce the voltage slowly and make note of the reset value. The reset value must be high for this function.
5. Check the operating time by injecting a voltage corresponding to \(1.2 \cdot U>\text{Trip} \) level. Make note of the measured trip time.
6. If required, verify the trip time at another voltage. Normally \(2 \cdot U>\text{Trip} \) is selected.
7. If used, measure the alarm level operating value. Increase the voltage and make note of the operate value \(U>\text{Alarm} \). This is done with manual test and without trip of the test set.
8. Measure the operating time on the alarm output by connecting the stop of the test set to an output from t_{Alarm}. Inject a voltage $1.2 \cdot U_{\text{Alarm}}$ and measure the alarm time.

9. Check that trip and alarm outputs operate accordingly to the configuration logic.

10. Finally check that start and alarm information is stored in the event menu and if a serial connection to the SA is available verify that the correct and only the required signals are presented on the local HMI and on the SCADA system.

Information on how to use the event menu is found in the operator’s manual.

15.4.4.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.5 Impedance protection

15.5.1 Full scheme distance protection, mho characteristic Z_{MHPDIS}

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

Keep the current constant when measuring operating characteristics. Keep the current as close as possible to its rated value or lower. But make sure it is higher than the set minimum operating current.

Ensure that the maximum continuous current in an IED does not exceed four times its rated value, if the measurement of the operating characteristics runs under constant voltage conditions.

To verify the mho characteristic, at least two points should be tested.

In the following, three test points are proposed. The mho characteristic always goes through the origin, which automatically gives a fourth point for the characteristic.
15.5.1.1 Phase-to-phase faults

Figure 88: Proposed test points for phase-to-phase fault

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPP1</td>
<td>The measured impedance for phase-to-phase fault at point 1 (zone reach ZPP) ohm/phase.</td>
</tr>
<tr>
<td>ZAngPP</td>
<td>The characteristic angel for phase-to-phase fault in degrees.</td>
</tr>
<tr>
<td>ZPP2 and ZPP3</td>
<td>The fault impedance for phase-to-phase fault at the boundary for the zone reach at point 2 and 3.</td>
</tr>
</tbody>
</table>

Table 28: Test points for phase-to-phase

<table>
<thead>
<tr>
<th>Test points</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZPP \cdot \cos(ZAngPP)</td>
<td>ZPP \cdot \sin(ZAngPP)</td>
</tr>
<tr>
<td>2</td>
<td>ZPP/2 + \Delta R = ZPP/2 \cdot (1 + \cos(ZAngPP))</td>
<td>ZPP/2 \cdot \sin(ZAngPP)</td>
</tr>
<tr>
<td>3</td>
<td>ZPP/2 - \Delta R = ZPP/2 \cdot (1-\cos(ZAngPP))</td>
<td>ZPP/2 \cdot \sin(ZAngPP)</td>
</tr>
</tbody>
</table>

Change the magnitude and angle of phase-to-phase voltage to achieve impedances at test points p1, p2 and p3. For each test point, observe that the output signals, START, STLx and STPP are activated where x refers to the actual phase to be tested. After the timer t_{PP} for the actual zone has elapsed, also the signals TRIP, TRPP and TRx shall be activated.

15.5.1.2 Phase-to-earth faults

For simplicity, the same test points as for phase-to-phase faults are proposed, but considering new impedance values.
Figure 89: Proposed test points for phase-to-earth faults

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPE1</td>
<td>The measured impedance for phase-to-earth fault at point 1 (zone reach ZPE) ohm/phase.</td>
</tr>
<tr>
<td>ZAngPE</td>
<td>The characteristic angel for phase-to-earth fault in degrees.</td>
</tr>
<tr>
<td>ZPE2 and ZPE3</td>
<td>The fault impedance for phase-to-earth fault at the boundary for the zone reach at point 2 and 3.</td>
</tr>
</tbody>
</table>

Table 29: Test points for phase-to-phase loops L1-L2 (Ohm/Loop)

<table>
<thead>
<tr>
<th>Test points</th>
<th>Set</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZPE · cos(ZAngPE)</td>
<td>ZPE · sin(ZAngPE)</td>
</tr>
<tr>
<td>2</td>
<td>ZPE/2 + ΔR = (ZPE/2) · (1 - cos(ZAngPE))</td>
<td>ZPE/2 · sin(ZAngPE)</td>
</tr>
<tr>
<td>3</td>
<td>ZPE/2 - ΔR = ZPE/2 · (1 - cos(ZAngPE))</td>
<td>ZPE/2 · sin(ZAngPE)</td>
</tr>
</tbody>
</table>

Check also in the same way as for phase-to-earth fault for each test point that the output signals STPE, are activated where x refers to the actual phase to be tested. After the timer tPE for the zone has elapsed, also the signals TRIP, TRPE and TRx shall be activated.

15.5.2 Pole slip protection PSPPPAM

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.
15.5.2.1 Verifying the settings

It is assumed that setting of the pole slip protection function PSPPPAM is done according to impedances as seen in figure 90 and figure 91.

The test is done by means of injection of three-phase current and three-phase voltage from a modern test device. This test device shall be able to give voltage and current with the possibility to change voltage and current amplitude and the angle between the injected voltage and current. The parameter setting shall be according to the real application chosen values.

Procedure

1. Feed the IED with current and voltage corresponding to a normal operation point. Injected voltage U equal to base voltage (U_{Base}) and the injected current I equal to half the base current (I_{Base}). The angle between the voltage and current shall be 0°.
2. With maintained amplitude of the injected voltage the current amplitude and angle is changed to a value $ZC/2$. This is done with a speed so that the final impedance is reached after 1 second. As the injected voltage is higher than $0.92U_{Base}$ no START signal should be activated.
3. With reduced amplitude of the injected voltage to $0.8U_{Base}$ the current amplitude and angle is changed to a value $ZC/2$. This is done with a speed so that the final impedance is reached after 1 second. As the injected voltage is lower than $0.92U_{Base}$ the START signal should be activated.
4. With reduced amplitude of the injected voltage to $0.8U_{Base}$ the current amplitude and angle is changed via $ZC + (ZA - ZC)/2$ to a value corresponding to half I_{Base} and 180° between the injected current and voltage. This is done with a speed so that the final impedance is reached after 1 second. As the injected voltage is lower than $0.92U_{Base}$ the START signal should be activated. In addition to this the signal ZONE1 should be activated.
5. Set $N1Limit$ to 1 and repeat step 4. Now the signals TRIP1 and TRIP should be activated.
6. With reduced amplitude of the injected voltage to $0.8U_{Base}$ the current amplitude and angle is changed via $ZC + (ZA - ZC)/2$ to a value corresponding to half I_{Base} and 180° between the injected current and voltage. This is done with a speed so that the final impedance is reached after 1s. As the injected voltage is lower than $0.92U_{Base}$ the START signal should be activated. In addition to this the signal ZONE2 should be activated.
7. Set $N2Limit$ to 1 and repeat step 6. Now the signals TRIP2 and TRIP should be activated.
Section 15
Verifying settings by secondary injection

Figure 90: Setting of the pole slip protection PSPPAM
15.5.2.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.5.3 Loss of excitation LEXPDIS

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.5.3.1 Verifying the settings

The test is done by means of injection of three phase current and three phase voltage from a modern test device. This test device shall be able to give voltage and current corresponding to the set apparent impedance.

1. Feed the IED with current and voltage corresponding to the apparent impedance: Test #1, as shown in figure 92. Read the analog outputs for R and
X and check that this reading corresponds to the injected impedance. No start or trip signals shall be activated.

2. Feed the IED with current and voltage corresponding to the apparent impedance: Test #2, as shown in figure 92. Read the analog outputs for R and X and check that this reading corresponds to the injected impedance. No start or trip signals shall be activated.

3. Feed the IED with current and voltage corresponding to the apparent impedance: Test #3, as shown in figure 92. Read the analog outputs for R and X and check that this reading corresponds to the injected impedance. The signals START and STZ2 shall be activated instantaneously and the signals TRIP and TRZ2 shall be activated after the set delay t_{Z2}.

4. Switch the current infeed injection off. The function shall reset. Turn the current on with the values corresponding to Test #3 and measure the time to activation of signal TRZ2. This time shall be compared to t_{Z2}.

5. Feed the IED with current and voltage corresponding to the apparent impedance: Test #4, as shown in figure 92. Read the analog outputs for R and X and check that this reading corresponds to the injected impedance. The signals START, STZ2 and STZ1 shall be activated instantaneously and the signals TRIP, TRZ2 and TRZ1 shall be activated after the different set time delays.

6. Switch the current infeed injection off. The function shall reset. Turn the current on with the values corresponding to Test #4 and measure the time to activation of signal TRZ1. This time shall be compared to t_{Z1}.
15.5.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6 Current protection

15.6.1 Instantaneous phase overcurrent protection PHPIOC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

To verify the settings the following fault type should be tested:

- Phase-to-earth fault
Ensure that the maximum continuous current, supplied from the current source used for the test of the IED, does not exceed four times the rated current value of the IED.

15.6.1.1 Measuring the operate limit of set values

1. Inject a phase current into the IED with an initial value below that of the setting.
2. Set the operation mode to 1 out of 3.
3. Increase the injected current in the Ln phase until the TRL (n=1–3) signal appears.
4. Switch the fault current off.

 Observe: Do not exceed the maximum permitted overloading of the current circuits in the IED.

5. Compare the measured operating current with the set value.
6. Set the operation mode to 2 out of 3 and inject current into one of the phases. Check - no operation.

15.6.1.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.2 Four step phase overcurrent protection OC4PTOC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is of utmost importance to set the definite time delay for that stage to zero.

15.6.2.1 Verifying the settings

1. Connect the test set for appropriate current injection to the appropriate IED phases.
If there is any configuration logic that is used to enable or block any of the four available overcurrent steps, make sure that the step under test is enabled, for example end fault protection.

If 1 out of 3 currents for operation is chosen: Connect the injection current to phases L1 and neutral.
If 2 out of 3 currents for operation is chosen: Connect the injection current into phase L1 and out from phase L2.
If 3 out of 3 currents for operation is chosen: Connect the symmetrical three-phase injection current into phases L1, L2 and L3.

2. Connect the test set for the appropriate three-phase voltage injection to the IED phases L1, L2 and L3. The protection shall be fed with a symmetrical three-phase voltage.

3. Set the injected polarizing voltage slightly larger than the set minimum polarizing voltage (default is 5% of UBase) and set the injection current to lag the appropriate voltage by an angle of about 80° if forward directional function is selected.
 If 1 out of 3 currents for operation is chosen: The voltage angle of phase L1 is the reference.
 If 2 out of 3 currents for operation is chosen: The voltage angle of phase L1 – the voltage angle of L2 is the reference.
 If 3 out of 3 currents for operation is chosen: The voltage angle of phase L1 is the reference.
 If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to 260° (equal to 80° + 180°).

4. Increase the injected current and note the operated value of the tested step of the function.
5. Decrease the current slowly and note the reset value.
6. If the test has been performed by injection of current in phase L1, repeat the test when injecting current into phases L2 and L3 with polarizing voltage connected to phases L2 respectively L3 (1 out of 3 currents for operation).
7. If the test has been performed by injection of current in phases L1 – L2, repeat the test when injecting current into phases L2 – L3 and L3 – L1 with appropriate phase angle of injected currents.
8. Block higher set stages when testing lower set stages according to below.
9. Connect a trip output contact to a timer.
10. Set the injected current to 200% of the operate level of the tested stage, switch on the current and check the time delay.
 For inverse time curves, check the operate time at a current equal to 110% of the operate current for \(txMin \).
11. Check that all trip and start contacts operate according to the configuration (signal matrixes)
12. Reverse the direction of the injected current and check that the protection does not operate.
13. If 2 out of 3 or 3 out of 3 currents for operation is chosen: Check that the function will not operate with current in one phase only.
14. Repeat the above described tests for the higher set stages.
15. Finally check that start and trip information is stored in the event menu.
Check of the non-directional phase overcurrent function. This is done in principle as instructed above, without applying any polarizing voltage.

15.6.2.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.3 Instantaneous residual overcurrent protection EFPIOC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

To verify the settings the following fault type should be tested:

- Phase-to-earth fault

Ensure that the maximum continuous current, supplied from the current source used for the test of the IED, does not exceed four times the rated current value of the IED.

15.6.3.1 Measuring the operate limit of set values

1. Inject a phase current into the IED with an initial value below that of the setting.
2. Increase the injected current in the Ln or in the neutral (summated current input) phase until the TRIP signal appears.
3. Switch the fault current off.
 - Observe to not exceed the maximum permitted overloading of the current circuits in the IED
4. Compare the measured operating current with the set value.

15.6.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.4 Four step residual overcurrent protection EF4PTOC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.
When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is of utmost importance to set the definite time delay for that stage to zero.

15.6.4.1 Four step directional earth fault protection

1. Connect the test set for single current injection to the appropriate IED terminals. Connect the injection current to terminals L1 and neutral.
2. Set the injected polarizing voltage slightly larger than the set minimum polarizing voltage (default 5% of Ur) and set the injection current to lag the voltage by an angle equal to the set reference characteristic angle \(\text{AngleRCA} \), if the forward directional function is selected. If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to \(\text{RCA} + 180^\circ \).
3. Increase the injected current and note the value at which the studied step of the function operates.
4. Decrease the current slowly and note the reset value.
5. If the test has been performed by injection of current in phase L1, repeat the test, injecting current into terminals L2 and L3 with a polarizing voltage connected to terminals L2, respectively L3.
6. Block lower set steps when testing higher set steps according to the instructions that follow.
7. Connect a trip output contact to a timer.
8. Set the injected current to 200% of the operate level of the tested step, switch on the current and check the time delay. For inverse time curves, check the operate time at a current equal to 110% of the operate current for \(txMin \).
9. Check that all trip and start contacts operate according to the configuration (signal matrixes)
10. Reverse the direction of the injected current and check that the step does not operate.
11. Check that the protection does not operate when the polarizing voltage is zero.
12. Repeat the above described tests for the higher set steps.
13. Finally, check that start and trip information is stored in the event menu.

15.6.4.2 Four step non-directional earth fault protection

1. Do as described in "Four step directional earth fault protection", but without applying any polarizing voltage.
15.6.4.3 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.5 Four step negative sequence overcurrent protection

NS4PTOC

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is of utmost importance to set the definite time delay for that stage to zero.

Procedure

1. Connect the test set for injection of three-phase currents and voltages to the appropriate CT and VT inputs of the IED.
2. Inject pure negative sequence current, that is, phase currents with exactly same magnitude, reversed sequence and exactly 120° phase displaced into the IED with an initial value below negative sequence current pickup level. No output signals should be activated. Check under NS4PTOC function Service Values that correct I2 magnitude is measured by the function.
3. Set the injected negative sequence polarizing voltage slightly larger than the set minimum polarizing voltage (default 5 % of Ur) and set the injection current to lag the voltage by an angle equal to the set reference characteristic angle (180° - AngleRCA) if the forward directional function is selected. If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to RCA.
4. Increase the injected current and note the value at which the studied step of the function operates.
5. Decrease the current slowly and note the reset value.
6. Block lower set steps when testing higher set steps according to the instructions that follow.
7. Connect a trip output contact to a timer.
8. Set the injected current to 200 % of the operate level of the tested step, switch on the current and check the time delay. For inverse time curves, check the operate time at a current equal to 110 % of the operate current in order to test parameter txmin.
9. Check that all trip and start contacts operate according to the configuration (signal matrixes)
10. Reverse the direction of the injected current and check that the step does not operate.
11. Check that the protection does not operate when the polarizing voltage is zero.
12. Repeat the above-described tests for the higher set steps.
13. Finally, check that start and trip information is stored in the event menu.

15.6.5.1 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.6 Sensitive directional residual overcurrent and power protection SDEPSDE

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

Figure 93 shows the principal connection of the test set during the test of the sensitive directional residual overcurrent protection. Observe that the polarizing voltage is equal to -3U₀.

![Diagram of IED test set and IED connections](IEC09000021-2-en.vsd)

Figure 93: Principle connection of the test set

Values of the logical signals belonging to the sensitive directional residual overcurrent protection are available on the local HMI under Main menu/Test/
Function status/Current protection/SensDirResOvCurr(PSDE,67N)/SDEPSDE:x

15.6.6.1 Measuring the operate and time limit for set values

Operation mode $3I_0 \cdot \cos \varphi$

Procedure

1. Set the polarizing voltage to $1.2 \cdot UNRel>$ and the phase angle between voltage and current to the set characteristic angle ($RCADir$), the current lagging the voltage.
 Take setting $RCAComp$ into consideration if not equal to 0.
2. Measure that the operate current of the set directional element is equal to the $INcosPhi>$ setting.
 The I Dir ($I_0 \cos(\text{Angle})$) function activates the START and STDIRIN output.
3. Measure with angles $\varphi = RCADir +/- 45^°$ that the measuring element operates when $I_0 \cos(\text{RCADir} - \varphi) = I_0\cos(+/45) = INcosPhi>.$
4. Compare the result with the set value.
 Take the set characteristic into consideration, see figure 94 and figure 95.
5. Measure the operate time of the timer by injecting a current two times the set $INcosPhi>$ value and the polarizing voltage $1.2 \cdot UNRel>.$

$$Tinv = kSN \cdot Sref / 3I_{max} \cdot \cos(\varphi)$$

(Equation 1)

6. Compare the result with the expected value.
 The expected value depends on whether definite or inverse time was selected.
7. Set the polarizing voltage to zero and increase until the boolean output signal UNREL is activated, which is visible in the Application Configuration in PCM600 when the IED is in online mode. Compare the voltage with the set value $UNRel>.$
8. Continue to test another function or complete the test by setting the test mode to Off.
Figure 94: Characteristic with ROAdir restriction
Section 15
Verifying settings by secondary injection

Figure 95: Explanation of RCAcomp

Operation mode $3I_0 \cdot 3U_0 \cdot \cos \varphi$

1. Set the polarizing voltage to $1.2 \cdot UNRel>$ and the phase angle between voltage and current to the set characteristic angle ($RCADir$), the current lagging the voltage.
2. Measure that the operate power is equal to the $SN>$ setting for the set directional element.
 Note that for operation, both the injected current and voltage must be greater than the set values $INRel>$ and $UNRel>$ respectively.
 The function activates the START and STDIRIN outputs.
3. Measure with angles $\varphi = RCADir \pm 45^\circ$ that the measuring element operates when $3I_0 \cdot 3U_0 \cdot \cos (RCADir - \varphi) = 3I_0 \cdot 3U_0 \cdot \cos(\pm 45) = SN>.$
4. Compare the result with the set value. Take the set characteristic into consideration, see figure 94 and figure 95.
5. Measure the operate time of the timer by injecting $1.2 \cdot UNRel>$ and a current to get two times the set $SN>$ operate value.
Verifying settings by secondary injection

\[T_{inv} = \frac{kSN \cdot Sref}{3I_{sn}} \cdot \frac{3U_{sn}}{\cos(\varphi)} \]

(Equation 2)

6. Compare the result with the expected value.
The expected value depends on whether definite or inverse time was selected.

7. Continue to test another function or complete the test by setting the test mode to \textit{Off}.

Operation mode 3I_0 and \varphi

1. Set the polarizing voltage to \(1.2 \cdot U_{NRel}>\) and the phase angle between voltage and current to the set characteristic angle (\(RCADir\)), the current lagging the voltage.

2. Measure that the operate power is equal to the \(INDir>\) setting for the set directional element.

Note that for operation, both the injected current and voltage must be greater than the set values \(INRel>\) and \(UNRel>\) respectively.

3. Measure with angles \(\varphi\) around \(RCADir +/- ROAdir\).

4. Compare the result with the set values, refer to figure 96 for example characteristic.

5. Measure the operate time of the timer by injecting a current to get two times the set \(SN_->\) operate value.

\[T_{inv} = \frac{kSN \cdot Sref}{3I_{sn}} \cdot \frac{3U_{sn}}{\cos(\varphi)} \]

(Equation 3)

6. Compare the result with the expected value.
The expected value depends on whether definite or inverse time was selected.

7. Continue to test another function or complete the test by setting the test mode to \textit{Off}.
Figure 96: Example characteristic

Non-directional earth fault current protection
Procedure

1. Measure that the operate current is equal to the INNonDir> setting.
 The function activates the START and STDIRIN output.
2. Measure the operate time of the timer by injecting a current to get two times the set INNonDir> operate value.
3. Compare the result with the expected value.
 The expected value depends on whether definite time tINNonDir or inverse time was selected.
4. Continue to test another function or complete the test by setting the test mode to Off.

Residual overvoltage release and protection
Procedure

1. Measure that the operate voltage is equal to the UN> setting.
 The function activates the START and STUN signals.
2. Measure the operate time by injecting a voltage 1.2 timers set UN> operate value.
3. Compare the result with the set tUN operate value.
4. Inject a voltage 0.8 · UNRel> and a current high enough to operate the directional function at the chosen angle.
5. Increase the voltage until the directional function is released.
6. Compare the measured value with the set UNRel> operate value.
15.6.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.7 Thermal overload protection, two time constants TRPTTR

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.6.7.1 Checking operate and reset values

1. Connect symmetrical three-phase currents to the appropriate current terminals of the IED.
2. Set the Time constant 1 (τ_1) and Time Constant 2 (τ_2) temporarily to 1 minute.
3. Set the three-phase injection currents slightly lower than the set operate value of stage I_{Base1}, increase the current in phase L1 until stage I_{Base1} operates and note the operate value.

Observe the maximum permitted overloading of the current circuits in the IED.

4. Decrease the current slowly and note the reset value. Check in the same way as the operate and reset values of I_{Base1} for phases L2 and L3.
5. Activate the digital input for cooling input signal to switch over to base current I_{Base2}.
6. Check for all three phases the operate and reset values for I_{Base2} in the same way as described above for stage I_{Base1}
7. Deactivate the digital input signal for stage I_{Base2}.
8. Set the time constant for I_{Base1} in accordance with the setting plan.
9. Set the injection current for phase L1 to $1.50 \cdot I_{Base1}$.
10. Connect a trip output contact to the timer and monitor the output of contacts ALARM1 and ALARM2 to digital inputs in test equipment. Read the heat content in the thermal protection from the local HMI and wait until the content is zero.
11. Switch on the injection current and check that ALARM1 and ALARM2 contacts operate at the set percentage level and that the operate time for tripping is in accordance with the set Time Constant 1 (τ_1). With setting $I_{tr} = 101\%I_{Base1}$ and injection current $1.50 \cdot I_{Base1}$, the trip time from zero content in the memory shall be $0.60 \cdot \text{Time Constant 1 (τ_1)}$.
12. Check that all trip and alarm contacts operate according to the configuration logic.
13. Switch off the injection current and check from the service menu readings of thermal status and LOCKOUT that the lockout resets at the set percentage of heat content.

14. Activate the digital input for cooling input signal to switch over to base current I_{Base2}. Wait 5 minutes to empty the thermal memory and set Time Constant 2 (Tau_2) in accordance with the setting plan.

15. Test with injection current $1.50 \cdot I_{Base2}$ the thermal alarm level, the operate time for tripping and the lockout reset in the same way as described for stage I_{Base1}.

16. Finally check that start and trip information is stored in the event menu.

15.6.7.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.8 Breaker failure protection CCRBRF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

The Breaker failure protection function CCRBRF should normally be tested in conjunction with some other function that provides a start signal. An external START signal can also be used.

To verify the settings in the most common back-up trip mode 1 out of 3, it is sufficient to test phase-to-earth faults.

At mode 2 out of 4 the phase current setting, $IP>$ can be checked by single-phase injection where the return current is connected to the summated current input. The value of residual (earth fault) current IN set lower than $IP>$ is easiest checked in back-up trip mode 1 out of 4.

15.6.8.1 Checking the phase current operate value, $IP>$

The check of the $IP>$ current level is best made in FunctionMode = Current and BuTripMode = 1 out of 3 or 2 out of 4.

1. Apply the fault condition, including START of CCRBRF, with a current below set $IP>$.
2. Repeat the fault condition and increase the current in steps until a trip occurs.
3. Compare the result with the set $IP>$.
4. Disconnect AC and START input signals.
Note! If NoI>check or Retrip off is set, only back-up trip can be used to check set IP>.

15.6.8.2 Checking the residual (earth fault) current operate value IN> set below IP>

Check the low set IN> current where setting FunctionMode = Current and setting BuTripMode = 1 out of 4

1. Apply the fault condition, including START of CCRBRF, with a current just below set IN>Pickup_N.
2. Repeat the fault condition and increase the current in steps until trip appears.
3. Compare the result with the set IN>.
4. Disconnect AC and START input signals.

15.6.8.3 Checking the re-trip and back-up times

The check of the set times can be made in connection with the check of operate values above.

Choose the applicable function and trip mode, such as FunctionMode = Current and RetripMode = I> check.

1. Apply the fault condition, including start of CCRBRF, well above the set current value. Measure time from START of CCRBRF.
2. Check the re-trip t1 and back-up trip times t2 and t3.
 In applicable cases, the back-up trip for multi-phase start t2MPh and back-up trip 2, t2 and t3 can also be checked. To check t2MPh, a two-phase or three-phase start shall be applied.
3. Disconnect AC and START input signals.

15.6.8.4 Verifying the re-trip mode

Choose the mode below, which corresponds to the actual case.

In the cases below it is assumed that FunctionMode = Current is selected.

Checking the case without re-trip, RetripMode = Retrip Off

1. Set RetripMode = Retrip Off.
2. Apply the fault condition, including start of CCRBRF, well above the set current value.
3. Verify that no re-trip, but back-up trip is achieved after set time.
4. Disconnect AC and START input signals.
Checking the re-trip with current check, RetripMode = CB Pos Check

1. Set RetripMode = CB Pos Check.
2. Apply the fault condition, including start of CCRBRF, well above the set current value.
3. Verify that re-trip is achieved after set time t_1 and back-up trip after time t_2
4. Apply the fault condition, including start of CCRBRF, with current below set current value.
5. Verify that no re-trip, and no back-up trip is obtained.
6. Disconnect AC and START input signals.

Checking re-trip without current check, RetripMode = No CBPos Check

1. Set RetripMode = No CBPos Check.
2. Apply the fault condition, including start of CCRBRF, well above the set current value.
3. Verify that re-trip is achieved after set time t_1, and back-up trip after time t_2.
4. Apply the fault condition, including start of CCRBRF, with current below set current value.
5. Verify that re-trip is achieved after set time t_1, but no back-up trip is obtained.
6. Disconnect AC and START input signals.

15.6.8.5 Verifying the back-up trip mode

In the cases below it is assumed that FunctionMode = Current is selected.

Checking that back-up tripping is not achieved at normal CB tripping
Use the actual tripping modes. The case below applies to re-trip with current check.

1. Apply the fault condition, including start of CCRBRF, with phase current well above set value IP.
2. Arrange switching the current off, with a margin before back-up trip time, t_2.
 It may be made at issue of re-trip command.
3. Check that re-trip is achieved, if selected, but no back-up trip.
4. Disconnect AC and START input signals.

The normal mode BuTripMode = 1 out of 3 should have been verified in the tests above. In applicable cases the modes 1 out of 4 and 2 out of 4 can be checked. Choose the mode below, which corresponds to the actual case.

Checking the case BuTripMode = 1 out of 4
It is assumed that the earth-fault current setting $IN>$ is below phase current setting $IP>$.
1. Set \(BuTripMode = 1 \) out of 4.
2. Apply the fault condition, including start of CCRBRF, with one-phase current below set \(IP > \) but above \(IN > \). The residual earth-fault should then be above set \(IN > \).
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Disconnect AC and START input signals.

Checking the case \(BuTripMode = 2 \) out of 4
The earth-fault current setting \(IN > \) may be equal to or below phase-current setting \(IP > \).

1. Set \(BuTripMode = 2 \) out of 4.
2. Apply the fault condition, including start of CCRBRF, with one-phase current above set \(IP > \) and residual (earth fault) above set \(IN > \). It can be obtained by applying a single-phase current.
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Apply the fault condition, including start of CCRBRF, with at least one-phase current below set \(IP > \) and residual (earth fault) above set \(IN > \). The current may be arranged by feeding three- (or two-) phase currents with equal phase angle (\(I_0 \)-component) below \(IP > \), but of such value that the residual (earth fault) current \((3I_0) \) will be above set value \(IN > \).
5. Verify that back-up trip is not achieved.
6. Disconnect AC and START input signals.

15.6.8.6 Verifying instantaneous back-up trip at CB faulty condition
Applies in a case where a signal from CB supervision function regarding CB being faulty and unable to trip is connected to input CBFLT.

1. Repeat the check of back-up trip time. Disconnect current and START input signals.
2. Activate the input CBFLT. The output CBALARM (CB faulty alarm) should appear after set time \(tCBAlarm \). Keep the input activated.
3. Apply the fault condition, including start of CCRBRF, with current above set current value.
4. Verify that back-up trip is obtained without intentional delay, for example within 20ms from application of start.
5. Disconnect injected AC and START input signals.

15.6.8.7 Verifying the case \(RetripMode = Contact \)
It is assumed that re-trip without current check is selected, \(RetripMode = Contact \).
1. Set FunctionMode = Contact
2. Apply input signal for CB closed to relevant input or inputs CBCLDL1 (2 or 3)
3. Apply input signal, or signals for start of CCRBRF. The value of current could be low.
4. Verify that phase-selection re-trip and back-up trip are achieved after set times.
5. Disconnect the start signal(s). Keep the CB closed signal(s).
6. Apply input signal(s), for start of CCRBRF. The value of current could be low.
7. Arrange disconnection of CB closed signal(s) well before set back-up trip time t_2.
8. Verify that back-up trip is not achieved.
9. Disconnect injected AC and START input signals.

15.6.8.8 Verifying the function mode Current&Contact

To be made only when FunctionMode = Current&Contact is selected. It is suggested to make the tests in one phase only, or at three-phase trip applications for just three-phase tripping.

Checking the case with fault current above set value $I_{P>}$
The operation shall be as in FunctionMode = Current.

1. Set FunctionMode = Current&Contact.
2. Leave the inputs for CB close inactivated. These signals should not influence.
3. Apply the fault condition, including start of CCRBRF, with current above the set $I_{P>}$ value.
4. Check that the re-trip, if selected, and back-up trip commands are achieved.
5. Disconnect injected AC and START input signals.

Checking the case with fault current below set value $I_{>BlkCont}$
The case shall simulate a case where the fault current is very low and operation will depend on CB position signal from CB auxiliary contact. It is suggested that re-trip without current check is used, setting RetripMode = No CBPos Check.

1. Set FunctionMode = Current&Contact.
2. Apply input signal for CB closed to relevant input or inputs CBCLDL1 (2 or 3)
3. Apply the fault condition with input signal(s) for start of CCRBRF. The value of current should be below the set value $I_{>BlkCont}$
4. Verify that phase selection re-trip (if selected) and back-up trip are achieved after set times. Failure to trip is simulated by keeping the signal(s) CB closed activated.
5. Disconnect the AC and the START signal(s). Keep the CB closed signal(s).
6. Apply the fault and the start again. The value of current should be below the set value $I_{>BlkCont}$.
7. Arrange disconnection of BC closed signal(s) well before set back-up trip time t_2. It simulates a correct CB tripping.
8. Verify that back-up trip is not achieved. Re-trip can appear for example, due to selection “Re-trip without current check”.
9. Disconnect injected AC and START input signals.

15.6.8.9 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.9 Pole discordance protection CCRPLD

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.6.9.1 Verifying the settings

1. External detection logic, Contact function selection = ContSel setting equals CCRPLD signal from CB. Activate the EXTPDIND binary input, and measure the operating time of CCRPLD.
 Use the TRIP signal from the configured binary output to stop the timer.
2. Compare the measured time with the set value t_{Trip}.
3. Reset the EXTPDIND input.
4. Activate the BLKDBYAR binary input.
 This test should be performed together with Autorecloser SMBRREC.
5. Activate the EXTPDIND binary input.
 No TRIP signal should appear.
6. Reset both BLKDBYAR and EXTPDIND binary inputs.
7. Activate the BLOCK binary input.
8. Activate EXTPDIND binary input.
 NO TRIP signal should appear.
9. Reset both BLOCK and EXTPDIND binary inputs.
10. If Internal detection logic Contact function selection = ContSel setting equals Pole position from auxiliary contacts. Then set inputs POLE1OPN...POLE3CL in a status that activates the pole discordance logic and repeats step 2 to step 6.
11. Unsymmetrical current detection with CB monitoring: Set measured current in one phase to 110% of current release level. Activate CLOSECMD and measure the operating time of the CCRPLD protection.
 Use the TRIP signal from the configured binary out put put stop the timer.
12. Deactivate the CLOSECMD: Set measured current in one phase to 90% of Current Release level. Activate CLOSECMD.
 NO TRIP signal should appear.
13. Repeat step 14 and 15 using OPENCMD instead of CLOSECMD. Asymmetry current detection with CB monitoring: Set all three currents to 110% of Current Release level. Activate CLOSECMD. NO TRIP signal should appear due to symmetrical condition.

14. Deactivate the CLOSECMD. Decrease one current with 120% of the current unsymmetrical level compared to the other two phases. Activate CLOSECMD and measure the operating time of the CCRPLD protection. Use the TRIP signal from the configured binary output stop the timer.

15. Deactivate the CLOSECMD. Decrease one current with 80% of the current unsymmetrical level compared to the other two phases. Activate CLOSECMD. NO TRIP signal should appear.

15.6.9.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.10 Directional underpower protection GUPPDUP

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.6.10.1 Verifying the settings

The underpower protection shall be set to values according to the real set values to be used.

The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test, the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three-phase test set is available this could be used for all the modes. If a single-phase current/voltage test set is available the test set should be connected to a selected input for one-phase current and voltage.
2. Adjust the injected current and voltage to the set values in % of \(I_{\text{Base}} \) and \(U_{\text{Base}} \) (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction \(\text{Angle}_1 \), angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.

3. Change the angle between the injected current and voltage to \(\text{Angle}_1 + 90^\circ \). Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.

4. Change the angle between the injected current and voltage back to 0°. Decrease the current slowly until the START1 signal, start of stage 1, is activated.
5. Increase the current to 100% of I_{Base}.
6. Switch the current off and measure the time for activation of TRIP1, trip of stage 1.
7. If a second stage is used, repeat steps 2 to 6 for the second stage.

15.6.10.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.11 Directional overpower protection GOPPDOP

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.6.11.1 Verifying the settings

The overpower protection shall be set to values according to the real set values to be used. The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three phase test set is available this could be used for all the modes. If a single phase current/voltage test set is available the test set should be connected to a selected input for one phase current and voltage.

2. Adjust the injected current and voltage to the set rated values in % of I_{Base} and U_{Base} (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction $Angle1$, angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.

3. Change the angle between the injected current and voltage to $Angle1 + 90°$. Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.

4. Change the angle between the injected current and voltage back to $Angle1$ value. Increase the current slowly from 0 until the START1 signal, start of stage 1, is activated. Check the injected power and compare it to the set value $Power1$, power setting for stage 1 in % of S_{base}.

5. Increase the current to 100% of I_{Base} and switch the current off.
6. Switch the current on and measure the time for activation of TRIP1, trip of stage 1.
7. If a second stage is used, repeat steps 2 to 6 for the second stage.
15.6.11.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.6.12 Negative-sequence time overcurrent protection for machines NS2PTOC

When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is of utmost importance to set the definite time delay for that stage to zero.

15.6.12.1 Verifying settings by secondary injection

1. Connect the test set for injection of three-phase currents to the appropriate current terminals of the IED.
2. Go to Main menu/Settings/Setting group n/Current protection/NegSeqOverCurr2Step/NSOn/General and make sure that the function is enabled, that is Operation is set to On.
3. Inject current into IEDs in such a way that negative sequence component is created and then verify that negative sequence component of the injected currents is calculated correctly by the function. See example below for 1 A rated current transformer.
4. Inject pure negative sequence current, that is, phase currents with exactly same magnitude, reversed sequence and exactly 120° phase displaced into the IED with an initial value below negative sequence current start level. No output signals should be activated.
 Note: If it is difficult to obtain pure negative sequence current for the secondary injection test, a current corresponding to the two phase short-circuit condition can be used. A two phase short-circuit gives a negative sequence current of a magnitude: magnitude = (1/√3) \cdot \text{fault current}.
5. Increase the injected current and note the value at which the step 1 of the function operates. Start signal ST1 must be activated when amplitude of the negative sequence current lies slightly above the start level \(I_{2-1}\). Corresponding trip signals TR1 and TRIP is activated after the pre-set time delay has expired.
 Note: Block or disable operation of step 2 when testing step 1 if the injected current activates the step 2.
6. Decrease the current slowly and note the reset value.
7. Connect a trip output contact to a timer.
8. Set the current to 200% of the start level of the step 1, switch on the current and check the definite time delay for trip signals TR1 and TRIP. Once the measured negative sequence current exceeds the set start level \(I_{2-1} > \), the settable definite timer \(t_1 \) starts to count and trip signals are released after the set time delay has elapsed. The same test must be carried out to check the accuracy of definite time delay for ALARM signal.

Note: The output ALARM is operated by START signal.

9. If inverse time is selected the trip signals TR1 and TRIP operates after a time corresponding to the formula:

\[
 t[s] = \left[\frac{1}{\left(\frac{I_{2-1}}{100} \right)} \right] \cdot K
\]

This means that if current jumps from 0 to 2 times start and negative sequence capability value of generator \(K1 \) is set to 10 sec and current start level \(I_{2-1} > \) is set to 10% of rated generator current, then TR1 and TRIP signals operates at time equal to 250 sec ± tolerance.

10. Repeat the above-described tests for the step 2 of the function excluding the inverse time testing.

11. Finally check that start and trip information is stored in the event menu.

Example

The CT ratios \(\frac{CTprim}{CT \, sec} \) for all three phases is 1000 A, \(I_{Base} \) is 1000 A, and the following secondary currents are applied:

<table>
<thead>
<tr>
<th></th>
<th>Ampl</th>
<th>Angl</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL1</td>
<td>1.1 A</td>
<td>15 deg</td>
</tr>
<tr>
<td>IL2</td>
<td>0.6 A</td>
<td>97 deg</td>
</tr>
<tr>
<td>IL3</td>
<td>1.3 A</td>
<td>-135 deg</td>
</tr>
</tbody>
</table>

The service value output NSCURR indicating amplitude of negative sequence current in primary amperes should be 962A approximative.

15.6.12.2 Completing the test

Continue to test another functions or end the test by changing the Test mode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes. Make sure that all built-in features for this function, which shall be in operation, are enabled and with correct settings.
15.6.13 Accidental energizing protection for synchronous generator AEGGAPC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.6.13.1 Verifying the settings

1. Connect the test set for three-phase current injection and for three phase voltage injection to the appropriate IED terminals.
2. Inject zero voltage to the IED.
3. Increase the injected symmetric three phase current slowly and note the operated value (start value) of the studied step of the function.
4. Decrease the current slowly and note the reset value.
5. Connect a trip output contact to a timer.
6. Set the injected current to 200% of the operate level of the tested stage, switch on the current and check the time delay.
7. Check that all trip and start contacts operate according to the configuration (signal matrices).
8. Finally check that start and trip information is stored in the event menu.
9. Inject rated symmetric three phase voltage to the IED.
10. Set the injected current to 200% of the operate level of the tested stage, switch on the current. The function does not start and trip.
11. Inject 95% of the set $ArmU_<$ value symmetric three-phase voltage to the IED.
12. Set the injected current to 200% of the operate level of the tested stage, switch on the current. The function does start and trip.

15.7 Voltage protection

15.7.1 Two step undervoltage protection UV2PTUV

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.7.1.1 Verifying the settings

Verification of START value and time delay to operate for Step1

1. Check that the IED settings are appropriate, especially the START value, the definite time delay and the 1 out of 3 operation mode.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the voltage in one of the phases, until the START signal appears.
4. Note the operate value and compare it with the set value.
5. Increase the measured voltage to rated load conditions.
6. Check that the START signal resets.
7. Instantaneously decrease the voltage in one phase to a value about 20% lower than the measured operate value.
8. Measure the time delay for the TRIP signal, and compare it with the set value.

Extended testing

1. The test above can now be repeated for step 2.
2. The tests above can be repeated for 2 out of 3 and for 3 out of 3 operation mode.
3. The tests above can be repeated to check security, that is, the START and operate signals, that are not supposed to appear, - do not.
4. The tests above can be repeated to check the time to reset.
5. The tests above can be repeated to test the inverse time characteristic.

15.7.1.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.7.2 Two step overvoltage protection OV2PTOV

Prepare the IED for verification of settings outlined in section “Overview” and section “Preparing for test” in this chapter.

15.7.2.1 Verifying the settings

1. Apply single-phase voltage below the set value $U1>$.
2. Slowly increase the voltage until the ST1 signal appears.
3. Note the operate value and compare it with the set value.
4. Switch the applied voltage off.
5. Set and apply about 20% higher voltage than the measured operate value for one phase.
6. Measure the time delay for the TR1 signal and compare it with the set value.
7. Repeat the test for step 2.

15.7.2.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.
15.7.3 Two step residual overvoltage protection ROV2PTOV

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.7.3.1 Verifying the settings

1. Apply the single-phase voltage either to a single phase voltage input or to a residual voltage input with the start value below the set value $U_1>$.
2. Slowly increase the value until ST1 appears.
3. Note the operate value and compare it with the set value.
4. Switch the applied voltage off.
5. Set and apply about 20% higher voltage than the measured operate value for one phase.
6. Measure the time delay for the TR1 signal and compare it with the set value.
7. Repeat the test for step 2.

15.7.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.7.4 Overexcitation protection OEXPVPH

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.7.4.1 Verifying the settings

1. Enable function.
2. Connect a symmetrical three-phase voltage input from the test set to the appropriate connection terminals of the overexcitation protection OEXPVPH is configured for a three-phase voltage input.
 A single-phase injection voltage is applied if the function is configured for a phase-to-phase voltage input.
 OEXPVPH is conveniently tested using rated frequency for the injection voltage and increasing the injection voltage to get the desired overexcitation level.
3. Connect the alarm contact to the timer and set the time delay t_{Alarm} temporarily to zero.
4. Increase the voltage and note the operate value $V/Hz>$.
5. Reduce the voltage slowly and note the reset value.
6. Set the alarm time delay to the correct value according to the setting plan and check the time delay, injecting a voltage corresponding to $1.2 \cdot V/Hz$.

7. Connect a trip output contact to the timer and temporarily set the time delay t_{Min} to 0.5s.

8. Increase the voltage and note the V/Hz operate value.

9. Reduce the voltage slowly and note the reset value.

10. Set the time delay to the correct value according to the setting plan and check the time delay t_{Min}, injecting a voltage corresponding to $1.2 \cdot V/Hz$.

11. Check that trip and alarm contacts operate according to the configuration logic.

12. Set the cooling time constant temporarily to min value (1min.) to quickly lower the thermal content.

13. Wait for a period equal to 6 times $T_{cooling}$ switch 20 minutes on a voltage $1.15 \cdot V/Hz$ and check the inverse operate time. Wait until the thermal memory is emptied, set the cooling time constant according to the setting plan and check another point on the inverse time curve injecting a voltage $1.3 \cdot V/Hz$.

14. Finally check that START and TRIP information is stored in the event menu.

15.7.4.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.7.5 Voltage differential protection VDCPTOV

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

15.7.5.1 Check of undervoltage levels

This test is relevant if the setting $BlkDiffAtULow = Yes$.

Check of $U1Low$

Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 97.

2. Apply voltage higher than the highest set value of $UDTrip$, $U1Low$ and $U2Low$ to the U1 three-phase inputs and to one phase of the U2 inputs according to figure 97. The voltage differential START signal is set.
Figure 97: Connection of the test set to the IED for test of U1 block level

where:

1. is three-phase voltage group1 (U1)
2. is three-phase voltage group2 (U2)

3. Decrease slowly the voltage in phase UL1 of the test set until the START signal resets.
4. Check U1 blocking level by comparing the voltage level at reset with the set undervoltage blocking $U_{1\text{Low}}$.
5. Repeat steps 2 to 4 to check $U_{1\text{Low}}$ for the other phases.

The connections to U1 must be shifted to test another phase. (UL1 to UL2, UL2 to UL3, UL3 to UL1)

Check of $U_{2\text{Low}}$

Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 98.
Section 15
Verifying settings by secondary injection

15.7.5.2 Check of voltage differential trip and alarm levels

Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 99.

2. Apply voltage higher than the highest set value of $U_{D\text{trip}}$, $U_{1\text{Low}}$ and $U_{2\text{Low}}$ to the U1 three-phase inputs and to one phase of the U2 inputs according to figure 98. The voltage differential START signal is set.

3. Decrease slowly the voltage in phase UL3 of the test set until the START signal resets.

4. Check U2 blocking level by comparing the voltage level at reset with the set undervoltage blocking $U_{2\text{Low}}$.

Figure 98: Connection of the test set to the IED for test of U2 block level

where:

1. is three-phase voltage group1 (U1)
2. is three-phase voltage group2 (U2)
Figure 99: Connection of the test set to the IED for test of alarm levels, trip levels and trip timer

where:
1 is three-phase voltage group 1 (U1)
2 is three-phase voltage group 2 (U2)

2. Apply $1.2 \cdot U_r$ (rated voltage) to the U1 and U2 inputs.
3. Decrease slowly the voltage of in phase UL1 of the test set until the ALARM signal is activated.

- The ALARM signal is delayed with timer t_{Alarm}

4. Check the alarm operation level by comparing the differential voltage level at ALARM with the set alarm level U_{DAlarm}.
5. Continue to slowly decrease the voltage until START signal is activated.
6. Check the differential voltage operation level by comparing the differential voltage level at START with the set trip level U_{DTrip}.
7. Repeat steps 1 to 2 to check the other phases.
 Observe that the connections to U1 must be shifted to test another phase.
 (UL1 to UL2, UL2 to UL3, UL3 to UL1)

15.7.5.3 Check of trip and trip reset timers

Procedure
1. Connect voltages to the IED according to valid connection diagram and figure 99.
2. Set Ur (rated voltage) to the U1 inputs and increase U2 voltage until differential voltage is 1.5 \times \text{operating level} (U_{\text{D\text{Trip}}}).
3. Switch on the test set. Measure the time from activation of the START signal until TRIP signal is activated.
4. Check the measured time by comparing it to the set trip time \(t_{\text{Trip}}\).
5. Increase the voltage until START signal resets. Measure the time from reset of START signal to reset of TRIP signal.
6. Check the measured time by comparing it to the set trip reset time \(t_{\text{Reset}}\).

15.7.5.4 Final adjustment of compensation for VT ratio differences

Procedure

1. With the protection in test mode, view the differential voltage service values in each phase on the local HMI under Main menu/Test/Function status/Voltage protection/VoltageDiff(PTOV,60)/VDCPTOV:x.

\[\text{The IED voltage inputs should be connected to the VTs according to valid connection diagram.}\]

2. Record the differential voltages.
3. Calculate the compensation factor \(RFLx\) for each phase. For information about calculation of the compensation factor, see the application manual.
4. Set the compensation factors on the local HMI under Main menu/Settings/Settings group N/Voltage protection/VoltageDiff(PTOV,60)/VDCPTOV:x
5. Check that the differential voltages are close to zero.

15.7.5.5 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.7.6 100% Stator earth fault protection, 3rd harmonic based STEFPHIZ

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.
15.7.6.1 Testing

The protection function uses measurement of the third-harmonic voltages in the neutral point of the generator and on the generator terminal (broken delta voltage transformer connection to the IED).

The test set shall be capable to generate third-harmonic voltages. One voltage (U_{3N}) is connected to the residual voltage input related to the terminal side of the generator. The second voltage (U_{3T}) is connected to the voltage input related to the neutral of the generator. The angle between the injected third-harmonic voltages shall be adjustable.

![Figure 100: Typical phasor diagram for third harmonic voltages for healthy machine](en07000127.vsd)

1. Inject the following voltages: $U_{3T} = 15$ V, $U_{3N} = 5$ V and the angle between the voltages = 180°. Check the monitored values of the following analogue signals: E_3 (the magnitude of the third-harmonic induced voltage in the stator), U_{3N}: 5 V (the magnitude of the third-harmonic voltage measured at the neutral side of the generator), U_{3T}: 15 V (the magnitude of the third-harmonic voltage measured at the terminal side of the generator) and ANGLE: 180° (the angle between the third-harmonic voltage phasors U_{3N} and U_{3T}). The value of E_3 should be close to the following value:

$$E_3 = \sqrt{(U_{3N} - U_{3T} \cdot \cos(ANGLE))^2 + (U_{3T} \cdot \sin(ANGLE))^2}$$

(Equation 13)

2. Read the value of DU (differential voltage). The value of DU should be close to the following value:

$$DU = \sqrt{(U_{3N} + U_{3T} \cdot \cos(ANGLE))^2 + (U_{3T} \cdot \sin(ANGLE))^2}$$

(Equation 14)

3. Decrease the value of the injected voltage U_{3N} until the signal START3H is activated. Check that...
3 \[\frac{DU}{U_{3N}} = Beta \] (Equation 15)

considering stated accuracy (beta is a setting parameter)

4. Increase the voltage \(U_{3N} \) so that the sart signal falls. After that, switch the voltage \(U_{3N} \) to zero and measure the time delay for the activation of the signals TRIP and TRIP3H.

The 100% stator earth fault protection also has a fundamental frequency neutral point overvoltage function (95% stator earth fault protection). This part of the protection can be tested separately by means of fundamental frequency voltage injection from a test equipment.

15.7.6.2 Verifying settings

1. With the generator rotating at rated speed but not connected: check the value of the following analogue signals: \(E3 \) (the magnitude of the 3rd harmonic induced voltage in the stator), \(U_{3N} \) (the magnitude of the third-harmonic voltage measured at the neutral side of the generator), \(U_{3T} \) (the magnitude of the third-harmonic voltage measured at the terminal side of the generator) and ANGLE (the angle between the third-harmonic voltage phasors \(U_{3N} \) and \(U_{3T} \)). The value of \(E3 \) should be close to the following value:

\[
E3 = \sqrt{\left(U_{3N} - U_{3T} \cdot \cos(ANGLE)\right)^2 + \left(U_{3T} \cdot \sin(ANGLE)\right)^2}
\] (Equation 16)

Make sure that ANGLE has a value bigger than 125°

2. Read the value of DU (differential voltage). The value of DU should be close to the following value:

\[
DU = \sqrt{\left(U_{3N} + U_{3T} \cdot \cos(ANGLE)\right)^2 + \left(U_{3T} \cdot \sin(ANGLE)\right)^2}
\] (Equation 17)

3. Read the value of BU (bias voltage: Beta \(\cdot U_{3N} \)). The ratio DU/BU should be well below 1 for a non-faulted generator.

4. After synchronization of the generator the ratio DU/BU is checked for different load levels of the generator. These different monitoring of load levels should be the base for the setting of beta.

If the function is used with the option of neutral point measurement only the test is performed by check of this voltage. The operate value should be above the measured residual third-harmonic voltage in the neutral point at normal operation (non-faulted generator).
15.7.6.3 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.8 Frequency protection

15.8.1 Underfrequency protection SAPTUF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.8.1.1 Verifying the settings

Verification of START value and time delay to operate

1. Check that the IED settings are appropriate, especially the START value and the definite time delay.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the frequency of the applied voltage, until the START signal appears.
4. Note the operate value and compare it with the set value.
5. Increase the frequency until rated operating levels are reached.
6. Check that the START signal resets.
7. Instantaneously decrease the frequency of the applied voltage to a value about 20% lower than the operate value.
8. Measure the time delay of the TRIP signal, and compare it with the set value.

Extended testing

1. The test above can be repeated to check the time to reset.
2. The tests above can be repeated to test the frequency dependent inverse time characteristic.

Verification of the low voltage magnitude blocking

1. Check that the IED settings are appropriate, especially the StartFrequency, IntBlockLevel, and the TimeDlyOperate.
2. Supply the IED with three-phase voltages at rated values.
3. Slowly decrease the magnitude of the applied voltage, until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the set value IntBlockLevel.
5. Slowly decrease the frequency of the applied voltage, to a value below \textit{StartFrequency}.

6. Check that the START signal does not appear.

7. Wait for a time corresponding to \textit{TimeDlyOperate}, and make sure that the TRIP signal not appears.

15.8.1.2 Completing the test

Continue to test another function or end the test by changing the \textit{TestMode} setting to \textit{Off}. Restore connections and settings to their original values, if they were changed for testing purposes.

15.8.2 Overfrequency protection SAPTOF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.8.2.1 Verifying the settings

\textbf{Verification of START value and time delay to operate}

1. Check that the settings in the IED are appropriate, especially the START value and the definite time delay.

2. Supply the IED with three-phase voltages at their rated values.

3. Slowly increase the frequency of the applied voltage, until the START signal appears.

4. Note the operate value and compare it with the set value.

5. Decrease the frequency to rated operating conditions.

6. Check that the START signal resets.

7. Instantaneously increase the frequency of the applied voltage to a value about 20\% higher than the operate value.

8. Measure the time delay for the TRIP signal, and compare it with the set value.

\textbf{Extended testing}

1. The test above can be repeated to check the time to reset.

\textbf{Verification of the low voltage magnitude blocking}

1. Check that the settings in the IED are appropriate, especially the \textit{StartFrequency}, \textit{IntBlocklevel}, and the \textit{TimeDlyOperate}.

2. Supply the IED with three-phase voltages at their rated values.

3. Slowly decrease the magnitude of the applied voltage, until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the set value, \textit{IntBlocklevel}.

5. Slowly increase the frequency of the applied voltage, to a value above \textit{StartFrequency}.

6. Check that the START signal does not appear.

7. Wait for a time corresponding to \textit{TimeDlyOperate}, and make sure that the TRIP signal does not appear.

15.8.2.2 Completing the test

Continue to test another function or end the test by changing the \textit{TestMode} setting to \textit{Off}. Restore connections and settings to their original values, if they were changed for testing purposes.

15.8.3 Rate-of-change frequency protection SAPFRC

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

15.8.3.1 Verifying the settings

Verification of START value and time delay to operate

1. Check that the settings in the IED are appropriate, especially the START value and the definite time delay. Set \textit{StartFreqGrad}, to a rather small negative value.

2. Supply the IED with three-phase voltages at their rated values.

3. Slowly decrease the frequency of the applied voltage, with an increasing rate-of-change that finally exceeds the setting of \textit{StartFreqGrad}, and check that the START signal appears.

4. Note the operate value and compare it with the set value.

5. Increase the frequency to rated operating conditions, and zero rate-of-change.

6. Check that the START signal resets.

7. Instantaneously decrease the frequency of the applied voltage to a value about 20% lower than the nominal value.

8. Measure the time delay for the TRIP signal, and compare it with the set value.

Extended testing

1. The test above can be repeated to check a positive setting of \textit{StartFreqGrad}.

2. The tests above can be repeated to check the time to reset.

3. The tests above can be repeated to test the RESTORE signal, when the frequency recovers from a low value.
15.8.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.9 Multipurpose protection

15.9.1 General current and voltage protection CVGAPC

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

One of the new facilities within the general current and voltage protection function CVGAPC is that the value, which is processed and used for evaluation in the function, can be chosen in many different ways by the setting parameters CurrentInput and VoltageInput. These setting parameters decide what kind of preprocessing the connected three-phase CT and VT inputs shall be subjected to. That is, for example, single-phase quantities, phase-to-phase quantities, positive sequence quantities, negative sequence quantities, maximum quantity from the three-phase group, minimum quantity from the three-phase group, difference between maximum and minimum quantities (unbalance) can be derived and then used in the function.

Due to the versatile possibilities of CVGAPC itself, but also the possibilities of logic combinations in the application configuration of outputs from more than one CVGAPC function block, it is hardly possible to define a fully covering general commissioning test.

When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is of utmost importance to set the definite time delay for that stage to zero.

15.9.1.1 Built-in overcurrent feature (non-directional)

Procedure

1. Go to Main menu/Test/Function test modes/Multipurpose protection/GeneralCurrentVoltage(GAPC)/CVGAPC:x and make sure that CVGAPC
to be tested is unblocked and other functions that might disturb the evaluation of the test are blocked.

2. Connect the test set for injection of three-phase currents to the appropriate current terminals of the IED in the 670 series.

3. Inject current(s) in a way that relevant measured current (according to setting parameter CurrentInput) is created from the test set. Increase the current(s) until the low set stage operates and check against the set operate value.

4. Decrease the current slowly and check the reset value.

5. Block high set stage if the injection current will activate the high set stage when testing the low set stage according to below.

6. Connect a TRIP output contact to the timer.

7. Set the current to 200% of the operate value of low set stage, switch on the current and check the time delay.

 For inverse time curves, check the operate time at a current equal to 110% of the operate current at \(t_{Min} \).

8. Check that TRIP and START contacts operate according to the configuration logic.

9. Release the blocking of the high set stage and check the operate and reset value and the time delay for the high set stage in the same way as for the low set stage.

10. Finally check that START and TRIP information is stored in the event menu.

 Information on how to use the event menu is found in the operator's manual.

15.9.1.2 Overcurrent feature with current restraint

The current restraining value has also to be measured or calculated and the influence on the operation has to be calculated when the testing of the operate value is done.

Procedure

1. Operate value measurement
 The current restraining value has also to be measured or calculated and the influence on the operation has to be calculated when the testing of the operate value is done.

15.9.1.3 Overcurrent feature with voltage restraint

Procedure
1. Connect the test set for injection of three-phase currents and three-phase voltages to the appropriate current and voltage terminals of the IED.
2. Inject current(s) and voltage(s) in a way that relevant measured (according to setting parameter CurrentInput and VoltageInput) currents and voltages are created from the test set.
 Overall check in principal as above (non-directional overcurrent feature)
3. Operate value measurement
 The relevant voltage restraining value (according to setting parameter VoltageInput) has also to be injected from the test set and the influence on the operate value has to be calculated when the testing the operate value is done.
4. Operate time measurement
 Definite times may be tested as above (non-directional overcurrent feature).
 For inverse time characteristics the START value (to which the overcurrent ratio has to be calculated) is the actual pickup value as got with actual restraining from the voltage restraining quantity.

15.9.1.4 Overcurrent feature with directionality

Please note that the directional characteristic can be set in two different ways either just dependent on the angle between current and polarizing voltage (setting parameter DirPrinc_OC1 or DirPrinc_OC2 set to or in a way that the operate value also is dependent on the angle between current and polarizing voltage according to the $I \cdot \cos(\Phi)$ law (setting parameter DirPrincOC1 or DirPrincOC2 set to $I \cdot \cos(\Phi)$). This has to be known if a more detailed measurement of the directional characteristic is made, than the one described below.

Procedure

1. Connect the test set for injection of three-phase currents and three-phase voltages to the appropriate current and voltage terminals of the IED.
2. Inject current(s) and voltage(s) in a way that relevant measured (according to setting parameter CurrentInput and VoltageInput) currents and voltages are created from the test set.
3. Set the relevant measuring quantity current to lag or lead (lag for negative RCA angle and lead for positive RCA angle) the relevant polarizing quantity voltage by an angle equal to the set IED characteristic angle (rca-dir) when forward directional feature is selected and the CTstarpoint configuration parameter is set to ToObject.
 If reverse directional feature is selected or CTstarpoint configuration parameter is set to FromObject, the angle between current and polarizing voltage shall be set equal to rca-dir+180°.
4. Overall check in principal as above (non-directional overcurrent feature)
5. Reverse the direction of the injection current and check that the protection does not operate.
6. Check with low polarization voltage that the feature becomes non-directional, blocked or with memory according to the setting.
15.9.1.5 Over/Undervoltage feature

Procedure

1. Connect the test set for injection three-phase voltages to the appropriate voltage terminals of the IED.
2. Inject voltage(s) in a way that relevant measured (according to setting parameter VoltageInput) voltages are created from the test set.
3. Overall check in principal as above (non-directional overcurrent feature) and correspondingly for the undervoltage feature.

15.9.1.6 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.9.2 Rotor earth fault protection with RXTTE4 and general current and voltage protection CVGAPC

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

15.9.2.1 Testing

The protection function uses injection of an ac voltage to the generator field circuit. The COMBIFLEX voltage injection unit RXTTE4, Part No 1MRK 002 108-AB contains a voltage transformer with a primary winding for connection to 120 or 230 V, 50 or 60 Hz supply voltage. From the secondary winding of this internal voltage transformer approximately 40 V AC is injected via series capacitors and resistors into the rotor circuit. The injected voltage is fed to a voltage input of the REG670 IED. The current caused by the injection is fed to a current input of the REG670 IED via a current transformer, which is amplifying the current ten times, as shown in figure 101.
Figure 101: *Ten times amplification of current via a current transformer*

The test described in steps 1 to 6 can be done with the generator at stand-still situations.

Procedure

1. The test should be prepared with a switch connected between the output of RXTTE4 (221) and the station earth. Initially this switch is open.
2. First the 120 (230) V input to RXTTE4 is disconnected. This should give a signal from REG670 that the injection voltage is low.
3. Reconnect the 120 (230) V input and check that the low injection voltage signal resets.
4. Close the switch to the station earth and check that the trip from the rotor earth fault will be given after the set delay time.

5. Open the switch to the station earth and check that the trip signal resets instantaneously.

6. Connect an adjustable resistor to the field circuit (221 on RXTTE4). Decrease this resistor from a large value until the function operates and check monitored value ICOSFI.

When the generator has been started the service value of injection voltage and injection current shall be checked so that there is no risk for unwanted trip due to large capacitive detected current.

15.9.2.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.10 Secondary system supervision

15.10.1 Current circuit supervision CCSRDIF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

The Current circuit supervision function CCSRDIF is conveniently tested with the same three-phase test set as used when testing the measuring functions in the IED.

The condition for this procedure is that the setting of IMinOp is lower than the setting of Ip>Block.

15.10.1.1 Verifying the settings

1. Check the input circuits and the operate value of the IMinOp current level detector by injecting current, one phase at a time.

2. Check the phase current blocking function for all three phases by injection current, one phase at a time. The output signals shall reset with a delay of 1 second when the current exceeds 1.5 · IBase.

3. Inject a current 0.9 · IBase to phase L1 and a current 0.15 · IBase to the reference current input I5.

4. Decrease slowly the current to the reference current input and check that blocking is obtained when the current is about 0.1 · IBase.
15.10.1.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.10.2 Fuse failure supervision SDDRFUF

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

The verification is divided in two main parts. The first part is common to all fuse failure supervision options, and checks that binary inputs and outputs operate as expected according to actual configuration. In the second part the relevant set operate values are measured.

15.10.2.1 Checking that the binary inputs and outputs operate as expected

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Connect the nominal dc voltage to the DISCPOS binary input.
 - The signal BLKU should appear with almost no time delay.
 - No signals BLKZ and 3PH should appear on the IED.
 - Only the distance protection function can operate.
 - Undervoltage-dependent functions must not operate.
3. Disconnect the dc voltage from the DISCPOS binary input terminal.
4. Connect the nominal dc voltage to the MCBOP binary input.
 - The BLKU and BLKZ signals should appear without any time delay.
 - All undervoltage-dependent functions must be blocked.
5. Disconnect the dc voltage from the MCBOP binary input terminal.
6. Disconnect one of the phase voltages and observe the logical output signals on the binary outputs of the IED. BLKU and BLKZ signals should simultaneously appear.
 - BLKU and BLKZ signals should simultaneously appear.
7. After more than 5 seconds disconnect the remaining two-phase voltages and all three currents.
 - There should be no change in the high status of the output signals BLKU and BLKZ.
 - The signal 3PH will appear.
8. Establish normal voltage and current operating conditions simultaneously and observe the corresponding output signals. They should change to logical 0 as follows:
• Signal 3PH after about 25ms
• Signal BLKU after about 50ms
• Signal BLKZ after about 200ms

15.10.2.2 Measuring the operate value for the negative sequence function

Measure the operate value for the negative sequence function, if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Slowly decrease the measured voltage in one phase until the BLKU signal appears.
3. Record the measured voltage and calculate the corresponding negative-sequence voltage according to the equation. Observe that the voltages in the equation are phasors.

\[3 \cdot U_2 = \bar{U}_{L1} + a^2 \cdot \bar{U}_{L2} + a \cdot \bar{U}_{L3} \]

(Equation 18)

Where:

\[\bar{U}_{L1}, \bar{U}_{L2}, \bar{U}_{L3} = \text{the measured phase voltages} \]

\[a = 1 \cdot e^{j \frac{2\pi}{3}} = -0.5 + j\frac{\sqrt{3}}{2} \]

4. Compare the result with the set value (consider that the set value \(3U2 > \) is in percentage of the base voltage \(U_{Base} \)) of the negative-sequence operating voltage.

15.10.2.3 Measuring the operate value for the zero-sequence function

Measure the operate value for the zero-sequence function, if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Slowly decrease the measured voltage in one phase until the BLKU signal appears.
3. Record the measured voltage and calculate the corresponding zero-sequence voltage according to the equation. Observe that the voltages in the equation are phasors.
\[3 \cdot U_0 = U_{L1} + U_{L2} + U_{L3} \]

(Equation 21)

Where:

\[U_{L1}, U_{L2} \text{ and } U_{L3} \]

= the measured phase voltages.

4. Compare the result with the set value (consider that the set value \(3U0\geq\) is in percentage of the base voltage of the zero-sequence operating voltage.

15.10.2.4 Checking the operation of the du/dt and di/dt based function

Check the operation of the du/dt and di/dt based function, if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Connect the nominal dc voltage to the CBCLOSED binary input.
3. Change the voltages and currents in all three phases simultaneously.
 The voltage change should be greater than set \(DU>\) and the current change should be less than the set \(DI<\).
 • The BLKU and BLKZ signals appear without any time delay. The BLKZ signal will be activated, only if the internal deadline detection is not activated at the same time.
 • 3PH should appear after 5 seconds, if the remaining voltage levels are lower than the set \(UDLD<\) of the DLD function.
4. Apply normal conditions as in step 3.
 The BLKU, BLKZ and 3PH signals should reset, if activated, see step 1 and 3.
5. Change the voltages and currents in all three phases simultaneously.
 The voltage change should be greater than set \(DU>\) and the current change should be greater than the set \(DI<\).
 The BLKU, BLKZ and 3PH signals should not appear.
6. Disconnect the dc voltage to the CBCLOSED binary input.
7. Apply normal conditions as in step 1.
8. Repeat step 3.
9. Connect the nominal voltages in all three phases and feed a current below the operate level in all three phases.
10. Keep the current constant. Disconnect the voltage in all three phases simultaneously.
 The BLKU, BLKZ and 3PH signals should not appear.

15.10.2.5 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.
15.11 Control

15.11.1 Synchrocheck, energizing check, and synchronizing SESRSYN

This section contains instructions on how to test the synchrocheck, energizing check, and synchronizing function SESRSYN for single, double and 1½ breaker arrangements.

This section contains instructions on how to test the synchrocheck and energizing check for single CB with or without the synchronizing function.

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

At commissioning and periodical checks, the functions shall be tested with the used settings. To test a specific function, it might be necessary to change some setting parameters, for example:

- **AutoEnerg** = Off/DLLB/DBLL/Both
- **ManEnerg** = Off
- **Operation** = Off/On
- Activation of the voltage selection function if applicable

The tests explained in the test procedures below describe the settings, which can be used as references during testing before the final settings are specified. After testing, restore the equipment to the normal or desired settings.

A secondary injection test set with the possibility to alter the phase angle and amplitude of the voltage is needed. The test set must also be able to generate different frequencies on different outputs.

![Information icon]

The description below applies for a system with a nominal frequency of 50 Hz but can be directly applicable to 60 Hz. SESRSYN can be set to use different phases, phase to earth or phase to phase. Use the set voltages instead of what is indicated below.

Figure 102 shows the general test connection principle, which can be used during testing. This description describes the test of the version intended for one bay.

Figure 103 shows the general test connection for a 1½ breaker diameter with one-phase voltage connected to the line side.
Section 15
Verifying settings by secondary injection

Figure 102: General test connection with three-phase voltage connected to the line side

Figure 103: General test connection for a 1½ breaker diameter with one-phase voltage connected to the line side
15.11.1.1 Testing the synchronizing function

This section is applicable only if the synchronizing function is included.

The voltage inputs used are:

- UP3LN1: UL1, UL2 or UL3 line 1 voltage inputs on the IED
- UP3BB1: Bus1 voltage input on the IED

Testing the frequency difference

The frequency difference is in the example set at 0.20 Hz on the local HMI, and the test should verify that operation is achieved when the $FreqDiffMax$ frequency difference is lower than 0.20 Hz. The test procedure below will depend on the settings used. Input STARTSYN must be activated during the test.

1. Apply voltages
 1.1. U-Line = 100% $U_{BaseLine}$ and f-Line = 50.0 Hz
 1.2. U-Bus = 100% $U_{BaseBus}$ and f-Bus = 50.2Hz
2. Check that a closing pulse is submitted and at closing angle less than 2 degrees from phase equality. Modern test sets will evaluate this automatically.
3. Repeat with
 3.1. U-Bus = 100% $U_{BaseBus}$ and f-bus = 50.25 Hz
 3.2. Verify that the function does not operate when frequency difference is above limit.
4. Repeat with different frequency differences for example, 100 mHz with f-Bus nominal and line leading and for example 20 mHz (or just above $FreqDiffMin$) to verify that independent of frequency difference the closing pulse occurs within 2 degrees.
5. Verify that the closing command is not issued when the frequency difference is less than the set value $FreqDiffMin$.

15.11.1.2 Testing the synchrocheck check

During the test of SESRSYN for a single bay arrangement, these voltage inputs are used:

- U-Line: UL1, UL2 or UL3 line 1 voltage input on the IED
- U-Bus: Bus voltage input on the IED

Testing the voltage difference

Set the voltage difference to 0.15 p.u. on the local HMI, and the test should check that operation is achieved when the voltage difference $UDiffSC$ is lower than 0.15 p.u.
The settings used in the test shall be final settings. The test shall be adapted to site setting values instead of values in the example below.

Test with no voltage difference between the inputs.

Test with a voltage difference higher than the set $UDiffSC$

1. Apply voltages U-Line (for example) = 80% $U_{BaseLine}$ and U-Bus = 80% $U_{BaseBus}$ with the same phase-angle and frequency.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
3. The test can be repeated with different voltage values to verify that the function operates within the set $UDiffSC$. Check with both U-Line and U-Bus respectively lower than the other.
4. Increase the U-Bus to 110% $U_{BaseBus}$, and the U-Line = 90% $U_{BaseLine}$ and also the opposite condition.
5. Check that the two outputs for manual and auto synchronism are not activated.

Testing the phase angle difference

The phase angle differences $PhaseDiffM$ and $PhaseDiffA$ respectively are set to their final settings and the test should verify that operation is achieved when the phase angle difference is lower than this value both leading and lagging.

Test with no voltage difference.

1. Apply voltages U-Line (for example) = 100% $U_{BaseLine}$ and U-Bus = 100% $U_{BaseBus}$, with a phase difference equal to 0 degrees and a frequency difference lower than $FreqDiffA$ and $FreqDiffM$.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
The test can be repeated with other phase difference values to verify that the function operates for values lower than the set ones, $PhaseDiffM$ and $PhaseDiffA$. By changing the phase angle on the voltage connected to U-Bus, between $±dφ$ degrees, the user can check that the two outputs are activated for a phase difference lower than the set value. It should not operate for other values. See figure 104.
3. Change the phase angle between \(+\phi \) and \(-\phi \) and verify that the two outputs are activated for phase differences between these values but not for phase differences outside, see figure 104.

Testing the frequency difference

The frequency difference test should verify that operation is achieved when the \(\text{FreqDiffA} \) and \(\text{FreqDiffM} \) frequency difference is lower than the set value for manual and auto synchronizing check, \(\text{FreqDiffA} \) and \(\text{FreqDiffM} \) respectively and that operation is blocked when the frequency difference is greater.

Test with frequency difference = 0 mHz

Test with a frequency difference outside the set limits for manual and auto synchronizing check respectively.

1. Apply voltages U-Line equal to 100\% \(U_{\text{BaseLine}} \) and U-Bus equal to 100\% \(U_{\text{BaseBus}} \), with a frequency difference equal to 0 mHz and a phase difference lower than the set value.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
3. Apply voltage to the U-Line equal to 100\% \(U_{\text{BaseLine}} \) with a frequency equal to 50 Hz and voltage U-Bus equal to 100\% \(U_{\text{BaseBus}} \), with a frequency outside the set limit.
4. Check that the two outputs are not activated. The test can be repeated with different frequency values to verify that the function operates for values lower than the set ones. If a modern test set is used, the frequency can be changed continuously.

Testing the reference voltage

1. Use the same basic test connection as in figure 102.
The voltage difference between the voltage connected to U-Bus and U-Line should be 0%, so that the AUTOSYOK and MANSYOK outputs are activated first.

2. Change the U-Line voltage connection to U-Line2 without changing the setting on the local HMI. Check that the two outputs are not activated.

15.11.1.3 Testing the energizing check

During the test of the energizing check function for a single bay arrangement, these voltage inputs are used:

<table>
<thead>
<tr>
<th>U-Line</th>
<th>UL1, UL2 or UL3 line1 voltage inputs on the IED</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Bus</td>
<td>Bus voltage input on the IED</td>
</tr>
</tbody>
</table>

General

When testing the energizing check function for the applicable bus, arrangement shall be done for the energizing check functions. The voltage is selected by activation of different inputs in the voltage selection logic.

The test shall be performed according to the settings for the station. Test the alternatives below that are applicable.

Testing the dead line live bus (DLLB)
The test should verify that the energizing check function operates for a low voltage on the U-Line and for a high voltage on the U-Bus. This corresponds to the energizing of a dead line to a live bus.

1. Apply a single-phase voltage 100% $U_{BaseBus}$ to the U-Bus, and a single-phase voltage 30% $U_{BaseLine}$ to the U-Line.
2. Check that the AUTOENOK and MANENOK outputs are activated after set $t_{AutoEnerg}$ respectively $t_{ManEnerg}$.
3. Increase the U-Line to 60% $U_{BaseLine}$ and U-Bus to be equal to 100% $U_{BaseBus}$. The outputs should not be activated.
4. The test can be repeated with different values on the U-Bus and the U-Line.

Testing the dead bus live line (DBLL)
The test should verify that the energizing check function operates for a low voltage on the U-Bus and for a high voltage on the U-Line. This corresponds to an energizing of a dead bus to a live line.
1. Verify the settings AutoEnerg or ManEnerg to be DBLL.
2. Apply a single-phase voltage of 30% UBaseBus to the U-Bus and a single-phase voltage of 100% UBaseLine to the U-Line.
3. Check that the AUTOENOK and MANENOK outputs are activated after set \(t_{AutoEnerg} \) respectively \(t_{ManEnerg} \).
4. Decrease the U-Line to 60% UBaseLine and keep the U-Bus equal to 30% UBaseBus. The outputs should not be activated.
5. The test can be repeated with different values on the U-Bus and the U-Line.

Testing both directions (DLLB or DBLL)

1. Verify the local HMI settings AutoEnerg or ManEnerg to be Both.
2. Apply a single-phase voltage of 30% UBaseLine to the U-Line and a single-phase voltage of 100% UBaseBus to the U-Bus.
3. Check that the AUTOENOK and MANENOK outputs are activated after set \(t_{AutoEnerg} \) respectively \(t_{ManEnerg} \).
4. Change the connection so that the U-Line is equal to 100% UBaseLine and the U-Bus is equal to 30% UBaseBus. The outputs should still be activated.
5. The test can be repeated with different values on the U-Bus and the U-Line.

Testing the dead bus dead line (DBDL)
The test should verify that the energizing check function operates for a low voltage on both the U-Bus and the U-Line, that is, closing of the breaker in a non-energized system. Test is valid only when this function is used.

1. Verify the local HMI setting AutoEnerg to be Off and ManEnerg to be DBLL.
2. Set the parameter ManEnergDBDL to On.
3. Apply a single-phase voltage of 30% UBaseBus to the U-Bus and a single-phase voltage of 30% UBaseLine to the U-Line.
4. Check that the MANENOK output is activated after set \(t_{ManEnerg} \).
5. Increase the U-Bus to 80% and keep the U-Line equal to 30%. The outputs should not be activated.
6. Repeat the test with ManEnerg set to DLLB with different values on the U-Bus and the U-Line voltage.

15.11.1.4 Testing the voltage selection

Testing the voltage selection for single CB arrangements
This test should verify that the correct voltage is selected for the measurement in the SESRSYN function used in a double-bus arrangement. Apply a single-phase voltage of 100% UBaseLine to the U-Line and a single-phase voltage of 100% UBaseBus to the U-Bus.

If the UB1/2OK inputs for the fuse failure are used, they must be activated, during tests below. Also verify that deactivation prevents operation and gives an alarm.
1. Connect the signals above to binary inputs and binary outputs.
2. Connect the voltage inputs to the analog inputs used for each bus or line depending of the type of busbar arrangement and verify that correct output signals are generated.

Testing the voltage selection for double breaker or breaker-and-a-half diameter when applicable

This test should verify that correct voltage is selected for the measurement in the energizing function used for a diameter in a One-and-a-half breaker arrangement. Apply single-phase voltages to the inputs. H means a voltage of 100% $U_{BaseBus}$ and L means a voltage of 30% $U_{BaseLine}$. Verify that correct output signals are generated.

1. Connect the analog signals to the voltage inputs, in pair of two for U1 and U2. (Inputs U3P - BB1, BB2, LN1, LN2)
2. Activate the binary signals according to the used alternative. Verify the measuring voltage on the synchronizing check function SESRSYN. Normally it can be good to verify synchronizing check with the same voltages and phase angles on both voltages. The voltages should be verified to be available when selected and not available when another input is activated so connect only one voltage transformer reference at each time.
3. Record the voltage selection tests in a matrix table showing read values and AUTOSYOK/MANSYOK signals to document the test performed.

15.11.1.5 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

15.11.2 Apparatus control APC

The apparatus control function consists of four types of function blocks, which are connected in a delivery-specific way between bays and to the station level. For that reason, test the total function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

If a block/unblock command is sent from remote to function, while the IED is shut down, this command will not be recognized after the start up, thus the command that was sent prior to the shut down is used. In such cases, where there is a mismatch, the user is advised to make a complete cycle of block/unblock operations to align the statuses.
15.11.3 **Interlocking**

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

Values of the logical signals are available on the local HMI under **Main menu/Tests/Function status/Control/<Function>/<1:Function>**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The interlocking function consists of a bay-level part and a station-level part. The interlocking is delivery specific and is realized by bay-to-bay communication over the station bus. For that reason, test the function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

15.11.4 **Single command SingleCommand16Signals**

For the single command function block, it is necessary to configure the output signal to corresponding binary output of the IED. The operation of the single command function (SingleCommand16Signals) is then checked from the local HMI by applying the commands with **Mode = Off, Steady or Pulse**, and by observing the logic statuses of the corresponding binary output. Command control functions included in the operation of different built-in functions must be tested at the same time as their corresponding functions.

15.12 **Logic**

15.12.1 **Tripping logic SMPPTRC**

Prepare the IED for verification of settings outlined in section "Overview" and section "Preparing for test" in this chapter.

This function is functionality tested together with other protection functions (line differential protection, earth-fault overcurrent protection, and so on) within the IED. It is recommended that the function is tested together with the autorecloser function, when built into the IED or when a separate external unit is used for reclosing purposes. The instances of SMPPTRC are identical except for the name of the function block SMPPTRC. The testing is preferably done in conjunction with the protection system and autoreclosing function.

15.12.1.1 **Three phase operating mode**

1. Check that **AutoLock** and **TripLockout** are both set to **Off**.

2. Initiate a three-phase fault
 - An adequate time interval between the faults should be considered, to overcome a reclaim time caused by the possible activation of the Autorecloser.
function SMBRREC. The function must issue a three-phase trip in all cases, when trip is initiated by any protection or some other built-in or external function. The following functional output signals must always appear simultaneously: TRIP, TRL1, TRL2, TRL3 and TR3P.

15.12.1.2 1ph/3ph operating mode

In addition to various other tests, the following tests should be performed. They depend on the complete configuration of an IED:

Procedure

1. Make sure that TripLockout and AutoLock are both set to Off.
2. Initiate different single-phase-to-earth faults one at a time. Single-phase tripping will only be allowed when an autoreclose attempt will follow. The autorecloser function SMBRREC has the functionality such as the long trip time, CB ready and so on, which can prevent a proper single-phase tripping and autoreclose. To by-pass this problem the fault initiation should be with a test set and with the autoreclose in full service with a test set connected to the distance protection function. Consider using an adequate time interval between faults, to overcome a reclaim time of which is activated by SMBRREC. Only a single-phase trip should occur for each separate fault and only one of the trip outputs (TRLn) should be activated at a time. Functional outputs TRIP and TR1P should be active during each fault. No other outputs should be active.
3. Initiate different phase-to-phase and three-phase faults. Consider using an adequate time interval between faults, to overcome a reclaim time, which is activated by SMBRREC. A three-phase trip should occur for each separate fault and all of the trips. Functional outputs TRIP, all TRLn and TR3P should be active at each fault.

4. Initiate a single phase-to-earth fault and switch it off immediately when the trip signal is issued for the corresponding phase. Initiate the same fault once again within the reclaim time of the used SMBRREC. A single-phase fault shall be given at the first fault. A three-phase trip must be initiated for the second fault. Check that the corresponding trip signals appear after both faults. Functional outputs TRIP, TRLn and TR1P should be active during first fault. No other outputs should be active. Functional outputs TRIP, all TRLn and TR3P should be active during second fault.
5. Initiate a single phase-to-earth fault and switch it off immediately when the trip signal is issued for the corresponding phase. Initiate the second single phase-to-earth fault in one of the remaining phases within the time interval, shorter than EvolvingFault (default setting 2.0s) and shorter than the dead-time of SMBRREC, when included in the protection scheme.
Check that the second trip is a three-phase trip and that a three-phase autoreclosing attempt is given after the three-phase dead time. Functional outputs TRIP, TRLn and TR1P should be active during the first fault. No other outputs should be active. Functional outputs TRIP, all TRLn and TR3P should be active during second fault.

15.12.1.3 1ph/2ph/3ph operating mode

In addition to other tests, the following tests, which depend on the complete configuration of an IED, should be carried out.

Procedure

1. Make sure that AutoLock and TripLockout are both set to Off.
2. Initiate different single-phase-to-earth faults one at a time.
 Take an adequate time interval between faults into consideration, to overcome a reclaim time, which is activated by the autorecloser function SMBRREC. Only a single-phase trip should occur for each separate fault and only one of the trip outputs (TRLn) should be activated at a time. Functional outputs TRIP and TR1P should be active at each fault. No other outputs should be active.
3. Initiate different phase-to-phase faults one at a time.
 Take an adequate time interval between faults into consideration, to overcome a reclaim time which is activated by SMBRREC. Only a two-phase trip should occur for each separate fault and only corresponding two trip outputs (TRLn) should be activated at a time. Functional outputs TRIP and TR2P should be active at each fault. No other outputs should be active.
4. Initiate a three-phase fault.
 Take an adequate time interval between faults into consideration, to overcome a reclaim time, which may be activated by SMBRREC. Only a three-phase trip should occur for the fault and all trip outputs (TRLn) should be activated at the same time. Functional outputs TRIP and TR3P should be active at each fault. No other outputs should be active.
5. Initiate a single phase-to-earth fault and switch it off immediately when the trip signal is issued for the corresponding phase. Initiate the same fault once again within the reclaim time of the used SMBRREC. A single-phase fault shall be given at the first fault. A three-phase trip must be initiated for the second fault. Check that the corresponding trip signals appear after both faults. Functional outputs TRIP, TRLn and TR1P should be active during first fault. No other outputs should be active. Functional outputs TRIP, all TRLn and TR3P should be active during second fault.
6. Initiate a single phase-to-earth fault and switch it off immediately when the trip signal is generated for the corresponding phase. Initiate the second single-phase-to-earth fault in one of the remaining phases within the time interval, shorter than tEvolvingFault (default setting 2.0s) and shorter than the dead-time of SMBRREC, when included in the protection scheme. Check that the second trip is a three-phase trip and that a three-phase autoreclosing attempt is given after the three-phase dead time. Functional outputs TRIP, TRLn and TR1P should be active during first fault. No other
outputs should be active. Functional outputs TRIP, all TRLn and TR3P should be active during second fault.

7. Initiate a phase-to-phase fault and switch it off immediately when the trip signal is issued for the corresponding two phases. Initiate a second phase-to-phase fault between two other phases within the time interval, shorter than $t_{EvolvingFault}$ (default setting 2.0s).
Check, that the output signals, issued for the first fault, correspond to a two-trip for included phases. The output signals generated by the second fault must correspond to the three-phase tripping action.

15.12.1.4 Circuit breaker lockout

The following tests should be carried out when the built-in lockout function is used in addition to possible other tests, which depends on the complete configuration of an IED.

1. Check that $AutoLock$ and $TripLockout$ are both set to Off.
2. Activate shortly the set lockout (SETLKOUT) signal in the IED.
3. Check that the circuit breaker lockout (CLLKOUT) signal is set.
4. Activate shortly thereafter, the reset lockout (RSTLKOUT) signal in the IED.
5. Check that the circuit breaker lockout (CLLKOUT) signal is reset.
6. Initiate a three-phase fault.
A three-phase trip should occur and all trip outputs TRL1, TRL2, TRL3 should be activated. Functional outputs TRIP and TR3P should be active at each fault. The output CLLKOUT should not be set.
7. Activate the automatic lockout function, set $AutoLock = On$ and repeat. Beside the TRIP outputs, CLLKOUT should be set.
8. Reset the lockout signal by shortly thereafter activating the reset lockout (RSTLKOUT) signal.
9. Activate the trip signal lockout function, set $TripLockout = On$ and repeat. All trip outputs (TRL1, TRL2, TRL3) and functional outputs TRIP and TR3P must be active and stay active after each fault, CLLKOUT should be set.
10. Repeat.
All functional outputs should reset.
11. Deactivate the TRIP signal lockout function, set $TripLockout = Off$ and the automatic lockout function, set $AutoLock = Off$.

15.12.1.5 Completing the test

Continue to test another function or end the test by changing the $TestMode$ setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.
15.13 Monitoring

15.13.1 Event function EVENT

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

During testing, the IED can be set when in test mode from PST. The functionality of the event reporting during test mode is set in the Parameter Setting tool in PCM600.

- Use event masks
- Report no events
- Report all events

In test mode, individual event blocks can be blocked from PCM600.

Individually, event blocks can also be blocked from the local HMI under

Main menu/Test/Function test modes/Monitoring/EventCounter(GGIO)/CNTGGIO:x

15.14 Metering

15.14.1 Pulse counter PCGGIO

The test of the Pulse counter function PCGGIO requires the Parameter Setting tool in PCM600 or an appropriate connection to the local HMI with the necessary functionality. A known number of pulses with different frequencies are connected to the pulse counter input. The test should be performed with settings Operation = On or Operation = Off and the function blocked or unblocked. The pulse counter value is then checked in PCM600 or on the local HMI.

15.15 Station communication

15.15.1 Multiple command and transmit MultiCmd/MultiTransm

The multiple command and transmit function (MultiCmd/MultiTransm) is only applicable for horizontal communication.

Test of the multiple command function block and multiple transmit is recommended to be performed in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system, because the command function blocks are connected in a delivery-specific way between bays and the station level and transmit.
Command and transmit function blocks included in the operation of different built-in functions must be tested at the same time as their corresponding functions.

15.16 Remote communication

15.16.1 Binary signal transfer BinSignReceive, BinSignTransm

Prepare the IED for verification of settings as outlined in section "Overview" and section "Preparing for test" in this chapter.

To perform a test of Binary signal transfer function (BinSignReceive/ BinSignTransm), the hardware (LDCM) and binary input and output signals to transfer must be configured as required by the application.

There are two types of internal self supervision of BinSignReceive/BinSignTransm:

• The I/O-circuit board is supervised as an I/O module. For example it generates FAIL if the board is not inserted. I/O-modules not configured are not supervised.
• The communication is supervised and the signal COMFAIL is generated if a communication error is detected.

Status for inputs and outputs as well as self-supervision status are available from the local HMI under:

• Self-supervision status: Main menu/Diagnostics/Internal events
• Status for inputs and outputs: Main menu/Test/Function status, browse to the function group of interest.
• Remote communication related signals: Main menu/Test/Function status/ Communication/Remote communication

Test the correct functionality by simulating different kind of faults. Also check that sent and received data is correctly transmitted and read.

A test connection is shown in figure 105. A binary input signal (BI) at End1 is configured to be transferred through the communication link to End2. At End2 the received signal is configured to control a binary output (BO). Check at End2 that the BI signal is received and the BO operates.

Repeat the test for all the signals configured to be transmitted over the communication link.
Figure 105: Test of RTC with I/O
Section 17 Checking the directionality

16.1 About this chapter

This chapter describes how to check that the directionality is correct for each directional dependent function. The scope is also to verify that all analog values are correct. This must be done with the protection system in operation; the protected object must be energized and the primary load current must be higher than the minimum operating value set in the IED.

16.2 Overview

Before starting this process, all individual devices that are involved in the fault clearance process of the protected object must have been individually tested and must be set in operation. The circuit breaker must be ready for an open-close-open cycle.

The directional test is performed when the protected object is energized and a certain amount of load current is available. It is also necessary to know the flow of the load current (import or export, i.e. forward or reverse) by help of the indication from an external instrument (energy-meter, or SCADA information).

The design of the test procedure depends on the type of protection function to be tested. Some items that can be used as guidelines are following.

16.3 Testing the directionality of the distance protection

The test is performed by looking at the information given by the directional function ZDRDIR or ZDMRDIR.

Procedure:

1. Make sure that all control and protection functions that belong to the object that are going to be energized have been tested and are set to be in operation
2. Make sure that the primary load current fulfills the following conditions (by using an external equipment):
 • The magnitude of the primary load current must be higher than the minimum operating current set for the directional elements in the IED. In case of default settings this means:
• load current > 5% of base current
• Otherwise the settings $I_{MinOpPE}$ and $I_{MinOpPP}$ for ZDRDIR or ZDMRDIR are available under the HMI menu: Main menu/Settings/Setting group N/Impedance protection/DirectionalImpedance(RDIR)

The primary load impedance must have an angle (ϕ) between the setting angles for the directional lines. In case of default settings this means:

• for forward (exported) load: $-15 \deg < \phi < 115 \deg$
• for reverse (imported) load: $165 \deg < \phi < 295 \deg$

The settings for forward load: $\text{ArgDir} < \phi < \text{ArgNegRes}$ and the settings for reverse load: $180 \deg - \text{ArgDir} < \phi < 180 \deg + \text{ArgNegRes}$ included in the directional functions ZDRDIR or ZDMRDIR are available under the HMI menu:

• Main menu/Settings/Setting group N/Impedance protection/DirectionalImpedance(RDIR)

3. The directionality of the load current is shown by the directional function ZDRDIR or ZDMRDIR and it is available under the HMI menu: Main menu/Test/Function status/Impedance protection/DirectionalImpedance(RDIR)

If the load current flows in forward (exporting) direction there will be shown:

• $L_1\text{Dir} = \text{forward}$
• $L_2\text{Dir} = \text{forward}$
• $L_3\text{Dir} = \text{forward}$

If the load current flows in the reverse direction (importing) there will be shown:

• $L_1\text{Dir} = \text{reverse}$
• $L_2\text{Dir} = \text{reverse}$
• $L_3\text{Dir} = \text{reverse}$

Compare this result with the information given by the external equipment, it must be the same. If the direction of the three phases is not the same, this is a sign of incorrect connection of the voltage or current transformers serving the distance protection function. It is also possible that there is a wrong setting for the earthing point for one or more of the CTs serving distance protection (the setting name is: $CTStarPoint$).

If the directional function shows forward when it should show reverse (or vice-versa) for all the three phases, this probably means a wrong connection of CTs and/or VTs serving the distance protection, or it can mean a wrong setting of earthing point (the setting name is: $CTStarPoint$) for all the three CTs, or it could mean a wrong setting for the pre-processing blocks (3PhaseAnalogGroup) connected to the CTs/VTs and serving the distance protection (verify that no wrong negation has been set; the setting name is: $Negation$).

If the directional function shows “No direction” for all the three phases it can mean that the load current is below the minimum operating current or that the
load impedance has an angle which is outside the above given valid angles for determining forward or reverse direction. If the directional function shows “No direction” for only some of the three phases, this probably means a wrong CTs/VTs connection.

4. The measured impedance information is available under the same menu. These values are not affected by the minimum operating current setting and the measured values are shown any time the load current is higher than 3% of the nominal current of the line:
 - L1R
 - L1X
 - L2R
 - L2X
 - L3R
 - L3X

The measured impedance information can still be used to determine the direction of the load. A positive resistance measured in all phases indicates a forward (exporting) resistive load (active power), while a negative sign indicates a reverse (importing) resistive load (active power). Usually it is enough to look at the resistive values to get information of the load direction, that must anyway be compared with the indication given by external equipment measuring the same power flow.
Section 18 Commissioning and maintenance of the fault clearing system

About this chapter
This chapter discusses maintenance tests and other periodic maintenance measures.

17.1 Commissioning tests

During commissioning all protection functions shall be verified with the setting values used at each plant. The commissioning tests must include verification of all circuits by green-lining the circuit diagrams and the configuration diagrams for the used functions.

Further, the settings for protection functions are tested and recorded carefully as outlined for the future periodic maintenance tests.

The final testing includes primary verification of all directional functions where load currents is checked on the local HMI and in PCM600. The amplitudes and angles of all currents and voltages should be checked and the symmetry verified.

Directional functions have information about the measured direction and, for example, measured impedance. These values must be checked and verified as correct with the export or import of power available.

Finally, final trip tests must be performed. This involves activation of protection functions or tripping outputs with the circuit breaker closed and the tripping of the breaker verified. When several breakers are involved, each breaker must be checked individually and it must be verified that the other involved breakers are not tripped at the same time.

17.2 Periodic maintenance tests

The periodicity of all tests depends on several factors, for example the importance of the installation, environmental conditions, simple or complex equipment, static or electromechanical IEDs, and so on.

The normal maintenance praxis of the user should be followed. However, ABB's recommendation is as follows:

Every second to third year
• Visual inspection of all equipment.
• Removal of dust on ventilation louvres and IEDs if necessary.
• Periodic maintenance test for protection IEDs of objects where no redundant protections are provided.

Every four to six years

• Periodic maintenance test for protection IEDs of objects with redundant protection system.

First maintenance test should always be carried out after the first half year of service.

When protection IEDs are combined with built-in control, the test interval can be increased drastically, up to for instance 15 years, because the IED continuously reads service values, operates the breakers, and so on.

17.2.1 Visual inspection

Prior to testing, the protection IEDs should be inspected to detect any visible damage that may have occurred (for example, dirt or moisture deposits, overheating). Should burned contacts be observed when inspecting the IEDs, a diamond file or an extremely fine file can be used to polish the contacts. Emery cloth or similar products must not be used as insulating grains of abrasive may be deposited on the contact surfaces and cause failure.

Make sure that all IEDs are equipped with covers.

17.2.2 Maintenance tests

To be made after the first half year of service, then with the cycle as proposed above and after any suspected maloperation or change of the IED setting.

Testing of protection IEDs shall preferably be made with the primary circuit de-energized. The IED cannot protect the circuit during testing. Trained personnel may test one IED at a time on live circuits where redundant protection is installed and de-energization of the primary circuit is not allowed.

ABB protection IEDs are preferably tested by aid of components from the COMBITEST testing system described in information B03-9510 E. Main components are RTXP 8/18/24 test switch located to the left in each protection IED and RTXH 8/18/24 test handle, which is inserted in test switch at secondary testing. All necessary operations such as opening of trip circuits, short-circuiting of
current circuits and opening of voltage circuits are automatically performed in the right order to allow for simple and safe secondary testing even with the object in service.

17.2.2.1 Preparation

Before starting maintenance testing, the test engineers should scrutinize applicable circuit diagrams and have the following documentation available:

- Test instructions for protection IEDs to be tested
- Test records from previous commissioning and maintenance tests
- List of valid settings
- Blank test records to fill in measured values

17.2.2.2 Recording

It is of utmost importance to carefully record the test results. Special test sheets covering the frequency of test, date of test and achieved test values should be used. IED setting list and protocols from previous tests should be available and all results should be compared for differences. At component failures, spare equipment is used and set to the requested value. A note of the exchange is made and the new measured values are recorded. Test records for several years of testing should be stored in a common file for a station, or a part of a station, to give a simple overview of the period of testing and achieved test values. These test records are valuable when analysis of service disturbances shall be done.

17.2.2.3 Secondary injection

The periodic maintenance test is done by secondary injection from a portable test set. Each protection shall be tested according to the secondary injection test information for the specific protection IED. Only the setting values adopted shall be checked for each protection function. If the discrepancy between obtained value and requested set value is too big the setting should be adjusted, the new value recorded and a note should be made in the test record.

17.2.2.4 Alarm test

When inserting the test handle the alarm and event signalling is normally blocked. This is done in the IED by setting the event reporting to Off during the test. This can be done when the test handle is inserted or the IED is set to test mode from the local HMI. At the end of the secondary injection test it should be checked that the event and alarm signalling is correct by activating the events and performing some selected tests.
17.2.2.5 Self supervision check

Once secondary testing has been completed, it should be checked that no self-supervision signals are activated continuously or sporadically. Especially check the time synchronization system, GPS or other, and communication signals, both station communication and remote communication.

17.2.2.6 Trip circuit check

When the protection IED undergoes an operational check, a tripping pulse is normally obtained on one or more of the output contacts and preferably on the test switch. The healthy circuit is of utmost importance for the protection operation. If the circuit is not provided with a continuous trip-circuit supervision, it is possible to check that circuit is really closed when the test-plug handle has been removed by using a high-ohmic voltmeter and measuring between the plus and the trip output on the panel. The measurement is then done through the tripping magnet of the circuit breaker and therefore the complete tripping circuit is checked.

Note that the breaker must be closed.

Please observe that the test system does not provide built-in security during this test. If the instrument should be set on Amp instead of Volts, the circuit breaker naturally is tripped, therefore, great care is necessary.

Trip circuit from trip IEDs to circuit breaker is often supervised by trip-circuit supervision. It can then be checked that a circuit is healthy by opening tripping output terminals in the cubicle. When the terminal is opened, an alarm shall be achieved on the signal system after a delay of some seconds.

Remember to close the circuit directly after the test and tighten the terminal carefully.

17.2.2.7 Measurement of service currents

After a maintenance test it is recommended to measure the service currents and service voltages recorded by the protection IED. The service values are checked on the local HMI or in PCM600. Ensure that the correct values and angles between voltages and currents are recorded. Also check the direction of directional functions such as Distance and directional overcurrent functions.

For transformer differential protection, the achieved differential current value is dependent on the tap changer position and can vary between less than 1% up to
perhaps 10% of rated current. For line differential functions, the capacitive charging currents can normally be recorded as a differential current.

The zero-sequence current to earth-fault protection IEDs should be measured. The current amounts normally very small but normally it is possible to see if the current circuit is "alive".

The neutral-point voltage to an earth-fault protection IED is checked. The voltage is normally 0.1 to 1V secondary. However, voltage can be considerably higher due to harmonics. Normally a CVT secondary can have around 2.5 - 3% third-harmonic voltage.

17.2.2.8 Restoring

Maintenance is very important to improve the availability of the protection system by detecting failures before the protection is required to operate. There is however little point in testing healthy equipment and then putting it back into service with an open terminal, with a removed fuse or open miniature circuit breaker with an open connection, wrong setting, and so on.

Thus a list should be prepared of all items disturbed during test so that all can be put back into service quickly and without overlooking something. It should be put back into service item by item and signed by the responsible engineer.
Section 19 Fault tracing and repair

About this chapter

This chapter describes how to carry out fault tracing and if necessary, a change of circuit board.

18.1 Fault tracing

18.1.1 Information on the local HMI

If an internal fault has occurred, the local HMI displays information under Main menu/Diagnostics/IED status/General

Under the Diagnostics menus, indications of a possible internal failure (serious fault) or internal warning (minor problem) are listed.

Indications regarding the faulty unit are outlined in table 31.

Table 31: Self-supervision signals on the local HMI

<table>
<thead>
<tr>
<th>HMI Signal Name:</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT Fail</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--NUMFAIL, INT--LMDERROR, INT--WATCHDOG, INT--APPERROR, INT--RTEERROR, INT--FTFERROR, or any of the HW dependent signals</td>
</tr>
<tr>
<td>INT Warning</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--RTCERROR, INT--IEC61850ERROR, INT--TMESSYNCHERROR</td>
</tr>
<tr>
<td>NUM Fail</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--WATCHDOG, INT--APPERROR, INT--RTEERROR, INT--FTFERROR</td>
</tr>
<tr>
<td>NUM Warning</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--RTCERROR, INT--IEC61850ERROR</td>
</tr>
<tr>
<td>ADMnn</td>
<td>READY / FAIL</td>
<td>Analog input module n failed. Signal activation will reset the IED</td>
</tr>
<tr>
<td>BIMnn</td>
<td>READY / FAIL</td>
<td>BIM error. Binary input module Error status. Signal activation will reset the IED</td>
</tr>
<tr>
<td>HMI Signal Name</td>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>BOMn</td>
<td>READY / FAIL</td>
<td>BOM error. Binary output module Error status.</td>
</tr>
<tr>
<td>IOMn</td>
<td>READY / FAIL</td>
<td>IOM-error. Input/Output Module Error status.</td>
</tr>
<tr>
<td>MIMn</td>
<td>READY / FAIL</td>
<td>mA input module MIM1 failed. Signal activation will reset the IED</td>
</tr>
<tr>
<td>RTC</td>
<td>READY / FAIL</td>
<td>This signal will be active when there is a hardware error with the real time clock.</td>
</tr>
<tr>
<td>Time Sync</td>
<td>READY / FAIL</td>
<td>This signal will be active when the source of the time synchronization is lost, or when the time system has to make a time reset.</td>
</tr>
<tr>
<td>Application</td>
<td>READY / FAIL</td>
<td>This signal will be active if one or more of the application threads are not in the state that Runtime Engine expects. The states can be CREATED, INITIALIZED, RUNNING, etc.</td>
</tr>
<tr>
<td>RTE</td>
<td>READY / FAIL</td>
<td>This signal will be active if the Runtime Engine failed to do some actions with the application threads. The actions can be loading of settings or parameters for components, changing of setting groups, loading or unloading of application threads.</td>
</tr>
<tr>
<td>IEC61850</td>
<td>READY / FAIL</td>
<td>This signal will be active if the IEC61850 stack did not succeed in some actions like reading IEC61850 configuration, startup etc.</td>
</tr>
<tr>
<td>LMD</td>
<td>READY / FAIL</td>
<td>LON network interface, MIP/DPS, is in an unrecoverable error state.</td>
</tr>
<tr>
<td>LDCMxxx</td>
<td>READY / FAIL</td>
<td>Line Differential Communication Error status</td>
</tr>
<tr>
<td>OEM</td>
<td>READY / FAIL</td>
<td>Optical Ethernet Module error status.</td>
</tr>
</tbody>
</table>

Also the internal signals, such as INT--FAIL and INT--WARNING can be connected to binary output contacts for signalling to a control room.

In the IED Status - Information, the present information from the self-supervision function can be viewed. Indications of failure or warnings for each hardware module are provided, as well as information about the external time synchronization and the internal clock. All according to table 31. Loss of time synchronization can be considered as a warning only. The IED has full functionality without time synchronization.

18.1.2 Using front-connected PC

Here, two summary signals appear, self-supervision summary and numerical module status summary. These signals can be compared to the internal signals as:
• Self-supervision summary = INT--FAIL and INT--WARNING
• CPU-module status summary = INT--NUMFAIL and INT--NUMWARN

When an internal fault has occurred, extensive information about the fault can be retrieved from the list of internal events available in the SMS part:

TRM-STAT TermStatus - Internal Events

The list of internal events provides valuable information, which can be used during commissioning and fault tracing.

The internal events are time tagged with a resolution of 1ms and stored in a list. The list can store up to 40 events. The list is based on the FIFO principle, when it is full, the oldest event is overwritten. The list cannot be cleared and its content cannot be erased.

The internal events in this list not only refer to faults in the IED, but also to other activities, such as change of settings, clearing of disturbance reports, and loss of external time synchronization.

The information can only be retrieved from the Parameter Setting software package. The PC can be connected either to the port at the front or at the rear of the IED.

These events are logged as internal events.

<table>
<thead>
<tr>
<th>Event message:</th>
<th>Description</th>
<th>Generating signal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT--FAIL</td>
<td>Off</td>
<td>Internal fail status</td>
</tr>
<tr>
<td>INT--FAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT--WARNING</td>
<td>Off</td>
<td>Internal warning status</td>
</tr>
<tr>
<td>INT--WARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT--NUMFAIL</td>
<td>Off</td>
<td>Numerical module fatal error status</td>
</tr>
<tr>
<td>INT--NUMFAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT--NUMWARN</td>
<td>Off</td>
<td>Numerical module non-fatal error status</td>
</tr>
<tr>
<td>INT--NUMWARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JoN--Error</td>
<td>Off</td>
<td>In/Out module No. n status</td>
</tr>
<tr>
<td>JoN--Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMn-Error</td>
<td>Off</td>
<td>Analog/Digital module No. n status</td>
</tr>
<tr>
<td>ADMn-Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM1-Error</td>
<td>Off</td>
<td>mA-input module status</td>
</tr>
<tr>
<td>MIM1-Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT--RTC</td>
<td>Off</td>
<td>Real Time Clock (RTC) status</td>
</tr>
<tr>
<td>INT--RTC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page
Event message:	Description	Generating signal:
INT--TSYNC | Off | INT--TSYNC (reset event) |
INT--TSYNC | | INT--TSYNC (set event) |
INT--SETCHGD | Any settings in IED changed | |
DRPC-CLEARED | All disturbances in Disturbance report cleared | |

The events in the internal event list are time tagged with a resolution of 1ms.

This means that, when using the PC for fault tracing, it provides information on the:

- Module that should be changed.
- Sequence of faults, if more than one unit is faulty.
- Exact time when the fault occurred.

18.2 Repair instruction

Never disconnect the secondary connection of a current transformer circuit without short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build up that may damage the transformer and may cause injuries to humans.

Never connect or disconnect a wire and/or a connector to or from a IED during normal service. Hazardous voltages and currents are present that may be lethal. Operation may be disrupted and IED and measuring circuitry may be damaged.

An alternative is to open the IED and send only the faulty circuit board to ABB for repair. When a printed circuit board is sent to ABB, it must always be placed in a metallic, ESD-proof, protection bag. The user can also purchase separate replacement modules.

Strictly follow the company and country safety regulations.

Most electronic components are sensitive to electrostatic discharge and latent damage may occur. Please observe usual procedures for handling electronics and also use an ESD wrist strap. A semi-conducting layer must be placed on the workbench and connected to earth.

Disassemble and reassemble the IED accordingly:
1. Switch off the dc supply.
2. Short-circuit the current transformers and disconnect all current and voltage connections from the IED.
3. Disconnect all signal wires by removing the female connectors.
4. Disconnect the optical fibers.
5. Unscrew the main back plate of the IED.
6. If the transformer module is to be changed:
 • Remove the IED from the panel if necessary.
 • Remove the rear plate of the IED.
 • Remove the front plate.
 • Remove the screws of the transformer input module, both front and rear.
7. Pull out the faulty module.
8. Check that the new module has a correct identity number.
9. Check that the springs on the card rail are connected to the corresponding metallic area on the circuit board when the new module is inserted.
10. Reassemble the IED.

If the IED has been calibrated with the system inputs, the calibration procedure must be performed again to maintain the total system accuracy.

18.3 Repair support

If an IED needs to be repaired, the whole IED must be removed and sent to an ABB Logistic Center. Before returning the material, an inquiry must be sent to the ABB Logistic Center.

e-mail: offer.selog@se.abb.com

18.4 Maintenance

The IED is self-supervised. No special maintenance is required.

Instructions from the power network company and other maintenance directives valid for maintenance of the power system must be followed.
About this chapter

This chapter contains a glossary with terms, acronyms and abbreviations used in ABB technical documentation.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>ACT</td>
<td>Application configuration tool within PCM600</td>
</tr>
<tr>
<td>A/D converter</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>ADBS</td>
<td>Amplitude deadband supervision</td>
</tr>
<tr>
<td>ADM</td>
<td>Analog digital conversion module, with time synchronization</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AR</td>
<td>Autoreclosing</td>
</tr>
<tr>
<td>ArgNegRes</td>
<td>Setting parameter/ZD/</td>
</tr>
<tr>
<td>ArgDir</td>
<td>Setting parameter/ZD/</td>
</tr>
<tr>
<td>ASCT</td>
<td>Auxiliary summation current transformer</td>
</tr>
<tr>
<td>ASD</td>
<td>Adaptive signal detection</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge standard</td>
</tr>
<tr>
<td>BBP</td>
<td>Busbar protection</td>
</tr>
<tr>
<td>BFP</td>
<td>Breaker failure protection</td>
</tr>
<tr>
<td>BI</td>
<td>Binary input</td>
</tr>
<tr>
<td>BIM</td>
<td>Binary input module</td>
</tr>
<tr>
<td>BOM</td>
<td>Binary output module</td>
</tr>
<tr>
<td>BOS</td>
<td>Binary outputs status</td>
</tr>
<tr>
<td>BR</td>
<td>External bistable relay</td>
</tr>
<tr>
<td>BS</td>
<td>British Standards</td>
</tr>
<tr>
<td>BSR</td>
<td>Binary signal transfer function, receiver blocks</td>
</tr>
<tr>
<td>BST</td>
<td>Binary signal transfer function, transmit blocks</td>
</tr>
<tr>
<td>C37.94</td>
<td>IEEE/ANSI protocol used when sending binary signals between IEDs</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network. ISO standard (ISO 11898) for serial communication</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CBM</td>
<td>Combined backplane module</td>
</tr>
<tr>
<td>CCM</td>
<td>CAN carrier module</td>
</tr>
<tr>
<td>CCVT</td>
<td>Capacitive Coupled Voltage Transformer</td>
</tr>
<tr>
<td>Class C</td>
<td>Protection Current Transformer class as per IEEE/ ANSI</td>
</tr>
<tr>
<td>CMPPS</td>
<td>Combined megapulses per second</td>
</tr>
<tr>
<td>CMT</td>
<td>Communication Management tool in PCM600</td>
</tr>
<tr>
<td>CO cycle</td>
<td>Close-open cycle</td>
</tr>
<tr>
<td>Codirectional</td>
<td>Way of transmitting G.703 over a balanced line. Involves two twisted pairs making it possible to transmit information in both directions</td>
</tr>
<tr>
<td>COMTRADE</td>
<td>Standard format according to IEC 60255-24</td>
</tr>
<tr>
<td>Contra-directional</td>
<td>Way of transmitting G.703 over a balanced line. Involves four twisted pairs, two of which are used for transmitting data in both directions and two for transmitting clock signals</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processor unit</td>
</tr>
<tr>
<td>CR</td>
<td>Carrier receive</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic redundancy check</td>
</tr>
<tr>
<td>CROB</td>
<td>Control relay output block</td>
</tr>
<tr>
<td>CS</td>
<td>Carrier send</td>
</tr>
<tr>
<td>CT</td>
<td>Current transformer</td>
</tr>
<tr>
<td>CVT</td>
<td>Capacitive voltage transformer</td>
</tr>
<tr>
<td>DAR</td>
<td>Delayed autoreclosing</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.)</td>
</tr>
<tr>
<td>DBDL</td>
<td>Dead bus dead line</td>
</tr>
<tr>
<td>DBLL</td>
<td>Dead bus live line</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DFC</td>
<td>Data flow control</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DIP-switch</td>
<td>Small switch mounted on a printed circuit board</td>
</tr>
<tr>
<td>DI</td>
<td>Digital input</td>
</tr>
<tr>
<td>DLLB</td>
<td>Dead line live bus</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>DNP</td>
<td>Distributed Network Protocol as per IEEE Std 1815-2012</td>
</tr>
<tr>
<td>DR</td>
<td>Disturbance recorder</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic random access memory</td>
</tr>
<tr>
<td>DRH</td>
<td>Disturbance report handler</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital signal processor</td>
</tr>
<tr>
<td>DTT</td>
<td>Direct transfer trip scheme</td>
</tr>
<tr>
<td>EHV network</td>
<td>Extra high voltage network</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>(Electromotive force)</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>EnFP</td>
<td>End fault protection</td>
</tr>
<tr>
<td>EPA</td>
<td>Enhanced performance architecture</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>FCB</td>
<td>Flow control bit; Frame count bit</td>
</tr>
<tr>
<td>FOX 20</td>
<td>Modular 20 channel telecommunication system for speech, data and protection signals</td>
</tr>
<tr>
<td>FOX 512/515</td>
<td>Access multiplexer</td>
</tr>
<tr>
<td>FOX 6Plus</td>
<td>Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers</td>
</tr>
<tr>
<td>G.703</td>
<td>Electrical and functional description for digital lines used by local telephone companies. Can be transported over balanced and unbalanced lines</td>
</tr>
<tr>
<td>GCM</td>
<td>Communication interface module with carrier of GPS receiver module</td>
</tr>
<tr>
<td>GDE</td>
<td>Graphical display editor within PCM600</td>
</tr>
<tr>
<td>GI</td>
<td>General interrogation command</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas-insulated switchgear</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic object-oriented substation event</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GSAL</td>
<td>Generic security application</td>
</tr>
<tr>
<td>GTM</td>
<td>GPS Time Module</td>
</tr>
<tr>
<td>HDLC protocol</td>
<td>High-level data link control, protocol based on the HDLC standard</td>
</tr>
<tr>
<td>HFBR connector type</td>
<td>Plastic fiber connector</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>HSAR</td>
<td>High speed autoreclosing</td>
</tr>
<tr>
<td>HV</td>
<td>High-voltage</td>
</tr>
<tr>
<td>HVDC</td>
<td>High-voltage direct current</td>
</tr>
<tr>
<td>ICT</td>
<td>Installation and Commissioning Tool for injection based protection in REG670</td>
</tr>
<tr>
<td>IDBS</td>
<td>Integrating deadband supervision</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrical Committee</td>
</tr>
<tr>
<td>IEC 60044-6</td>
<td>IEC Standard, Instrument transformers – Part 6: Requirements for protective current transformers for transient performance</td>
</tr>
<tr>
<td>IEC 60870-5-103</td>
<td>Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>Substation automation communication standard</td>
</tr>
<tr>
<td>IEC 61850–8–1</td>
<td>Communication protocol standard</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE 802.12</td>
<td>A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable</td>
</tr>
<tr>
<td>IEEE P1386.1</td>
<td>PCI Mezzanine Card (PMC) standard for local bus modules. References the CMC (IEEE P1386, also known as Common Mezzanine Card) standard for the mechanics and the PCI specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force).</td>
</tr>
<tr>
<td>IEEE 1686</td>
<td>Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent electronic device</td>
</tr>
<tr>
<td>I-GIS</td>
<td>Intelligent gas-insulated switchgear</td>
</tr>
<tr>
<td>IOM</td>
<td>Binary input/output module</td>
</tr>
</tbody>
</table>

Instance

When several occurrences of the same function are available in the IED, they are referred to as instances of that function. One instance of a function is identical to another of the same kind but has a different number in the IED user interfaces. The word "instance" is sometimes defined as an item of information that is representative of a type. In the same way an instance of a function in the IED is representative of a type of function.

IP

1. Internet protocol. The network layer for the TCP/IP protocol suite widely used on Ethernet networks. IP is a connectionless, best-effort packet-switching protocol. It provides packet routing, fragmentation and reassembly through the data link layer.
2. Ingression protection, according to IEC standard

- **IP 20**: Ingression protection, according to IEC standard, level 20
- **IP 40**: Ingression protection, according to IEC standard, level 40
- **IP 54**: Ingression protection, according to IEC standard, level 54
- **IRF**: Internal failure signal
- **IRIG-B**: InterRange Instrumentation Group Time code format B, standard 200
- **ITU**: International Telecommunications Union
- **LAN**: Local area network
- **LIB 520**: High-voltage software module
- **LCD**: Liquid crystal display
- **LDCM**: Line differential communication module
- **LDD**: Local detection device
- **LED**: Light-emitting diode
- **LNT**: LON network tool
- **LON**: Local operating network
- **MCB**: Miniature circuit breaker
- **MCM**: Mezzanine carrier module
- **MIM**: Milli-ampere module
- **MPM**: Main processing module
- **MVB**: Multifunction vehicle bus. Standardized serial bus originally developed for use in trains.
- **NCC**: National Control Centre
- **NUM**: Numerical module
- **OCO cycle**: Open-close-open cycle
- **OCP**: Overcurrent protection
- **OEM**: Optical ethernet module
- **OLTC**: On-load tap changer
- **OV**: Over-voltage
- **Overreach**: A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay “sees” the fault but perhaps it should not have seen it.
- **PCI**: Peripheral component interconnect, a local data bus
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM</td>
<td>Pulse code modulation</td>
</tr>
<tr>
<td>PCM600</td>
<td>Protection and control IED manager</td>
</tr>
<tr>
<td>PC-MIP</td>
<td>Mezzanine card standard</td>
</tr>
<tr>
<td>PMC</td>
<td>PCI Mezzanine card</td>
</tr>
<tr>
<td>POR</td>
<td>Permissive overreach</td>
</tr>
<tr>
<td>POTT</td>
<td>Permissive overreach transfer trip</td>
</tr>
<tr>
<td>Process bus</td>
<td>Bus or LAN used at the process level, that is, in near proximity to the measured and/or controlled components</td>
</tr>
<tr>
<td>PSM</td>
<td>Power supply module</td>
</tr>
<tr>
<td>PST</td>
<td>Parameter setting tool within PCM600</td>
</tr>
<tr>
<td>PT ratio</td>
<td>Potential transformer or voltage transformer ratio</td>
</tr>
<tr>
<td>PUTT</td>
<td>Permissive underreach transfer trip</td>
</tr>
<tr>
<td>RASC</td>
<td>Synchrocheck relay, COMBIFLEX</td>
</tr>
<tr>
<td>RCA</td>
<td>Relay characteristic angle</td>
</tr>
<tr>
<td>RFPP</td>
<td>Resistance for phase-to-phase faults</td>
</tr>
<tr>
<td>RFPE</td>
<td>Resistance for phase-to-earth faults</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced instruction set computer</td>
</tr>
<tr>
<td>RMS value</td>
<td>Root mean square value</td>
</tr>
<tr>
<td>RS422</td>
<td>A balanced serial interface for the transmission of digital data in point-to-point connections</td>
</tr>
<tr>
<td>RS485</td>
<td>Serial link according to EIA standard RS485</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-time clock</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote terminal unit</td>
</tr>
<tr>
<td>SA</td>
<td>Substation Automation</td>
</tr>
<tr>
<td>SBO</td>
<td>Select-before-operate</td>
</tr>
<tr>
<td>SC</td>
<td>Switch or push button to close</td>
</tr>
<tr>
<td>SCS</td>
<td>Station control system</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervision, control and data acquisition</td>
</tr>
<tr>
<td>SCT</td>
<td>System configuration tool according to standard IEC 61850</td>
</tr>
<tr>
<td>SDU</td>
<td>Service data unit</td>
</tr>
<tr>
<td>SLM</td>
<td>Serial communication module. Used for SPA/LON/IEC/DNP3 communication.</td>
</tr>
<tr>
<td>SMA connector</td>
<td>Subminiature version A, A threaded connector with constant impedance.</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal matrix tool within PCM600</td>
</tr>
<tr>
<td>SMS</td>
<td>Station monitoring system</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network. Each embedded node can instead synchronize with a remote clock, providing the required accuracy.</td>
</tr>
<tr>
<td>SPA</td>
<td>Strömberg protection acquisition, a serial master/slave protocol for point-to-point communication</td>
</tr>
<tr>
<td>SRY</td>
<td>Switch for CB ready condition</td>
</tr>
<tr>
<td>ST</td>
<td>Switch or push button to trip</td>
</tr>
<tr>
<td>Starpoint</td>
<td>Neutral point of transformer or generator</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAr compensation</td>
</tr>
<tr>
<td>TC</td>
<td>Trip coil</td>
</tr>
<tr>
<td>TCS</td>
<td>Trip circuit supervision</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols. While TCP and IP specify two protocols at specific protocol layers, TCP/IP is often used to refer to the entire US Department of Defense protocol suite based upon these, including Telnet, FTP, UDP and RDP.</td>
</tr>
<tr>
<td>TEF</td>
<td>Time delayed earth-fault protection function</td>
</tr>
<tr>
<td>TNC connector</td>
<td>Threaded Neill-Concelman, a threaded constant impedance version of a BNC connector</td>
</tr>
<tr>
<td>TPZ, TPY, TPX, TPS</td>
<td>Current transformer class according to IEC</td>
</tr>
<tr>
<td>UMT</td>
<td>User management tool</td>
</tr>
<tr>
<td>Underreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay does not “see” the fault but perhaps it should have seen it. See also Overreach.</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time. A coordinated time scale, maintained by the Bureau International des Poids et Mesures (BIPM), which forms the basis of a coordinated dissemination of standard frequencies and time signals.</td>
</tr>
</tbody>
</table>
UTC is derived from International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronize it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit, the rotational axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based. The Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>WEI</td>
<td>Weak end infeed logic</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage transformer</td>
</tr>
<tr>
<td>X.21</td>
<td>A digital signalling interface primarily used for telecom equipment</td>
</tr>
<tr>
<td>3I₀</td>
<td>Three times zero-sequence current. Often referred to as the residual or the earth-fault current</td>
</tr>
<tr>
<td>3U₀</td>
<td>Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage</td>
</tr>
</tbody>
</table>
ABB AB
Substation Automation Products
SE-721 59 Västerås, Sweden
Phone +46 (0) 21 32 50 00
Fax +46 (0) 21 14 69 18
www.abb.com/substationautomation