

SOLUTION SHEET

E-mobility high-power enclosure

EcoFlex with integrated low voltage distribution and high-power charging with optional charge posts

Standard connection interfaces between power modules, chargers, and grid for easy start up and expansion

Reduces site activities and safety related risks

Plug-and-play solution offers simple and quick installation

E-mobility EcoFlex HPC enclosure with integrated highpower chargers and low-voltage distribution board The e-mobility EcoFlex HPC is a housing that can accommodate four to eight 175kW high-power charging cabinets and up to two withdrawable charging posts together with a low voltage (LV) distribution board in a plug-and-play solution.

As a variant, it can accommodate up to eight highpower charging cabinets when charging posts are on
site. The low voltage distribution board comprises a
main incoming breaker for grid connection, a battery
energy storage (BESS) feeder and the electric vehicle
site solution (EVSS) which provides advanced charging
functionalities. The ease of installation drastically
reduces the site activities in terms of manhours,
excavation and civil works activities. The EcoFlex
enclosure not only protects the high-power chargers
from vandalism, it can also be easily relocated. The
solution is prewired and tested at factory.

Solution features

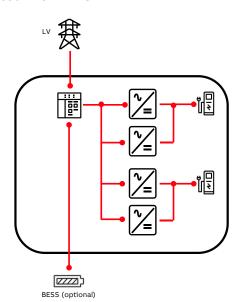
- Easy to install; plug-and-play with charging posts on a sliding mechanism
- Integrated low voltage distribution panel for charger protection and control and BESS connection, as required
- Integrated EVSS control panel and an optional BESS connection (2 variants)
- Easy to relocate; all power modules and charge posts are mounted on heavy duty shock absorbers
- Lockable enclosure prevents unauthorized entry
- No direct sun radiation to the power modules

Technical data

8 power modules	4 power modules and 2 charging posts
400-480V	400-480V
8	4
NA	2
1400kW	700kW
IP54	IP54
3200A	2500A
2500A	1600A
500kW	500kW
400A NH3 fuse	400A NH3 fuse
	Modules 400-480V 8 NA 1400kW IP54 3200A 2500A

Equipment description

The enclosure houses the high-power cabinets and charging posts as well as the LV distribution board.


Optional equipment

- Lighting devices
- Remote monitoring and control
- Molded case circuit breakers as outgoing feeders

Installation

- LV network connection needed at site
- Reduced site works
- Compact design for reduced footprint

Single line diagram for: 2 x 350kW or 2 x 175kW

E-mobility EcoFlex HPC enclosure with integrated high-power chargers, charge posts and LV distribution panel.

4 x 350kW or 8 x 175kW

E-mobility EcoFlex HPC enclosure with integrated high-power chargers and LV distribution panel. (Charger posts installed externally.)

BESS (optional)

Internal view: EcoFlex HPC enclosure with charge posts integrated

ABB Ltd.

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents in whole or in parts is forbidden without prior written consent of ABB AG.

Copyright© 2020 ABB All rights reserved