Models 6553
Digital Display (SP15)
Hydrogen Purity
Gas Analyser System

ABB Instrumentation
The Company

ABB Instrumentation is an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company’s products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255(B) is just one of the ten flow calibration plants operated by the Company, and is indicative of ABB Instrumentation’s dedication to quality and accuracy.

Use of Instructions

Warning. An instruction that draws attention to the risk of injury or death.

Caution. An instruction that draws attention to the risk of damage to the product, process or surroundings.

Information. Further reference for more detailed information or technical details.

Note. Clarification of an instruction or additional information.

Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of Technical Communications Department, ABB Instrumentation.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Model MX21 SP15 Indicator Unit (Fig. 2.1)</td>
<td>3</td>
</tr>
<tr>
<td>Zener Barrier Units</td>
<td>3</td>
</tr>
<tr>
<td>Models 6540 203 and 6548 000 Katharometer</td>
<td>3</td>
</tr>
<tr>
<td>Analyzer Panels</td>
<td>3</td>
</tr>
<tr>
<td>Model 4234 Power Supply Unit</td>
<td>4</td>
</tr>
<tr>
<td>PREPARATION</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Identification</td>
<td>5</td>
</tr>
<tr>
<td>3.1.1 Model MX21 SP15 Indicator Unit</td>
<td>5</td>
</tr>
<tr>
<td>3.1.2 Model 4234 Power Supply Unit</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3 Model 6540 203 Katharometer Analyzer Panel – Fig. 3.3</td>
<td>6</td>
</tr>
<tr>
<td>3.1.4 Coding System</td>
<td>7</td>
</tr>
<tr>
<td>3.1.5 Ordering Code - 6553 Hydrogen Purity and Purge Gas</td>
<td>7</td>
</tr>
<tr>
<td>3.1.6 Option Combinations</td>
<td>7</td>
</tr>
<tr>
<td>MECHANICAL INSTALLATION</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Locating and Mounting System Items</td>
<td>8</td>
</tr>
<tr>
<td>4.1.1 Model MX21 SP15 Indicator Unit</td>
<td>8</td>
</tr>
<tr>
<td>4.1.2 Katharometer Analyzer Panels</td>
<td>8</td>
</tr>
<tr>
<td>4.2 Sample Gas Interconnections</td>
<td>9</td>
</tr>
<tr>
<td>ELECTRICAL INSTALLATION</td>
<td>10</td>
</tr>
<tr>
<td>5.1 Electrical Interconnections</td>
<td>10</td>
</tr>
<tr>
<td>5.1.1 Model MX21 SP15 Indicator Unit</td>
<td>10</td>
</tr>
<tr>
<td>5.1.2 Katharometer Analyzer Panels</td>
<td>10</td>
</tr>
<tr>
<td>5.1.3 Model 4234 Power Supply Unit</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Intrinsically Safe Requirements</td>
<td>12</td>
</tr>
<tr>
<td>5.2.1 Cable Requirements</td>
<td>12</td>
</tr>
<tr>
<td>5.2.2 Recommended Cables</td>
<td>14</td>
</tr>
<tr>
<td>5.2.3 Full Intrinsically Safe Requirements</td>
<td>14</td>
</tr>
<tr>
<td>SETTING UP</td>
<td>15</td>
</tr>
<tr>
<td>6.1 Katharometer Analyzer Panel</td>
<td>15</td>
</tr>
<tr>
<td>6.2 Setting Sample Flow</td>
<td>15</td>
</tr>
<tr>
<td>6.3 Electrical Checks</td>
<td>15</td>
</tr>
<tr>
<td>6.3.1 Model 4234 Power Supply Unit Output</td>
<td>15</td>
</tr>
<tr>
<td>6.3.2 Zener Barrier Units</td>
<td>16</td>
</tr>
<tr>
<td>6.3.3 Checking System Ground</td>
<td>16</td>
</tr>
<tr>
<td>6.4 Indicator Panel</td>
<td>17</td>
</tr>
<tr>
<td>6.4.1 Controls</td>
<td>17</td>
</tr>
<tr>
<td>6.4.2 Displays</td>
<td>17</td>
</tr>
<tr>
<td>6.4.3 L.E.D. Indication</td>
<td>17</td>
</tr>
<tr>
<td>6.5 Programming</td>
<td>17</td>
</tr>
<tr>
<td>6.5.1 General</td>
<td>18</td>
</tr>
<tr>
<td>6.5.2 Operating Page</td>
<td>19</td>
</tr>
<tr>
<td>6.5.3 Set Points Page</td>
<td>20</td>
</tr>
<tr>
<td>6.5.4 Set Up Alarms Page</td>
<td>21</td>
</tr>
<tr>
<td>6.5.5 Access Page</td>
<td>23</td>
</tr>
<tr>
<td>6.5.6 Kent Page</td>
<td>24</td>
</tr>
<tr>
<td>6.5.7 Calibration Page</td>
<td>25</td>
</tr>
<tr>
<td>STARTUP</td>
<td>27</td>
</tr>
<tr>
<td>7.1 Power Supplies</td>
<td>27</td>
</tr>
<tr>
<td>7.2 Alarm Set Points</td>
<td>27</td>
</tr>
<tr>
<td>7.3 Type of Alarm Action</td>
<td>27</td>
</tr>
<tr>
<td>7.4 LED Indicators</td>
<td>27</td>
</tr>
<tr>
<td>7.5 Calibration</td>
<td>27</td>
</tr>
<tr>
<td>OPERATION</td>
<td>28</td>
</tr>
<tr>
<td>8.1 Normal</td>
<td>28</td>
</tr>
<tr>
<td>8.2 Purging of Hydrogen Coolant Gas</td>
<td>28</td>
</tr>
<tr>
<td>8.3 Filling with Hydrogen Coolant Gas</td>
<td>28</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>28</td>
</tr>
<tr>
<td>9.1 Fault Finding</td>
<td>28</td>
</tr>
<tr>
<td>9.1.1 Pressure</td>
<td>28</td>
</tr>
<tr>
<td>9.1.2 Flow</td>
<td>28</td>
</tr>
<tr>
<td>9.1.3Leaks</td>
<td>28</td>
</tr>
<tr>
<td>9.1.4 Vibration</td>
<td>28</td>
</tr>
<tr>
<td>9.1.5 Contamination</td>
<td>28</td>
</tr>
<tr>
<td>9.1.6 Ambient Temperature</td>
<td>28</td>
</tr>
<tr>
<td>9.1.7 Bridge Current</td>
<td>29</td>
</tr>
<tr>
<td>9.2.1 Checking Output of 4234 Power Supply Unit</td>
<td>29</td>
</tr>
<tr>
<td>9.2.2 Checking Integrity of Zener Barrier Units</td>
<td>29</td>
</tr>
<tr>
<td>9.2.3 Checking the Katharometer Output</td>
<td>29</td>
</tr>
<tr>
<td>9.3 Routine Maintenance</td>
<td>29</td>
</tr>
<tr>
<td>9.3.1 Hydrogen Katharometer Calibration</td>
<td>29</td>
</tr>
<tr>
<td>9.3.2 Changing Desiccant in the Drying Chamber</td>
<td>29</td>
</tr>
<tr>
<td>9.4 Repair Maintenance</td>
<td>29</td>
</tr>
<tr>
<td>9.4.1 Removing Liquid from the Katharometer Measurement Block</td>
<td>29</td>
</tr>
<tr>
<td>SPARE PARTS LIST</td>
<td>31</td>
</tr>
<tr>
<td>10.1 Consumables</td>
<td>31</td>
</tr>
<tr>
<td>10.2 Routine Maintenance Parts</td>
<td>31</td>
</tr>
<tr>
<td>10.3 Repair Maintenance Parts</td>
<td>31</td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>35</td>
</tr>
<tr>
<td>11.1 Model 4234 Power Supply Unit</td>
<td>35</td>
</tr>
<tr>
<td>11.1.1 Functional Description</td>
<td>35</td>
</tr>
<tr>
<td>11.1.2 Fault Finding</td>
<td>35</td>
</tr>
<tr>
<td>11.1.3 Parts List</td>
<td>35</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Warning. This operating manual applies only to those systems which have been designed and constructed to the standards specified in the schedules of the BASEEFA certificates listed. The separate units to which these certificates apply are clearly identifiable by model numbers and the data on the identification and BASEEFA certification labels fixed to them. Other combinations of similar equipment built to any earlier specifications are not covered by certificate number EX 77138. This is particularly important where new replacement units are to be incorporated into existing installations covered by any earlier certification standards. If in any doubt about the installation of particular combinations of certified equipment, please contact the Company for advice before proceeding. It is essential that units are installed strictly in accordance with the appropriate standards for electrical equipment for use in flammable atmospheres. Any deviation from the specified installation conditions, or any unauthorized repairs or adjustments can invalidate the safety assurances given by the certification of the unit.

The ultimate responsibility for any particular installation lies with the installing user/contractor.

This manual gives the installation, operating and maintenance information for a Hydrogen Purity System, normally used with hydrogen cooled electrical power generators.

The system uses a combination of three different units. Each unit is independently certified by BASEEFA (EECS) for use as part of an intrinsically safe system to the standards of SFA.3012:1972 for use in association with Group IIC (hydrogen) hazardous atmospheres. The different units of the system are:

a) **The Gas Monitor Unit.** The input to this unit is certified to code Ex(iia)IIC under BASEEFA certificate Ex 77124/B/S with the unit installed in the safe area only.

b) **The Model 6539-960 and 6548-001 Katharometer Units.** These units form part of intrinsically safe Models 6540-203 and 6548 000 Katharometer Analyzer Panels respectively. The katharometer units are certified to code Ex (ia) IIC T5 under BASEEFA certificate Ex 76179/B for installation in the hazardous area.

Warning. The 10 bar unit, 6548-001, has been certified EX (ia) T5 by BASEEFA. However, it must be pointed out that the standard to which it has been certified only considers flammable gas mixtures at nominally 1 bar absolute pressure, as neither BASEEFA nor any other certifying house have a standard covering such gas mixtures at elevated pressures. It is recommended that to fully conform with the certification, gas sample mixtures at elevated pressures (i.e. above 1 bar) are reduced to nominally atmospheric pressure before presentation to the katharometer, and that gases leaving the katharometer system are vented to atmosphere.

The 6539 960 katharometer may or may not be fitted with ignition arrestors in the sample connection lines, depending on user requirements.

c) **The Model 4234 constant current Power Supply Unit.** This provides a suitable supply for the katharometer unit. The unit has its output certified to code Ex (ia) IIC T5 under BASEEFA certificate Ex 76180/B/S for installation in the safe area only.

The complete gas monitoring system, if installed in accordance with the certificate schedules and the requirements given in this manual, is itself certified intrinsically safe to an overall code Ex (ia) IIC under the system certificate number Ex 77138.

If further information or assistance is required, Company specialist staff, service centres or worldwide organization may be contacted through the most convenient address given on the back cover of this manual. Specialist training courses can also be arranged by our Training Centre.
Three units are supplied as separate items to form the Hydrogen Purity System when interconnected.

2.1 Model MX21 SP15 Indicator Unit (Fig. 2.1)
The indicator is a unit suitable for mounting in the safe area.

2.2 Zener Barrier Units
The zener barrier units limit the electrical energy level that can be applied from the instrument circuits into the hazardous area.

2.3 Models 6540 203 and 6548 000 (High Pressure Version) Katharometer Analyzer Panels
The gas monitoring system is certified for hydrogen purity and there is a katharometer analyzer panel in the hazardous area.

The panel has a katharometer assembly which comprises a thermally lagged katharometer type 6539 960 (6548 001 – High Pressure Version), a flow adjustment valve, a flowmeter and a drying chamber. These items are mounted on a flat panel suitable for fixing to a vertical surface close to the sample point – see Fig. 2.2 and 2.3.

The katharometer is calibrated for hydrogen purity measurement.

The inlet and outlet gas unions to the 6539 960 katharometer unit may be provided with ignition arresters, but these are not a necessary part of the certification. The katharometer analyzer panel has a model number of 6540 203/J if the katharometer is fitted with ignition arresters and 6540 203/K if no arrestors are fitted.

The sealed katharometer assembly incorporates a Wheatstone Bridge made up of fine, glass-coated platinum filaments. One pair of parallel arms is sealed in reference gas and the other pair exposed to the sample gas.

When the intrinsically safe stabilised current from the power supply unit (Model 4234) is passed through this bridge, the temperature of the platinum filaments rises to a point of thermal equilibrium. Under conditions which are arranged to give minimum radiation and convection heat transfer, the

Fig. 2.1 MX21 Digital Display Unit

Fig. 2.2 Location of Items – Model 6540 203 Katharometer Analyzer Panel
equilibrium temperature depends on the thermal conductivity of the gas surrounding the filament. Thus any difference between the thermal conductivity of reference and sample gases causes an imbalance in the bridge; this imbalance (as a millivolt signal) is indicated by the monitor unit.

Zener diodes are connected across the input connections from the power supply unit to the katharometer in order to limit the maximum voltage which could be developed across the filament bridge under external fault conditions. The current is limited to a safe value under fault conditions by the power supply unit.

2.4 Model 4234 Power Supply Unit (Fig. 2.4)
Each katharometer unit operating in the hazardous area requires a separate Model 4234 Power Supply Unit. The Power Supply Unit supplies a stabilized 350 mA d.c. constant current, and must be mounted in the safe area. There are two separate versions available for either a nominal 110 to 120V a.c. or a nominal 200 to 220V/240V a.c. supply voltage. The stabilized current output is current and voltage limited to restrict the energy supply into the hazardous area.

The model 4234 is housed in a metal case fitted with lugs for wall/panel mounting. Cable gland entries are provided at opposite ends of the case for supply voltage input and stabilized output cables to the hazardous area. The printed circuit board assembly and diode heat sink are mounted on a metal chassis and separate labelled terminal blocks are used for making electrical interconnections.

The circuit is protected by a cartridge fuse which must have a high breaking capacity (hbc) rating of 4000A to comply with the terms of the certification.
3.1 Identification

It is essential that installers and users identify the various units of the monitoring system as follows:

3.1.1 Model MX21 SP15 Indicator Unit – Fig. 3.1

Checking the Instrument Code Number

1. Loosen the captive retaining screw.
2. Withdraw the instrument from the case.
3. Check the code number on the serial number label.
4. To refit the instrument into the case, press the chassis firmly into position before tightening the retaining screw.

![Fig. 3.1 Typical Identification Label and Location – Model MX21 SP15 Digital Display](image1)

3.1.2 Model 4234 Power Supply Unit – Fig. 3.2

![Fig. 3.2 Typical Identification Labels and Location – Model 4234 Power Supply Unit](image2)
3.1.3 Model 6540 203 Katharometer Analyzer Panel – Fig. 3.3

Note. The katharometer unit is distinguished by reference to the ‘zero gas’ specified on the identification label.

Fig. 3.3 Typical Identification Labels and Locations – Model 6540 203 Katharometer analyzer Panel
3.1.4 Coding System

The equipment conforms with the requirements of SFA 3012 for class IIC gases to Code Ex (ia) IIC provided that the equipment is installed in accordance with instructions provided. The display unit and power supply units must be installed in a safe (nonhazardous) area, and gas analysis panels may be mounted close to the sample point in the hazardous area.

3.1.5 Ordering Code – 6553 Hydrogen Purity and Purge Gas.

A Features of Upper Indicator
6 Two alarms + retrans. 4 to 20 mA

B Scale of Upper Indicator
1 100 to 85% H₂ in Air
2 100 to 80% H₂ in Air
3 0 to 100% Air in CO₂, 0 to 100% H₂ in CO₂, 85 to 100% H₂ in Air
4 0 to 100% Air in CO₂, 0 to 100% H₂ in CO₂, 80 to 100% H₂ in Air
5 85 to 100% H₂ in Air
6 80 to 100% H₂ in Air

C Features of Lower Indicator
0 Indicator Not Fitted
3 Alarm (EA) + retrans. 4 to 20 mA

D Scale of Lower Indicator
0 Indicator Not Fitted
1 0 to 100% Air in CO₂, 0 to 100% H₂ in CO₂
2 100 to 85% H₂ in Air
3 100 to 80% H₂ in Air
4 0 to 100% Air in CO₂, 0 to 100% H₂ in CO₂, 85 to 100% H₂ in Air
5 0 to 100% Air in CO₂, 0 to 100% H₂ in CO₂, 80 to 100% H₂ in Air
6 85 to 100% H₂ in Air
7 80 to 100% H₂ in Air

E Range Selector Switch
0 Not fitted
2 Fitted, with facilities for Remote Indication of Switch Position.
3 Fitted with two range switches, upper and lower indicator + remote indication of switch position.

F Additional Output Signal – Not Used
0 Not used

G Fitted with Labels
1 English
2 French
3 German

H Type of Cubicle
1 Without Cubicle.
4 Purge Cubicle (D1) (with purity)
5 Purity Cubicle (D2, D3, D6 or D7) (purity only)

J Special Features
0 None
9 Fitted

K Mains Supply
1 110 V, 50/60 Hz
2 220 V, 50/60 Hz
3 240 V, 50/60 Hz

3.1.6 Option Combinations (6553/[X])

The digit decode is shown in Section 3.1.4.
4 MECHANICAL INSTALLATION

4.1 Locating and Mounting System Items

4.1.1 Model MX21 SP15 Indicator Unit
The unit must be located in the safe area of the application plant in a sheltered interior environment, and is intended to be mounted in a position to suit reading of the display, and with access to the rear, to enable wiring interconnections to be made.

4.1.2 Katharometer Analyzer Panels – Fig. 4.1 and 4.2

Caution. Ensure that the panel specifying zero gas '85% H2/N2', is located at the required position.

The panel is located in the hazardous area (zone 0, 1 or 2) of the application plant in a sheltered interior environment. Avoid a location which subjects the katharometer unit to direct sunlight.

The katharometer unit is fixed to the panel which has fixing holes at each corner and should be mounted on a suitable vertical surface close to the sample tapping point.

![Fig. 4.1 Installation Dimensions and Interconnection Positions – Model 6540 203 Katharometer Analyzer Panel]

![Fig. 4.2 Installation Dimensions and Interconnection Positions – Model 6548 000 Katharometer Analyzer Panel]
4.1.3 Model 4234 Power Supply Unit – Fig. 4.2
The unit must be located in the safe area of the application plant in a sheltered interior environment. It has four fixing lugs and should be mounted on a suitable vertical surface.

![Diagram of Model 4234 Power Supply Unit with dimensions and interconnection positions.]

Note: All dimensions nominal millimetres unless indicated otherwise

Fig. 4.3 Installation Dimensions and Interconnection Positions – Model 4234 Power Supply Unit

4.2 Sample Gas Interconnections

⚠️ Warning. A hazardous mixture of hydrogen in air could develop in the event of leakage from the sample gas system. Katharometer analyzer panels should be located in a ventilated area.

The sample pressure must not exceed the value given in Section 11.

The incoming sample gas temperature must not exceed the temperature given in Section 11.

If there is a risk of significant particle contamination, a suitable 1µm filter unit should be incorporated in the system before the sample gas enters the analyzer.

Compression couplings are supplied at the sample inlet and outlet to the katharometer panel. These couplings are suitable for connecting 8mm outside diameter metal tube. It is recommended that stainless steel tube is used.

The complete tubing system should be tested for leaks in accordance with the requirements of the responsible authority.
5 ELECTRICAL INSTALLATION

5.1 Electrical Interconnections

Warning.
- Equipment in this system operates on a.c. mains supply voltage electricity. Suitable safety precautions must be taken to avoid the possibility of electric shock.
- The proper electrical connections and wiring standards must be achieved to establish the intrinsic safety of the system, as certified.
- The a.c. input and intrinsically safe d.c. output wiring must be routed separately from non-intrinsically safe wiring.

Fig. 5.2 shows the interconnecting wiring requirements which must be strictly observed. Details of cable requirements, which must be strictly adhered to, are also given in Section 5.2.1.

After completing the wiring, check that the continuity grounding and isolation of all circuits is to the required local electrical standards for intrinsically safe circuits.

The separate units of the system must be interconnected as follows:

5.1.1 Model MX21 SP15 Indicator Unit

a) Remove the rear cover of the unit to gain access to the terminal blocks.

b) Make the wiring connections in accordance with the information given in the wiring diagram Fig. 5.2 and Section 5.

5.1.2 Katharometer Analyzer Panels

All the electrical connections are made inside the katharometer unit on the analyzer panel as detailed in Fig. 5.2.

a) Remove the cover of the katharometer unit to gain access to the terminal block (TB1) inside.

b) Make the electrical connections in accordance with the information given in wiring diagram Fig. 5.2 and Section 5.2.1.

Note. The electrical connections are made at the terminal block (TB1) via the cable gland, or any replacement gland to suit the intrinsically safe wiring requirements.

c) If remote zero facility is required, remove the 510Ω dummy load resistor from across terminals 9 and 10, when the appropriate external zero interconnections have been made.

d) Replace the cover of the katharometer unit on completion of wiring up.

Fig. 5.1 Location of Components inside Case – Model 6539 960 Katharometer Unit
Caution. Do NOT operate this power supply without a load.

Refer to Fig. 1 for wiring to comply to System Cert. Ex 76181/1.
Date: Dec 1988

Fig. 5.2 Hydrogen Purity Gas Analyzer System – Interconnection Wiring Diagram
5.1.3 Model 4234 Power Supply Unit – Fig. 5.3

Warning. Do not connect mains supply to the power supply unit with the output terminals open circuit. This causes premature component failure.

Caution. Ensure that the power supply unit is correct for the mains supply voltage available. A nominal 110V unit cannot be adapted for use with a nominal 240V supply, or the other way around.

a) Remove the cover of the unit to gain access to the terminal blocks inside.

b) Identify the terminal block (TB3) adjacent to the transformer T1. If necessary, adjust the transformer tapping to the correct incoming supply 110/120V, 200/220V or 240V by moving the brown wire to the appropriately marked terminal of TB3.

c) Make electrical connections in accordance with the information given in the wiring diagram Fig. 5.2 and Section 5.2.1.

Note. The electrical connections are made at terminal blocks TB1 and TB2 through the appropriate cable gland, or any replacement gland to suit intrinsically safe wiring requirements.

d) Secure the incoming cable by the cable clips adjacent to the terminal blocks.

e) Fit the cover on completion of wiring up.

5.2 Intrinsically Safe Requirements

These requirements relate to the interconnecting wiring made to and from the Model 6540 203 Katharometer Analyzer Panel in the hazardous area, and those for remote ancillary items connected to the system.

5.2.1 Cable Requirements

The interconnecting cables between the various units of the system are subject to stringent limitations because of the requirements of the intrinsic safety certification. These follow and are also detailed in Fig. 5.4.

All cables entering the hazardous area, **MUST** be kept separate from cables in the safe area. Cables entering the hazardous area, **MUST NOT** be run with other cables, and terminations must have a grounded screen to separate them from connections for other circuits.

The detailed requirements are as follows:

a) **Connections between Katharometer Analyzer Panel and Model 4234 Power Supply Unit.**

All cables from the Katharometer into the hazardous area must have an inductance/resistance ratio not exceeding 18\(\mu\)H/\(\Omega\), (for Group IIC gases). There is a further requirement that the maximum loop resistance of this interconnecting cable is limited to 2\(\Omega\). This may place a limitation on the length of the total cable run. These wires are indicated with a * in Fig. 5.2.

Single sheathed conducting cables should be twisted together to reduce their mutual inductance, and routed separately from cabling for non-intrinsically safe circuits in the safe area.
Notes

1. The total capacitance and inductance or inductance to resistance ratio L/R of the cables which connect the output from the power supply together with the barrier outputs (Hazardous Area Terminals) to the katharometer input/output terminals must not exceed the following values:

<table>
<thead>
<tr>
<th>Group</th>
<th>Capacitance in µF</th>
<th>Inductance OR L/R ratio in mH</th>
<th>L/R ratio in µH/Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>24.0</td>
<td>0.200</td>
<td>160</td>
</tr>
<tr>
<td>IIB</td>
<td>9.0</td>
<td>0.075</td>
<td>60</td>
</tr>
<tr>
<td>IIC</td>
<td>3.0</td>
<td>0.025</td>
<td>20</td>
</tr>
</tbody>
</table>

2. The installation must conform to the BASEEFA Installation Conditions Issue 6, Dated 1st September 1976.

SYSTEM VARIATION FOR THE USE OF ALTERNATIVE BARRIERS

One katharometer plus power supply system with signal return via barriers are shown. The restrictions on the safe side of the barriers are such that no apparatus may be connected that is supplied from greater than 250V rms with respect to earth. The safety barriers used to protect the measuring system must provide two channels or one channel plus one earthed return.

The barriers must be of like polarity and not exceed 5V or 0.44A or 0.44W (matched power), e.g., MTL103, MTL105, MTL755. Table 1 cable parameter values for capacitance and inductance or L/R ration must not be exceeded.

OR

The barriers must be of like polarity and not exceed 15V or 0.8A or 0.3W (matched power), e.g., MTL164, MTL764. Table 1 cable parameter values for capacitance must be reduced by a factor of four and not exceeded; inductance and L/R ratio figures are unaffected.

SAFE AREA

- SAFE AREA APPARATUS
 - Must not be supplied from
 - nor contain a source of potential with respect to earth (ground) in excess of 250V rms or 250Vdc.
 - 4689 503

- SAFETY BARRIERS
 - Certified Ex (ia) IIC by BASEEFA.

HAZARDOUS AREA

- KATHAROMETER
 - Type 006539960 Iss. J.
 - OR
 - Type 006539970 Iss. J.
 - Certified EX (ia) IICT5 by BASEEFA
 - Certificate No. Ex 76179/B

- POWER SUPPLY UNIT
 - Type 004234000 Iss. 5
 - Certified Ex (ia) IIC by BASEEFA
 - Certificate No. Ex 76180/B/S.

- TERMINAL BOX (if required)
 - Must conform to BASEEFA standard SFA 3012 Clause 6.3.

- Maximum L/R ratio 20µH/Ω

Fig. 5.4 System Diagram. System Certificate Ex76181/1 dated Dec 1988
b) Connections between Katharometer Analyzer Panel, Zener Barrier Unit and Model MX21 SP15 Indicator Unit. No special requirements are necessary to limit the choice of cable for the interconnection between the katharometer zero adjustment controls and the indicator unit.

5.2.2 Recommended Cables
The limitations imposed restrict the choice of wiring cable to a few types. 'Pyrotenax' meets the requirements of less than 18µH/Ω with their mineral insulated cable type PCC 2L1.

Kent-Taylor should be consulted with information on any other cables proposed for use in the installation of this system.

Detailed cable specifications of the above mentioned type is available from:
Pyrotenax Limited
Hedgeley Road
Hebburn-on-Tyne
County Durham
Telephone: 0191 483 4123

5.2.3 Full Intrinsically Safe Requirements
For systems to be modified or used with other gases the full BASEEFA requirements must be complied with as follows:

a) The total Capacitance and Inductance or Inductance to Resistance ratio (L/R) of the cables connecting the katharometer unit to the indicator unit and power supply unit terminals (TB1), must not exceed the values given in Table 5.1.

b) Any terminal boxes used in the hazardous or safe areas must conform to BASEEFA Standard SFA.3012, clause 6.3.

c) The overall installation must conform to the BASEEFA installation conditions, Issue 6 (September 1976) – see Fig. 5.4

<table>
<thead>
<tr>
<th>Gas Group</th>
<th>Capacitance</th>
<th>Inductance or L/R ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µF</td>
<td>mH</td>
</tr>
<tr>
<td>IIA</td>
<td>24.0</td>
<td>0.200</td>
</tr>
<tr>
<td>IIB</td>
<td>9.0</td>
<td>0.075</td>
</tr>
<tr>
<td>IIC</td>
<td>3.0</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Table 5.1 6553 – Intrinsically Safe Wiring Requirements
When the gas analyzer system has been correctly installed in accordance with the requirements for intrinsic safety given in Section 5.2, carry out the following setting-up procedures:

6.1 Katharometer Analyzer Panel - Filling the Drying Chamber – Fig. 6.1

a) Remove the drying chamber on the katharometer analyzer panel by unscrewing the large knurled nut at the base of the chamber. Pull the chamber down and out of the sealing groove to remove it from the panel.

b) Open a container of fresh granular calcium chloride or Calcium Sulphate. Immediately fill, and prepare to replace the drying chamber.

- **Note.** The capacity of the drying chamber is about 140ml. To fill the chamber, approximately 100g of calcium chloride is required.

c) Replace the drying chamber in its sealing groove and reposition the chamber to enable it to be secured and sealed by hand tightening the knurled nut.

d) Carry out an approved leak testing procedure before passing sample gas through the system.

6.2 Setting Sample Flow

When all tubing interconnections have been made and external parts of the sample system checked for leaks, the suggested procedure is as follows:

a) Arrange to pass dry, oil free air through the gas analyzer system at the normal working pressure of the application plant and within the limits given in Section 11.

b) Gradually open the metering valve on the katharometer panel to pressurize the complete system to the maximum pressure given in Section 11.

- **Caution.** Testing for leaks with air may not be considered an adequate check of gas tight integrity in respect of the more penetrating hydrogen gas. Consideration may be given to the use of a gas, such as helium, which has penetrating properties nearer to that of hydrogen.

c) Slowly open the metering valve to give a nominal flow rate of gas of 100 to 150 m³/min⁻¹. Do not exceed the maximum flow rate given in Section 11.

d) Set the flow rate, and shut off the calibration gas external to the analyzer system.

6.3 Electrical Checks

6.3.1 Model 4234 Power Supply Unit Output

- **Warning.** This unit is part of the certified intrinsically safe system. Appropriate safety precautions **MUST** be taken to prevent any incendive electrical discharges in the hazardous area when carrying out this task.

- **Caution.** Testing the output may only be carried out with the hazardous area cable disconnected and a dummy load resistor fitted across the output. **NEVER OPERATE THE UNIT TO SUPPLY AN OPEN CIRCUIT.**
6.3.2 Zener Barrier Units

The zener barriers units are checked at the time of manufacture. To ensure absolute safety on a new installation, check that the barriers are properly earthed by carrying out a routine test before using the analyzer system.

Warning. This unit is part of the certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out this task.

If these tests reveal a faulty zener barrier, the barrier must be replaced by a new unit. The barrier is a sealed unit and no repair is permitted. The correct zener barriers are certified intrinsically safe to EX (ia) IIC and no other type may be substituted.
6.4 Indicator Panel
The programming controls, upper and lower displays and indication l.e.ds are located on the front panel of the display unit – see Fig. 6.3.

6.4.1 Controls – Fig. 6.3
The program controls comprise three tactile membrane switches, requiring only moderate finger pressure for operation, and a rotary bit-generator. Control functions are as follows:

- 'Page Advance' switch – used to advance to the next program page – see Fig. 6.3.
- 'Parameter Advance' switch – used to advance to the next parameter within a program page – see Fig. 6.3.
- 'Enter' switch – used for storing the programmed parameters and values into indicator’s the nonvolatile memory. If any value/parameter is changed but not 'Entered, the old parameter value is retained – see Note in Section 6.4.2.
- 'Rotary Bit-generator' – rotary control used for:
 a) Increasing or decreasing a parameter value
 b) Stepping through a selection of parameters.
- 'Auto/Manual' switch not used in this application.

6.4.2 Displays – Fig. 6.3
There are two 6-digit fourteen-segment 'starburst' displays which provide alpha-numeric information during normal operation and when programming.

At the beginning of each programming page, i.e. the page header, both displays are used to describe the particular page being viewed.

When parameters within a page are being viewed the upper display shows the parameter and the lower display shows the value or setting for that parameter.

Note. A flashing decimal point on the upper display is used to indicate any change to the value/parameter on the lower display, i.e. using the ‘Rotary Bit-generator’. The l.e.d. is extinguished only when the value/parameter is stored using the ‘Enter’ switch.

6.4.3 L.E.D. Indication – Fig. 6.3
There are six l.e.d. indicators on the front panel but only two are used in this application:

- A1 flashes if Alarm 1 is in the alarm state – see Section 6.5.4.
- A2 flashes if Alarm 2 is in the alarm state – see Section 6.5.4.

6.5 Programming

Caution. When the apparatus is connected to its supply, terminals may be live and the opening of covers or removal of parts (except those to which access may be gained by hand) is likely to expose live parts.

In normal operation the instrument displays the Operating Page (see Section 6.5.2) which is not affected by the Security System (see Section 6.5.5).
6.5.1 General

The programming procedures are used to make changes to the operating parameter values, and for calibration – see Fig. 6.4 for the overall programming chart.

Any changes to the operating parameters are implemented using the 'Rotary Bit-generator' and the 'Enter' switch – see Fig. 6.3.

A Security System is used to prevent tampering with the programmed parameters by restricting access to any, or all, of the programming pages (except the Operating Page). All users have access to the Operating Page.

'Secured' pages can only be accessed using a Security Number which can be set at any value between 0 and 1999 – see Section 6.5.5.

Note. To return to the Operating Page at any time, operate the ‘Page Advance’ switch.

Note. The indicator responds instantly to any parameter changes, i.e. before the ‘Enter’ switch is used. However, if any change is not ‘Enter’ed the old parameter is retained once that particular parameter is no longer displayed, i.e. by advancing using the ‘Page Advance’ or ‘Parameter Advance’ switches.
6.5.2 Operating Page

The operating page is a ‘display only’ page.

Upper display – measured process variable

Lower display – the unit of measure selected: H2–AIR

A security system is used to prevent tampering with the programmed parameters by inhibiting access to any, or all of the programming pages. ‘Secured’ pages can only be accessed using a Security Number which can be set to any value between 0 and 1999 – see Section 5.5.5. The controller is despatched with the password set to ‘0’.

Note – last ‘Enter’ed Security Number (normally an invalid number – see below.

Lower display

Set the correct configuration password on the lower display – see Section 5.5.5.

Store.

Advance to the first of the programming pages.

Set Points Page.

Note. To prevent access to ‘Secure’ pages once programming is complete the ‘SECODE’ value must be reset to any value other than that of the Security Number, and stored using the ‘Enter’ switch.
6.5.3 Set Points Page

Page header – Set Points.

Advance to next parameter.

Security Status

Select ‘YES’ or ‘NO’ to enable or disable access to this page:

‘YES’ – enable
‘NO’ – disable

Store.

Advance to next parameter.

Alarm 1 Set Point Value

Set the value required. The decimal point position is set automatically.

Store.

Advance to next parameter.

Alarm 2 Set Point Value

Set the value required. The decimal point position is set automatically.

Store.

Return to top of Set Points Page.

or

Advance to Set Up Alarms Page.
6.5.4 Set Up Alarms Page

Page Header – Set Up Alarms.

Advance to next parameter.

Security Status

Select ‘YES’ or ‘NO’ to enable or disable access to this page:

‘YES’ – enable access
‘NO’ – disable access

Store.

Advance to next parameter.

Alarm 1 Type

Select the alarm 1 type:

‘ON/OFF’ – on/off
‘LATCH’ – latch
‘3 STATE’ – three state (on/off)

Store.

Advance to next parameter.

Alarm 1 Relay Action

Select the alarm 1 relay action required:

‘NONE’ – alarm relay not used
‘ON’ – switch on between set points
‘OFF’ – switch off between set points

or

‘NONE’ – alarm not used
‘EA’ – Energised Above set point
‘EB’ – Energised Below set point

Store.

Advance to next parameter.

Alarm 1 L.E.D. INDICATION

Select the alarm 1 l.e.d. indication required:

‘NONE’ – alarm relay not used
‘ON’ – Energised Above set point
‘OFF’ – Energised Below set point

or

‘NONE’ – indication not used
‘ON’ – Energised Above set point
‘OFF’ – Energised Below set point

Continued on next page.
Continued from previous page.

Store.

Advance to next parameter.

Alarm 2 Type
Select the alarm 2 type:
- ‘ON/OFF’ – on/off
- ‘LATCH’ – latch
- ‘3 STATE’ – three state (on/off)

Store.

Advance to next parameter.

Alarm 2 Relay Action
Select the alarm 2 relay action required:
- ‘NONE’ – alarm relay not used
- ‘ON’ – switch on between set points
- ‘OFF’ – switch off between set points

or
- ‘NONE’ – alarm not used
- ‘EA’ – *E*nergised *A*bove set point
- ‘EB’ – *E*nergised *B*elow set point

Store

Advance to next parameter.

Alarm 2 L.E.D. Indication
Select the alarm 2 l.e.d. indication required:
- ‘NONE’ – alarm relay not used
- ‘ON’ – switch on between set points
- ‘OFF’ – switch off between set points

or
- ‘NONE’ – indication not used
- ‘EA’ – *E*nergised *A*bove set point
- ‘EB’ – *E*nergised *B*elow set point

Store

Return to top of *Set Up Alarms Page.*

or

Advance to *Calibration Page.*
6.5.5 Access Page

Page Header – Access Page.

Advance to next parameter.

Security Status

Select:
‘YES’ – to enable access
‘NO’ – to disable access

Store.

Advance to next parameter.

Security Number

The Security Number is set in this parameter.

Set the security number required, between 0 and 1999.

Store.

Security System Status

Select:
‘ON’ – to enable the security system
‘OFF’ – to disable the security system

Store.

Advance to next parameter.

Return to top of Access Page.
or

Return to Operating Page – see Section 6.5.2.
6.5.6 Kent Page
This is normally a hidden page, but it can be selected for parameters which only need to be set up during commissioning or at long intervals.

The page is made available by rotating Link 4 on the indicator unit processor board.

When the instrument is switched on, the Kent Page will appear after the Access Page, and operates in a similar manner to the other pages.

When the Kent Page parameters, as shown below, have been set up, Link 4 can be rotated back to its original position and the page will not appear when the instrument is next switched on.

The Kent Page contains frames to calibrate the analogue retransmission output, and, for the Hydrogen Purity Monitor only, a frame to select the display zero scale (80% or 85%).

```
Page Header – KENT PAGE.

Advance to next parameter.

Calibrate Analogue Output Zero.

Adjust until analogue Output = 4.0mA.

Store.

Advance to next parameter.

Calibrate Analogue Output Span.

Adjust until Analogue Output = 20.0mA.

Store.

Advance to next parameter.

Select Display Zero Scale.

Set the display zero to 80.0 or 85.0

Store.

Return to top of page.
```
6.5.7 Calibration Page

The display unit should be calibrated at the intervals and occasions given in Section 9.3.

⚠ Warning. A Separate signal source must not be applied to any indicator unit without disconnecting existing wiring and considering electrical safety aspects.

Carry out the calibration procedure in accordance with the information given in Section 6.5.

Page Header – **Calibration**.

Advance to next parameter.

Security Status.

Select:

- ‘YES’ to enable access to this page, or
- ‘NO’ to disable access to this page.

Store.

Advance to next parameter.

Calibration Range Zero, Channel 1

Apply 0.0mV to Channel 1 input.

Note: The displayed units are engineering units.

Adjust the display to the required value of 85% (80%).

Store.

Advance to next parameter.

Calibration Range Span Channel 1

Proceed as for Calibration Range Zero, Channel 1 above but apply a signal input equivalent to range span (10.0mV), to Channel 1 input.

Note: The displayed units are engineering units.

Adjust the display to the required value of 100%.

Store.

Return to top of **Calibration Page**.
Annexe 1

(1) Alarm action
There are two alarm set points (A1 and A2) which can be set up individually for independent on/off operation, or in pairs to obtain latching or three-state configurations.

The alarm action with respect to the set points and the process variable is shown in Figs. 6.5 to 6.7 below.

Fig. 6.5 On/Off

Fig. 6.6 Latch

Fig. 6.7 Three-State
7.1 Power Supplies.
When all the required wiring connections and electrical checks have been correctly made, the power supplies to the various units may be switched on as follows:

a) Switch on the supply voltage to the Power Supply Unit.

b) Switch on the supply voltage to the Indicator Unit.

7.2 Alarm Set Points
It is suggested that the hydrogen alarm set-points should be based on a reducing percentage of hydrogen as it is displaced by air entering the application plant. This can be achieved by setting Channel 1 Lo and Channel 2 Lo + alarms to give ample warning of the development of a potentially explosive mixture. The procedure is as follows:

a) Access the programming pages and input the alarm set-points in accordance with the information given in Section 6.5.3.

7.3 Type of Alarm Action
There are various types of operating modes for the alarms, as shown in the Annexe to Section 6.5. The ON/OFF and LATCH modes are most suitable for the method of alarm operation described in Section 7.2.

a) Access the programming pages and input the alarm set-points in accordance with the information given in Section 6.5.4.

7.4 LED Indicators
The two alarm indicators on the display facia are programmable for various modes of operation.

a) Access the programming pages and input the mode of operation required in accordance with the information given in Section 6.5.4.

7.5 Calibration
Before putting the system on-line, carry out a calibration check on the zero input signal using zero calibration test gas.

The maximum input signal for the full range reading is preset during manufacture and sealed. This can be checked using a 100% H₂ span test gas – see Table 7.1.

<table>
<thead>
<tr>
<th>Function</th>
<th>Range Select Sw. Posn.</th>
<th>Display Unit Selected</th>
<th>Display Calibration Channel</th>
<th>No mV output at Katharometer</th>
<th>10mV output at Katharometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>% H₂ in Air</td>
<td>(1)</td>
<td>Top and Bottom</td>
<td>1</td>
<td>85%H₂/N₂</td>
<td>85.0</td>
</tr>
</tbody>
</table>

* – As specified for application
– Not user adjustable

Table 7.1 System functions and Calibration Settings

Caution. These sealed adjustments must NOT be altered by users.

The potentiometer in the katharometer unit should be set to the midpoint on installation and sealed off. A summary of the system functions and calibration data is given in Table 7.1.

Warning. Test for leaks in accordance with the requirements of the responsible authority after making any hydrogen connections.

a) Arrange to pass calibration quality 85% Hydrogen/N₂ gas mixture through the Katharometer Unit at the normal working pressure of the sample gas system. This should give the correct flowrate of gas, as set previously.

b) Power up the indicator unit, and switch on the power supply unit to power up the katharometer unit.

c) The indicator unit will indicate the measurement parameter - percentage by volume of hydrogen in air (H₂ - AIR) on the lower display. The upper display line will indicate a value for the parameter.

d) With hydrogen calibration gas passing through the sample system at the normal flowrate, the upper display line of the indicator unit should stabilize within 2 hours to read 84.7.

e) If necessary, adjust the display to read 84.7. This is done by accessing the calibration facility program for Channel 1 of the display unit and making adjustments according to the information given in Section 6.5.7.
8 OPERATIONAL

8.1 Normal
During normal operation the Gas Analyzer System is used to indicate the purity of hydrogen used as a coolant. The display unit shows the percentage of hydrogen in air, which should be safely in excess of the explosive limit at the hydrogen rich end.

There are no routine adjustments required to the gas analyzer system after completion of start-up procedures and putting online in monitoring mode. The system only requires minor adjustments to the sample flow valve to maintain the required flowrate and the carrying out of safety routines.

8.2 Purging of Hydrogen Coolant Gas
When the hydrogen coolant has to be removed from the application plant, it cannot be replaced directly with air due to the production of explosive mixtures of hydrogen and air. It is therefore necessary to ensure that the system is outside the explosive limits for air-in-hydrogen before allowing air into the system.

Initially, inert purge gas (carbon dioxide) is introduced into the system. When the hydrogen concentration is safely below the explosive limit, air is introduced into the system to completely displace the other two gases.

A Model 6553 Gas Analyzer System is available which provides all the necessary indications and output signals to enable this operation to be carried out safely.

During the purging sequence, and when air is in the system, the analyzer system covered by these operating instructions will not function correctly, as the gases will be outside the operating range of the katharometer.

8.3 Filling with Hydrogen Coolant Gas
This procedure is a reversal of the purging procedure.

Initially, inert purge gas (carbon dioxide) is introduced into the application plant until the air content is safely below the explosive limit for air in hydrogen. When this limit is reached, hydrogen is gradually introduced into the system to displace the other two gases.

9 MAINTENANCE

Warning.
- Each unit of this system forms an integral part of a certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out these tasks.
- Equipment in this system operates on a.c. mains supply voltage electricity. Suitable precautions must be taken to avoid the possibility of electric shock.
- The maximum pressure and temperature specified for particular parts of the system must not be exceeded.

The units are designed for stable and accurate operation over long periods.

This section covers the requirements for fault finding, diagnostic tests and maintenance tasks.

9.1 Fault Finding

9.1.1 Pressure
The operation of the katharometer unit is not affected significantly by changes in pressure providing it is within the pressure limits given in Section 11.

9.1.2 Flow
The katharometer zero balance and sensitivity are independent of the sample flowrate, as the sample gas sensing system depends on molecular diffusion. However, the speed of response is affected by the flowrate. This means that the sample flow rate is a compromise between obtaining speed of response, and avoiding a rapid degradation of the desiccant.

9.1.3 Leaks
There is an inherent safety requirement that there are no leaks into or out of the sample system. Any leaks could also affect the correct operation of the katharometer unit.

9.1.4 Vibration
The katharometer unit tolerates reasonable levels of mechanically induced vibration. Pulsations due to unsteady sample flow can affect the katharometer filaments and cause errors due to excessive cooling.

9.1.5 Contamination
Contamination in the sample system can arise from oil or suspended particles, or from erosion of material from the sample system upstream of the katharometer unit.

9.1.6 Ambient Temperature
The calibration of the katharometer is not significantly affected by variations of the ambient temperature. Temperature changes can affect the sensitivity and reduce accuracy on sensitive ranges.
9.3.2 Changing Desiccant in the Drying Chamber
The need to change the desiccant in the drying chamber on the katharometer analyzer panel depends on the condition of the sample gas. It is recommended that the analyzer system is monitored regularly during the initial phase of operation for indications that the desiccant is exhausted. Then a suitable maintenance interval for this task can be established.

As the desiccant degrades, the white grains can be seen to have a yellowish tinge and the granular form becomes more consolidated. If liquid contamination occurs the desiccant becomes brown and consolidated.

Warning. Suitable safety precautions MUST be taken while the gas cooling and sample systems are operational.

a) Isolate the sample gas system from the main system. Carry out a limited hydrogen purging operation on the sample system in accordance with the instructions of the responsible authority.

b) Carry out the procedure given in section 6.2.

c) After purging any residual air from the sample system in accordance with the requirements of the responsible authority, allow hydrogen to pass through the katharometer again.

This task should be undertaken on the basis of instrument response or at intervals of one year.

9.4 Repair Maintenance
9.4.1 Removing Liquid from the Katharometer Measurement Block – Fig. 9.1
If tests indicate that there is likely to be an accumulation of liquid in the measurement block, it may be removed using the following procedure:

a) Electrically isolate the defective katharometer at its power supply unit.

Caution. Do not operate the power supply with the output open circuit.

b) Isolate the gas sample system to the particular katharometer from the main gas cooling system. Purge the sample system of hydrogen in accordance with the requirements of the responsible authority.

c) Remove the cover of the katharometer unit and dismantle the internal sample system tubing.
...9 MAINTENANCE

d) Remove the fixing screws which secure the mounting pillars to the case – see Fig. 5.1.

e) Disconnect the interconnecting wiring at terminal block TB1.

Caution. Do not insert any type of probe into the gas system of the measurement block or use compressed air to blow through the system.

f) Remove the measuring unit from the case and tilt at 45° to the horizontal. This allows any liquid to drain from the measurement block – see Fig. 9.1.

g) Pour a small quantity of rectified spirit (ethanol) through the measurement block. Allow as much liquid as possible to drain out. Assist this by gentle shaking of the block. Repeat this procedure several times until all evidence of contamination is removed.

h) Fit the measuring unit into its case. Replace the fixing screws and make the electrical interconnections at terminals TB1-1 and TB1-4.

i) Fit the internal sample gas tubing.

j) Make the sample gas tube interconnection couplings.

k) Replace the desiccant in the drying chamber in accordance with the procedure given in Section 9.3.2.

l) Carry out a leak test in accordance with the requirements of the responsible authority.

m) Power up the katharometer unit by switching on the appropriate power supply unit.

n) Arrange to pass dry air or another suitable dry gas through the katharometer at the normal sample flowrate for 24 hours.

o) Isolate the katharometer unit at its power supply unit.

Caution. Do not operate the power supply with the output open circuit.

p) Make the remaining electrical connections at TB1 of the katharometer unit – see Fig. 5.1.

q) Fit the cover of the katharometer unit.

r) Power up the katharometer unit from the power supply unit.

s) Carry out a calibration check procedure in accordance with Section 7.5.

This task should be undertaken as required.

Note. It is possible that the zero reading may drift for several days after the removal of liquid.
Warning. Interference with any unit or its components implies acceptance of responsibility by that person for ensuring the continuing maintenance of intrinsic safety requirements. Unauthorized repair, spare parts or incorrect assembly may render any unit unfit for use within a hazardous area.

Note. Although the digital display unit may be marked MX21 on the display facia, it is a dedicated variant which is not interchangeable with the standard MX21 Controller/Display. This dedicated display unit is identified (MX21/SP15) as shown in Fig. 3.1.

When ordering a katharometer unit, it is necessary to specify the zero gas and calibrated range, in association with the Kent-Taylor part number. See the typical identification label shown in Fig. 3.3.

10.1 Consumables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 6540 203 Katharometer Analyzer Panel</td>
<td></td>
</tr>
<tr>
<td>Granular anhydrous Ca Cl₂</td>
<td>Locally sourced</td>
</tr>
</tbody>
</table>

10.2 Routine Maintenance Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 4234 Power Supply Unit</td>
<td></td>
</tr>
<tr>
<td>Fuse, 500 mA/>4000A hbc cartridge</td>
<td>002417 005</td>
</tr>
<tr>
<td>Model 6540 203 Katharometer Analyzer Panel</td>
<td></td>
</tr>
<tr>
<td>Seal, top of drying chamber</td>
<td>002310 012</td>
</tr>
<tr>
<td>Seal, bottom of drying chamber</td>
<td>006519 160</td>
</tr>
<tr>
<td>Gauze, drying chamber</td>
<td>006525 700</td>
</tr>
<tr>
<td>Katharometer Unit, coupling seal sleeve</td>
<td>006525 130</td>
</tr>
</tbody>
</table>

10.3 Repair Maintenance Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 4234 Power Supply Unit</td>
<td></td>
</tr>
<tr>
<td>Nominal 110V unit</td>
<td>004234 000/01</td>
</tr>
<tr>
<td>Nominal 240V unit</td>
<td>004234 000/02</td>
</tr>
<tr>
<td>Model 6540 203 Katharometer Analyzer Panel</td>
<td></td>
</tr>
<tr>
<td>Flowmeter, 50-250ml/min</td>
<td>006525 460</td>
</tr>
<tr>
<td>Valve, metering</td>
<td>006540 361</td>
</tr>
<tr>
<td>Katharometer unit (85%H₂/Air)</td>
<td>006539 960</td>
</tr>
<tr>
<td>Indicator Unit</td>
<td>MX21/SP15</td>
</tr>
<tr>
<td>Zener barrier unit</td>
<td>STT 2832</td>
</tr>
</tbody>
</table>

Model 6548 001 Katharometer Unit (High Pressure Version)

![Fig. 10.1 Model 6548 001 Katharometer Unit – Location of Components inside case](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>006548019</td>
<td>Bulkhead Plate</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0216479</td>
<td>Male Connector 4mm to 1/8"B.S.P.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0216483</td>
<td>Bulkhead Connector 4mm tube</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>002018226</td>
<td>Screw 6 x 5/16" Self Tap Binding Head STL. ZN/PS</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0216480</td>
<td>Copper Sealing Washer 1/8" B.S.P.</td>
<td>2</td>
</tr>
</tbody>
</table>
Model 6548 000 Katharometer Analyzer Panel (High Pressure Version)

Fig 10.2 Model 6548 000 Katharometer Analyzer Panel – Location of items

<table>
<thead>
<tr>
<th>No.</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>006548003</td>
<td>Drying Chamber Assembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0216485</td>
<td>Glass Tube/Float/End Block</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0216484</td>
<td>Metering Valve</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>006548011</td>
<td>Flow Gauge Mounting Bracket</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>006548010</td>
<td>Metering Valve Bracket</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0227613</td>
<td>Screw M4 x 12 Slotted Pan Head. Stainless Steel</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0227860</td>
<td>Screw M6 x 25 Cheese Head. Stainless Steel</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>002190070</td>
<td>Washer M4 Plain. Stainless Steel</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>002190051</td>
<td>Washer M6 Plain. Stainless Steel</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>001186004</td>
<td>Stainless Steel Tube 5/32 O.D. x 0.028W</td>
<td>A/R</td>
</tr>
<tr>
<td>!</td>
<td>0216482</td>
<td>Reducer 6mm to 4mm.</td>
<td>2</td>
</tr>
<tr>
<td>@</td>
<td>0216481</td>
<td>Male Connector 6mm to 1/4" B.S.P.</td>
<td>2</td>
</tr>
<tr>
<td>£</td>
<td>002310004</td>
<td>‘O’ Seal/Bond</td>
<td>2</td>
</tr>
</tbody>
</table>

A/R = As required
(a) Model MX21 SP15 Indicator Unit

Inputs:
Channel 1: 0 to 10mV (H₂ in Air)
- Special lineariser for % H₂ in Air
- Display scaled 85 to 100%
or 80 to 100%
- Calibration of zero and full scale values in calibration page.

Selection of Instrument:
Logic I/P 2:
- C/C – instrument selected.
- I/P displayed in operating page.
- O/C – instrument not selected.
 'NOT IN USE' displayed in operating page.

Analogue Retransmission:
Isolated 4 to 20mA retransmission of input current selected
Maximum load 750 ohms.

Retransmission Calibration:
Calibration of full scale and zero values in KENT page.

Security:
Security Code restricts access to selected pages.

Alarms:
Two programmable alarms with relay outputs.
Options for each alarm are:
- Alarm Type: On/Off
 Latching
 3 state
- Relay Action: None
 Energised above setpoint (EA)
 Energised below setpoint (EB)
- Indicator Action: None
 EA
 EB

Accuracy:
Better than 0.25%

Measurement Resolution:
Better than 0.1% span.

Power Supply:
Input voltage: With PS MX10/0235 PSU the input voltage is limited to 110V, 50/60Hz.
For higher supply voltages a step down transformer must be used.

(b) Model 6540 203 Katharometer Analyzer Panel
Incorporating Model 6539 960 (H₂) Katharometer Unit

Power Supply:
350mA d.c., from 4234 PSU.

Signal Output:
0 to 10mV for each range.
±2% of fsd.

Accuracy:
Typically 5s.
Typically 40s for 90% step change at katharometer.
Tubing and drying chamber introduce extra delays.

Dead Time:
Maximum of 50°C.

Response Time:
Compression couplings, 8mm outside dia. tube.

Ambient Temperature:
Minimum, 125mm H₂O
Maximum, 0.35b (G)

Sample Connections:

Sample Pressure:

Normal Sample Flowrate:
100 to 150mlmin⁻¹

Maximum Gas Flowrate:
250mlmin⁻¹

Minimum Gas Flowrate:
50mlmin⁻¹

Outline Dimensions:
610 x 305 x 152mm

Weight:
8.6kg approximately.

Environment:
Sheltered interior.
(c) Model 6548 000 Katharometer Analysyer Panel
(High Pressure Version) Incorporating Model 6548 001 Hz Katharometer Unit

Power Supply: 350mA d.c., from 4234 PSU
Signal Output: 0 to 10mV for each range
Accuracy: ±2% of scale span, each range
Dead Time: Typically 5s
Response Time: Typically 40s for 90% step change at katharometer. Tubing and drying chamber introduce extra delays.

Ambient Temperature: Maximum of 50°C
Sample Connections: Compression couplings, 6mm tube
Sample Pressure:
- Minimum, 125mm H₂O
- Maximum, 10 bar (G) [BASEEFA Cert. to 1 bar only]
Normal Sample Flowrate: 100 to 150ml/min
Maximum Gas Flowrate: 250ml/min
Minimum Gas Flowrate: 50ml/min
Outline Dimensions: 610 x 305 x 152mm
Weight: 8.7kg approximately.
Environment: Sheltered interior

(c) Model 4234 Power Supply Unit

Input Voltage: 110/120V or 200/220/240V a.c., 50/60 Hz (2 separate versions)
Fuse Rating: 500mA hbc (high breaking capacity ≥4000A)
dc Output: 350mA stabilised
Load Conditions:
- 1 katharometer – 13Ω max.
- Interconnecting cable – 2Ω max.
Ambient Temperature Range: –5 to +50°C
Supply Variations:
- ±6% (V)
- ±4% (Hz)
Regulation: Within ±0.8% for:
 (i) Load variation. of ±15%
 (ii) Supply variation. of ±6%
 (iii) Ambient temp. variation. of ±10°C
Ripple: Less than 1mA rms
Stability: Within ±0.7% of initial setting, over period of 1 month with load resistance, supply voltage and ambient temperature at nominal stated values
Outline Dimensions: 148 x 283 x 135mm
Weight: 3.8kg approximately.
Environment: Sheltered interior
A1.1 Model 4234 Power Supply Unit
Two different power supply units are available to suit different supply voltages – see Section 10.

A1.1.1 Functional Description
A circuit diagram for each type is shown in Fig. A1 (240V), Fig. A2 (110V).

A stable supply voltage is produced across zener diodes Z3 and Z4 by utilizing the forward slope resistance of zener diodes Z1 and Z2 in the full-wave rectifier bridge connected to the secondary winding of transformer T1. A reference voltage is produced across C103 by zener diode Z101 in conjunction with R101, with diode D103 providing temperature compensation. This reference voltage is applied to the base of TR101, which is used to drive the power transistor TR102 to produce a constant current output of 350mA. The small preset potentiometer RV101 is used to provide a fine adjustment for the current output.

The output current is restricted by inviolate resistors which ensure that the requirements of the intrinsic safety certification are met, even under a '2-fault' condition.

Warning. This unit is part of the certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out maintenance tasks.

A1.1.2 Fault Finding
Caution. Do not operate this unit without an electrical load on the output.

If testing indicates that this unit is defective, further fault finding may be carried out based on the typical test point values given in Table A1. There are several test points available on the unit. Reference should be made to Figs. A1, A2 and the markings on the circuit boards for the location of test points and components.

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Voltage V</th>
<th>Form</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>9.1</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP2</td>
<td>3.5</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP3</td>
<td>3.0</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP4</td>
<td>2.4</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP5</td>
<td>5.0</td>
<td>d.c.</td>
<td>With respect to 0V using 10Ω dummy load</td>
</tr>
<tr>
<td>TP6</td>
<td>1.7</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>T1</td>
<td>9.1</td>
<td>a.c.</td>
<td>At secondary</td>
</tr>
</tbody>
</table>

A1.1.3 Parts List

Repair Maintenance Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td></td>
</tr>
<tr>
<td>R101, 910R, ±2%, 0.5W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>R102, 3k3, ±2%, 0.5W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>R103, 4R7, ±1%, 9W, wirewound</td>
<td>-</td>
</tr>
<tr>
<td>R104, 100R, ±2%, 0.5W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>Variable resistor</td>
<td>-</td>
</tr>
<tr>
<td>RV 101, 1k0, Spectrol Reliance, CW51</td>
<td>-</td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>C101, 1000µF, 16V, elect., Mullard 0175 15102</td>
<td>-</td>
</tr>
<tr>
<td>C102, 1000µF, 16V, elect., Mullard 0175 15102</td>
<td>-</td>
</tr>
<tr>
<td>C103, 100µF, 16V, elect., Mullard 0165 14101</td>
<td>-</td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
</tr>
<tr>
<td>TR101, BC 108, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>TR 102, 2N 3766, Motorola</td>
<td>-</td>
</tr>
<tr>
<td>Diode</td>
<td></td>
</tr>
<tr>
<td>D101, BYX 36 - 600, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>D102, BYX 36 - 600, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>D103, AAZ - 15, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Zener diode</td>
<td></td>
</tr>
<tr>
<td>Z1, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z2, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z3, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z4, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z101, BZY88C3V3, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>FS1, 500mA, hbc cartridge, Belling Lee L693</td>
<td>-</td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>T1, 110 - 120V primary</td>
<td>4234 130</td>
</tr>
<tr>
<td>T1, 200 - 220 - 240V primary</td>
<td>4234 140</td>
</tr>
</tbody>
</table>

Note. The primary winding of the transformer T1 incorporates a thermal cutout device to prevent overloading under fault conditions. Sufficient time must be allowed for this to cool and reset after a fault has occurred, and before continuing further testing.
Fig. A2 Power Supply Unit Model 4234 – Overall Circuit (110/120 Version)

*Measured with a 10R load.
A Comprehensive Instrumentation Range

Analytical Instrumentation

- **Transmitters**
 On-line pH, conductivity, and dissolved oxygen transmitters and associated sensing systems.

- **Sensors**
 pH, redox, selective ion, conductivity and dissolved oxygen.

- **Laboratory Instrumentation**
 pH and dissolved oxygen meters and associated sensors.

- **Water Analyzers**
 For water quality monitoring in environmental, power generation and general industrial applications including: pH, conductivity, ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine.

- **Gas Analyzers**
 Zirconia, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Controllers & Recorders

- **Controllers**
 Digital display, electronic, pneumatic. Discrete single-loop and multi-loop controllers which can be linked to a common display station, process computer or personal computer.

- **Recorders**
 Circular and strip-chart types (single and multi-point) for temperature, pressure, flow and many other process measurements.

Electronic Transmitters

- **Smart & Analog Transmitters**
 For draft, differential, gauge and absolute pressure measurement. Also, liquid level and temperature

- **I to P Converters and Field Indicators**

Flow Metering

- **Magnetic Flowmeters**
 Electromagnetic, insertion type probes and watermeters.

- **Turbine Flowmeters**

- **Wedge Flow Elements**

- **Mass Flow Meters**
 Transmitters, sensors, controllers and batch/display units.

Level Control

- **Submersible, Capacitance & Conductivity.**

Pneumatic Instrumentation

- **Transmitters**

- **Indicating Controllers**

- **Recording Controllers**

Customer Support

ABB Instrumentation provides a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABBCent-Taylor Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 821382

United States of America
ABB Instrumentation Inc.
Tel: +1 716 292 6050
Fax: +1 716 273 6207

Italy
ABBCent-Taylor SpA
Tel: +39 (0) 344 58111
Fax: +39 (0) 344 56278

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.