DC Machines DMI

Operating and Maintenance Instructions

Contents

Safety	1. General4	5. Electrical connection and
instructions	2. Transport storage	6 Operation 5
	4 Installation	7 Mointononoo and convising
	4. Installation4	Safety Notice6
Machine	Technical data on rating plate	
description	Description of parts10	
General storage	General12	Vibrations12
precautions	Condensation12	Shaft end protection12
	Corrosive environment12	
Foundation	General13	
	Grouting13	
Machine	Inspection14	Alignment of V-belt drive16
installation	Lifting14	Tightening torque of
Installation	Assembly of coupling14	foundation bolts16
	Alignment of directly-coupled	Connection of cables16
	machines15	Terminal diagram17
Commissioning	Checks before start-up19	Lubrication during start-up 19
Commeetering	Checks during start-up	Checks after 100 operating hours
Observation	General 20	
and maintenance	Maintance schedule20	
Insulation	Measuring insulation resistance	
resistance		
Bruchoe and	General 22	Brush wear 24
	Patina 22	Brush wear
commutation	Sparking22	Bedding of brushes24
	Poor brush contact23	3 • • • • • •
Commutator	General	Commutator out of true25
Commutator	Corrosive environment25	
 De evinene	Changing the bearings 26	
Bearings	Changing the bearings20	
Lubrication	General27	Lubrication during operation27
	Lubrication during start-up27	
Cleaning	General28	Drying of windings28
j	Cleaning of windings28	
Filter	Fans with air filters29	Specification of filter material
	Machines with heat exchangers	
Speed control	Installing the speed control device	
device		
Loot oxobongoro	Conoral	Maintananaa of motors
near exchangers	Air/air heat exchangers	with heat exchangers 40
	Air/water best exchangers	Special maintenance of
	Mounting 32	air-water heat exchangers 12
	Before starting 38	all-water field excitatigers
	Verification of monitoring	
	equipment of heat exchangers	
	Diamontling 40	
usmantling and	Dismanuling43	
reassembling	Reassembling45	
Spare parts	Recommended spare parts44	
Faults and	Mechanical 45	Commutation 47
romodioo	Flectrical 46	
	210011001	
EC Directives	Declaration of Incorporation48	
	EC Declaration of Conformity49	

Safety instructions

Low-voltage directive	These safety instructions for the operation of direct-current machines are in conformity with the Low-Voltage Directive 73/23/EEC.		
1 General	DC machines have rotating parts and parts which may be live even at rest, and possibly hot surfaces. All operations serving transport, connection, commissioning and periodic maintenance must be carried out by skilled, responsible technical personnel (note EN 60034; EN 50110-1/VDE 0105). Improper handling can cause serious	injury and damage to property. The applicable national, local and installa- tion-specific regulations and requirements must be taken into account. To guarantee trouble-free operation the ABB documentation must be followed.	
2 Intended use	These machines are intended for industrial and commercial installations. They comply with the standards series EN 60034 (VDE 0530). Their use in hazardous areas is prohibited unless they are expressly intended for such use (note additional instructions). Where, in exceptional cases, – use in non-commercial installations – more stringent requirements are to be met (e.g. protection against contact with children's fingers), these conditions must be ensured by the customer when the machine is installed. The machines are generally rated for ambient temperatures of – 5 to + 40 °C and altitudes of up to 1000 m above sea level. Take note of different instructions on the rating plate. Conditions on site must conform to all data given on the rating plate.	DC machines are components for installation in machinery as defined in the Machinery Directive 89/392/EEC. Commissioning is prohibited until conformity of the end product with this directive has been established (see EN 60 204-1). DC machines meet the requirements of the low voltage directive 73/23/EEC. The normal operation of the DC machine must comply with the protection requirements of the EMC directive 89/336/EEC. The proper in- stallation (e.g. separation of signal lines and power cables, screened cables etc.) is the re- sponsibility of the erector of the installation. For installations with power converters, the EMC instructions of the converter manufacturer must be taken into account.	
3 Transport, storage	Report damage discovered after delivery to the transport company immediately. If necessary, stop commissioning. Tighten screwed-in ring bolts before transport. They are designed for the weight of the machine. Do not apply extra loads. If necessary, use suitable, adequately di- mensioned means of transport (e.g. rope guides).	When machines are stored, ensure a dry, dust- free, low-vibration ($V_{rms} \le 0.2 \text{ mm/s}$) environ- ment (danger of bearing damage at rest). Long storage periods reduce the grease service life of the bearings. (Refer to the chapter "General storage precautions").	
4 Installation	Make sure of an even supporting surface, of solid foot or flange mounting and of exact align- ment in case of direct coupling. Avoid resonances in the operating speed range and with sixfold (or, in the case of single-phase supply, double) mains frequency which may be caused by the assembly. Turn rotor by hand, listen for abnormal scraping noises. Check direction of rotation in uncoupled state (follow Section 5.) Mount or remove output elements (pulley, coupling) using only appropriate means and cover them with a guard. Avoid excessive belt tension (refer to DMI catalogue). Before mounting the output element, make sure the machine is balanced. The balancing method	for the machine is indicated on the shaft end face and on the rating plate (H = half key, F = full key). For models with shaft ends pointing down- ward, a canopy is recommended; for models with shaft ends pointing upward, measures are needed to protect against ingress of water into the bearing. Do not obstruct ventilation. Exhaust air, also from neighbouring sets, must not be drawn in again directly. Chemically polluted air, cooling air containing dust, or low-load operation for a prolonged period of time may negatively affect the commutation and brush life.	

5 Electrical connection and commissioning	All operations must only be carried out by skilled technical personnel on machines at rest and isolated and provided with a safeguard to prevent unintentional reconnection. This applies also to auxiliary circuits (e.g. anti-condensation heating). Remove shipping brace before	There must be no foreign objects, dirt or moisture in the terminal box. Close unused cable entrance holes and the box itself in a dust- and watertight manner. For the trial run without output elements, fix the key to the shaft.		
	 commissioning. Check safe isolation from supply! Exceeding tolerances according to EN 60034 (VDE 0530), i.e. voltage ± 5%, or an unfavourable form factor resulting from the type of converter used, leads to increased heating and shortens the life of the machine. Pay attention to rating plate markings as well as to the connection diagram. The connection must be so made that a permanent and safe electrical connection is ensured (no loose wire ends). Use correct cable terminals. Maintain clearances between live, uninsulated parts and between such parts and earth. 	For the connection and installation of accesso- ries (e.g. tacho-generators, pulse generators, brakes, temperature sensors, air-flow monitors, brush monitors), strictly follow the correspond- ing instructions. In case of doubt, consult ABB. For machines with brakes, check satisfactory functioning of the brake before commissioning. Before commissioning, measure the insulation resistance. With 500 V applied, the insulation resistance value measured should not be lower than 1 M Ω . For corrective measures, see the chapter "Insulation resistance".		
6 Operation	Operation without excitation can lead to dangerous overspeeds and must be prevented by interlocking.	For all inspection and maintenance operations, see the chapter "Observation and mainte- nance".		
	Vibration severities $V_{rms} \le 4.5$ mm/s at the bearings are acceptable in the coupled state. In the event of of deviations from normal oper-	In case of heavy dirt deposits, periodically clean air channels. Open condensate drain holes from time to time .		
	ation – e.g. elevated temperatures, noise, vibra- tions – switch off the machine in case of doubt. Establish the cause. Consult ABB, if necessary.	Regrease bearing assembly with a relubricating device while the machine is running. See the chapter "Lubrication".		
	Do not override protective devices even in trial runs.			
7 Maintenance and servicing	The ABB documentation must be followed.			

Safety Notice:	This equipment contains high voltage! Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt installation, operation and maintenance of electrical equipment. Be sure that you are completely familiar with NEMA publication MG-2, safety standards for construction and guide for selection, installation and use of electric motors and generators, the National Electrical Code, IEC and local codes and practices. Unsafe installation or use can cause conditions that lead to serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.
WARNING:	Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.
WARNING:	Be sure the system is properly grounded before applying power. Do not apply power before you ensure that all grounding instructions have been followed. Electrical shock can cause serious or fatal injury. National Electrical Code. IEC and Local codes must be carefully followed.
WARNING:	Avoid extended exposure to machinery with high noise levels. Be sure to wear ear protective devices to reduce harmful effects to your hearing.
WARNING:	Surface temperatures of motor enclosures may reach temperatures which can cause discomfort or injury to personnel accidentally coming into contact with hot surfaces. Protection should be provided by the user to protect against accidental contact with hot surfaces. Failure to observe this precaution could result in bodily injury.
WARNING:	This equipment may be connected to other machinery that has rotating parts or parts that are driven by this equipment. Improper use can cause serious or fatal injury. Only qualified personnel should attempt to install operate or maintain this equipment.
WARNING:	Do not by-pass or disable protective devices or safety guards. Safety features are designed to prevent damage to personnel or equipment. These devices can only provide protection if they remain operative.
WARNING:	Avoid the use of automatic reset devices if the automatic restarting of equipment can be hazardous to personnel or equipment
WARNING:	Incorrect motor rotation direction can cause serious or fatal injury or equipment damage. Be sure to verify motor rotation direction before coupling the load to the motor shaft
WARNING:	Be sure the load is properly coupled to the motor shaft before applying power. The shaft key must be fully captive by the load device. Improper coupling can cause harm to personnel or equipment if the load decouples from the shaft during operation.
WARNING:	Use proper care and procedures that are safe during handling, lifting, installing, operating and maintaining operations. Improper methods may cause muscle strain or other harm.
WARNING:	Thermostat contacts automatically reset when the motor has slightly cooled down. To prevent injury or damage, the control circuit should be designed so that automatic starting of the motor is not possible when the thermostat resets.
WARNING:	UL Listed motors must only be serviced by UL Approved Authorized Baldor Service Centers if these motors are to be returned to a hazardous and/or explosive atmosphere.
WARNING:	Pacemaker danger – Magnetic and electromagnetic fields in the vicinity of current carrying conductors and permanent magnet motors can result in a serious health hazard to persons with cardiac pacemakers, metal implants, and hearing aids. To avoid risk, stay away from the area surrounding a permanent magnet motor
WARNING:	The SCR Controller may apply hazardous voltages to the motor leads after power to the controller has been turned off. Verify that the controller is incapable of delivering hazardous voltages and that the voltage at the motor leads is zero before proceeding. Failure to observe this precaution may result in severe bodily injury or death.
WARNING:	Before performing any motor maintenance procedure, be sure that the equipment connected to the motor shaft cannot cause shaft rotation. If the load can cause shaft rotation, disconnect the load from the motor shaft before maintenance is performed. Unexpected mechanical rotation of the motor parts can cause injury or motor damage.
WARNING:	Do not use non UL/CSA listed explosion proof motors in the presence of flammable or combustible vapors or dust. These motors are not designed for atmospheric conditions that require explosion proof operation.
WARNING:	Motors that are to be used in flammable and/or explosive atmospheres must display the UL label on the nameplate along with CSA listed logo. Specific service conditions for these motors are defined in NFPA 70 (NEC) Article 500.

WARNING:	Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guarded to prevent accidental contact by personnel. Accidental contact with body parts or clothing can cause serious or fatal injury.
Caution:	To prevent premature equipment failure or damage, only qualified maintenance personnel should perform maintenance.
Caution:	Do not over-lubricate motor as this may cause premature bearing failure.
Caution:	Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other driven equipment) from the motor shaft before lifting the motor.
Caution:	If eye bolts are used for lifting a motor, be sure they are securely tightened. The lifting direction should not exceed a 20° angle from the shank of the eye bolt or lifting lug. Excessive lifting angles can cause damage.
Caution:	To prevent equipment damage, be sure that the electrical service is not capable of delivering more than the maximum motor rated amps listed on the rating plate.
Caution:	If a HI POT test (High Potential Insulation test) must be performed, follow the precautions and procedure in NEMA MG1 and MG2 standards to avoid equipment damage.
Caution:	Do not use Silicone grease or Sealing Compounds (RTV) on or in the vicinity of the motor or its air supply. Silicone vapor inside the motor will result in extremely rapid brush wear.
Caution:	Vertical mount hand hole covers are required to provide protection to vertically mounted drip-proof motors. Stock motors and other motors designed for horizontal mounting can be adapted for vertical mounting by ordering vertical mount hand hole covers from Baldor.
Caution:	Use of these radial load capacities requires the accurate calculation of the radial load for the application. Radial loads for gears, sprockets, and flywheel are usually accurately determined. Radial loads for V-belt drives are subject to error due to the exclusion of pre-tension load (belt tightening). The calculations of the radial load for a V-belt drive must include the pre-tension for transmitting the horsepower, pre-tension for centrifugal force on the belts, Pre-tension for high start torques, Rapid acceleration or deceleration, Pre-tension for drives with short arc-of-contact between the V-belt and sheave and low coefficient of friction between belt and sheave caused by moisture, oil or dust.
Caution:	Series wound motors must never be allowed to run with no load (broken belt etc.) An unloaded motor may reach destructive high speeds.
Caution:	Motors designed for forced ventilation must have cooling air when fields are excited at rated voltage. Installations having the air supply interrupted when the motor is not operating must have field disconnected or field voltage reduced to 50% rated by means of field economizing resistor and relay or motor insulation life will be significantly reduced.

If you have any questions or are uncertain about any statement or procedure, or if you require additional information please contact your Baldor distributor or an Authorized Baldor Service Center.

Machine description

Technical data on rating plate

The exact type designation and the most important technical data are shown on the rating plate located on the terminal box.

F F -				AI	JB
Type ①	١	rear: 🗹	1 (vo. 2	Serial / 55
Standar	d: (3)			M: ④	Spec. # 22
Therm.c	lass/Te	mp.rise:	6 I	Weight: ⑥kg	Cooling and protection IC: 66 Encl./IP 67
Supply:	0 -				Ambient: 58 Altitude: 73
Branch:	63		[Duty: 🕕	Cooling air intake at: 😏 —end
Applicat	tion: 🖽				Cooling air: 100 m3/s 100 Pa
9		No	<u>of brush</u>	es: 😰 /arm	Balanced with: 😥 key
kW	HP	V	A	r/min	Balancing class: 63
_ @		6	6		Standstill heater: (64) phase) 65 V 66 W
B	75	19	0	2D	Brushes/grounding brushes must be
22	60	23	29	25	inspected and substituted when worn out
26	\bigcirc	0	23	29	Grounding brush D-end: 🚱 N-end: 🚯
Excitati	on:	CO V		CD A	LUBRICATE at min 300 r/min, using ball
32					bearing grease.
<u>G</u>			Dut	y: 33	Lubrication interval:_67h, max 12 month.
36)		No.	of brush	es: 🕥 /arm	Grease quantity: 68 g per bearing.
kW	HP	V	A	r/min	Bearing at D —end: 🚱
37	73	33	3	4D	Bearing at N -end: 🕖
ÆD	79	42	€€	44	82
45	60	46	Ð	4 B	IMPORTANT safety instructions and
<u>49</u>	(67)	50	5D	62	maintenance instruction: 3BSM 003045-1
Excitati	on:	63 V		64 A	http://www.abb.com/motors&generators
H-	63				BALDOR ELECTRIC CO. FT. SMITH, AR. MFG. IN U.S.A. CC

Figure 1. Rating plate for DMI machine.

1	Type of motor	53	Field exciter voltage, alternative
2	Motor number (specific for each motor)	E 4	
3	Rating and performance standard	54	operation
4	Mounting arrangement	55	Open row
5	Thermal class/Temperature rise	56	Method of cooling
6	Motor weight (without cooling device)	57	Degree of protection
7	Converter and/or AC supply data	58	Valid temp, range for operation
9	Machine type	50	Motor and for appling air intake
10	Duty cycle	09	
11	Application	60	(for heat dissipation)
12	No. of brushes/arm on brush gear	61	Static air pressure drop
13	Branch	62	Key type used for balancing
14, 18, 22, 26	Mechanical power (kW) heater	63	Balancing class
15, 19, 23, 27	Armature DC voltage	64	Number of phases connected to
16, 20, 24, 28	Armature DC current	01	standstill heater
17, 21, 25, 29	Speed (rpm)	65	Standstill heater voltage
30	Field exciter voltage	66	Standstill heater power
31	Field exciter current	67	Lubrication interval
32	Catalogue no.	68	Grease quantity
33	Alternative duty cycle	69	Bearing type at D-end
34	Open row	70	Bearing type at N-end
35	No. of brushes/arm on brush gear,	71	Manufacturing year
	alternative operation	72	Open row
36	Alternative machine type	73	Valid altitude for motor operation
37, 41, 45, 49	Mechanical power (kW) for alternative operation	74, 75, 76, 77	Mechanical power (HP)
38, 42, 46, 50	Armature DC voltage for alternative	78, 79, 80, 81	Mechanical power (HP), alternative operation
39 13 17 51	Armature DC current for alternative	82	Open row
55, 76, 77, 51	operation	83	CSA logotype (if CSA approved)
40, 44, 48, 52	Speed (rpm) for alternative operation	84	Grounding brush drive end
. , ,	,	85	Grounding brush non-drive end

Description of parts

Part No.	Description
1	Outer bearing cover, N-end
2	Retaining ring, N-end
3	Grease-sling disc, N-end
4	Grease retaining ring, N-end
5	Bearing, N-end
6	Inner bearing cover, N-end
7	Grease nipple, N-end
8	Outer bearing cover, D-end
9	Grease-sling disc, D-end
10	Grease retaining ring, D-end
11	Bearing, D-end
12	Inner bearing cover, D-end
13	Grease nipple, D-end
14	Bearing end shield, N-end
15	Gasket
16	Lifting lug
17	Bearing end shield, D-end
18	Brush gear, complete
19	Brush rocker
20	Holder for brush rocker
21	Brush-holder arm

Part No.	Description
22	Pressure finger spring
23	Pressure finger
24	Brush
25	Stator, complete
26	Stator frame
27	Main field coil
28	Main field coil insulation
29	Interpole field coil
30	Interpole field coil insulation
31	Coil support
32	Compensating winding
33	Slot insulation
34	Slot key
35	Armature, complete
36	Counter weight, N-end
37	Commutator
38	Armature coil support, N-end
39	Equalizing winding
40	Armature coil
41	Armature coil support, D-end
42	Shaft-end key

Part No.	Description
43	Counterweight, D-end
44 gaske	Inspection cover, complete with t (state position and type)
45	Terminal box, complete
46	Gasket
47	Box bottom plate
48	Mounting rail
49	Terminal block
50	Terminal block
51	Earthing bar
52	Gasket
53	Box frame
54	Bar holder
55	Connection bar
56	Box cover
57	Gasket
58	Gasket
59	Connection cover
60	Bracket for brush gear positioning device
61	Screw for push gear positioning device
62*	Earthing bar (on 315 & 400)
63*	Spacer/O-ring (on 315 & 400)

11

General storage precautions

General	Special attention must be given to machines which are to be stored for a long period of time before commissioning.	Condensation, corrosive gases and vibrations should be avoided.				
	Caution Lift all brushes and wrap protective paper around the commutator.					
Condensation	Condensation in a machine may lead to corrosion and damp windings (low insulation readings). If the machine is to be stored in an unheated room, heating elements must be provided to	maintain a constant temperature. The heating element should be such that the temperature of the machine is always at least 5 K above the ambient temperature.				
	Caution In order to avoid condensation, the machine should perature varies as little as possible.	be placed in a room or in a building where the tem-				
Corrosive environment	There are added complications if corrosive gases are present which attack the commutator surface.	The gases that gives the greatest problems and should be avoided during storage are: – sulphurous gases – chlorine – ammonia				
	Caution Store the machine in a gas-free room.					
Vibrations and bearings	If the machine is stored on a vibrating surface the antifriction bearings are subject to damage. If this is the case the bearings may have to be replaced before the machine can be put into operation.	If vibration cannot be avoided, turn the armature a few times per month.				
	Caution Store the machine in a vibration-free room.					
Shaft end protection	All machines leave the factory with an anti- corrosion coating on the shaft extension.					
	Caution The coating should be inspected by the customer and re-applied if necessary.					

Foundation

General

The erection of machines at the customer's site can be done by the customer or by ABB personnel.

The foundation must be strong enough to bear the machine, and to withstand torque reaction and stresses from a belt drive, if used.

Avoid resonances in the operating speed range

and with sixfold mains frequency which may be caused by the six pulse converter.

The mounting area of the machine must be level and free from vibrations.

ABB does not accept responsibility regarding foundations, as this can be influenced by factors which are not controlled by ABB.

Caution

The foundation must be dimensioned in such a way that its own natural frequency, including the motor weight, does not correspond to those disturbing frequencies which normally exist in a thyristor-fed DC machine.

The mass of the foundation of a foot mounted motor should be five times the mass of the motor or higher.

Remark

Adequate space for inspection, maintenance, electrical cables and cooling ducts must be provided.

Grouting

To ensure satisfactory results, shrink-free concrete should be used. The instructions supplied by the manufacturer of the shrink-free concrete should be followed.

Mounting blocks or foundation bolts which are bolted to the machine must hang freely in the mounting holes during grouting. Make sure that there are no air pockets in the concrete. Check that the compression strength of the concrete and the curing time are in accordance with the manufacturer's instructions.

Grouting is normally not permitted at an ambient temperature below + 5 °C.

Machine installation

Checks before starting installation	 DMI-motor Accessories in separate packages Maintenance Instruction, including "Declaration of Incorporation" and "EC Declaration of Conformity" 	- Check that the rating plate is in accordance with the order	
Inspection	 It is recommended to check that: ☑ The erection site is clean ☑ The erection site is prepared for installation. ☑ Access is provided for inspection and maintenance of the machine ☑ Air ducts, if needed, are free from foreign mat- 	ter which could be sucked into the machine during commissioning	
Lifting	Always use all the lifting eyes of the machine (two or four).	The weight of the machine is shown on the rating plate.	
	Machines with separate heat exchanger have lifting These are only for lifting the heat exchanger, not the	lugs on the heat exchanger.	
Assembly of coupling	 Some machines are shipped with a transport locking device. This device should not be removed as long as the machine remains in storage. Remove the locking device prior to installation of the motor. As the machine is equipped with antifriction bearings, it must be connected to the driven equipment with a flexible coupling. As standard, the armature is balanced with a half key. The balancing method is described on the rating plate. When assembling the coupling halves, take into account the following instructions: I Remove the anti-corrosion coating from the shaft extension. I Follow the coupling supplier's assembly instructions. 	The normal procedure of assembly is by heating the coupling. The required heating temperature depends on the interference fit between shaft and coupling. For this reason a specific temperature cannot be given. Make sure that the couplings are balanced before assembly. A clearance of 0.2-0.3 mm is sufficient during assembly. The armature shaft should be rotated while the coupling cools, to avoid temperature stresses and hence bending moments on the shaft.	

Alignment of direct coupled machines

Good alignment ensures safe operation and long machine life. Check the misalignment between the coupling flanges after the machine has been installed. Maximum deviations, see fig. 3 and 4.

A common method is the use of dial indicators, which are mounted according to fig. 5.

Machine alignment must be continued until dial indicator readings of max. 0,05 mm are obtained. To ensure correct alignment of the machine, place suitable metal shims between machine feet and mounting blocks. Installation instructions from the suppliers of pumps, gear drives, etc. often specify the vertical and lateral displacement of the driving shaft at operating temperature. It is important that these instructions are observed during alignment in order to avoid vibrations and other disturbances during operation.

Fig. 4 Angular alignment. A-B = max. 0.05 mm.

Alignment of V-belt drive

The drive should be arranged in such a way that the lower belts are the driving ones, i. e. so that the slack is in the upper belts. The slide rails (accessories) are to be bolted to the machine feet and positioned in such a way that the tensioning screws are diagonally opposite each other and the tensioning screw at the D-end is located between the motor and the driven object.

Tightening torque of foundation bolts

Connection of cables

As standard, the terminal box is mounted on the top of DMI machines. However, the machines can also be supplied with the terminal box mounted on the side.

The terminal box is normally (top mounting) mounted in such a way that the cable connection is made from the right-hand side (seen from the drive end). Cable connection from the lefthand side or from the non drive end or drive end is possible by removing the terminals from A1 and A2 bar. Turn the box frame so that the terminal opening faces the desired direction. If the terminals from the main field coils are obstructing the main cable entrance, it is possible to interchange positions with the grounding bar. Make sure that all cable shoes are connected to the same terminals as before.

The terminal box has sealed side covers for external cable connections. For DMI 180-280 the cover can be exchanged with a standardized cover or it can be bored out to suit the customer's cable connection.

Tightening torque for cable connections inside the terminal box:

- 40 Nm for M10
- 84 Nm for M12

Terminal diagram

Commissioning

Checks before start-up	 Before starting the motor, check that: I the armature turns freely and no scraping noise can be heard. I the couplings and other mechanical components are properly tightened. I the cooling air inlet is located according to the rating plate. I the fans rotate in the correct direction. I the cooling air has free access into and out of the motor. I the air inlet and outlet are at opposite ends of the machine (if the air inlet is at the N-end then the air outlet must be at D-end, or if the air inlet is at the N-end). 	 all brushes, including the grounding brush (if ordered), are in position. The spring-load-ed pressure fingers are snapped against the brushes and the brushes can move freely in their pockets. the commutator surface has been cleaned (if it has been exposed to corrosive gases during storage). See the chapter "Commutator". the electrical connections are tight and are in accordance with the terminal diagram. the protective equipment as well as other monitoring equipment are functioning properly. the insulation resistance has been measured and approved. See the chapter "Insulation resistance".
	WARNING Don't seal air ducts to the motor with products conta the surface of the commutator and cause high brush Caution It is advisable to contact ABB if there are any abnorm	ining silicone, as silicone oil particles will adhere to wear. nal observations
Checks during start-up	 Check the following points during the start-up: ✓ that the bearings are filled with grease. See the chapter "Lubrication". ✓ that the bearing temperatures show normal values after a few hours of running. At an ambient temperature of 20 °C the values should be below 80 °C (measured on the outer bearing cover). 	 that no unusual bearing noise is heard. that all instruments show normal readings. the control system of the thyristor converter. the shape and form of the current response. the commutation of the machine. that the vibration level does not exceed 4.5 mm/s r.m.s.
	 WARNING If one of the covers close to the cooling air inlet is to running, observe the following: If the machine is equipped with a built-on fan, the a overheating of the fan motor). From the time the cover has been opened, or the far minutes is available for inspection. 	be opened for motor inspection while the machine is air intake to the fan must be sealed off (to avoid an intake has been sealed off, a maximum of three
Lubrication dur- ing start-up	Caution Immediately after start-up of a newly-installed machi long period, new grease must be pressed into the bear rating plate and in chapter "Lubrication".	ne or of a machine which has been standing for a arings. Follow the lubricating instructions on the
Checks after 100 operating hours	After 100 operating hours inspect the commuta- tor and the brushes while the machine is at rest. The surface of the commutator should show a homogeneous film (patina). The brush contact	surface should be homogeneous without patchy discolouring. If the results of the inspection are not satis- factory, ABB should be consulted.

Observation and maintenance

General

schedule

Careful maintenance is the best insurance against failures and interruption of operation. The maintenance schedule shown below is the result of many years of experience. However, the needs for maintenance can vary widely depending on local conditions. The schedule is therefore to be regarded as a guide only.

Maintenance Once a month

- Inspect brushes for wear and freedom of movement.
- ☑ Inspect the condition of the commutator.
- $\ensuremath{\boxdot}$ Check the commutation.
- ☑ Check for vibrations.

- ☑ Check bearing conditions.
- Check the function of thermostat regulators for coolers.
- ✓ If necessary clean away oil or grease that may have entered into the motor.
- ☑ If needed, exchange main air filter as well as air leakage filter in the cooler.
- ☑ If necessary, replace the fan's filter.

Caution

The vibration should not exceed 4.5 mm/s r.m.s.

Remark

Lubricate the bearings at intervals according to the rating plate.

Every 4 month

- ✓ Clean the inside of the motor with a vacuum cleaner in combination with clean, dry compressed air or by wiping off the contamination.
- I Measure the insulation resistance of the wind-

ings using a 500 V megger (both before and after cleaning).

☑ Inspect all connections including the brush flexibles.

Insulation resistance

Measuring of insulation resistance

The measurement should be done with a 500 V megger.

It is not practical to state a definite minimum value of the insulation resistance. In some cases the machines can operate satisfactorily with lower values than the recommended minimum value. The recommended minimum insulation resistance can be obtained from the following formula (1):

- $R_m = kV+1$ (1)
- R_m = the lowest recommended insulation resistance in M Ω at 40 °C
- kV = the rated voltage of the machine in kV

For recalculation of the measured insulation resistance to 40 °C, the following must be taken into consideration: Temperature dependence of the insulation resistance. When measuring the insulation resistance, the temperature of the winding should be measured at the same time to enable the insulation resistance to be recalculated to correspond to a temperature of 40 °C. This can be accomplished by using the following formula (2):

 $R_{40 \circ C} = K_{t40 \circ C} \times R_t$ (2)

- $R_{40 \circ C}$ = insulation resistance corrected to 40 °C
- $\label{eq:Rt} \begin{array}{rcl} \mbox{=} & \mbox{measured insulation resistance in } M\Omega \mbox{ at } \\ & \mbox{t } ^\circ \mbox{C} \end{array}$
- $K_{t40\ ^{\circ}C}\text{=} \quad \text{correction factor according to the} \quad \text{dia-} \\ \text{gram below.}$

Example

In the winding of a 750 V motor, the insulation resistance has been measured as 100 M Ω at 6 °C. We obtain from the diagram:

K_{t40 °C} at 6 °C = 0.1

The recommended minimum insulation resistance $R_{\rm m}$ according to formula (1) is:

 $R_m = 0.750 + 1.0 = 1.75 M\Omega$

According to formula (2):

 $R_{40 \ ^{\circ}C} = 0.1 \ x \ 100 = 10 \ M\Omega$

Conclusion

 $R_{40\ ^{\circ}C}$ is larger than R_m and the insulation resistance is approved.

Brushes and commutation

General	Good commutation depends on many influences such as the air humidity, the gas or oil content in the air, dust particles. Other factors are: cooling air temperature too low, low loads over extended periods of time or vibrations. A critical factor for achieving good commutation is the correct choice of brush grade. ABB has many years of experience in the selection of suitable types. Nevertheless, the brush grade may have to be changed if unex- pected operating conditions occur. Please contact ABB if a change of brush grade is planned.	 To get the right advice, the following information should be provided: Type and serial number of the machine Actual normal and overload current Description of the commutator contact surface condition Brushes: grade, wear/1000h, condition of the contact surfaces, wedging effect (lateral wear) Environment: air humidity, oil mist, dust, chemical vapours and surrounding air temperature
Patina	A new commutator has a clean copper surface. After some time of operation a patina is formed, consisting of copper oxides mixed with particles from the brushes which together produce a hard, resistant coating which protects the commutator. A homogeneous patina, whose colour is not relevant, produces ideal running conditions and minimum wear. It is important that the temperature of the con- tact surface is sufficiently high to activate the Caution	chemical process. The temperature is primarily dependent on the current density in the brush, the frictional losses and the cooling air temper- ature. Another important fact or is the humidity of the surrounding air, since moisture is a necessary element in the chemical process. A favourable water content for a satisfactory patina is about 10 gram/m ³ .
	Do not touch a good patina.	
Sparking	The most common reason for sparking is poor contact between the brush surface and the commutator surface. It is also possible that certain brushes which have better contact than others take more current and therefore spark due to overloading. Sparking may be progressive, i.e. start with small sparks, seemingly harmless, and then slowly or quickly progress to more serious sparking, especially if the commutator surface has been burnt. It is important that the commutator surface is inspected regularly and any sign of increased sparking at the brush edg- es is noted. Faint sparking may occur and can be accepted if it does not go any further than that.	So called patterning may also occur, which means that certain evenly spaced laminations, for instance every third, acquire a dark patina or becomes slightly blackened in parts on the edge of lamination. Usually this may be considered merely as a blemish, but in some cases it may lead to flattening and damage on the commutator surface. In certain applica- tions there are often rapid current and speed fluctuations. The sparking occurring in this case is usually quite harmless. If a motor supplied by a converter begins to spark without apparent reason, a fault in the converter may be suspected. Possible reasons might be a fault in the control equipment, a fuse etc.

Poor brush contact

As mentioned, poor brush contact can cause sparking and produce burn marks on the commutator contact surface. The following are the most likely causes:

Vibrations

Vibrations have a decisive influence on brush contact. For example, unbalanced couplings or fans with dirt deposits may lead to imbalance error. Other causes are poor alignment of the DC machines and vibration excitation via the foundation. If the brushes exhibit wedging effect (lateral wear), this indicates inadmissible vibrations.

Caution

If the measured vibration level exceeds 4.5 mm/s r.m.s. , appropriate measures should be taken to reduce the level of vibrations.

Low load

If the machine is permanently operated at low load, it is advisable to reduce the number of brushes. As the ideal current load depends on the brush grade, ABB should be consulted in such cases.

Humidity

Humidity is an important factor for the formation of the patina. If the air is dry and the moisture content less than 3 g/m³, normally no patina can form. If the humidity exceeds 15 g/m^3 , the patina becomes too thick.

Corrosive environment

Corrosive gases in the surroundings result in a deterioration of contact between brushes and commutator.

The problem can show up in different ways, e.g. as sparking, high brush wear or scratched commutator.

The gases that give the greatest problem and should be avoided are sulphur dioxide, hydrogen sulphide, chlorine and ammonia.

These gases, in sufficient concentration, attack the patina, break through it and attack the commutator.

Jammed brushes or pressure fingers

If one of the brushes does not move freely or if it is jammed, sparking will normally not be severe. However, if several brushes are affected, the remaining ones will be overloaded and sparking becomes dangerous.

Worn brushes

If worn brushes are not replaced in time, the commutator contact surface will be damaged by the brush lead.

Caution

Do not let the brush wear down so much that the flex attachment embedded in the brush comes into contact with the rotating surface. This can have serious consequences.

Oil-contaminated surfaces

The oil forms an insulating film and the current is transferred by small arcs. In the process the film is burned, leaving black spots on the commutator contact surface.

Scratched contact surface

Cement dust or similar hard particles can scratch the commutator surface. If construction work is to be done near the machine, it must be specially protected.

Commutator

General	Under normal ope commutator does maintenance. If the commutato essential to chec such as current lo conditions. See the	erating cond s not require r surface is r k the operation bading, and ne chapter "	litions ti any sp rough, i ing con environ Brushe	he ecial t is ditions mental s and	If the defects are slight, fine emery cloth or rubber polishing block should be tried first so as not to remove more of the patina than necessary If the patina is of poor quality, ABB recommends removing it completely. If the surface is burnt to the extent that craters have appeared, an abrasive cloth or fine grind-	
	commutation". The action to be taken in the event of a defect arising from the commutator must be deter- mined from case to case. Only general advice can be given.				stone may be used, but great care must be taken to avoid short-circuits at the laminations. Grinding should be done at reduced voltage.	
Corrosive environment	Inspect the comm to see if the mach rosive gases. If th	nutator surfa nine has bee nis has happ	ace befo en expos ened, ro	ore start-up sed to cor- emove the	coating with fine emery cloth, a rubber polishing block or fine stone.	
Commutator out of true	If the commutato chatter) or if stror the commutator r a grinder or be ca lathe. Centring of reference to the b	r is badly ou ng burn marl nay have to arbide/diamo The axis mu bearing seats	it of truc ks are e be skin ond-turn ust be c s.	e (brush evident, nmed with ned on a centred with	Roundness is very important. The total indicator reading (TIR), on a newly-turned commutator must not exceed 0.020 mm. In addition, there is also a requirement that the difference in radius from one lamination to the next must not exceed 0.004 mm. The surface roughness should be R_a =1.6 µm.	
	Type	Commuta	ator dian	neter. D (mm)	F	
	DMI	New	Min	Depth of w	/ear	
	180	178	170	4		
	200	235	225	4 5		
	250 280	265 265	255 255	5 5		
	315 400	330 414	318 402	6 6	Ξ	
	Fig 14 Turning dou	vn dimensions.				
	Fig 15 Cutting too	l for turning.		60°		
	After skimming, t have to be under low. The insulatio so that chamferin	ne segment cut accordin n must be cu g is possible	insulation g to the ut back e.	on may e figure be- far enough	The distance between the brush holder and the commutator surface should be 2.5 ±0.5 mm. If the distance has become larger after turning of the commutator, the brush holder must be reset.	
			2	0°	$\underbrace{0.1 \text{ mm}}_{1.5}$	
	Fig 16 The segment undercut to a 0.45 mm.	insulation must be depth of 1.25 ±	e		$\frac{\pm 0.2 \text{ mm}}{\uparrow}$	

Bearings

Changing the bearings

Disassembling

- Dismantle the motor according to page 40.
- After removing the end shield, remove the rotor.
- Great care should always be taken during bearing assembly / disassembly to avoid any damage to the bearing seating on the shaft.
- The bearing must be removed with a purpose-designed extractor. See figure below.

Assembling

- Carefully clean bearings and the inside of the bearing covers.
- Then place the inner bearing cover on the shaft.
- Heat the new bearing to 100 °C by induction, by placing in an oven or dipping it in an oil bath. Note! The new bearing must be of the same type as shown on rating plate.
- Fit the bearing on the shaft and hold it against the shoulder for 60 90 seconds.
- Remove the pressure applied and check that the inner ring does not rotate on the shaft

- Fill the bearing with grease. Note! Use only grease that fulfils ABB requirements, see page 25.
- Fill the bearing covers 2/3 full before assembly.
- Reassemble the motor according to page 40.

Standard bearings and roller bearings

The table below shows standard bearings and roller bearings for different DMI shaft heights. Differences may occur due to special design depending on application. The bearings fitted to each specific motor are shown on. the rating plate.

Lubrication

General	DMI machines should be lubricated with a grease gun while the machine is running.	
	Remark Lubrication intervals and amount of grease are listed on the rating plate.	
Lubrication during start-up	Immediately after start-up of a newly installed machine or of a machine which has been standing for a long period, new grease must be pressed into the bearings. Follow the lubricat- ing instructions on the rating plate. The bearing temperature increases initially because there is a surplus of grease in the bearing housing. After the surplus grease has run out of the bearing housing, the temperature should reach normal running values (< 80°C at ambient 20°C) again.	Normally this takes a few hours. If the machine is lubricated while standing still, the old grease does not pass out through the discharge opening. Instead it squeezes between the seal ring and the shaft into the machine and may cause serious contamination. Use only high quality grease equivalent to ABB grease.
Lubrication during operation	Use a manual grease gun and lubricate while the machine is running with the amount and within the intervals specified on the rating plate. Use only high quality grease.	ABB grease is equivalent to Shell Albida EMS2 with the basic data below: NLGI-class: 2* Soap thickenerlithium complex Lubrication oilSynthetic polyalphaolefin
	Caution Clean the grease nipples prior to lubrication to prevent any impurities from being pressed into the bearings.	Viscosity at 40°C100-200mm ² /s No EP/AW-additives with harmful effects on bearings with polyamide or brass holder are allowed.
	Remark Lubricate only when the machine is running, pref- erably over 300 r/min.	*) Vertical machines are recommended to use NLGI-class 3 if the pumpability properties of the grease allow it.

Cleaning

General	The most important factor in preventive main- tenance is that everything is clean. The ma- chine itself and the surroundings must be kept	free from dust, oil and other matter which can come from the driven object or which can enter through ventilation openings, etc.				
Cleaning of windings	Accumulated dirt on open insulated surfaces should be removed. This is especially important when revarnishing the windings because a new varnish coat will trap any existing dirt beneath the new coat.	high-pressure spray is more effective in remov- ing dirt. The detergent used should remove the dirt without softening or damaging the insu- lation. Avoid using excessive amounts of the cleaning agent.				
	Blowing and vaccuming are used if the dirt is dry and can be removed easily. Vacuuming is recommended, since blowing tends to redistribute the dirt or move it deeper between the insulation layers.	A dip wash can be used if the detergent does not soften or damage the insulation. Since the dirt is not removed mechanically in this method, a very effective cleaning and scouring agent is needed. A long dipping time may be required.				
	Wiping is used when spray-wash is not possible. Surfaces easily reached are wiped clean with a cloth dampened with detergent. In cramped areas of windings, a special brush may be more effective. Low insulation resist- ance is often caused by dirt on insulated surfaces, which should be carefully cleaned.	A water wash involves rinsing with water to prevent the detergents from penetrating into places where it cannot be removed. A water wash is done if needed following the instruc- tions given above for wiping, spray wash or dip wash. After washing, the windings are rinsed with clean water several times. Distilled or				
	A spray wash is done with an airless high-pres- sure spray or a conventional spray. The	de-ionised water is recommended for the final rinse.				
	Caution Use only detergents specially made for cleaning windings in electrical machines and which do not damage the winding surface or insulation.					
Drying of windings	The windings must be dried after a wash or if they have become damp in use or during a standstill. Drying in an oven with good ventilation is the most effective technique. Unfortunately, this is not usually possible at the motor's operating site. Therefore, either	should be 90 °C for 12-16 hours and then 105 °C for 6-8 hours. The rate of temperature rise of the windings should not exceed 5 K per hour, and the final temperature should not exceed 105 °C. Good ventilation must be ensured to remove the moisture completely.				
	 hot-air-blow or heating element should be used. Adequate fresh-air exchange is essential, whatever heating method is used. A washed or a very wet motor should be dismantled and the windings dried in an oven. When drying in the oven, the temperature rise and the maximum temperature should be monitored carefully. The oven temperature 	The drying of the windings should be followed by insulation resistance tests. At the beginning of the drying treatment, the insulation resistance decreases due to the temperature rise. As the drying continues, however, the insulation resistance increases until it reaches a maximum value. Minimum insulation resistance value is given in chapter "Insulation resistance".				

Filter

Fans with air filters	Machines which have fans with air filters must be checked at regular intervals and the filters must be exchanged when necessary. Remove the inlet protection screen and fit a Remark Note that the filter material has a different structure must be placed outward.	clean filter. on each side. The side with the coarser structure
Machines with heat exchangers		
Specification of filter material	 If new filter material is to be bought, the following specifications must be met by the vendor: a) The filter must be made of 100% continuous glass fibre. b) The filter must have an open structure at the air intake side, but the fibre structure must get tighter toward the air-exit side. c) Allowed air flow 3 m/sec. 	 d) Tests according to ASHRAE-standard 52-76, with an air flow of 2 m/sec., must show that: the pressure drop through a clean filter is less than 60 Pa. the filter absorbs more than 90 % at a contamination rate of 850 gram/m² (93 % for the air-leakage filter. max. air pressure drop 200 Pa.

Speed control device

Mounting the speed control device

- 1. Split the coupling (1) into three parts (A).
- 2. Make sure that grease and dirt are removed from the shaft hole.
- 3. Mount the part from the coupling (1a) inside the rotor shaft and tighten it with a screwdriver.
- 4. Lock the part from the coupling inside the shaft with the set screw (1d). Check the dimension.
- 5. Lubricate plastic parts on the middle part of the coupling (1b) with paraffin oil and assemble it on the part inside the shaft.
- 6. Assemble the last part of the coupling (1c) with the shaft of the speed control device.(6). Check the distance (B).

For Leine & Linde speed control devices:

- 7. Assemble the speed control device on the tachoadapter (2) with three bolts (5).
- 8. Assemble the adapter package on the bearing cover with four bolts and washers (3+4). Tightening torque M6 10Nm for shaft heights 180-280 or M8 24.5 Nm for shaft heights 315-400 with a dynamometric wrench. Be gentle when pressing the coupling parts together. Maximum axial assembly force 100N.

For POG, REO and TDP speed control devices:

- 7. For shaft heights 180-280; assemble the adapter (2) on the bearing cover with four bolts and washers (3+5). Tightening torque M6 10Nm with a dynamometric wrench. For shaft heights 315-400; assemble the adapter (2) on the bearing cover with four bolts and washers (3+7). Tightening torque M8 24,5Nm with a dynamometric wrench.
- 8. Assemble the speed control device (6) on the tachoadapter (2) with six bolts and washers (4+5). Be gentle when pressing the coupling parts together. Maximum axial assembly force 100N.

Heat exchangers

General	The motors described in this paragraph are sim- ilar to those already described in previous para- graphs. The only difference is the cooling meth- od (code IC 86 W for air/water heat exchanger and IC 666 for air/air heat exchanger) and the degree of protection that can be IP 54 or IP 55, according to customer request.	The operation of these motors requires special care since the cooling air flows in a closed loop The smallest particles of carbon dust produced by the brush wear may pass through the filter and is circulated inside the motor and can settl on the windings, so affecting the ground insula tion level. ABB recommends users to follow all maintenance instructions described previously and to clean the motor regularly by opening all covers and vacuuming out all dust not held by the filtering material.
Air/air heat exchangers	Air/air heat exchangers are normally supplied separately. Unless otherwise stated on the deliv- ery orders, the cooling equipment must always be installed so that the cooling air enters DMI at the N-end.	Outer circuit: Ambient air is forced through the heat exchanger by a fan. For motors with low loads or low ambient air temperature a thermo stat control is recommended.
	Two constant speed fans provide air circulation for the outer and inner circuits.	Inner circuit: A constant speed fan circulates the internal cooling air. Carbon dust is filtered out by a polyamid filter. A second filter is included for leakage air.
Air/water heat exchangers	A totally-enclosed motor with an air/water heat exchanger is recommended for polluted operat- ing environments. The heat exchanger unit, which is supplied separately, is located on top of the motor as standard. Unless otherwise stated on the deliv- ery orders, the cooling equipment must always be installed so that the cooling air enters DMI at the N-end (Non drive-end).	Outer circuit: As seen from the drive end, the water connection flanges are on the left-hand side as standard. Thermostat control is recom- mended on motors with low loads or a low incoming water tempera ture to avoid condensation in the cooling air circuit and to minimize water consumption.
	Note! The max water pressure is 1 x 106 Pa (10 bar). The max inlet water temperature is 25°C. A water temperature rise of 8-13 K is to be expected	the internal cooling air. A polya- mide filter is provided to filter out carbon dust. A second filter is included for leakage air.
Mounting	Mounting of IC 666 and IC 86W heat	3. Place the heat exchanger on the

- exchangers, DMI 180-280
- Mount the 19x4 mm gasket (item 4) on the DMI-machine according to the figures below. Note! The gasket must surround both holes at the N-end.
- 2. Remove the covers A (and B if the heat exchanger is equipped with it) from the heat exchanger.
- DMI-machine.4. Mount the screws (item 2) and the washers
- (item 3).5. Assemble the covers A (and B if the heat
- exchanger is equipped with it) on the heat exchanger.

Note!

Do not lift the motor and heat exchanger by the heat exchanger's lifting eyes.

Figure 18. Mounting of heat exchanger for DMI 180-280.

DMI 315 and 400 prepared for IC 666 and IC 86W heat exchangers are delivered with pre-mounted gaskets (item 1), set screws (item 2), washers (item 3 and 4), spacers (item 5 and 6) and hexagon nuts (item 7) according to figure 19 as standard.

- 1. Remove nuts and plain washers (item 5, 6 and 7) from the DMI machine.
- 2. Heat exchanger spacers must be in position inside the punched holes at the sealing strip.
- 3. Remove the covers A (and B if the heat exchanger is equipped with it) from the heat exchanger.

- 4. Place the heat exchanger on top of the DMI machine and joint the heat exchanger at the flat point set screws of the DMI machine (item 2).
- 5. Tighten the heat exchanger with the plain washers and nuts (item 5, 6 and 7).
- 6. Assemble the covers A (and B if the heat exchanger is equipped with it) on the heat exchanger.

Note!

Do not lift the motor and heat exchanger by the heat exchanger's lifting eyes

Figure 19 Mounting of heat exchanger for DMI 315 and 400.

Specific information about air/water heat exchangers

Water connection of air/water heat exchanger with air inlet at N-end (standard)

- 1. Water connection on right side (seen from D-end) towards N-end.
- 2. Water connection on right side (seen from D-end) towards D-end.

3. Water connection on left side (seen from D-end) towards N-end. Label on cooling coil shows the in- and outlet of water depending on the air direction. NB: The air direction through the cooling coil is always towards the fan motor.

4. Water connection on left side (seen from D-end) towards D-end

Figure 20

- 1. Water connection on left side (seen from D-end) towards D-end.
- 2. Water connection on left side (seen from D-end) towards N-end.
- 3. Water connection on right side (seen from D-end) towards D-end. Label on cooling coil shows the in- and outlet of water depending on the air direction. NB: The air direction through the cooling coil is always towards the fan motor.
- 4. Water connection on right side (seen from D-end) towards N-end

Figure 21

- 1. Remove screws holding the cooling coil and the cover.
- 2. Slide the coil out of the housing and rotate as shown above.
- 3. Slide the coil into the housing and replace the screws.
- 4. Replace the cover at the opposite side.

Figure 22

Changing the water connection direction

- 1. Remove screws holding the cooling coil.
- 2. Slide the coil out of the housing and rotate it 180° according to the picture above.
- 3. Slide the coil back into the housing and replace the screws.

Figure 23

Before starting	 The water supply pipe system must be flushed out before coil is connected. 	 The water flow must be regulated to obtain water flow indicated on data plate of the heat exchanger. 	
	• Pressure tests of pipe system, after coil is connected, must not exceed test pressure indicated on the rating plate.	 To avoid erosion damages in coil tubes do not exceed maximum water flow. 	
	 When heat exchanger is taken into use, all air must be evacuated from water pipe system and the cooling coil. Air in the coil can be evacuated through venting plugs on the coil headers. 	Check gaskets for air leakages in connection areas such as between cooler and motor, cable entrances or incorrectly fitted inspec- tion covers	
Verification of monitoring equipment of heat exchang- ers	This is an instruction in how to verify that the monitoring devices on the heat exchangers are working properly. Monitoring devices (1-8) mentioned in this chapter are optional and not included in the heat exchanger.	Pictures and text in this chapter apply to top-mounted air/water heat exchangers. For side-mounted air/water heat exchangers and air/air heat exchangers, the location of the equipment might vary a bit. Unless noted, the principle is however the same.	

- 1. Filter monitor
- 2. Pressure switch
- 3. Mounting device for thermostat
- 4. Mounting device for Samson regulator
- 5. PT 100
- 6. Flow sensor

- 7. Water leakage detector
- 8. Terminal box
- 9. Housing
- 10. Fan motor
- 11. Leakage air filter

Picture 24 Location of monitoring equipment of air-water heat exchanger.

1	Filter monitor,	HUBA 604				
	Function:	When the filter gets too dirty, an alarm will be triggered.				
	Verification:	Open the cover for the filter cassette and put a piece of cardboard (approximately half the size of the filter) under the filter for top-mounted heat exchangers, and on the far side from the fan for side-mounted heat exchangers. Turn the fan on and the alarm should go off. Turn the fan off, remove the cardboard and turn the fan back on and the filter monitor must not give an alarm.				
	Adjustment:	The setting depends on the size of the heat exchanger. The settings from the factory should not be changed.				
	Note: The pres	ssure drop of the filter monitor is measured over the filter plus the heat exchanger				
2	Pressure swite	ch, HUBA 625				
	Function:	When the fan stops, the pressure drops and an alarm will be trigged off.				
	Verification:	Turn the fan on and the pressure switch must not give an alarm. Shut the fan down and the alarm should go off				
	Adjustment:	Setting is same for all sizes of heat exchangers for DMI 180-400. The settings from the factory should not be changed				
3	Thermostat, T	Thermostat, Trafag MST 9515				
	Function:	Gives an alarm if the air intake temperature is above the maximum allowable temperature for the specific DC-motor				
	Verification:	Open the casing and turn the adjustment knob. The alarm should go off when the setting gets below room temperature. Remember to set the knob back to the same position again				
	Adjustment:	The setting is dependent on size and type of the DC-motor. The settings from the factory should not be changed				
4	Temperature r	egulator, Samson 43-6				
	Function:	A self-regulated temperature regulator that requires no auxiliary energy. Sets the water flow to obtain a set temperature				
	Verification:	Only to be done by trained personnel from Samson. If done wrongly, the thermostat might be destroyed				
	Adjustment:	Contact ABB				
5	PT100, Inor RI	NT8				
	Function:	For measuring the temperature of the cooling air				
	Verification:	Compare the readings with another thermometer				
	Adjustment:	N/A				

6

7

Flow sensor Uniflow SW4000 or Weber 4120M			
Function:	Monitoring the water flow in order to lower the water consumption depending on workload of the DMI-motor		
Verification:	Readings should say "Zero" when the valve is shut. Compare with the other flow sensor/meter when valve is opened		
Adjustment:	Contact ABB		

Leakage water	detector, SIE07065		
Function:	Top- and side-mounted heat exchangers:		
	If a water leakage occurs or if there is condensation inside the heat exchanger, water will be evacuated through the leakage air filter canal and an alarm goes off.		
Verification:	Top-mounted heat exchangers:		
	Remove the make-up filter box from the heat exchanger as seen in picture 25. Then remove the filter and the grating. The alarm must go off when touching the sensor by hand or pouring some water on it.		
	Side-mounted heat exchangers:		
	Unscrew the detector from the heat exchanger. The alarm must go off when touching the sensor by hand or pouring some water on it.		
Adjustment:	The setting depends on the type of heat exchanger. The settings from the factory will be sufficient for most cases. However, if the humidity is high a slight adjustment as per the attachment might be necessary on site.		

7. Water leakage detector

12. Water tray

13. Leakage air filter with grating

Picture 25 The leakage air filter box removed

Terminal diagram for heat exchangers

- 11, 12, 13: HUBA 604 FILTER GUARD TERMINAL 3 LIVE AT INCREASING PRESSURE — ALARM—CLOGGED FILTER
- 21, 22, 23: TRAFAG MST 9515 THERMOSTAT IN COLD AIR TERMINAL 3 LIVE AT INCREASING TEMPERATURE ALARM
- 31, 32, 33: HUBA 625 FAN GUARD TERMINAL 3 LIVE AT INCREASING PRESSURE WHEN FAN IS RUNNING (OK)— TERMINAL 2 (Nc) LIVE AT NO PRESSURE — ALARM FAN IS NOT RUNNING
- 41, 42, 43: SIE SK1-HT-125 LEAK WATER DETECTOR "A/Q" TERMINAL LIVE WITH WATER PRESENT - ALARM (AIR/WATER HEAT EXCHANGER ONLY)
- 51, 52, 53: MURPHY EL15OK1 LEAK WATER DETECTOR "RED" LIVE WITH WATER PRESENT ALARM (AIR/WATER HEAT EXCHANGER ONLY)
- 61, 62, 63: UNIFLOW WATER FLOW GUARD "BLACK" TERMINAL LIVE WHEN WATER FLOW IS OK (AIR/WATER HEAT EXCHANGER ONLY)
- 71, 72, 73: WEBER 4120.13M WATER FLOW GUARD "BLACK" TERMINAL LIVE WHEN WATER FLOW IS OK (AIR/WATER HEAT EXCHANGER ONLY)
- 81, 82, 83: INOR RNT8 TEMPERATURE SENSOR 3-WIRE PT100

Figure 26 Terminal diagram for heat exchangers. The terminal box of the heat exchanger is shown in figure 24, item 8.

Maintenance of motors with heat exchangers

In addition to the usual maintenance operations for standard motors which have been previously described, the totally-enclosed motors need a supplementary maintenance program, due to their special construction and operation: Suggested activities are given below:

Check the housing (Figure 24, item 9) for paint damage. Repair paint damage to protect against corrosion. For information regarding paint contact ABB.

Check fan motor (Figure 24, item 10) for unusual noise and replace bearings if necessary. (The fan motor is normally fitted with permanently greased bearings free of maintenance). Keep the motor clean and ensure free ventilation airflow. Check gaskets for leakage monthly. Gaskets need to be replaced every 2 years.

Change the air filter of the cooling air circuit every time DC-motor brushes are changed. If the heat exchanger is provided with a filter monitoring device, normal pressure drop when the filter must be changed is 200 Pa (normal set point for filter monitor higher due to measuring over the cooling coil and the filter). Use filter type EU3 according to Eurovent 4/5 or similar filter with efficiency 85% according to Ashrae 52-76. Do not use a filter with higher efficiency due to its higher pressure drop.

Remark

Note that the filter material has a different structure on each side. The side with the coarser structure is to be placed outward.

Special maintenance of air-water heat exchangers

Check leakage air filter every month during first time of operation and change if clogged.

Due to its position, where pressure in the inner air circuit is lowest, the leakage air filter will provide substitute air if an unwanted leak has occurred somewhere else in the air circuit.

Rapid clogging of the leakage air filter indicates that an unwanted leak is present. If so, do the necessary tightening and change the filter. Normally use the same filter as above.

In environments with harmful contaminations, use filter EU5 according to Eurovent 4/5 or similar filters with efficiency 90-95% according to Ashrae 52-76.

In DC-motor heat exchangers with internal air circuit protected by leakage air filter, the outer surface of the cooling coil normally does not have to be cleaned. If exceptional cases, dry deposits can be cleaned by cautious use of compressed air. For greasy deposits use a detergent and rinse with water. Normally cleaning the inside of tubes in the water flow circuit is not necessary but in areas with heavy polluted water, use a filter in the water distribution system is recommended. If, after long service, the heat exchanger appears to have decreased capacity, the tubes can be cleaned inside by re-circulation of water with the appropriate cleaning compound. Knowledge about type of contamination and appropriate cleaning compound will highly benefit efficiency of such cleaning procedure. For most deposits use of warm water is to be preferred.

- Note:
- The tubes in the standard heat exchanger cannot be mechanically cleaned on the inside.
- To avoid corrosion, choose a cleaning agent that does not harm the tube material.
- The standard tube material is copper.

When the cooling coil is not in operation, protect it from damage due to corrosion or freezing in sub-zero temperatures by draining it off.

Dismantling and reassembling

Dismantling

- ☑ Make sure the machine and fan motor are electrically disconnected.
- ☑ Remove air ducts (if present at installation), disconnect coupling or V-belts and dismantle the machine from the foundation.
- ☑ Remove accessories if necessary as well as inspection covers.
- ☑ Loosen the leads and cables inside the terminal box which go to the stator.
- ☑ Disconnect leads which go to the stator from the brush rocker.
- Remove the brushes and wrap a piece of 1 mm thick insulating material around the commutator.
- ☑ Put blocks underneath the stator so that both end shields are unsupported.
- \square Remove the terminal box.
- ☑ Remove N-end outer bearing cover.
- ☑ Place a piece of insulating material between armature and stator.

- ☑ Unscrew the fixing bolts which tie stator and end shield together at the N-end.
- ☑ Remove the end shield at the N-end. Do not damage the main gasket between end shield and stator. Do not use sharp-edged tools.
- $\ensuremath{\boxtimes}$ Remove the outer bearing cover at the D-end.
- ☑ Unscrew the end shield fixing bolts at the D-end. Use the same precautions regarding the main gasket.
- ☑ Lift the armature out of the stator (if necessary use an extension tube slipped over the armature shaft).
- ☑ Protect the bearings against contamination by suitable means.
- ☑ Remove the main gasket very carefully from the stator.
- $\ensuremath{\boxdot}$ Clean the bearing covers and remove the old grease.

WARNING

The armature must be dismantled or reassembled from the drive end side of the stator.

Reassembling

- ☑ Wrap a piece of 1 mm thick insulating material around the commutator.
- ☑ Place a suitable piece of insulating material into the lower part of the stator.
- ☑ Inspect the main gaskets on the stator for damage. Make sure that the mating surfaces of stator and end shields are clean.
- ☑ Do not forget to fill the bearings with grease during assembly.
- $\ensuremath{\boxdot}$ Lift the armature into the stator.
- $\ensuremath{\boxtimes}$ Assemble the end shield at the D-end.
- $\ensuremath{\boxdot}$ Assemble the bearing details at the D-end.
- \square Assemble the end shield at the N-end.
- $\ensuremath{\boxtimes}$ Remove the piece of insulating material.
- \boxdot Thread the cables through the seal into the terminal box.
- \boxdot Assemble the bearing details at the N-end.
- $\ensuremath{\boxdot}$ Check that the armature turns easily.
- $\ensuremath{\boxtimes}$ Fasten the leads to the brush gear.

- ☑ Assemble the terminal box and attach cables and leads according to the terminal diagram.
- $\ensuremath{\boxdot}$ Remove the protective insulating material from the commutator.
- Insert brushes into brush holders and check that they can move freely in their brush holder pockets.
- ☑ Assemble inspection covers including gaskets.
- \boxdot Assemble all accessories.

Tightening torque for stator bolts

DMI	Torque v	vith oil lubrication	
180	190 Nm	(140 lb.ft)	
200	190 Nm	(140 lb.ft)	
225	420 Nm	(310 lb.ft)	
250	735 Nm	(540 lb.ft)	
280	735 Nm	(540 lb.ft)	
315	420 Nm	(310 lb.ft)	
400	735 Nm	(540 lb.ft)	

Spare parts

Recommended spare parts

	Num	Number of identical motors			
	1	2 – 4	5 – 9	10 –	
Brushes (number of sets)	1	2-4	5-9	10 —	
Brush gear	-	1	1	1	
Bearings (number of sets)	1	1	1	2	
Set of armature coils + 4 resp. 6 commutating coils	-	1	-	-	
Armature, complete + main field coil + 4 resp. 6 commutating coils	-		1 *)	-	
Motor, complete	-	-	-	1	

*) Also two compensating windings incl. slot insulations and slot keys when the machine has compensating windings.

Remark

Please state when ordering: motor type, motor serial number and part number.

Faults and remedies

Mechanical

Fault	Possible cause	Remedy
Rough running		
When coupled, machine runs unevenly or with strong vibration, with no fault when uncoupled	Fault in power transmission components or in driven equipment	Check power transmission, drive components and alignment
	Settling of foundation	Restore correct foundation level, realign machine set
	Transmission or driven equipment badly balanced	Rebalance
Machine runs roughly when uncoupled	Bearing damage Holding-down bolts loose	Refer to bearing faults below Tighten and lock
	Post-mounted coupling adversely affecting rotor balance	Rebalance rotor with coupling

Damage to rolling bearings

Overheating immediately after starting or regreasing	Too much grease filled	Fill and press in only the prescribed amount of grease (See rating plate). Overheating automatically disappears after some time
Overheating after long period of operation	Bearing cover seals rubbing	Remachine bearing cover, replace damaged seals
Scraping, rubbing or knocking noises in bearing		Change bearing (cause to be determined by specialists)
Whistling sounds in grease lubricated bearings	Bearing is dry	Inject grease
	Damage on bearing cage	Replace bearing
Formation of indentations when machine stationary	Vibrations being transferred to bearings from external source	Isolate motor from external vibration or keep rotor turning continuously
Formation of indentations when machine in operation	Electric current flowing through the bearing	Consult ABB

Electrical

Fault	Possible cause	Remedy
Motor will not start at no load	No armature voltage	Check supply
	Armature coils burnt out or short-circuited	Clear short-circuit (generally only possible in specialist's or manufacturer's workshop)
	Brushes not making proper contact	Check pressure and position of brushes, replace worn brushes
	No excitation voltage	Check supply
	Open circuit in field winding	Remedy open circuit
	Interturn short-circuit in the armature winding	Repair in workshop
	Short-circuit between commutator segments	Check commutator and eliminate short
Motor will not accept load	Overload	Check current input and eliminate overload
	Voltage decreasing	Check supply
Motor overspeeding and hunting under load	Brushes displaced from neutral zone in opposite direction to rotation position	Set brush-bracket to mark under load
	Fault in field circuit	Eliminate fault
	Auxiliary series winding wrongly connected	Check connection and correct
Generator not supplying voltage	Open circuit in excitation circuit	Check excitation circuit for fault
	Short in main circuit	Check circuit
	Open circuit or interturn short-circuit in rotor winding	Check winding for open circuit or interturn short- circuit
Voltage drop on unregulated generator on load is too high	Speed reduction of drive too great	Set drive to normal speed, drive too weak
	Incorrect brush setting	Check brush setting, correct
Overheating in operation	Overload	Check voltage and current, eliminate overload
	Insufficient cooling air	Improve cooling
	Temperature of cooling air or water too high	Clean internal and external air passages
	Insufficient cooling water	Check flow rate of cooling water, increase if necessary
	Cooler or filter dirty	Clean cooler, change filter

Commutation Type of fault

....

Data signing at the leading edge 14.8 9 10.33 93 Data signing at the leading edge 13.92 A 27.38 30 Signit spacing at the leading edge 13.92 A 27.38 30 Signit spacing at the leading edge 13.92 A 27.38 30 Signit spacing at the leading edge 10.92 22 A5.73 84 Are or the 11.92 22 A5.73 84 Serving of the torus or sets of burses 12.8 19.14 12.22 A5 30 23.93 67.7 Burning of the torus orgets 14.9 14.19 22.22 A5 20 27 30 31 22 3.37 83 80 Bursen bursters or sets of burses 2.6 9 10 1.16 (2.2 2.2 7.2 0.3 31 22 3.37 83 80) Bursen bursters or start of the torus orgets 2.6 9 10 1.16 (2.2 2.2 7.2 0.3 31 22 3.37 83 80) Bursen bursters or control 2.6 9 10 1.16 (2.2 2.3 2.7 3.0 31 22 3.3 7.3 83 80) Bursen bursters or control 2.6 9 10 1.10 1.1 / 18 20 2.2 3 1.3 5 Brooke on the sorthous of control 6 10 1.2 1.15 1.1 / 18 20 2.4 7.0 3.0 3.2 Brooke on the sorthous of control 10.1 1.2 1.5 1.7 18 2.0 2.4 7.0 3.0 3.3 Symmetrical stars on the control or c	Type of fault	Causes and remedies
Bash graving after balling eight 132 22 43 738 39 Spirt graving 134 48 81 44 19 222 42 20 33 30 Weiert spirt grave must serve set blaubtes 110 22 23 95 Sarking of some truther or set of blaubtes 110 22 24 25 03 23 93 77 Weiert spirt of the must serve of the blaubtes 110 22 24 25 03 23 93 77 Weiert spirt of the must serve of the blaubtes 110 22 24 25 03 23 93 77 Weiert spirt of the must serve of the blaubtes 110 12 22 24 25 03 23 93 77 Weiert spirt of the must serve of the blaubtes 110 12 24 25 03 23 93 78 Barl Amergines and blaubtes 26 7 72 16 20 24 72 28 03 13 23 73 36 30 Weiert spirt of the must serve of the blaubtes 16 76 01 11 16 12 22 33 73 30 Barl Amergines and blaubtes 26 6 7 11 16 17 18 20 23 13 30 Grooses on the surfaces of contract 16 11 24 15 16 71 8 20 22 38 30 Unweit spirt of the must serve 6 11 24 15 16 17 16 20 24 27 30 03 39 Symmetric stains on the commutator 20 4 93 87 Consol the surfaces on the commutator 10 13 21 28 35 Symmetric stains on the commutator 20 4 93 87 Consol the surface Prescription Consol the surface Prescription Consumu	Brush sparking at the leading edge	1 4 8 9 10 38 39
Sight specing 13:4 6 8 9 14 19 22 24 28 23 39 Weard spacing parts howes 6 8 9 10 13 12 24 35 8 6 7 38 Are or tish 110 22 28 35 Spacing of some howes or soft of howes 2 6 7 9 14 19 20 24 55 77 280 93 12 23 35 03 7 Barning of the size course objes 14 9 14 19 27 28 30 8 37 Barning of the size course objes 5 19 14 23 47 28 20 32 30 6 37 Barning of the size course objes 6 7 9 17 15 18 29 23 28 0 37 Barning of the size course objes 6 7 9 17 15 18 29 23 28 0 31 22 33 37 38 38 Unever bunch water 2 6 7 7 12 16 20 24 27 20 0 31 22 33 37 Barning of the size course of course of the size course of course of the size course of the course	Brush sparking at the trailing edge	1 3 22 24 37 38 39
West sprink PA P10 33 122 32 Swisking of some houltses aread bruzhes 26 9 10 22 39 Swisking of some norm of the houltse 14 14 10 22 39 23 30 30 Bening of the more nor of the hoults 14 14 10 22 33 33 30 Bening of the more norm of the hoults 6 7 10 16 22 33 33 30 Bening the more norm of the hoults 6 7 10 16 22 37 30 33 30 30 30 32 33 33 30	Slight sparking	1 3 4 6 8 9 14 19 22 24 28 29 33 39
Ac or this 110 22 26 35 Systemp of some burstes or sets of burstes 14 48 14 10 27 28 03 02 35 57 Hursten or throwing of the truthe edge 15 71 14 10 22 42 53 02 33 03 87 Bursten or throwing of the truth edge 16 76 01 71 15 16 22 22 72 73 03 13 22 33 73 83 9 Desen bursten or throwing of the truth edge 16 76 01 71 15 16 22 22 37 30 13 22 43 77 Brutiss ware of the burste 16 76 Grows on the strutes of contact 16 72 16 12 02 24 27 29 30 13 22 43 77 Brutiss ware of the strutes of contact 16 71 16 20 24 27 29 30 13 22 43 77 Medi paties on the strutes of contact 16 71 12 01 71 8 20 22 37 0 33 Grows on the strutes of contact 16 11 12 10 71 18 20 24 27 30 03 Grows on the strutes of contact 11 11 12 10 71 18 20 24 27 30 03 Grows on the strutes of contact 11 10 13 21 28 35 Agrimentical stars on the commutator 20 34 36 37 Scored commutator strutes 67 12 14 16 17 10 24 27 0 03 8 9 Possible cause Remedy 1 10 10 32 12 43 16 77 10 24 27 0 03 8 9 Agrimentic barrene thruth holde stats Corrent the discrute barrene thrute holde stats Correntation gole trute to the holde Remedy 1 The trutes are out of nutatat owne	Violent sparking with showers	6 8 9 10 13 31 32 34 35 36 37 38
Sparking of some burkers or sets of hundres 26 7 9 14 19 20 24 25 72 28 23 13 23 33 37 Buring of the course of the hundres 14 8 14 19 22 29 30 33 23 33 33 37 Winsho and branking of the brunk edges 5 12 14 22 24 28 30 33 23 33 33 37 Burkers ware nucleo over of the hundres 6 7 8 0 17 11 16 17 12 22 23 30 33 13 22 33 78 39 Unever hundring 2 6 10 11 16 17 12 22 23 30 33 13 22 33 78 39 Unever hundring 2 6 10 11 16 17 12 22 23 30 Crookes on the auritace of contact 6 8 17 Meet particles in the safaces of contact 6 11 12 15 17 18 20 23 30 Crookes on the auritace of contact 6 11 12 15 17 18 20 23 30 Symmetrical stains on the commutator saface 6 12 14 16 15 11 18 20 427 30 33 Symmetrical stains on the commutator saface 6 7 12 14 16 17 18 20 427 30 38 39 Possible cause Pemetry Oronating poet fluct to rlph Prosesse the aurited rot 2 Asymmetry between the tube flocts stats Correct the align poet fluct to rlph 2 Docesses the doat operation He safate muther of burkers state 3 Cormutating poet fluct to rlph Prosesse the aurited rot 4 Sommutating poet fluct to rlph Prosesse the aurited rot 5 Docesses to ad operation	Arc or flash	1 10 22 26 35
Burning of the source of the busites 14 B 14 19 22 B3 03 23 53 B3 77 Pursition and broading of the busites 15 17 16 12 22 23 73 03 13 23 33 73 B3 Pursities was out too busit 67 69 17 15 16 12 22 83 73 83 B3 Pursities and burning 2 6 7 12 16 20 22 87 23 03 13 23 43 77 Part Interruptions and burning 2 6 8 101 16 17 16 82 23 33 63 Grookes on the strates of contract 16 75 Grookes on the strates of contract 14 17 70 21 Meeta particles on the surfaces of contract 14 17 70 21 Meeta particles on the surfaces of contract 11 11 12 12 18 15 18 12 18 20 24 27 30 33 Symmetical Stairs on the commutator 20 34 56 37 Scored commutator surface 6 71 12 14 16 17 19 24 27 20 38 39 Possible cause Remedy 11 The burshes are out of nedd zone Poset net factor burshes 2 A symmetry borsen the function burst stude Consert the burshes 3 Commutator surface Consert the transfer and contion 4 Commutator surface Decrease commutating pole air pap 4 Commutator surface Decrease commutator pole air pap 5 Assesse to a col operation Las strate in on the commutator 3 Astrate data to burshes st	Sparking of some brushes or sets of brushes	2 6 7 9 14 19 20 24 25 27 28 29 31 32 33 36 37
Variation and bracking of the toxels edges 51:14:22,42:28:03;23:33:63:7 Paralises ware out too balt 67:69:12:16:122:22:27:03:13:26:33:72:63:39:03 Development too balt 67:69:12:16:122:22:37:03:13:26:33:72:63:39:03 Development too balt 16:70 Development too balt 16:72 Development too balt 20:43:63 Scand commutator surface 6:71:21:46:16:71 Development too balt Development too balt Development too balt too balt Development too balt Development too balt too balt Development too balt Development too balt too balt Development too balt too balt Development too b	Burning of the rear corner of the brushes	1 4 8 14 19 27 29 30 32 35 37
Brutts wer out hor fast P7 8 9 12 16 16 22 22 27 30 11 22 33 73 83 91 Weren trust were 2 6 7 12 16 16 22 22 27 30 12 22 43 73 Patt Interruptions and huming 2 6 8 10 11 16 17 18 20 23 31 35 Grows in the surfaces of contact 16 72 Grows in the surfaces of contact 14 17 20 21 Meal particles on the surfaces of contact 14 17 20 21 Meal particles on the surfaces of contact 14 17 20 21 Mean particles on the surfaces of contact 14 17 20 21 Mean particles on the surfaces of contact 10 13 21 20 35 Agrimetical stairs on the commutator 20 34 36 37 Scend commutator surface 6 71 12 14 16 17 18 20 23 28 30 Possible cause Reset nating position 2 Asymonthy between the truth horbid stude Reset nating position 3 Commutating pole law to high Processe on boad operation 4 Commutating pole law to high Processe on boad operation 1 De subble brackes, eace of the number of brashes 6 contact and a operation 2 Asymonthy between the truth antactes Reset nating position 3 Commutating pole law to high Processe on boad operation 1 De astation on the commutator Obset su	Vibration and breaking of the brush edges	5 12 14 23 24 25 30 32 33 36 37
Leven hush war 2 6 7 12 1 6 20 24 27 29 03 13 23 43 77 Behr Interryfictors and huming 2 6 8 10 11 16 17 18 20 23 31 35 Growes on the surfaces of contact 6 8 17 Conves on the contactor 6 8 17 Deven commutator war 6 11 12 15 17 18 20 23 82 39 Conves on the contructor 14 17 20 21 Uneven commutator war 6 11 12 15 17 18 20 24 37 03 33 Symmetrical stars on the commutator 120 34 63 77 Scored commutator surface 6 71 12 14 16 17 18 24 27 30 38 39 Possible cause Remody 11 The burds are out of media zone Rest reading potion 2 Asymmetry isotewen the bursh holder studs Correct the distance bursheam the studs 3 Commutating poe has to light Increase commutating pole at gap 4 Correntating poe has to light Increase commutating pole at gap 5 Discosse no load operation Use suble burshes and bursh there of burshes 6 Dist and ion the commutator Carrent angle pole at gap 9. Worlaton Deex the burshes and bursh there do subshe 10 The distance the commutating pole at gap Develoat 9. Worlaton Develoat Reduce the bursh prefoloan	Brushes wear out too fast	6 7 8 9 12 15 16 22 23 27 30 31 32 33 37 38 39
Path Interruptions and Luming 2.6.8.10.111.6.17.18.20.23.3.135 Growes on the bink shales 16.6.5 Growes on the bink shales 16.6.5 Growes on the bink shales 6.1.1.2.1.5.17.18.20.23.38.39 Leven commutative matches 6.1.1.2.1.6.17.18.20.23.38.39 Growes on the commutator 11.0.1.3.27.28.36 Asymmetrical stains on the commutator 2.0.3.3.6.5.7 Scored commutator surface 6.7.1.2.1.4.16.17.19.24.27.30.38.39 Possible cause Remedy 11. The burstes are out of neutral zone Rest neutral position 2. Asymmetry burstes are out of neutral zone Rest neutraling position 3. Commutating pole flux too bigh Increase commutating pole are gan 4. Commutating pole flux too bigh Increase commutating pole are gan 5. Discreasive fin loaid greention Like suble burstes reduce the number of burstee 6. Dit and all on the commutator Comen the opmit and functions 7. Marceke casts on the number of burstes Periode 8. Overload Peduce the laight and reduces and number of burstee 9. Vibrators Commutating and thurstes is too law 10. The arrange writing is damaged Repair, revend in necossary 11.1.1.1.1.1.1.1.1.1.1.1	Uneven brush wear	2 6 7 12 16 20 24 27 29 30 31 32 34 37
Groves on the barth addes 16 25 Groves on the surfaces of contact 14 17 20 21 Metal particles on the surfaces of contact 14 17 20 21 Uneven commutator wave 6 11 21 15 17 18 20 23 38 39 Groves on the commutator arface 6 12 14 15 16 17 18 20 24 27 30 33 Symmetrical stars on the commutator 20 34 36 37 Scored commutator arface 6 7 12 14 16 17 19 24 27 30 38 39 Possible cause Renearly pastion 10 The bursthe are und relation area 2) Asymmetry between the burst holder studs Correct the discroce between the studs 3) Correntating pile flax too low Decrease commutator pole air gap 4) Commutating pile flax too low Decrease commutator pole air gap 5) Decrease the count of the contrulator Clear the commutator and terming to the count sturf and terming on the count sturf and terming on the count sturf and terming and ter	Plait interruptions and burning	2 6 8 10 11 16 17 18 20 23 31 35
Grooms on the surfaces of contact 6 8 17 Metal parties on the surfaces of contact 14 17 20 21 Lineven commutator waar 6 11 12 15 17 18 20 23 38 39 Grooms on the commutator surface 6 12 14 15 16 17 18 20 24 27 30 33 Symmetrical stains on the commutator 20 34 36 37 Scored commutator surface 6 7 12 14 16 11 19 24 27 30 38 39 Possible cause Remedy 11. The burstes are out of neural score Rest neural poston 2. Asymmetry between the burst hotes studs Correct the distance between the studs 3. Commutating pole flux too livp Decrease commutating pole ar gap 4. Ormutating pole flux too livp Decrease commutating robe ar gap 5. Decrease no in the burst surfaces Remove the burst hord cause 7. Attraske data on the burst surfaces Remove the burst hord cause 9. Vortators Check the alignment, relation of in necessary 10. The arritories of the commutator Clear the alignment, relation of in necessary 11. Trade data precision Trade data precision 12. Orard indexity at the bursts is too low Reduce the number of bursts 13. Ourerd starged Repair, revenial frecossary 11. Trade	Grooves on the brush sides	16 25
Metal particles on the surfaces of contact 14.17.20.21 Uneven commutator wares 6.11.12.15.17.18.20.23.38.39 Symmetrical status on the commutator 1.10.13.21.28.36 Agminetrical status on the commutator 2.03.43.63.7 Sorred commutator surface 6.7.12.14.16.17.18.20.24.27.30.38.39 Possible cause Remedy 1) The bruches are out of media none 2.03.43.63.7 Remedy 1) The bruches are out of media none 2.03.43.63.7 Remedy 1) The bruches are out of media none 2.03.000 flux to big Rest medial position 3) Commutating pole has to big 4) Commutating pole has to big 5) Descasive no bad opedian 6) Lise suitable brushes, reduce the number of trushes 6) Dirtard of on the commutator 10 Readow the load 9) Worators 10 The are the distance the causes, then consult ABB if necessary 11 The are the distance the causes 12 Current distary at the brushes is to biw 13	Grooves on the surfaces of contact	6817
Uneven commutator wear 6 11 12 16 17 18 20 23 38 39 Grows on the commutator variable 6 12 14 16 16 17 18 20 24 27 30 33 Symmetrical stains on the commutator 20 34 36 37 Record commutator variable 6 7 7 12 12 14 16 17 19 24 27 30 38 39 Possible cause Remedy 1) The bushes are out of neutrations 6 7 7 12 14 16 17 19 24 27 30 38 39 Possible cause Remedy 2) Asymmetry buewern the bush holder studs Correct the distance between the studs 3) Development the bush holder studs Correct the distance between the studs 4) Commutating pole flux too low Decrease commutating pole air gap 5) Decrease two in bot disperation Use autable bushes, reduce the number of bushes 6) Drift and of on the commutator Clean the commutating pole air gap 7) Abrashe dust surfaces Remove the bushes are dust in them clean 8) Overload Retrieve the bailyment, rebalance fin cossary 10) The armature winding is damaged Retrieve the alignment, rebalance fin cossary 11) Inadequalex substoned to the same substoned to bushes Clean the cossary fill 12) Current dorsity at the bushes is too low Reduce the runther of bushes 13) Gurrent suges <	Metal particles on the surfaces of contact	14 17 20 21
Groves on the commutator surface 6 12 14 15 16 17 18 20 24 27 30 33 Symmetrical stains on the commutator 20 34 36 37 Agemmetrical stains on the commutator 20 34 36 37 Scored commutator surface 6 7 12 14 16 17 19 24 27 30 38 39 Possible cause Remedy 1) The busitse are out of neutral zone Reservedy 2) Asymmetry between the brush holder studs Correct the distance between the studs 3) Commutating pole flux too high Processe commutating pole air gap 4) Commutating pole flux too high Processe commutating pole air gap 4) Commutating pole flux too high Processe commutating pole air gap 6) Decrease commutating pole air gap Excesse and use them clean 6) Dira ad iol in the commutator Clean the commutator and identify cause 7) Atraske dust on the brush surfaces Remove the husithes in consult ABB if necessary 10) The ammature winding in damaged Repair, rewind if necessary 11) In adoptate wintilation Trace the cause, three causes, three tauses, three studie brushese 10) The atriticate wini	Uneven commutator wear	6 11 12 15 17 18 20 23 38 39
Symmetrical stains on the commutator 110 13 21 28 35 Agmmetrical stains on the commutator 20 34 36 37 Scored commutator surface 67 71 21 41 61 71 19 24 27 30 38 39 Possible cause Remedy 1) The brushes are out on heartar zone Reset reading position 2) Asymmetry bytewem the hush holder studs Corner the distance between the study. 3) Commutating pole flux too high Increase commutating pole air gap 4) Commutating pole flux too low Decrease commutating pole air gap 5) Discessive no lack deperation Use studie busities, reduce the number of busities 6) Dit and oil on the commutator Clean the commutator discretify cause 7) Arasels data on the busities stool ow Reduce the alignment, rebalance if necessary 10) The annature winding is damaged Repair, revind if necessary 11) Tradequate ventilition Trace the alignment, rebalance if necessary 12) Current diregs Choose suitable busities tool ow 13) Current surges Left in fresh air select suitable busities 14) The air is too drap Left in fresh air select suitable busities 13) Current surges Left in fresh air select suitable busities 14) The air is too drap <	Grooves on the commutator surface	6 12 14 15 16 17 18 20 24 27 30 33
Asymmetrical stains on the commutator 20.34.96.37 Scored commutator autace 6.7.12.14.16.17.19.24.27.30.38.39 Possible cause Remedy 1) The busitses are out of neutral zone Rest neutral position 2) Asymmetry between the busit holder studs Corner the distance between the studs 3) Cornmutating pole flux too high Increase commutating pole air gap 4) Cornmutating pole flux too low Decrease commutating pole air gap 5) Excessive no laid operation Like suitable busites, reduce the number of busites 6) Ort and on in the commutator Cean the commutator and dentify cause 7) Abrasive dust on the toxels surfaces Remove the husites and busit them dean 9) Vibrators Other and on the commutator 10) The armature winding is damaged Repar. (ewind if necessary 111 hadisquate ventilition Trace the causes then consult AB if necessary 12) Current density at the busites is too low Betace the number of husites 13) Current sugges Oncode suitable truches 14) The air is too damp Let in fresh air select suitable busites 15) The air is too day Let in fresh air select suitable busites 16) Too truckes in the air P	Symmetrical stains on the commutator	1 10 13 21 28 35
Scored commutator surface 6 7 12 14 16 17 19 24 27 30 38 39 Possible cause Remedy 1) The brushes are out of neutral zone Reset neutral postion 2. Asymmetry between the brush holder studs Cornect the distance between the studs 3. Commutating pole fur too low Decrease commutating pole air gap 4. Commutating pole fur too low Decrease commutating pole air gap 5. Excessive no load operation Like suitable brushes, reduce the number of brushes 6. Drift and oil on the commutation Casen the commutation and identify cause 7. Arcskie dust on the brush surfaces Remove the trushest and brush them clean 9. Wreatons Other & the aignment, rebarance if necessary 10. The armsture winding is damaged Repair, result of necessary 11. Indequate venitation Trace the causes, then consult ABB if necessary 12. Ourrent drenky at the brushes is too low Reduce the number of brushes 13. Current surges Choose suitable brushes 14. The air is too damp Let in fresh air, select suitable brushes 15. The air is too damp Let in fresh air, select suitable brushes 14. The air is too damp Let in fresh air, select suitable brushes 19. Decases on a	Asymmetrical stains on the commutator	20 34 36 37
Possible cause Remedy 1) The bushes are out of neutral zone Read neutral position 2. Asymmetry between the brush holder studs Carred the distance between the studs 3) Commutating pole flux too low Decrease commutating pole ary ap 4) Commutating pole flux too low Decrease commutating pole ary ap 5) Excessive no load operation Use suitable brushes, reduce the number of brushes 6) Dirt and all on the commutator Cean the trushes and brush them cean 7) Abase dust on the brush suffaces Remove the brushes and brush them cean 9) Waratons Check the alignment, rebulance if necessary 10) The armature winding is damaged Thace the causes, then consult ABB in necessary 11) Inadeque willation Thace the causes, then consult ABB in the same 12) Current disrupts Each in the number of brushes 13) Current strages Choose suitable brushes 14) The ar is too damp Let in fresh air, select suitable brushes 15) The ari is too damp Let in fresh air, select suitable brushes 16) Dust or sand supended in the air Fit titters and eliminate the causes 17) Gases or adds in the air (1) Let in fresh air, select suitable brushes 19) Boushes n	Scored commutator surface	6 7 12 14 16 17 19 24 27 30 38 39
Possible cause Remedy 1) The brushes are out of neutral zone Paset neutral position 2. Asymmetry between the truch holder studs Cornert the distance between the studs 0. Commutating pole flux too high Increase commutating pole air gap 4. Commutating pole flux too high Use satiable brushes, reduce the number of brushes 6. Dri and oil on the commutator Clear the commutator and identify cause 7. Abrase outs on the trush surfaces Remove the trushes and brush them clean 8. Overload Reduce the load 9. Vorations Check the aigmment, rebalance if necessary 11. Inadeutate verifielion Trace the causes, then consult ABB if necessary 12. Current dranges Chooce than unbre of brushes 13. Current surges Chooce suitable brushes 14. The air is too damp Let in fresh air, select suitable brushes 15. Dat or sand suspende in the air Perfuse the surface suitable brushes 19. Dataset out dash in the air (*) Let in fresh air, select suitable brushes 19. Dataset out dash in the air (*) Let in fresh air, select suitable brushes 19. Dataset out dash in the air (*) Let in fresh air, select suitable brushes 19. Datorent dinspes		
In the busites are out of neutral zone Rest neutral position 21 Asymmetry between the brush holder studs Correct the distance between the studs 32 Commutating pole flux too login Increase commutating pole ari gap 44 Commutating pole flux too login Decrease commutating pole ari gap 55 Excessive no load operation Use subable busites, reduce the number of busites 60 Dir and oil on the commutator Clean the commutator and identify cause 71 Abrasive dust on the brush surfaces Remove the brushes and brush them clean 80 Overload Reduce the load 91 Uhr armature winding is damaged Regar, rewrid if necessary 110 Indequale verifiation Trace the causes, then consult ABB if necessary 121 Current density at the busits is too low Reduce the number of busites 132 Current sugges Choose subable busites busites 143 The ar is too dayn Let in fresh ar, select subable busites 151 The ari is too dayn Let in fresh ar, select subable busites 182 Decessive busit friction Reduce busite pressure, make use of non-abrasive busites 183 Decesse busit friction Reduce busites are adjusted to the commutator 193 Busites not adapted to the commutator Adapt the husites are login	Possible cause	Remedy
2) Aymmetry between the studs Corneutating pole in ku too high 3) Commutating pole in ku too high Increase commutating pole air gap 4) Commutating pole in ku too high Decrease commutating pole air gap 5) Excessive no kad operation Use suitable trushes, reduce the number of bushes 6) Dirt and oil on the commutator Chean the commutator and identify cause 7) Abrasive dust on the brush surfaces Remove the bushes and brush them clean 8) Overlead Reduce the load 9) Watations Check the alignment, rebalance if necessary 11) Inadequate verificities Reduce the number of bushes 12) Current drestly at the bushes is too low Reduce the number of bushes 13) Current surges Choose suitable brushes 14) The air is too darp Let in fresh air, select suitable brushes 15) The air is too darp Let in fresh air, select suitable brushes 16) Dust or sand suppended in the air Fit fitters air, select suitable brushes 17) Gases or acids in the air Fit fitters air, select suitable brushes 18) Excessive brush friction Reduce the brush serif a	1) The brushes are out of neutral zone	Reset neutral position
3 Commutating pole flux too low Increase commutating pole air gap 4 Commutating pole flux too low Decrease commutating pole air gap 5 Excessive no load operation Use suitable burshs, reduce the number of burshes 6 Dirt and oil on the commutator Cean the commutator and identify cause 7 Abrasive dust on the bursh surfaces Pennove the burshes and bursh them clean 8 Overlad Peduce the load 9 Ivatations Orteck the alignment, rebalance if necessary 10 The armature winding is damaged Pepair, rewind if necessary 11 Indequate ventilation Trace the causes, then consult ABB if necessary 12 Current density at the burshes is too low Reduce the number of burshes 13 Orter targets Choose suitable burshes 15 The air is too darp Let in fresh air, select suitable burshes 16 Dust or sand suspended in the air Fil filters and eliminate the causes 17 Gazes or acids in the air (*) Let in fresh air, select suitable burshes 18 Doxessive bursh fiction Reduce bursh pressure, make use of non-abrasive burshes	2) Asymmetry between the brush holder studs	Correct the distance between the studs
4) Commutating pole fair gap 5) Excessive no load operation Use suitable bushes, reduce the number of bushes 6) Dirt and on the commutator Clean the commutator and identity cause 7) Atraable dust on the bush surfaces Remove the bushes and bush them clean 9) Overload Reduce the bad 9) Vibrations Check the alignment, rebialence if necessary 11) Indequate ventilation Trace the causes, then consult ABB if necessary 11) Indequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the bushes is too low Reduce the number of bushes 13) Current surges Choose suitable bushes 14) The atrix is too damp Let in fresh air, select suitable bushes 15) The atrix is too damp Let in fresh air, select suitable bushes 16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gases or acids in the air (*) Let in fresh air, select suitable bushes 18) Excessive bush triction Reduce the bush spressure. 19) Bushs so not adapted to th	3) Commutating pole flux too high	Increase commutating pole air gap
5 Excessive no load operation Les sultable bushes, reduce the number of brushes 6) Drt and oil on the commutator Clean the commutator and identify cause 7) Avarave dust on the bush surfaces Remove the bushes and bush them clean 8) Overload Reduce the load 9) Vibrations Check the alignment, rebalance if necessary 10) Trace measure, winding is damaged Repair, rewind if necessary 11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the brushes is too low Reduce the number of brushes 13) Current surges Choose suitable brush types 14) The air is too darp Let in fresh air, select suitable brushes 15) The air is too darp Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, nake use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brush spring and brush presser pad 20) Different brushes Replace the brush spring and brush presser pad 22) Brush pressure is ton weak Replace the brush spring and	4) Commutating pole flux too low	Decrease commutating pole air gap
6) Dirk and oli on the commutator Clean the commutator and identify cause 7) Abrasive dust on the brush surfaces Remove the brushes and brush them clean 8) Overload Reduce the load 9) Verations Check the alignment, rebalance if necessary 10) The armature winding is damaged Repair, rewind if necessary 11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the brushes is too low Reduce the number of brushes 13) Current surges Choose suitable brush types 14) The air is too darp Let in fresh air, select suitable brushes 15) The air is too darp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air (^) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes of the same type 21) The commutator is stained when the machine is not in operation Replace the brush sping and brush presser pad 22) Brush pressure is too veak Replace the brush sping and brush presser pad 22) Brush pressure is not expended. Replace the brush sping and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, rep	5) Excessive no load operation	Use suitable brushes, reduce the number of brushes
7) Abraske dust on the brush surfaces Pernove the brushes and brush them dean 8) Overload Peduce the load 9) Vibrations Check the alignment, rebalance if necessary 10) The armature winding is dranaged Repair, rewind if necessary 11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the brushes is too low Reduce the number of brushes 13) Current surges Choose suitable brush types 14) The air is too damp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air If tilters and eliminate the causes 17) Cases of addisis in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes of the same type 20) Different brush types Use brushes of the same type 21) The town brush pressure in different brushes Adjust pressure, replace the faulty brush spring; if necessary 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush spring; if necessary <td>6) Dirt and oil on the commutator</td> <td>Clean the commutator and identify cause</td>	6) Dirt and oil on the commutator	Clean the commutator and identify cause
B) Overload Reduce the load 9) Vitrations Check the algrment, rebalance if necessary 10) The armature winding is damaged Repair, rewind If necessary 11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the brushes is too low Reduce the number of brushes 13) Current surges Choose suitable brush types 14) The air is too damp Let in fresh air, select suitable brushes 15) The air is too damp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Pf filters and eliminate the causes 17) Gases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfect, as previously shown 20) Different brush types Use brushes of the brush spring and brush presser pad 21) Excessive brush pressure Replace the brush spring and brush presser pad 22) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in different brushes<	7) Abrasive dust on the brush surfaces	Remove the brushes and brush them clean
9) Vibrations Check the alignment, rebalance if necessary 10) The armature winding is damaged Repair, rewind if necessary 11) Indequate windiation Trace the causes, then consult ABB if necessary 12) Current surges Choose suitable brush byse 13) Current surges Choose suitable brush byse 14) The air is too darp Let in fresh air, select suitable brushes 15) The air is too darp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Fit fitters and eliminate the causes 17) Gases or addis in the air (') Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive bushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reise the brush sping and brush presser pad 22) Brush pressure is not weak Replace the brush sping and brush presser pad 22) Brush pressure in different brushes Adjust pressure, replace the faulty brush brush politor cases	8) Overload	Reduce the load
10) The armature winding is damaged Repair, rewind if necessary 11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the bushes is too low Reduce the number of hurshes 13) Current surges Choose suitable bush types 14) The air is too damp Let in fresh air, select suitable bushes 15) The air is too dry Let in fresh air, select suitable bushes 16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gases or acids in the air () Let in fresh air, select suitable bushes 18) Excessive bush friction Reduce bush pressure, make use of non-obrasive bushes 19) Brushes not adapted to the commutator Adapt the bush sperfectly, as previously shown 20) Different bush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reise the bush spring and brush presser pad 23) Excessive bush pressure is too weak Replace the bush spring and brush presser pad 24) Uneven bush pressure is too weak Replace the brush spring and brush presser pad 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 - 2.5 mm) 25) The brush holders are not perpendicular Restore the studs with insulating rings <	9) Vibrations	Check the alignment, rebalance if necessary
11) Inadequate ventilation Trace the causes, then consult ABB if necessary 12) Current density at the brushes is too low Reduce the number of brushes 13) Current surges Choose suitable brush types 14) The air is too damp Let in fresh air, select suitable brushes 15) The air is too damp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Pit filters and eliminate the causes 17) Cases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush fiction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reaise the brush spring and brush presser pad 23) Excessive brush pressure is doweak Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 26) The brush holders are not perpendicular Restore the correct distance between brush holder cases 27) Too much play in the brush holder Clearn the brush holders 28) The brush bolder sare is too distant from the cormuch as tholders Clean the bru	10) The armature winding is damaged	Repair, rewind if necessary
12 Current surges Choose suitable brush types 13 Current surges Choose suitable brush types 14) The air is too damp Let in fresh air, select suitable brushes 15) The air is too damp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Relace the brush spring and brush presser pad 23) Excessive brush pressure Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (= 2, 5 mm) 26) The brush holder studs Reinforce the studs with insulating rings 29) Tho rouch play in the brush holder Change brush holder 20) The roush holder studs Reinforce the studs with insulating rings	11) Inadequate ventilation	Trace the causes, then consult ABB if necessary
13) Current surges Choose suitable brush types 14) The air is too damp Let in fresh air, select suitable brushes 15) The air is too damp Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gazes or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Replace the brush spring and brush presser pad 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in different brushes Adjust pressure, replace the brush holder cases 26) The brush holders are ont perpendicular Restore the correct distance between brush holder cases 27) Too much play in the brush holders Clean the brush holders 29) The brush holder studs Reinforce the studs with insulating rings 29) The brush holder studs Reinforce the studs with insulator <	12) Current density at the brushes is too low	Reduce the number of brushes
14) The air is too damp Let in fresh air, select suitable brushes 15) The air is too dy Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Fit fitters and eliminate the causes 17) Cases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Relace the brush spring and brush presser pad 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush notessare in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush spring sing 25) The brush holder sare not perpendicular Reside the score distance between brush holder cases 27) Too much play in the brush holder Clean the brush holder 28) Vbractions on the brush holder Clean the brush holder 29) The brush holder studs Reinforce the studs with insulating rings 29) The brush holder studs Reinforce the studs with insulating	13) Current surges	Choose suitable brush types
15) The air is too dy Let in fresh air, select suitable brushes 16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reise the brush spring and brush presser pad 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush holders are not perpendicular Change brush holders 27) Too much play in the brush holders Change brush holders 29) The brush holder sare not parallel Adjust brush holders 29) The brush holder sare not parallel Adjust brush holders 29) The brush holder sare not parallel Adjust brush holders 30) The brush holder sare not parallel Adjust brush holders	14) The air is too damp	Let in fresh air, select suitable brushes
16) Dust or sand suspended in the air Fit filters and eliminate the causes 17) Gases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reale the brushes 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush holder studs Reinforce the studs with insulating rings 29) The brush holder studs Reinforce the studs with insulating rings 29) The brush holder studs Reinforce the studs with insulating rings 30) The brush holder studs Reinforce the studs with insulating rings 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more atrasive brushes 32) Mica insulator pr	15) The air is too dry	Let in fresh air, select suitable brushes
17) Gases or acids in the air (*) Let in fresh air, select suitable brushes 18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Raise the brush spring and brush presser pad 23) Excessive trush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in outperpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush holders are not perpendicular Reinforce the studs with insulating rings 29) The brush holder case is ato distant from the commutator Chean the brush holders 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Smooth the mica insulator and the edges of the segments 31) Uneven current distribution to the brushes Remove the burs, smooth the edges of the segments 33) Burs on the commutator Sholder the commutator 34) Ovalized commutator Turn the commutator <td>16) Dust or sand suspended in the air</td> <td>Fit filters and eliminate the causes</td>	16) Dust or sand suspended in the air	Fit filters and eliminate the causes
18) Excessive brush friction Reduce brush pressure, make use of non-abrasive brushes 19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Reize the brush spring and brush presser pad 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 + 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holders 29) The brush holder case is too distant from the commutator Adjust bressure alous with insulating rings 29) The brush holder case is too distant from the commutator Smooth the mica insulator and the edges of the segments 31) Uneven current distribution to the brushes Remove the burrs, smooth the edges, replace brushes with a more suitable grade 32) Brus an the commutator Turn the commutator 33) Burrs on the commutator Turn the commutator 34) Ovalized commutator Turn the commutator	17) Gases or acids in the air (*)	Let in fresh air, select suitable brushes
19) Brushes not adapted to the commutator Adapt the brushes perfectly, as previously shown 20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Raise the brush spring and brush pressure pad 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush holders are not parallel Adjust brush holders 29) Vibrations on the brush holder Change brush holders 29) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burs on the commutator Turn the commutator 34) Ovalized commutator Turn the commut	18) Excessive brush friction	Reduce brush pressure, make use of non-abrasive brushes
20) Different brush types Use brushes of the same type 21) The commutator is stained when the machine is not in operation Raise the brushes 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush so holder studs Reinforce the studs with insulating rings 27) Too much play in the brush holder Change brush holder 28) Wibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burs on the commutator Smooth the mica insulator and the edges of the segments 34) Ovalized commutator Turn the commutator	19) Brushes not adapted to the commutator	Adapt the brushes perfectly, as previously shown
21) The commutator is stained when the machine is not in operation Raise the brushes 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holders 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator Turn the commutator lugs 34) Ovalized commutator Solder the commutator lugs 35) Broken soldering Solder the commutator lugs 36) Scored commutator Turn the commutator lugs 37) Protruding commutator s	20) Different brush types	Use brushes of the same type
machine is not in operation Fields the brush spring and brush pressure is too weak 22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brush holders are not perpendicular Chean the brush holders 27) Too much play in the brush holders Clean the brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 30) The brush holder case is too distant from the commutator Smooth the mica insulator and the edges of the segments 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator Solder the commutator 35) Broken soldering Solder the commutator Solder the commutator 36) Scored commutator Turn the commutator Rub the commutator 37) P	21) The commutator is stained when the	Raise the brushes
22) Brush pressure is too weak Replace the brush spring and brush presser pad 23) Excessive brush pressure Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burs on the commutator Turn the commutator 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone,	machine is not in operation	
23) Excessive brush pressure Replace the brush spring and brush presser pad 24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abraisive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator Turn the commutator 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke	22) Brush pressure is too weak	Replace the brush spring and brush presser pad
24) Uneven brush pressure in different brushes Adjust pressure, replace the faulty brush springs if necessary 25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holders 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder sare not parallel Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abraisve brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke c	23) Excessive brush pressure	Replace the brush spring and brush presser pad
25) The brush holders are not perpendicular Restore the correct distance between brush holder cases and commutator (2 ÷ 2.5 mm) 26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holders are not parallel Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator with a pumice stone, turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator 36) No choke coil where needed Connect the choke coil 37) Protruding commutator segments Connect the choke coil 38) No choke coil reactance different from specified one <td>24) Uneven brush pressure in different brushes</td> <td>Adjust pressure, replace the faulty brush springs if necessary</td>	24) Uneven brush pressure in different brushes	Adjust pressure, replace the faulty brush springs if necessary
26) The brushes are jammed in the brush holders Clean the brush holders 27) Too much play in the brush holder Change brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator lugs 35) Broken soldering Solder the commutator lugs 36) No choke coil where needed Connect the choke coil 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator if necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil 39) Choke coil reactance different from specified one Replace the choke coil 39) Choke coil reactance different from specified one Replac	25) The brush holders are not perpendicular	Restore the correct distance between brush holder cases
20) The brush lock are partitive brush holder Change brush holders 27) Too much play in the brush holder Change brush holder 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator lugs 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator with a pumice stone, turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil ((CF) The bruebee are immed in the brueb holders	and commutator (2 ÷ 2.5 mm)
21) Hot much play in the brush holder Change brush model 28) Vibrations on the brush holder studs Reinforce the studs with insulating rings 29) The brush holders are not parallel Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator lugs 35) Broken soldering Solder the commutator lugs 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	20) The blushes are jammed in the brush holder	Change bruch holder
20) Violations on the bitsh holder study Reinforce the study with instalating hings 29) The brush holder case is too distant from the commutator Adjust brush holders 30) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator lugs 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	27) 100 Much pidy III the brush holder stude	Disinferred the stude with insulating ringe
25) The brush holder case is too distant from the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	20) VIDI allohis off the brush heldere are not parallel	Adjust brush helders
30) The bids inducer case is too distant norm the commutator Adjust distance to about 2 ÷ 2.5 mm 31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator lugs 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	29) The bruch holder case is too distant from the	Aujust blush holders
31) Uneven current distribution to the brushes Increase current density; adjust pressure, make use of more abrasive brushes 32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator lugs 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	commutator	Adjust distance to about 2 ÷ 2.5 mm
32) Mica insulator protruding from the commutator Smooth the mica insulator and the edges of the segments 33) Burrs on the commutator segments Remove the burrs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	31) Uneven current distribution to the brushes	Increase current density; adjust pressure, make use of more abrasive buildes
33) Burs on the commutator segments Remove the burs, smooth the edges, replace brushes with a more suitable grade 34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	32) Mica insulator protruding from the commutator	Smooth the mica insulator and the edges of the segments
34) Ovalized commutator Turn the commutator 35) Broken soldering Solder the commutator lugs 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator if necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	33) Burrs on the commutator segments	Remove the burrs, smooth the edges, replace brushes with a more suitable grade
35) Broken soldering Solder the commutator 36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator if necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	34) Ovalized commutator	Turn the commutator
36) Scored commutator Turn the commutator 37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator if necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	35) Broken soldering	Solder the commutator lugs
37) Protruding commutator segments Rub the commutator with a pumice stone, turn the commutator with a pumice stone, turn the commutator in necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	36) Scored commutator	Turn the commutator
37) Protruding commutator segments not commutator if necessary 38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases		Rub the commutator with a numice stone turn the
38) No choke coil where needed Connect the choke coil 39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	37) Protruding commutator segments	commutator if necessary
39) Choke coil reactance different from specified one Replace the choke coil (*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	38) No choke coil where needed	Connect the choke coil
(*) Harmful gases which may be present in the air: sulphates, silicones, chlorine, ammonia. consult ABB in these cases	39) Choke coil reactance different from specified one	Replace the choke coil
	(*) Harmful gases which may be present in the air: sulphates. silicones	s, chlorine, ammonia. consult ABB in these cases

_

EC Declaration of Incorporation

Article 6(2) of 2006/42/EC

The undersigned, representing the following supplier and the authorised representative established within the Community -

Baldor Electric Company 5711 R. S. Boreham, Jr. Street Fort Smith, Arkansas 72901 USA

herewith declare that the Products Product identification (brand and catalogue number/part number): ABB Automation Products GmbH Hermann-Heinrich-Gossen-Strasse 3 50858 Köln- Cologne, Germany

DC Component Motors and Generators Series/Frame Size: ABB•Baldor brand IEC frame diameters DMI 180 through DMI 400 and their length variations, Rated up through 2000 KW maximum, 815 volts maximum (consult product marking for details)

Series/Frame Size: Baldor•Reliance brand, NEMA frame diameters 500 through 1600 (IEC frame diameters 315 through 900) and their length variations, Rated up through 4000 Hp (2982 kW) maximum, 850 Volt maximum (consult product marking for details)

may not be put into service before the machinery in which it is to be incorporated is declared to comply with the provisions of Directive 2006/42/EC (Machinery Directive) with the regulations transposing it into national law. These motors comply with the following Essential Health and Safety Requirements of the Directive:

1.1.2 Principles of safety integration

1.1.3 Materials and products

1.1.5 Design of machinery to facilitate handling

1.5.4 Errors in fitting

1.7.3 Marking of machinery

Reference: CHK-BEZ-SN-706-_-EN; CHK-BEZ-MACH-SN--706-_-EN and that the standards and/or technical specifications referenced below have been applied:

EN 60204-1: 2006/AC:2010- Safety of machinery - Electrical equipment of machines

Part 1: General requirements

Clause 14

Supplier: **Signature**

Name:

Date:

Position:

Coans Massey

Authorised Representative in the Community: Signature:

j. V. M. Ela

Name: Position: Date:

Michael Klein Product Group Director- Europe 12 November 2013

L. Evans Massey

12 November 2013

Mgr. Standards and Certification

	De Deciaranon of Conformity		
The undersigned, representing the follo	wing supplier and the authorised representative establ	ished within the	
Community Raldan Electric Commany	APP Antone time Durate Could	11	
5711 P S Boraham Ir Streat	ABB Automation Products Gmbi Harmann Hainnich Cassan Stua		
Fort Smith Arkansas 72901	nermann-neinrich-Gossen-Sira 50858 Köln- Cologne Germany	sse 5	
USA	50050 Koin-Cologne, Germany		
herewith declare that the Products	DC Component Motors and Generators		
Product identification (brand and	Series/Frame Size: ABB•Baldor brand IEC frame di	ameters DMI 180	
catalogue number/part number):	hrough DMI 400 and their length variations, Rated u	ip through 2000 KW	
	maximum, 815 volts maximum (consult product marking for details)		
	Series/Frame Size: Baldor•Reliance brand, NEMA frame diameters 500		
	through 1600 (IEC frame diameters 315 through 900) and their length		
	variations, Katea up inrougn 4000 Hp (2982 kw) max maximum (consult product marking for details)	ximum, 850 Voli	
are in conformity with the provisions o	the following EC Directive(s) when installed in accord	lance with the	
installation instructions contained in th	product documentation:		
2006/95/EC	Low Voltage Directive		
2004/108/EC	EMC Directive		
2011/65/EU	RoHS Directive		
Reference: CHK-BEZ-SN-706EN			
Note- In the case of the Low Voltage D	rective, this Declaration only applies to motors rated le	ess than 1500 Volts DC	
and that the standards and/or technical	specifications referenced below have been applied (Sa	fety only):	
EN 60204-1: 2006/AC:2010-Clause	Safety of machinery – Electrical equipment of machines	s – Part I: General	
14 EN 60034 1.2010/4C.2010	equirements Potating Electrical Machines Dant 1: Pating and Porto		
EN 60034-1.2010/AC.2010 EN 60034-5:2001/41:2007	Rotating Electrical Machines- Part 1: Rating and Performance Potating Electrical Machines, Part 5: Classification of degrees of protection		
EN 50581:2012	Technical documentation for the assessment of electric	cal and electronic	
	products with respect to restriction of hazardous substa	ances	
Conformance via a EMC Technical Fi	e (TF) is declared using all or parts of the following sta	andards (EMC only):	
EN 60034-1:2010/AC:2010	Rotating Electrical Machines- Part 1:Rating and Perfo	rmance	
EN 55011: 2009/A1:2010	ISM radio frequency equipment- Radio disturbance cho nethods of measurement	aracteristics- Limits and	
EN 61000-6-2: 2005	Electromagnetic Compatibility - Generic Immunity Stat Environment	ndard- Industrial	
EMC Technical File - TF No:	BEZ-DC-EMC-09		
Notified Body Statement of Compliance	Reference No. NB1765BEC1.CPS		
	Notified Body:		
	Technology International (Europe)	, Ltd.	
	56 Shrivenham Hundred Business	Park	
	Shrivenham, Swindon, Wiltshing SN6 9TV, England		
	Willsnire SN0 811, England Notified Body number: 0673		
Year of CE Marking (Low Voltage Dire	ctive) 1996		
Supplier:	Authorised Representative in the C	ommunity	
Signature	Signature:	,	
E MA	11 510		
Coans Massey	i.V. U. alo		
\sim	Γ.		
<i>Name:</i> L. Evans Massev	Name: Michael Kleiufiichael K	lein	
<i>Position:</i> Mgr. Standards and Certi	ication <i>Position:</i> Product Group Directo	or Europe	
Date: 12 November 2013	Date: 12 November 2013	•	

EC Declaration of Conformity

Document Control Number: DOC-BEZ-SN-706-B-EN

Baldor Electric Company P.O. Box 2400 Fort Smith, AR

Telephone: 479-646-5711 Telefax: 479-649-5281

www.baldor.com www.abb.com/motors&drives