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—
GRID-INFORMED DYNAMIC PRICING FOR EV CHARGING  
USING REINFORCEMENT LEARNING (RL)

Unlocking the 
price
To help balance load and power generation that ensue from the 
electrification of transportation and the increased connection of 
variable power sources to the grid, ABB has developed an RL-based 
dynamic price model for electric vehicle (EV) charging with the 
required flexibility to respond to changing grid conditions.
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example, in September 2022, residents of twelve 
California counties were requested to reduce 
power consumption or face rolling blackouts 
due to higher power demand than usual  
resulting from an extreme heat wave [2]. Such 
scenarios indicate the need to implement a 
broader combination of approaches.

One obvious consideration is to evaluate the 
future of EV charging, which has been growing 
at an ever higher rate due to increased customer 
demand. To help meet this demand, ABB 
launched the world’s fastest EV charger, the 
Terra 360, in 2021. With a maximum output of 
360 kW, an electric car can be charged in less 
than 15 minutes, delivering 100 km of range 
in less than three minutes [3]. And once the 
capability to charge rapidly is developed further 
and installed, it would be more than unfortunate 
if the speed of charging needed to be artificially 
and forcibly curtailed. Such actions might be 
required to maintain grid stability and ensure 
the security of power supply. 

The electric grid of the future must handle 
increased loads from the accelerated electri-
fication of transportation as well as variable 
generation from distributed energy resources 
(DERs). Balancing load and generation requires a 
combination of location-specific grid-responsive 
solutions. Recognizing this key challenge, ABB 
proposes a free market approach to influence 
EV charging decisions by varying the price of 
EV charging in response to grid conditions. The 
resultant solution will lower the cost of delivering 
power to the end customer and help utilities 
maintain grid stability.

Shifting to electric vehicles 
The electric grid is in the process of undergoing 
a major transformation. The world has largely 
recognized the need to shift away from fossil 
fuel-based energy, especially for transportation. 
The resulting rapid increase in EVs is projected 
to lead to a heightened demand for power and 
energy. This increase, along with the expansion 
of distributed energy sources connected to 
the grid, leads to increased variability in power 
generation. Two ways to handle the subsequent 
balancing act between power generation and 
load would be to add more energy storage and, 
or, to reinforce the grid. However, this comes 
with significant capital expenditure. While 
such infrastructure-based improvements are 
welcome and have already begun [1], the scale 
of the problem is potentially alarming. For 

—
The rapid increase in EV’s is 
projected to lead to an increased 
demand for power and thus 
energy.
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and types of EV charging for utility-informed 
smart charging management.

Time-of-use rates – a locked-in structural 
solution
A traditional free market approach to handle 
the load to generation mismatch, especially in 
areas where solar energy generation is strong, 
has been the use of time-of-use rates. Electric 
utility companies, such as PG&E in California, 
USA, already have EV time-of-use rates in their 
rate structure [4] →01 which means that the price 
that end consumers pay better reflects the time 
varying costs of generating electricity. Benefi-
cially, time-of-use rates have a daily and seasonal 
aspect, in which different rates are applied to 
night and day as well as to summer and winter to 

account for various factors, eg, variability in solar 
generation. Moreover, there are different rates 
depending on whether the power is for the entire 
home, without separate metering for EV charging 
(EV2-A rates), or only for EV charging (EV-B rates). 
Such pricing is expected to incentivize customers 
to charge during specific hours of the day. Even 

ABB, the world leader in EV infrastructure, offer-
ing the full range of charging and electrification 
solutions for EVs of all kinds, is collaborating 
with partners in the utilities, and academia, to 
provide technical solutions to address these 
future challenges in the real-world. ABB’s Electri-
fication Mosaic Platform for Grid-Informed Smart 
Charging Management (eMosaic), is one such 
project, that was initiated in 2020 to provide a 
combined view of multiple charging sites, levels, 

—
Time-of-use rates are a free 
market way to handle the load 
generation mismatch where so-
lar energy generation is strong.
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so, EV customers are free to charge their car 
during peak hours, albeit at more than double 
the cost of the off-peak rate. Despite this seem-
ingly logical solution, time-of-use rate structures 
are fixed and therefore unresponsive to changing 
grid conditions, such as unexpected peak use 
due to extreme temperature conditions, thereby 
reducing the effectiveness of this rate structure. 
While the certainty of such a pricing structure 
is positive, changing grid conditions and even 
weather could reduce its effectiveness.

Dynamic pricing
The next extension of time-of-use rates is to 
introduce grid-informed dynamic pricing, wherein 
the price of EV charging is responsive to what 
has happened historically and what the grid is 
currently experiencing. While this approach lacks 
the certainty of time-of-use rates, it provides the 
flexibility to respond to changing grid conditions 
through a free market approach. With the ever-in-
creasing demand for power and energy, rapidly 
changing loads, and expansion of distributed 
energy resources, the future grid will face more 
variability. Dynamic pricing is another tool that 
could be used to help balance generation and 
load. According to the dynamic pricing approach, 
the EV user is rewarded with a lower price of 
charging during times when it is favorable to the 
grid (and in turn to the EV site owner) yet has to 
pay a higher price during high-demand situations. 
Nevertheless, there are many technical challenges 
to resolve before dynamic pricing can become a 
reality.

Setting the best price 
Capturing the complex interaction between 
dynamic EV charging price, EV charging user 
behavior, electric load, and distribution grid 
dynamics is a formidable challenge. The goal is to 
provide benefits to the grid while simultaneously 
reducing the cost of delivering power to the EV 
or EV charging site owner. For a positive impact, 
the pricing approach must not only be flexible, it 
must be tailored to the location-based dynamics 
of the EV charging site. And, herein lies the rub: 

the rapidly increasing and changing EV penetra-
tion complicates the issue. Clearly, the dynamic 
price setting mechanism must be automated, 
but how? Smart grids can help solve the supply 
issues originating from the burgeoning number 
of rooftop solar and EV battery power sources 
operating in real-time by balancing demand 
from customer devices (air conditioners, water 
heaters, batteries, EVs). Dynamic pricing in real 
time would remove the pressure from the load, 
but how is this possible? The solution lies in the 
use of artificial intelligence (AI), specifically the 
field of reinforcement learning.

RL for dynamic pricing
The RL technique is based on the ability to learn 
the optimal behavior in a certain environment for 
maximum reward. Heavy research ensued after 
groundbreaking results were achieved in 2016 
when AlphaGo, an RL-based computer program, 
beat the world Go 1) champion, Lee Sedol. Since 
then, there has been deepening research into RL 
and its use in industrial applications eg, for data 
center cooling, robotics, etc., with good success 
[5]. Recently at ABB, RL has been used to capture 

complicated interactions between EVs and the 
grid to dynamically set the charging price of 
electricity, as a follow-up step to the time-of-use 
electricity pricing in current use [6].

In this case, the RL agent can be thought of as 
a controller that takes the grid status as input 
and generates a charging price or charging price 
factor as output. This output is communicated to 
the EV charging station, which in turn transmits 
this information to the EV end-user.

In framing and developing an RL-based solution 
for any problem, the RL components must be 
defined →03. For the distribution grid, ABB used 
an IEEE 34-bus distribution system model with 
multiple EV charging stations at different nodes.

The next step involved training the RL agent 
to perform this price setting function. During 
the training process, the RL agent learns by 
interacting with the environment and trying 
different actions, which in this case are different 
price points, and determining how it affects the 
reward (a combination of grid health constraints 
and cost of total power delivery).

—
ABB’s grid-informed dynamic 
pricing has been successfully 
developed using RL models.

Reinforcement learning components

Agent Q-learning for small problems, deep Q-learning for larger problems

Environment
Distribution grid connected to multiple EV sites with the capability to react to 
or communicate charging price to the EV user, capturing user behavior

Action Setting a price factor to modify base price at each EV site, changing hourly

State Voltages and currents of interest at the distribution level on a per unit basis

Reward
Constraints on voltages and currents of interest 
Minimize cost of power delivery

—
Footnote

1) Go is a board game, 
invented in China, with 
over 2.1×10170 legal 
positions on the board.

—
01 An example of time-
of-use rates.

—
02 RL agent price 
setting overview.

—
03 The table defines the 
RL components used in 
ABB’s study.

03
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simulation before it is deployed and fine-tuned, 
using feedback, in the real world.

Synthetic environment for training
Allowing the RL agent to explore a virtual 
synthetic environment prior to deployment, 
makes it possible to use RL to solve complex 
problems. Ultimately, the closer the simulated 
environment is to the real world, the better the 
agent will perform once it is deployed. To this 
end, ABB developed and employed various tools 
and routines to simulate different aspects of 
EV charging, electrical grid dynamics, and load 
environment as well as end user behavior. The 
key tools and routines employed are:
•	 Caldera, an infrastructure simulation platform, 

developed by Idaho National Laboratory, which 
simulates the EV charging sessions and EV site 
electrical dynamics [7].

•	 OpenDSS, from the Electric Power Research 
Institute, which is used to simulate the IEEE 34 
bus distribution system.

•	 Other routines developed in-house in Python, 
eg, EV site load forecaster, which predicts the 
day-ahead EV charging load for a charging site 
using multiple time horizons to capture the 
usage pattern and EV penetration dynamics 
using only past EV metering data [6]; EV 

Ideally, to learn about its environment, the RL 
agent should train in the real world where it 
receives reality-based feedback for its actions. 
The drawback is the well-known exploration-ex-
ploitation trade-off. To learn, the RL agent needs 
to be able to explore the impact of different 
actions; during this time, its performance may 
be severely suboptimal. Moreover, the amount 
of time required to learn could be unreasonable 
for many real-world applications. To circumvent 
these drawbacks, a synthetic environment, which 
is similar to, yet distinct from a simulation twin, 
is created to represent the real world. In this way, 
the RL agent explores the effects of its actions in 
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	 user session selector, which models user 
response to price signals; and charging session 
generator, which stochastically generates 
charging sessions based on a day-ahead pre-
diction of EV behavior.

In ABB’s case, the synthetic environment inter-
acts with the RL agent →04, wherein it obtains 
the grid health metrics from the synthetic envi-
ronment every hour and modifies the changing 
price accordingly.

Communication architecture
Dynamic pricing requires the underlying com-
munication infrastructure to assure a flawless 
exchange of information. ABB determined that 
this infrastructure needed to be updated. This 
was accomplished as part of ABB’s eMosaic 
project. Here, ABB developed and established 
secure communications between the EV site, the 
eMosaic cloud and different users →05.

Training and testing in the synthetic 
environment 
The RL agent was trained in the developed syn-
thetic environment for over 900 episodes (each 
episode is equivalent to 24 hours of charging). 
The training process takes about 5 days on 
a medium duty desktop computer server. To 
complete this training process in the real world, 
it would take about two and a half years. To 
generate the necessary performance metrics, 
the stochastic simulation was run to collect 30 

days’ worth of data: Voltages and currents were 
captured from distribution grid simulations →06. 
Here, it is to be noted that the grid has been 
deliberately loaded to reproduce the anticipated 
stress on the grid caused by EV charging. To com-
pare performance, a constant pricing use case 
(baseline) with a similar price for energy delivery 

as the average dynamic price was simulated. The 
dynamic pricing use case demonstrated a nearly 
50 percent reduction in the time spent in the 
restricted voltage region (less than 0.9 per unit). 
These results are extremely promising.

Future steps 
Having defined the required algorithms, models 
and completed simulations to train and test 
this dynamic price model, ABB’s next step is to 
implement this pricing strategy in a demonstra-
tion site with project partners. This will include 
a utility company and a university in the United 
States. Thus, the impact of dynamic pricing 
with real EV users can be rigorously tested, so 
that dynamic pricing will be ready to serve EV 
charging end customers and the utilities. After all 
it is only through balancing the needs of energy 
producers and consumers alike that the electrical 
grid can maintain a secure supply of energy as 
the electrification of transportation expands. •

—
Having trained and tested the 
model, ABB will implement this 
pricing strategy at a demonstra-
tion site with project partners.

—
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