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GRID-INFORMED DYNAMIC PRICING FOR EV CHARGING
USING REINFORCEMENT LEARNING (RL)

Unlocking the

price

To help balance load and power generation that ensue from the
electrification of transportation and the increased connection of
variable power sources to the grid, ABB has developed an RL-based
dynamic price model for electric vehicle (EV) charging with the
required flexibility to respond to changing grid conditions.

The electric grid of the future must handle
increased loads from the accelerated electri-
fication of transportation as well as variable
generation from distributed energy resources
(DERs). Balancing load and generation requires a
combination of location-specific grid-responsive
solutions. Recognizing this key challenge, ABB
proposes a free market approach to influence
EV charging decisions by varying the price of

EV charging in response to grid conditions. The
resultant solution will lower the cost of delivering
power to the end customer and help utilities
maintain grid stability.

Shifting to electric vehicles

The electric grid is in the process of undergoing
a major transformation. The world has largely
recognized the need to shift away from fossil
fuel-based energy, especially for transportation.
The resulting rapid increase in EVs is projected
to lead to a heightened demand for power and
energy. This increase, along with the expansion
of distributed energy sources connected to

the grid, leads to increased variability in power
generation. Two ways to handle the subsequent
balancing act between power generation and
load would be to add more energy storage and,
or, to reinforce the grid. However, this comes
with significant capital expenditure. While

such infrastructure-based improvements are
welcome and have already begun [1], the scale
of the problem is potentially alarming. For

The rapid increase in EV’sis
projected to lead to an increased
demand for power and thus
enerqgy.

example, in September 2022, residents of twelve
California counties were requested to reduce
power consumption or face rolling blackouts
due to higher power demand than usual
resulting from an extreme heat wave [2]. Such
scenarios indicate the need to implement a
broader combination of approaches.

One obvious consideration is to evaluate the
future of EV charging, which has been growing
at an ever higher rate due to increased customer
demand. To help meet this demand, ABB
launched the world’s fastest EV charger, the
Terra 360, in 2021. With a maximum output of
360kW, an electric car can be charged in less
than 15 minutes, delivering 100 km of range

in less than three minutes [3]. And once the
capability to charge rapidly is developed further
and installed, it would be more than unfortunate
if the speed of charging needed to be artificially
and forcibly curtailed. Such actions might be
required to maintain grid stability and ensure
the security of power supply.
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ABB, the world leader in EV infrastructure, offer-
ing the full range of charging and electrification
solutions for EVs of all kinds, is collaborating
with partners in the utilities, and academia, to
provide technical solutions to address these
future challenges in the real-world. ABB'’s Electri-
fication Mosaic Platform for Grid-Informed Smart
Charging Management (eMosaic), is one such
project, that was initiated in 2020 to provide a
combined view of multiple charging sites, levels,
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and types of EV charging for utility-informed
smart charging management.

Time-of-use rates - a locked-in structural
solution

A traditional free market approach to handle

the load to generation mismatch, especially in
areas where solar energy generation is strong,
has been the use of time-of-use rates. Electric
utility companies, such as PG&E in California,
USA, already have EV time-of-use rates in their
rate structure [4] which means that the price
that end consumers pay better reflects the time
varying costs of generating electricity. Benefi-
cially, time-of-use rates have a daily and seasonal
aspect, in which different rates are applied to
night and day as well as to summer and winter to

Time-of-use rates are a free
market way to handle the load
generation mismatch where so-
lar energy generation is strong.

account for various factors, eg, variability in solar
generation. Moreover, there are different rates
depending on whether the power is for the entire
home, without separate metering for EV charging
(EV2-Arates), or only for EV charging (EV-B rates).
Such pricing is expected to incentivize customers
to charge during specific hours of the day. Even
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Reinforcement learning components

Agent

Q-learning for small problems, deep Q-learning for larger problems

Environment

Distribution grid connected to multiple EV sites with the capability to react to

or communicate charging price to the EV user, capturing user behavior

Action Setting a price factor to modify base price at each EV site, changing hourly
State Voltages and currents of interest at the distribution level on a per unit basis
Constraints on voltages and currents of interest
Reward S N
Minimize cost of power delivery
03

01 An example of time-
of-use rates.

02 RL agent price
setting overview.

03 The table defines the
RL components used in
ABB'’s study.
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so, EV customers are free to charge their car
during peak hours, albeit at more than double
the cost of the off-peak rate. Despite this seem-
ingly logical solution, time-of-use rate structures
are fixed and therefore unresponsive to changing
grid conditions, such as unexpected peak use
due to extreme temperature conditions, thereby
reducing the effectiveness of this rate structure.
While the certainty of such a pricing structure

is positive, changing grid conditions and even
weather could reduce its effectiveness.

Dynamic pricing

The next extension of time-of-use rates is to
introduce grid-informed dynamic pricing, wherein
the price of EV charging is responsive to what
has happened historically and what the grid is
currently experiencing. While this approach lacks
the certainty of time-of-use rates, it provides the
flexibility to respond to changing grid conditions
through a free market approach. With the ever-in-
creasing demand for power and energy, rapidly
changing loads, and expansion of distributed
energy resources, the future grid will face more
variability. Dynamic pricing is another tool that
could be used to help balance generation and
load. According to the dynamic pricing approach,
the EV user is rewarded with a lower price of
charging during times when it is favorable to the
grid (and in turn to the EV site owner) yet has to
pay a higher price during high-demand situations.
Nevertheless, there are many technical challenges
to resolve before dynamic pricing can become a
reality.

Setting the best price

Capturing the complex interaction between
dynamic EV charging price, EV charging user
behavior, electric load, and distribution grid
dynamics is a formidable challenge. The goal is to
provide benefits to the grid while simultaneously
reducing the cost of delivering power to the EV
or EV charging site owner. For a positive impact,
the pricing approach must not only be flexible, it
must be tailored to the location-based dynamics
of the EV charging site. And, herein lies the rub:
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the rapidly increasing and changing EV penetra-
tion complicates the issue. Clearly, the dynamic
price setting mechanism must be automated,
but how? Smart grids can help solve the supply
issues originating from the burgeoning number
of rooftop solar and EV battery power sources
operating in real-time by balancing demand
from customer devices (air conditioners, water
heaters, batteries, EVs). Dynamic pricing in real
time would remove the pressure from the load,
but how is this possible? The solution lies in the
use of artificial intelligence (Al), specifically the
field of reinforcement learning.

RL for dynamic pricing

The RL technique is based on the ability to learn
the optimal behavior in a certain environment for
maximum reward. Heavy research ensued after
groundbreaking results were achieved in 2016
when AlphaGo, an RL-based computer program,
beat the world Go® champion, Lee Sedol. Since
then, there has been deepening research into RL
and its use in industrial applications eg, for data
center cooling, robotics, etc., with good success
[5]. Recently at ABB, RL has been used to capture

ABB’s grid-informed dynamic
pricing has been successfully
developed using RL models.

complicated interactions between EVs and the
grid to dynamically set the charging price of
electricity, as a follow-up step to the time-of-use
electricity pricing in current use [6].

In this case, the RL agent can be thought of as

a controller that takes the grid status as input
and generates a charging price or charging price
factor as output. This output is communicated to
the EV charging station, which in turn transmits
this information to the EV end-user.

In framing and developing an RL-based solution
for any problem, the RL components must be
defined . For the distribution grid, ABB used
an IEEE 34-bus distribution system model with
multiple EV charging stations at different nodes.

The next step involved training the RL agent

to perform this price setting function. During
the training process, the RL agent learns by
interacting with the environment and trying
different actions, which in this case are different
price points, and determining how it affects the
reward (a combination of grid health constraints
and cost of total power delivery).
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Ideally, to learn about its environment, the RL
agent should train in the real world where it
receives reality-based feedback for its actions.
The drawback is the well-known exploration-ex-
ploitation trade-off. To learn, the RL agent needs
to be able to explore the impact of different
actions; during this time, its performance may
be severely suboptimal. Moreover, the amount

of time required to learn could be unreasonable
for many real-world applications. To circumvent
these drawbacks, a synthetic environment, which
is similar to, yet distinct from a simulation twin,
is created to represent the real world. In this way,
the RL agent explores the effects of its actions in
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simulation before it is deployed and fine-tuned,
using feedback, in the real world.

Synthetic environment for training

Allowing the RL agent to explore a virtual

synthetic environment prior to deployment,

makes it possible to use RL to solve complex
problems. Ultimately, the closer the simulated
environment is to the real world, the better the
agent will perform once it is deployed. To this
end, ABB developed and employed various tools
and routines to simulate different aspects of

EV charging, electrical grid dynamics, and load

environment as well as end user behavior. The

key tools and routines employed are:

- Caldera, an infrastructure simulation platform,
developed by Idaho National Laboratory, which
simulates the EV charging sessions and EV site
electrical dynamics [7].

« OpenDSS, from the Electric Power Research

Institute, which is used to simulate the IEEE 34

bus distribution system.

Other routines developed in-house in Python,

eg, EV site load forecaster, which predicts the

day-ahead EV charging load for a charging site
using multiple time horizons to capture the
usage pattern and EV penetration dynamics
using only past EV metering data [6]; EV
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30 days of voltage simulations using RL-based dynamic pricing for EV sites
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04 Synthetic environ-
ment used to train the
RL agent.

05 An overview of the
eMosaic architecture
for secure communi-
cations. Please note
that the Enterprise
Grid Service Engine
processes data and
generates control
signals to provide grid
service such as supply
and demand forecast
based on historic data
and that XMS refers to
an XFC management
system or charging
station management
system.

06 An example of volt-
age deviations seen at
one node of a stressed
distribution feeder.
The diagram contains
30 plots of data for 30
days (one for each day).
Each plot spans

24 hours and extends
one more hour to the
next day, hence 25
hours are depicted. The
red curve is the average
voltage deviation for
the 30 days.
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user session selector, which models user
response to price signals; and charging session
generator, which stochastically generates
charging sessions based on a day-ahead pre-
diction of EV behavior.

In ABB’s case, the synthetic environment inter-

acts with the RL agent , wherein it obtains

the grid health metrics from the synthetic envi-
ronment every hour and modifies the changing
price accordingly.

Communication architecture

Dynamic pricing requires the underlying com-
munication infrastructure to assure a flawless
exchange of information. ABB determined that
this infrastructure needed to be updated. This
was accomplished as part of ABB’s eMosaic
project. Here, ABB developed and established
secure communications between the EV site, the
eMosaic cloud and different users

Training and testing in the synthetic
environment

The RL agent was trained in the developed syn-
thetic environment for over 900 episodes (each
episode is equivalent to 24 hours of charging).
The training process takes about 5 days on

a medium duty desktop computer server. To
complete this training process in the real world,
it would take about two and a half years. To
generate the necessary performance metrics,
the stochastic simulation was run to collect 30
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days’ worth of data: Voltages and currents were
captured from distribution grid simulations

Here, it is to be noted that the grid has been
deliberately loaded to reproduce the anticipated
stress on the grid caused by EV charging. To com-
pare performance, a constant pricing use case
(baseline) with a similar price for energy delivery

Having trained and tested the
model, ABB will implement this
pricing strategy at a demonstra-
tion site with project partners.

as the average dynamic price was simulated. The
dynamic pricing use case demonstrated a nearly
50 percent reduction in the time spent in the
restricted voltage region (less than 0.9 per unit).
These results are extremely promising.

Future steps

Having defined the required algorithms, models
and completed simulations to train and test

this dynamic price model, ABB’s next step is to
implement this pricing strategy in a demonstra-
tion site with project partners. This will include

a utility company and a university in the United
States. Thus, the impact of dynamic pricing

with real EV users can be rigorously tested, so
that dynamic pricing will be ready to serve EV
charging end customers and the utilities. After all
it is only through balancing the needs of energy
producers and consumers alike that the electrical
grid can maintain a secure supply of energy as
the electrification of transportation expands. ®
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