Data sheet

Voltage monitoring relay CM-EFS.2 for single-phase AC/DC voltages

For the monitoring of voltages in single-phase AC/DC systems, ABB's CM range comprises a wide selection of powerful and compact devices, all featuring only 22.5 mm (0.89 in) width.

This range includes voltage monitoring relays for over- and undervoltage protection from 3 V to 600 V.

Incorporating ABB's long-term experience, the CM range provides your electric installation with the highest safety and reliability.

Characteristics

- Monitoring of DC and AC voltages from 3-600 V
- TRMS measuring principle
- One device includes 4 measuring ranges
- Over- and undervoltage monitoring configurable
- ON- or OFF-delay configurable
- Open- or closed-circuit principle configurable
- Latching function configurable
- Threshold values for >U and <U adjustable
- Fixed hysteresis of 5 %
- Tripping delay T_V adjustable 0; 0.1-30 s
- 1x2 c/o contacts (common signal) or 2x1 c/o contact (separate signals for >U and <U) configurable
- 22.5 mm (0.89 in) width
- 3 LEDs for indication of operational states

Order data

Voltage monitoring relay

Туре	Rated control supply voltage	Measuring ranges	Order code
CM-EFS.2	24-240 V AC/DC	3-30 V, 6-60 V, 30-300 V, 60-600 V	1SVR 430 750 R0400

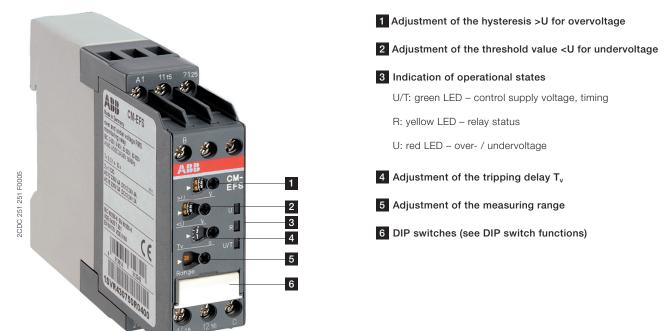
Accessories

Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR 430 029 R0100
MAR.02	Marker label for devices with DIP switches	1SVR 430 043 R0000
COV.01	Sealable transparent cover	1SVR 430 005 R0100

Approvals

- . UL 508, CAN/CSA C22.2 No.14
- 🖲 GL
- 🕑 GOST
- CB CB Scheme
- © CCC
- ֎ RMRS

Marks


- CE CE
- C-Tick

(pending)

Functions

Operating controls

Application

The window voltage monitoring relay CM-EFS.2 can be used for the simultaneous monitoring of over- (>U) and undervoltages (<U) in single-phase AC and/or DC systems. Depending on the configuration, one c/o contact each $\frac{1}{100}$ or both c/o contacts in parallel $\frac{1}{2010}$ can be used for the over- and undervoltage monitoring. Open- $\frac{1}{100}$ or closed-circuit principle $\frac{1}{100}$ as well as an adjustable ON $\frac{1}{100}$ or OFF tripping $\frac{1}{100}$ delay are configurable.

Operating mode

The CM-EFS.2 has 2 c/o contacts and includes 4 measuring ranges: 3-30 V, 6-60 V, 30-300 V, and 60-600 V.

The unit is adjusted with potentiometers and switches on the top of the unit. The selection of: ON-delay \square or OFF-delay \square , open- \square or closed-circuit principle \square , latching function ON \square or OFF \square and 2x1 c/o \square or 1x2 c/o contacts \square is made with DIP switches. A potentiometer, with direct reading scale, allows the adjustment of the threshold value_{max} (>U) for overvoltage and the threshold value_{min} (<U) for undervoltage. There is also adjustment for the tripping delay T_v. The tripping delay T_v is adjustable over a range of instantaneous to a 30 s delay. The hysteresis is fixed at 5 %.

Function diagram: voltage window monitoring 1x2 c/o contacts 🚾 ON-delayed 🖂 without latching 🔀

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_v starts and the red LED glows (overvoltage), or flashes Π_v (undervoltage) respectively.

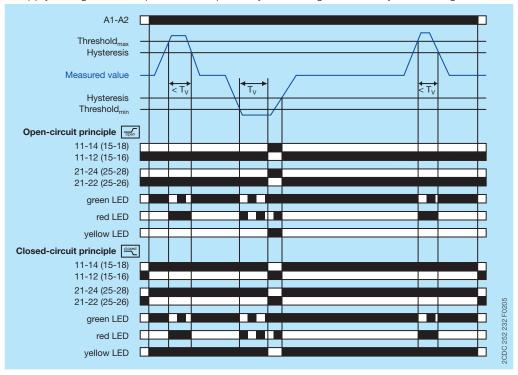
Timing of T_V is displayed by the flashing $\ensuremath{\fbox{\sc l}}\xspace$ green LED.

When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the red and yellow LEDs turn off.

If supply voltage is interrupted, the green LED turns off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes Π_{V} (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\int \Box \Box \Box$ green LED.

When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays re-energize, the yellow LED glows and the red LED turns off. If supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Function diagram: voltage window monitoring 1x2 c/o contacts 12200 OFF-delayed monitoring 1x2 c/o contacts

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

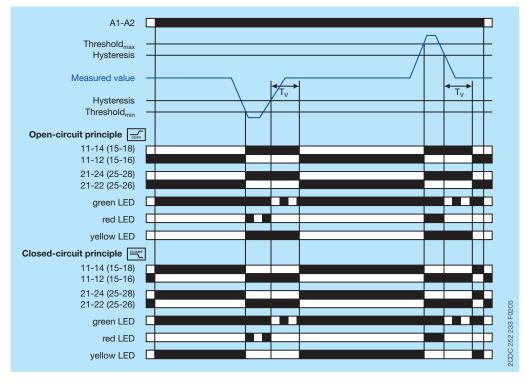
If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays energize, the yellow LED (relays energized) glows and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_v is displayed by the flashing Π_v green LED. When T_v is complete, the output relays de-energize and the yellow LED (relay energized) turns off.

If supply voltage is interrupted, the green LED turns off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays deenergize, the yellow LED turns off and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_v is displayed by the flashing Π_v green LED. When T_v is complete, the output relays energize and the yellow LED (relay energized) glows.

If supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Function diagram: voltage window monitoring 1x2 c/o contacts 🔤 ON-delayed 🖂 with latching 🌅

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes Π_{U} (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\ensuremath{\fbox{\sc l}}\xspace$ green LED.

When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes Π_{V} (undervoltage) respectively.

Timing of T_V is displayed by the flashing \square green LED.

When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) flashes ILLLL.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function). If supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when supply voltage is re-applied.

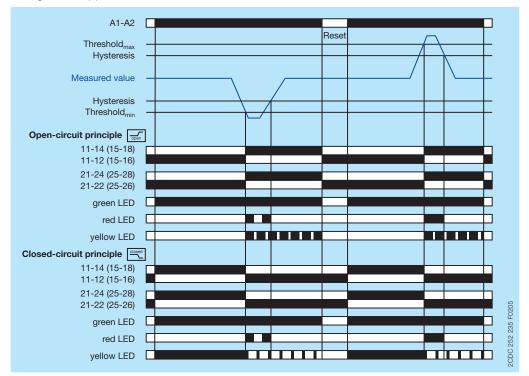
Function diagram: voltage window monitoring 1x2 c/o contacts 🚾 OFF-delayed 🔜 with latching 🜅

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays energize, the yellow LED (relays energized) flashes Π Π and the red LED glows (overvoltage), or flashes Π (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).


If supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays de-energize, the yellow LED (relays energized) flashes \square and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function). If supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when supply voltage is re-applied.

Function diagram: voltage window monitoring 2x1 c/o contact 2100 ON-delayed 🖂 without latching 🔀

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_v starts and the red LED glows (overvoltage), or flashes $\Pi_v \Pi_v$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing \square green LED.

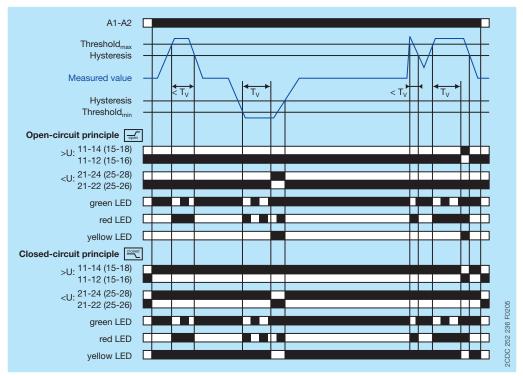
When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, energizes and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, deenergizes and the red and yellow LEDs turn off.

If supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.


If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes Π_{V} (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\int \Box \Box \Box$ green LED.

When T_v is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, de-energizes and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, reenergizes, the yellow LED glows and the red LED turns off.

If supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Function diagram: voltage window monitoring 2x1 c/o contact 2x

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

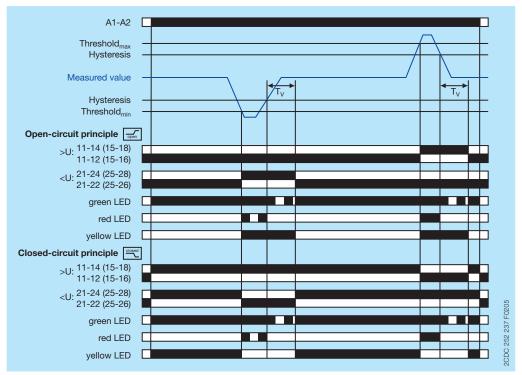
If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay $11_{15}-12_{16}/14_{18}$ (>U), or $21_{25}-22_{26}/24_{28}$ (<U) respectively, energizes, the yellow LED (relays energized) glows and the red LED glows (overvoltage), or flashes 1 (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_v starts and the red LED turns off.

Timing of T_V is displayed by the flashing Π_V green LED. When T_V is complete, the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, de-energizes and the yellow LED (relay energized) turns off.

If supply voltage is interrupted, the green LED turns off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, de-energizes, the yellow LED turns off and the red LED glows (overvoltage), or flashes 11_{15} (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing Π_V green LED. When T_V is complete, the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, energizes and the yellow LED (relay energized) glows.

If supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Function diagram: voltage window monitoring 2x1 c/o contact 2x1 Monoton ON-delayed 🖂 with latching

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_v starts and the red LED glows (overvoltage), or flashes $\Pi_v \Pi_v$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing \square green LED.

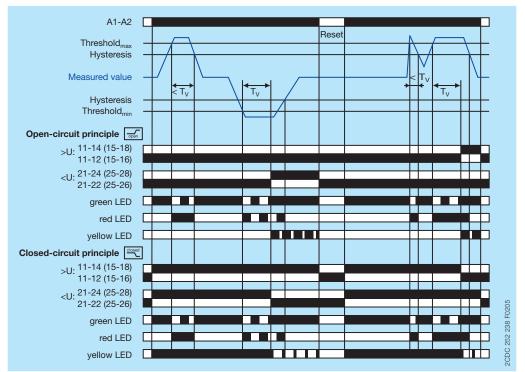
When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, energizes and the yellow LED (relay energized) flashes $\Pi \Pi \Pi \Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains energized (latching function).

If supply voltage is interrupted (reset), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, de-energizes and the yellow and green LEDs turn off.

Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.


If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes Π_{V} (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\int \Box \Box \Box$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or 21_{25} - $22_{26}/24_{28}$ (<U) respectively, de-energizes and the yellow LED (relays energized) flashes I_{15} .

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains de-energized (latching function).

If supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when supply voltage is re-applied.

Function diagram: voltage window monitoring 2x1 c/o contact 2x1 @ OFF-delayed

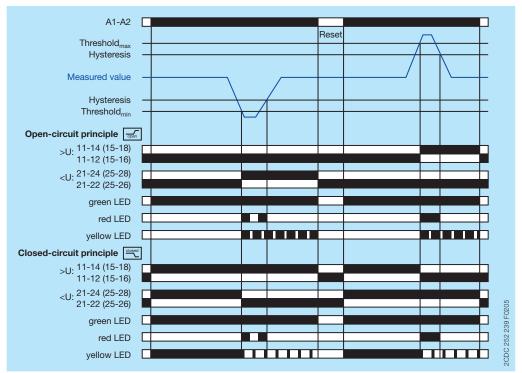
Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

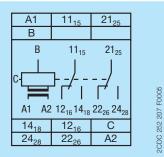
If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or $21_{25}-22_{26}/24_{28}$ (<U) respectively, energizes, the yellow LED (relays energized) flashes Π and the red LED glows (overvoltage), or flashes Π (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains energized (latching function).

If supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.


Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.


If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or $21_{25}-22_{26}/24_{28}$ (<U) respectively, de-energizes, the yellow LED (relays energized) flashes ILLLL and the red LED glows (overvoltage), or flashes ILLLL (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains de-energized (latching function).

If supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when supply voltage is re-applied.

Connection diagram

A1-A2 Control supply voltage B-C Measuring range: 3-30 V, 6-60 V, 30-300 V, 60-600 V 11₁₅-12₁₆/14₁₈ Output contacts - open- or closed-circuit principle 21₂₅-22₂₆/24₂₈ V

DIP switch functions

Position	4	3	2	1
ON 🕇	2x1 c/o			
OFF	1x2 c/o		open	\boxtimes

2CDC 252 274 F0005

1	ON OFF	OFF-delay ON-delay
2	ON OFF	Closed-circuit principle Open-circuit principle
3	ON OFF	Latching function activated Latching function not activated
4	ON OFF	2x1 c/o contact 1x2 c/o contacts
OFF	= Defau	lt

Technical data

Data at T_a = 25 $^\circ\text{C}$ and rated values, unless otherwise indicated

Input circuit

Supply circuit		A1-A2
Rated control supply voltage Us		24-240 V AC
Rated control supply voltage tolerance		-15+10%
Rated frequency		50/60 Hz
Current / power consumption	24 V DC	30 mA / 0.75 W
	115 V AC	17 mA / 1.9 VA
	230 V AC	11 mA / 2.6 VA
On-period		100%
Power failure buffering time		20 ms
Transient overvoltage protection		varistors
Measuring circuit		B-C
Monitoring function		over- and undervoltage monitoring configurable
Measuring method		TRMS measuring principle
Measuring inputs	terminal connection	B-C
	measuring range	3-30 V, 6-60 V, 30-300 V, 60-600 V
	input resistance	600 kΩ
	pulse overload capacity t < 1 s	800 V
	continous capacity	660 V
Threshold value	······	>U and <u adjustable="" indicated<="" td="" the="" within=""></u>
		measuring range
Tolerance of the adjusted threshold value		10% of the range end value
Hysteresis related to the threshold value		5% fixed
Measuring signal frequency range		DC / 15 Hz - 2 kHz
Rated measuring signal frequency range		DC / 50-60 Hz
Maximum response time	AC	80 ms
	DC	120 ms
Accuracy within the control supply voltage tolerand	e	$\Delta U \leq 0.5 \%$
Accuracy within the temperature range		ΔU ≤ 0.06 % / °C
Transient overvoltage protection		varistors
Timing circuit		
Delay time T _v		0 or 0.1-30 s adjustable
Repeat accuracy (constant parameters)		±0.07 % of full scale
Tolerance of the adjusted delay time		-
Accuracy within control supply voltage tolerance		$\Delta t \leq 0.5 \%$
Accuracy within temperature range		$\Delta t \le 0.06 \% / °C$

Indication of operational states

Control supply voltage	U/T: green LED \int : control supply voltage applied \int : tripping delay T _v active
Measured value	
Relay status	R: yellow LED T: relay energized, no latching function R: yellow LED T: relay energized, active latching function LLLL: relay de-energized, active latching function

Output circuits

Kind of output	11-12/14	1st relay
	21-22/24	2nd relay
		1 x 2 c/o contacts (common signal) or 2 x 1 c/o
		contact (separate signal for >U and <u) configurable<="" td=""></u)>
Operating principle		open- or closed-circuit principle configurable (open-
		circuit principle: output relays energize if the measure
		value exceeds ᠵ / falls below 誺 the adjusted
		threshold value, closed-circuit principle: output relays
		de-energize if measured value exceeds 😾 / falls
		below 🔄 the adjusted threshold value)
Contact material		AgNi
Rated operational voltage U _e (VDE 0110, IEC/EN 60947-1)		250 V
Minimum switching voltage / minimum switching current		24 V / 10 mA
Maximum switching voltage / maximum	switching current	250 V AC / 4 A AC
Rated operational current I _e	AC12 (resistive) at 230 V	4 A
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V	3 A
	DC12 (resistive) at 24 V	4 A
	DC13 (inductive) at 24 V	2 A
AC rating (UL 508)	utilization category (Control Circuit Rating Code)	B 300
	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking apparent power	3600/360 VA
	(Make/Break) at B 300	
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime (AC12, 230 V, 4 A)		0.1 x 10 ⁶ switching cycles
Maximum fuse rating to achieve	n/c contact	6 A fast-acting
short-circuit protection	n/o contact	10 A fast-acting

General data

MTBF		available on request
Dimensions (W x H x D)	product dimensions	22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in)
	packaging dimensions	81 x 106 x 26 mm (3.19 x 4.17 x 1.02 in)
Weight		0.142 kg (0.313 lb)
		0.164 kg (0.362 lb)
Material of enclosure		PA 6
Mounting		DIN rail (IEC/EN 60715)
Mounting position		any
Degree of protection	enclosure	IP50
	terminals	IP20

Electrical connection

Wire size	fine-strand with(out) wire end ferrule	2 x 0.75-2.5 mm² (2 x 18-14 AWG)
	rigid	2 x 0.5-4 mm² (2 x 20-12 AWG)
Stripping length		7 mm (0.28 in)
Tightening torque		0.6-0.8 Nm (5.31-7.08 lb.in)

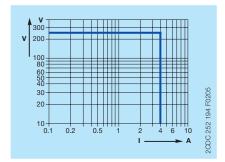
Environmental data

Ambient temperature		-20+60 °C
	storage	-40+85 °C
Damp heat (IEC 60068-2-30)		55 °C, 6 cycle
Vibration (sinusoidal) (IEC/EN 60255-21-1)		class 2
Shock (IEC/EN 60255-21-2)		class 2

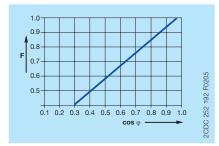
Isolation data

Rated insulation voltage	supply / measuring circuit / output	600 V
(VDE 0110, IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	250 V
Rated impulse withstand voltage U _{imp}	supply / measuring circuit / output	6 kV 1.2/50 μs
(IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	4 kV 1.2/50 μs
Test voltage between all isolated circuits	rated insulation voltage 250 V	2.0 kV, 50 Hz
(type test)	rated insulation voltage 600 V	2.5 kV, 50 Hz
Pollution degree (VDE 0110, IEC 664, IEC/EN 60255-5)		3
Overvoltage category (VDE 0110, IEC 664, IEC/EN 60255-5)		III

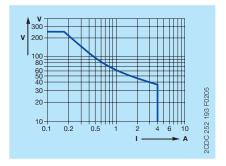
Standards

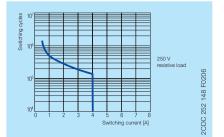

Product standard	IEC/EN 60255-6
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
RoHS Directive	2002/95/EC

Electromagnetic compatibility

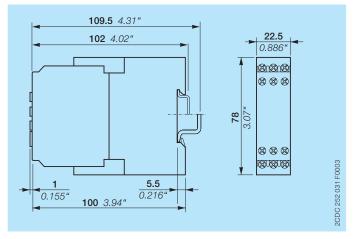

Interference immunity to		IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level 3
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	
electrical fast transient / burst	IEC/EN 61000-4-4	
surge	IEC/EN 61000-4-5	
conducted disturbances, induced by	IEC/EN 61000-4-6	Level 3
radio-frequency fields		
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

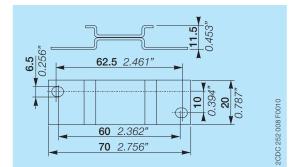
Technical diagrams


Load limit curves


AC load (resistive)

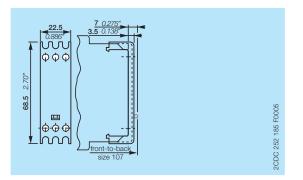
Derating factor F for inductive AC load


DC load (resistive)


Contact lifetime

Dimensions

in **mm** and inches


CM-EFS.2

ADP.01 - Adapter for screw mounting

MAR.02 - Marker label for devices with DIP switches

COV.01 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C020x
CM-EFS.2	Instruction manual	1SVC 437 752 M1000

You can find the documentation on the internet at

www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Single Phase Monitors

Contact us

ABB STOTZ-KONTAKT GmbH P. O. Box 10 16 80 69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2010 ABB All rights reserved