
Design patterns
Co-design patterns for advanced control with AC 800PEC
Ernst Johansen

Power electronics has, over recent decades, made great progress, not only in
terms of power and speed performance, but also in the breadth of applications
being catered for. Power converters are required to become ever faster,
cheaper, lighter and more flexible while fitting into less space and requiring
less installation and maintenance time.

The implementation of the corresponding power electronics control systems
presents many tough challenges, including the magnitude of the control time-
domain, which ranges from nanoseconds to seconds. Costs and risks of de-
velopment can be greatly reduced through the adoption of a control platform.
Drawing on tried and tested component technologies, individual systems can
be developed very quickly and to high quality and performance standards.
ABB’s AC 800PEC is such a platform.

 62 ABB Review 2/2006

Control platforms are necessary
to be able to meet the market’s

demand for faster and more cost-
efficient engineering. At the same
time, such a platform creates a single-
point-of-failure, representing a poten-
tial risk to the whole organization.
Successful platform development
 requires striking a delicate balance
between optimizing reusability (and
so reducing costs) and optimizing
 performance (at the price of reusabili-
ty and hence, potentially, at the price
of quality).

The secret behind the success of the
AC 800PEC control platform is a col-
lection of design patterns that offers
excellent testability – a key feature
permitting high quality to be com-
bined with reduced time-to-market.

The simulation concept
The concept behind the PEC (Power
Electronic Controller) is the develop-
ment workflow in which simulation
models are converted directly into
code for the target controller 1 . This
conversion requires no manual recod-
ing. In this way, an important source
of errors is eliminated and a high
 degree of confidence is provided in
the equivalence of the behavior of the
simulated and real systems.

The PEC Architecture
In power electronic control, the time-
domain ranges from nanoseconds in
the switching patterns up to seconds
in the start-up sequences. A great
strength of the PEC architecture lies
in it covering these nine orders of
magnitude in the control time-domain
without compromising on simplicity
or flexibility.

 63ABB Review 2/2006

Design patterns

 together. So how does the PEC exe-
cute fast control and implement I/O
connections?

The control program can be divided
into two main tasks: slow control (mil-
lisecond range and slower) and fast
control. A classic design would utilize
two different physical components for
these main tasks, a CPU for slow con-
trol and a DSP for fast control. By in-
vestigating different use-cases it was
concluded that the load distribution
between fast (typically 100s) and slow
(typically 10ms) control was strongly
application specific. The lack of a uni-
versal rule for load distribution
prompted developers to use a single
CPU for both fast and slow control.
This decision resulted in the need for
a very high-performance CPU. Besides
solving the load distribution problem,
this architecture greatly simplified
 automatic code generation.

The concept behind the
PEC (Power Electronic
Controller) is the develop-
ment workflow in which
simulation models are con-
verted directly into code for
the target controller.

The concept of automatically generat-
ing real-time code from simulation
models cannot be implemented if the
simulation tool offers no auto-code
 capability. ABB decided to use Math-
works® Matlab/SimulinkTM for the
 system simulation. This tool offers a
powerful Real-Time-WorkshopTM (RTW)
extension for target code generation.

The architecture is designed to sup-
port cost sensitive small systems with
local I/O only 2c , as well as very large
systems requiring distributed I/O 2d
using fiber-optic connections. These
two system types demand a totally dif-
ferent design of the I/O circuits in the
controller. To offer a solution capable
of covering all use-cases, a system-lev-
el FPGA (Field Programmable Gate
 Array) was used. This is a hardware
component in which the circuit itself is
fully programmable. Such FPGAs are
used both in the PEC controller and in
the distributed I/O nodes. Besides
solving the flexibility problem, the
 FPGA has the additional advantage of
being backed up by a very mature
 design and simulation workflow.

Like the Matlab/SimulinkTM-based
workflow for controller code develop-
ment, the FPGA implementation work-
flow is based on a simulator and a
compiler. Even thought compilers are
available that will translate some Mat-
lab/SimulinkTM models into VHDL
code, ABB decided not to use such
tools in the PEC workflow. The reason
for this is that most of the FPGA com-
ponents in the PEC library are neither
modeled nor verified efficiently in the
Matlab/SimulinkTM language. Instead, a
VHDL-based workflow was used for
the digital circuits. The adopted work-
flow was originally developed for
ASIC design where high first-past
yield1) is mandatory. Furthermore, the
workflow offers excellent modeling
and verification capabilities.

At the time the architecture was de-
fined, however, there was one major
drawback – the cost of the high-per-
formance CPU and the system-level

In order to support the direct conver-
sion of simulation models, the archi-
tecture 2 has two major differences
compared to classic control systems.
No dedicated DSP (Digital Signal Pro-
cessor) is provided for fast control
and there is no mechanical rack
where I/O modules are connected

Embedded system technologies

3 Co-design patterns defined by ML/SL (Matlab/Simulink)
and VHDL models

CPU

FPGA

s

ns
IO

IO

ML/SL

VHDL

4 System models are converted into the real-time domain for
accelerated verification through execution on PEC hardware

Simulator

Control
Model

System
Model

Real-Time
Controller

Real-Time
System
Model

Accelerator

Real-Time
PEC

Real-Time
PEC

1 The simulated model is automatically
converted to executable code for the
real-time domain

Simulator

Control
Model

System
Model

Real-Time
PEC

Real
System

2 A single model can flexibly be adapted to
handle different control time-domains

CPU

FPGA

ms

s

ms

μs

ns
IO FOIO

IO IO

a

b

c
d

a mainly fast control
b mainly slow control
c Local I/O
d Distributed I/O connected by fiber optics

 64 ABB Review 2/2006

Design patterns

FPGA. How this problem was finally
solved will be shown later in this arti-
cle.

Design patterns for control and
 verification
A design pattern is a pre-engineered
solution-template to a specific prob-
lem. Design patterns are a method
that has been used by software engi-
neers for a long time. However in the
area of hardware/software co-design,
the definition of generic patterns is
more difficult [1]. The AC 800PEC con-
trol system makes use of the design
pattern method for several design
 issues found in power electronic
 applications. A collection of reusable
design patterns allows development
engineers to rapidly define new sys-
tems with high complexity. A system
engineer can concentrate on solving
his unique problem while trusting in
pre-engineered patterns for imple-
mentation details.

PEC systems differs from most other
systems in that the design patterns in
the PEC system are not pure software
patterns, but reusable co-design pat-
terns 3 . The motivation for using co-
design patterns is to cover nine orders
of magnitude in the control time-do-
main (ns to s), a capability not feasi-
ble using one single technology (eg,
software).

Co-design is, however, a great chal-
lenge for system verification. Excellent
test coverage is mandatory to assure
high confidence that the implementa-
tion is error-free, but the simulation of
a control system covering nine orders
of magnitude in the time-domain is
extremely slow. Simulating a complete
PEC co-design system would take
days and weeks to complete on a PC
workstation. Such a prerequisite is
simply not compatible to fast time-to-
market requirements.

But the PEC concept has an intrinsic
feature that can be used to solve this
tricky problem very elegantly: The con-
cept behind the PEC is to offer a work-
flow where simulation models are con-
verted directly into target controller
code. This principle is not only applica-
ble to the control model, but also to the
model of the simulation environment
used with it. By executing the control
and system model on the PEC controller
concurrently 4 , the verification of co-
design patterns in the real-time domain
is speeded up significantly.

Co-design – a real challenge for
 embedded system designers
A signal filter can be implemented
 using analog electronic circuits, a
 digital filter in an FPGA, or as a piece
of software running on a CPU. These
solutions all offer identical functional-

ity, but differ totally in terms of cost
and reusability. Co-design is about tak-
ing the right decisions on how to map
a solution to different technologies.

The invention of system-level FPGA
components meant that programma-
bility was no longer restricted to soft-
ware. The invention permits new de-
sign patterns for hardware and system
design. As there is no cookbook for
co-design, it remains a real challenge
for the system designer.

Excellent test coverage is
mandatory to assure high
confidence that the imple-
mentation is error-free

System simulation to explore optimal
design patterns
In the process of finding optimal algo-
rithms and structures, system simula-
tion is applied in the evaluation and
comparison of different designs. As an
example of the co-design process, the
Analog-Digital Conversion (ADC) cir-
cuit is discussed in the following.

As the developers were required to im-
prove the existing ADC design pattern
in terms of cost and quality (Signal to
Noise Ratio – SNR), they selected dif-
ferent topologies 5 that fitted the PEC
architecture. The topologies where
simulated in the Matlab/SimulinkTM
simulation environment and compared
in terms of complexity and quality.

The developers concluded that, theo-
retically, the best SNR was obtained
by utilizing a combination of over-
sampling and digital filters 5a (due to
the noise-shaping capability of digital
filters [2]). Over-sampling 5b-d utilized
a much-lower cost ADC circuit than
this solution, but added the need for a
high-speed digital filter operating at
25x-speed. Was it feasible to imple-
ment the filter? Should the filter calcu-
lations be executed on the CPU or in
the FPGA? Did it pay-off to increase
the digital processing payload?

Direct Code Generation
The capability to automatically con-
vert simulation models into real-time
control applications made it very easy
to create target code for the different

Embedded system technologies

5 Analog-digital conversion co-design topologies, with different components of the task being
handled by analog circuits, on FPGA and on CPU

1x
ADC

14-bit

25x
ADC

12-bit

25x
ADC

12-bit

25x
ADC

12-bit

N + +N N N+

ML/SL

VHDL

a b c d

ML/SL = Matlab/Simulink

 65ABB Review 2/2006

Design patterns

topologies. As the PEC had a
build-in load monitor it was
easy to measure the CPU
load (payload) for all topol-
ogies 6 . Operating the fast
filter 6b in software turned
out to generate a too high
CPU load and was not feasi-
ble.

As Matlab/SimulinkTM offers
comprehensive libraries it
was actually not necessary
to develop any new code for
the CPU filter design.

Optimized VHDL Components
For the FPGA filters, Matlab/
SimulinkTM was used to eval-
uate the filter topology, char-
acteristic and calculate the
appropriate coefficients. The imple-
mentation and simulation of the filters
was done in the VHDL environment.

In an FPGA circuit, the payload is
measured in circuit area. Compared to
a digital filter implemented on the
CPU, FPGA filter design offers many
more options. The precision (number
of bits), the clock-frequency, the filter
architecture, the throughput (samples
per second), the number of MAC

(Multiply-Accumulate) operations per
filter and the number of channels per
filter are all programmable, offering a
vast choice of design alternatives, all
with different payloads. The 5c topol-
ogy, with one high-speed filter operat-
ing inside the FPGA and one slower
filter calculated by the CPU, turned
out to offer the most cost-efficient co-
design solution. This was selected as
the preferred design pattern for ADC
conversion 7 .

Real world verification
During the co-design process,
the real system was modeled
– including expected signal
noise. In many systems, the
noise is unpredictable and the
simulation of noise unreliable.
Real world verification is
therefore still important to
guarantee product quality 8 .

Cost and performance –
a moving target
At the time of the definition
of PEC architecture in 1999,
the drawback of the architec-
ture was the high cost of the
CPU and the system-level
 FPGA. As these components
where very expensive at that
time, they where used primar-

ily in high-end applications such as
flight-simulators and prototyping
 systems for ASIC development.

As the process technology for digital
circuits improved very rapidly, the
manufacturing costs of CPU and FPGA
dropped dramatically – during a peri-
od of five years the cost of these digi-
tal circuits was reduced by more than
90 percent. As these lower-cost devic-
es came onto the market, a further
 advantage of the architecture paid off
– its excellent application portability.
Today ABB is offering AC 800PEC con-
trollers based on the most cost effi-
cient 90 nm silicon process technology,
offering customers excellent product
quality at a very competitive price.

Ernst Johansen

ABB Schweiz AG

Turgi, Switzerland

ernst.johansen@ch.abb.com

References

[1] F. Mayer-Lindenberg, Dedicated Digital Proces-

sors: Methods in Hardware/Software Co-Design,

John Wiley & Sons (February 12, 2004),

ISBN 0-470844-44-2

[2] Walt Kester, Analog-Digital Conversion,

Analog Devices Inc. (March 2004),

ISBN 0-916550-27–3, 2.37–2.41

Footnote
1) First pass yield is a ratio of the number of “good”

units (ie, not requiring rework) to the total produced.

8 Real-time verification of 12-bit / 1MSps ADC (yellow) and FPGA-filter
with noise-shaping (pink)

Embedded system technologies

6 Target load evaluation of variants 5b-d

ML/SL
RTW

Compiler

Target
CPU
Load

Monitor

dcb

Simulator

7 Optimal VHDL filter pattern (variant 5c)

VHDL

ML/SLVHDL
Testbench8 Ch

IIR

1x MAC

80 MHz

35-bit

c

ML/SL = Matlab/Simulink

