Motor protection

for circuit-breaker controlled asynchronous motors
in process and manufacturing industry

Specification
Motor protection for circuit-breaker controlled asynchronous motors

in process and manufacturing industry

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version M15-C2 B</td>
<td>10-09-2012</td>
<td>2 (20)</td>
</tr>
</tbody>
</table>

1. Motor protection for asynchronous motors ... 4
2. General .. 4
3. Mechanical design and mounting .. 5
 3.1.1 Current connections ... 5
 3.1.2 Voltage connections .. 5
 3.1.3 Mounting ... 5
3.2 LHMI .. 5
 3.2.1 Circuit-breaker, disconnector and earth-switch control .. 6
 3.2.2 Indications and LEDs .. 6
 3.2.3 Web server functionality .. 6
 3.2.4 Local/Remote switch ... 6
3.3 Binary inputs and outputs .. 6
 3.3.1 Trip outputs and master trip .. 7
 3.3.2 Self-supervision and IRF output .. 7
3.4 Current input channels .. 8
3.5 Voltage input channels .. 8
4. Protection .. 9
 4.1 Current protection .. 9
 4.1.1 Non-directional overcurrent ... 9
 4.1.2 Non-directional earth-fault protection ... 9
 4.1.3 Directional earth-fault protection ... 9
 4.1.4 Motor load-jam protection .. 10
 4.1.5 Loss of load protection ... 10
 4.1.6 Motor start-up supervision .. 10
 4.1.7 Phase-reversal protection .. 10
 4.1.8 Thermal overload protection ... 10
 4.1.9 Negative-sequence overcurrent protection ... 10
4.2 Voltage protection ... 11
 4.2.1 Three-phase undervoltage .. 11
 4.2.2 Positive-sequence undervoltage .. 11
 4.2.3 Negative sequence overvoltage ... 11
4.3 Other protection functions .. 11
 4.3.1 Breaker-failure protection .. 11
 4.3.2 Emergency start function ... 11
4.4 Optional protection functions ... 12
 4.4.1 ARC Protection .. 12
 4.4.2 Thermal protection based on RTD/mA measurements .. 12
5. MEASUREMENTS .. 13
 5.1 Current measurements ... 13
 5.1.1 Phase currents .. 13
 5.1.2 Residual current .. 13
 5.1.3 Current sequence components .. 13
5.2 Voltage measurements .. 13
 5.2.1 Three phase voltage measurement .. 13
 5.2.2 Residual voltage .. 13
 5.2.3 Voltage sequence components ... 13
5.3 Power and energy measurements .. 14
6. Disturbance, fault and event recording .. 15
 6.1 Event registration .. 15
 6.2 Fault records .. 15
 6.3 Disturbance records ... 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Time synchronization</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Condition monitoring</td>
<td>17</td>
</tr>
<tr>
<td>7.1</td>
<td>Self-supervision</td>
<td>17</td>
</tr>
<tr>
<td>7.2</td>
<td>Fuse-failure supervision</td>
<td>17</td>
</tr>
<tr>
<td>7.3</td>
<td>Motor run-time counter</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Communication interfaces</td>
<td>18</td>
</tr>
<tr>
<td>8.1</td>
<td>IEC 61850 GOOSE messaging</td>
<td>18</td>
</tr>
<tr>
<td>8.2</td>
<td>User authorization</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>Setting and configuration software</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Environmental conditions</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Quality assurance and standards</td>
<td>19</td>
</tr>
</tbody>
</table>
1 Motor protection for asynchronous motors

This specification includes the main requirements for protection of asynchronous motors and the associated drives. Typically, the motor protection relay is used with circuit-breaker or contactor controlled HV motors, and contactor controlled medium sized and large LV motors in a variety of drives, such as pumps and conveyors, crushers and choppers, mixers and agitators, fans and aerators.

The specification highlights constructional features and software functions that are required within the specific relay application area.

The specification applies to design, manufacture, supply, testing and operation of protection, measuring and control intended for motor protection in industrial applications.

2 General

The provided relay shall work reliably and selectively as part of a protection system. The relay must not operate at faults occurring outside the protection zone.

Internal faults or disturbances in the auxiliary supply or measurement circuits may not result in un-correct operation of the device.

Each start or trip provided by the relay must generate clear and reliable indications. These indications must be transferable to an upper level system over the station bus.

The relay shall be of a numerical communicating type offering extensive protection, control and measuring functions in one enclosed unit. The protection relay basic design and data modeling shall be based on the IEC 61850 standard.

Special attention has to be paid in minimizing the replacement time of a defective unit, preferably by means of “plug-in” units. The relay shall have full flexibility in terms of assigning any binary input and output signal to the internal logic circuits.

The following specification highlights the most important features of the relay. In no means the following shall be regarded as a complete specification for the relay. In addition the relay must fulfill the relevant IEC standards and be suitable for the intended applications, as described in the complete set of specifications, or otherwise communicated to the prospective bidders.
3 Mechanical design and mounting

The design shall be of "plug-in" type, where the plug-in unit can be withdrawn or inserted to a fixed mounted base unit. The withdrawal of the plug-in unit shall result automatic short-circuit in the supplying current transformers' secondary circuits. In other words, it shall be possible to safely extract the plug-in unit from the case (base unit) after disconnecting the auxiliary voltage without adding any external jumper wires or operating any additional switches or bridges.

Means shall be included to seal the plug-in unit into the base unit, to prevent accidental removal.

3.1.1 Current connections

For the current transformer secondary circuit lead connections both ring lug and compression type termination shall be supported. Each of the current terminals shall be capable of accepting at least two 2.5 mm² size of wires, either solid or fine stranded.

3.1.2 Voltage connections

For the voltage transformer secondary circuit lead connections compression type termination shall be supported. Each of the voltage terminals shall be capable of accepting at least two 1.5 mm² size of wires or one 2.5 mm² wire, either solid or fine stranded.

3.1.3 Mounting

The protection relay wall, flush, semi-flush, rack and tilted semi-flush mounting options shall be possible using readily defined installation kits. The kits shall be from the same manufacturer to guarantee smooth installation and uniform outlook.

When the relays are flush or semi-flush mounted on a cabinet door, a degree of protection by enclosure of IP54 level must be reached, when the door is closed.

<table>
<thead>
<tr>
<th>Degree of protection of flush-mounted relay</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front side</td>
<td>IP 54</td>
<td></td>
</tr>
<tr>
<td>Rear side, connection terminals</td>
<td>IP 20</td>
<td></td>
</tr>
</tbody>
</table>

When flush mounted to a cabinet door, the depth of the relay shall not exceed 160mm, without any additional raising frame. Additionally, it shall be possible to mount at least two protection relays parallel in a 4U high 19" rack.

3.2 LHMI

The LHMI shall support local measurement, single-line diagram, event and alarm views through its’ LCD display. It shall also enable the parameter settings. It shall be possible to choose either the main menu, single-line diagram or the measurement view as the default view. The LCD is to be fitted with at least eight rows of characters with easily readable font size.
3.2.1 Circuit-breaker, disconnector and earth-switch control

It shall be possible to control a circuit breaker, motor operated disconnectors or circuit breaker truck and motor operated earth-switch from designated control buttons. Additionally, primary devices shall easily be controlled and status shall clearly be indicated via single-line diagram view. It shall be possible to interlock the circuit breaker close command directly by a binary input, by a protection relay internal interlocking logic and by a thermal protection operation or by a protection relay trip command output operating in lock-out mode.

3.2.2 Indications and LEDs

Each start and trip from every protection function must be clearly indicated. It must also be possible to transfer the start and trip signals to the binary outputs if required and it must be possible to transfer them to an upper level system via communication link. The resetting of indications and alarm LEDs shall be easy, preferably by pressing one button only.

The LHMI shall include at least eleven (11) freely programmable alarm LEDs for status indication. It shall be possible to insert a written clarification on a paper strip beside each of the LEDs to indicate the assigned function of the LED.

3.2.3 Web server functionality

The relay shall be equipped with web server functionality to cater for remote HMI features, using commonly available web browser software. The web server functionality shall utilize the same user authority handling principles, as defined later on in this specification for the LHMI functionality. Activation of the web server shall need user intervention, thus the functionality shall be disabled as a default.

3.2.4 Local/Remote switch

The LHMI shall be equipped with a Local/Remote switch including status indication. The operation rights of the L/R switch shall be covered with the user authorization procedures of the relay. When in local mode, remote control commands to the circuit breaker shall be ignored and vice versa in remote mode.

3.3 Binary inputs and outputs

The number of inputs shall be enough to interface the relay to the external circuits in order to enable the full use of the protection relay functionality. The number of binary inputs shall not be less than ten (10). The threshold voltage of the binary inputs shall be settable using a dedicated parameter. Grouping of binary inputs under a common ground potential is allowed, as far as more than one common ground potential is available. The inputs shall be fully isolated from the protection relay internal circuits.

The total number of binary outputs shall not be less than nine (9), excluding the dedicated relay internal fault (IRF) output. In addition to the double pole trip output contacts, two other binary outputs shall be of heavy-duty type capable of tripping a circuit breaker (also see section 3.3.1).

The two binary trip outputs shall have a selectable "lock-out" operation mode, which locks the output relays after operation. The resetting of the lock-out state shall be possible via the LHMI, the binary input and the communication interface.
Description	Value
Operating range | ±20% of the rated voltage
Rated voltage | 24...250 V DC
Threshold voltage | 18...175 V DC
Reaction time | <5 ms

It shall be possible, by software, to freely assign the binary inputs and outputs to the protection relay internal function logic. A possibility to introduce simple logic functions in the form of AND and OR gates, including signal inversion, in front of the binary inputs and outputs shall also be foreseen. As an example, a possibility to energize a binary output from a number of internal relay signals (OR gate) shall be available.

3.3.1 Trip outputs and master trip

Two binary outputs shall be dimensioned for circuit breaker trip purposes, introducing trip circuit supervision functionality and a possibility for double pole operation. It shall be possible to exclude the tripping circuit supervision functionality from the outputs physically by changing the protection relay terminal connections.

If required it must be possible to block all trip outputs by means of a single setting (master trip). In order to prevent the closing of a circuit breaker after a trip without resetting, there must be so called "lock-out" mode available.

The trip circuit must be supervised.

3.3.2 Self-supervision and IRF output

The relay shall be equipped with extensive self-supervision capabilities. In case of internal failure, the relay shall in no case issue a false trip signal. The failure code shall be visible in the Protection relay LHMI (Local Human Machine Interface) display. The failure codes shall give detailed information of the situation. The end user documentation shall support the interpretation of the failure code in detailed and by simple means.

A dedicated IRF (Internal relay fault) output must be available in order to provide IRF status to external systems.

3.4 Current input channels

The same hardware shall support both 5 A and 1 A nominal energizing currents. Selecting the nominal current shall be software based (settable). All the analog input channels shall have dedicated A/D converters to enable simultaneously sampling and elimination of skew.

Analogue to digital conversion shall be of such design that good linearity during the whole lifetime of the relay can be achieved. The analog signals shall be presented to the protection relay internal function blocks as no less than 32 samples per cycle with 18 bit resolution at 50 Hz base, with a signal to quantization noise ratio (NQSR) better than 110 db.
3.5 Voltage input channels

Rated voltage for voltage inputs should be

- 60…210 V AC

The voltage should be selectable by means of a parameter

Voltage withstand:

- Continuous 2 x U_n (240 V AC)
- For 10 s 3 x U_n (360 V AC)

Burden at rated voltage <0.05 VA

The relay has to support both phase-to-phase and phase-to-earth voltage input connections.
4 Protection

To handle periodic changes in the primary circuit switching conditions, i.e. the network topology, there shall be support for at least four (4) different setting banks for each of the protection functions. The change of setting bank shall take place commonly for all of the protection functions. It shall be possible to change the setting bank locally from the LHMI, using a binary input signal and remotely through the communication link. The change of setting bank shall happen rapidly and it shall not result in a protection relay restart, a relay malfunction or a communication break.

The protection functions listed below shall be regarded as the compulsory basic protection features. It shall be possible to either enable or disable each protection stage, depending on the requirements of the actual application.

4.1 Current protection

4.1.1 Non-directional overcurrent

Two overcurrent stages should be offered for overcurrent and short-circuit protection and one of the stages shall include both definite time and inverse time characteristics. The low-set stage should be possible to use for monitoring purposes or for overcurrent protection, if required. The instantaneous element should mainly be for the short-circuit protection. By default the operation of the instantaneous element should not be blocked by any functionality.

4.1.2 Non-directional earth-fault protection

One stage non-directional earth-fault protection function must be included in order to detect phase-to-earth faults that may be a result of, for example, insulation ageing.

The non-directional element shall cover setting ranges from 0.10 to 35 times pu. It shall include both definite and inverse time characteristics, supporting various types of inverse curves, including a user definable one.

4.1.3 Directional earth-fault protection

A directional earth-fault protection element must be included in order to facilitate a selective detection of earth faults at a low fault current level and to discard the apparent residual current caused, for example, at partial current transformer saturation at motor start-up.

The directional protection stage should be usable as a low-set stage non-directional earth-fault protection without a residual voltage requirement. The selection must be done by means of a parameter.

The directional element shall cover setting ranges from 0.01 to 5 times pu. It shall include both definite and inverse time characteristics, supporting various types of inverse curves, including a user definable one.
4.1.4 Motor load-jam protection
The protection relay should include a motor load jam protection function, i.e. locked rotor protection function for a running motor. The motor jam protection function should be blocked by the motor start-up protection function.

4.1.5 Loss of load protection
A function against a loss of load situation, which is considered as a fault condition, must be provided. The function should operate when the current is less than the set start threshold.

The operation should be based on definite time (DT) characteristics, which means that the function operates after a predefined operate time and resets when the fault current disappears.

The function must contain a blocking feature. It should be possible to block function outputs, the definite timer or the function itself, when required.

4.1.6 Motor start-up supervision
A function for motor start-up supervision should be available. The function should protect against an excessive start time of the motor during starting.

The start-up supervision should be based on monitoring the True RMS magnitude of all the phase currents or by monitoring the status of the circuit breaker connected to the motor.

Support for a speed switch input shall be included. The speed switch shall indicate whether the rotor is rotating or not.

4.1.7 Phase-reversal protection
The phase reversal protection must be based on the calculated negative phase-sequence current. It should detect too high NPS current values during motor start up, caused by incorrectly connected phases. This will inhibit the motor to rotate in the opposite direction.

4.1.8 Thermal overload protection
The motor thermal overload protection must protect the electric motor from overheating commonly encountered in industrial motor applications.

The thermal overload function should prevent an electric motor from drawing excessive current and overheating, which causes premature insulation failure of the windings and, in the worst cases, burning of the motor.

It must be possible to enable and disable the function with a parameter.

The function should consider both the True RMS and negative sequence currents. In situations when the phase currents are in unbalance the negative sequence current must be considered since it causes additional heating.

4.1.9 Negative-sequence overcurrent protection
The protection shall consist of two different stages, covering the setting range from 0.01 to 5 times pu.
These functions should protect the motor against phase unbalance caused by, for example, a broken conductor. They should also be applicable for phase unbalance protection in order to detect overheating of the motor caused by network phase unbalance.

The negative-sequence protection must be blocked if the current circuit supervision detects a fault in the current measuring circuit or if the external information of a reverse network rotation is activated by a binary input.

4.2 Voltage protection

4.2.1 Three-phase undervoltage

A three-phase undervoltage protection must be available for power system undervoltage protection. A setting for detection of undervoltage either in a single phase, on two phases or on three phases must be available.

If required, the undervoltage function must be able to block earth-fault protection.

4.2.2 Positive-sequence undervoltage

For detecting three-phase undervoltage conditions positive-sequence undervoltage protection must be available.

It must be possible to block function outputs, the definite timer or the function itself, when required.

4.2.3 Negative sequence overvoltage

A negative sequence overvoltage function must be available when voltage unbalance occurs due to broken conductors or asymmetrical loads, which is characterized by the appearance of a negative sequence component of the voltage.

It must be possible to block function outputs, the definite timer or the function itself, if desired.

4.3 Other protection functions

4.3.1 Breaker-failure protection

Breaker failure protection shall be included in the form of a dedicated function. It shall be possible to initiate the protection either from an internal signal of the protection relay or via a binary input. The protection shall facilitate re-tripping of its own breaker, and also back-up tripping of an up-stream breaker. In both cases the trip delays shall be adjustable.

The protection shall include different operation modes, where both the current flow and the circuit breaker position are monitored, or alternatively only either the current flow or the circuit breaker position is monitored. The current level for flow detection shall be separately adjustable for phase currents and residual current.

4.3.2 Emergency start function

An emergency condition can arise in cases where the motor needs to be started despite that this can increase the temperature above limits or cause a thermal overload that can damage the motor.
The emergency start function must allow motor start up during such emergency conditions. It should force the relay to allow the restarting of the motor. After the emergency start input has been activated it shall be possible to start the motor in the normal way once more.

The function must contain a blocking function for restraining the outputs, the timer or the function itself, when required.

4.4 Optional protection functions

The protection functions listed below shall be regarded as optional. If the option presented is seen as a necessary part of the protection relay functionality, the features presented shall form an integrated and compulsory part of the specification.

4.4.1 ARC Protection

Arc protection shall be based on the detection of current and light simultaneously. During maintenance work at the substation, it shall be possible to change the operation criteria to light only, by control via a binary input. The current monitoring levels shall be separately adjustable for phase currents and the residual current. It shall be possible to monitor the busbar, circuit breaker and cable compartments simultaneously by means of compartment dedicated sensors. Tripping command to the up-stream circuit breaker shall be selective, based on the location of the ARC. The operating time of the protection shall be less than 15 ms, including the inherent delay of the output relays.

4.4.2 Thermal protection based on RTD/mA measurements

The relay shall be equipped with inputs for detecting temperature using RTD (Resistance Temperature Detector) sensors. Minimum of six inputs are required to measure stator winding, bearing and ambient temperatures of three-phase motor.

The following commonly used sensor types shall be supported:

- Pt100, Pt250
- Ni100, Ni120, Ni250
- Cu10

There shall be at least six stages with separate temperature settings. The operation of the stages should be based on definite time (DT) characteristics.

Functionality shall include supervision, detection and indication of faults caused by broken sensors, short-circuits or broken cable in sensor wiring.
5 MEASUREMENTS

There shall be measurements functions and indication in the LHMI for the analog inputs (current and voltage) connected to the relay, as follows:

5.1 Current measurements

5.1.1 Phase currents

- Momentary values for phases A, B and C selectable based on either true RMS or DFT (fundamental frequency only) values.
- Maximum demand values for phases A, B and C with settable demand intervals of 1, 5, 10, 15, 30, 60 or 180 minutes.
- Settable high and low warning thresholds (two of each), including selection of an initiating number of phases.

5.1.2 Residual current

- Momentary value, selectable based on either true RMS or DFT (fundamental frequency only) values.
- Settable high and low warning thresholds (two of each).

5.1.3 Current sequence components

- The momentary values of the positive, negative and zero sequence current components shall be included.

5.2 Voltage measurements

5.2.1 Three phase voltage measurement

- A three-phase voltage measurement function must be available. It should be possible to use it for monitoring and metering the phase-to-phase voltages of the power system. The phase-to-earth voltages should also available in the function.

5.2.2 Residual voltage

- Momentary value, selectable based on either true RMS or DFT (fundamental frequency only) values.
- Settable high and low warning thresholds (two of each).

5.2.3 Voltage sequence components

- The momentary values for the positive, negative and zero sequence voltage components shall be included.
5.3 Power and energy measurements

Three-phase power measurement including power factor and energy measurement must be available. Accuracy for these should be:

- ± 2 % for power (S, P and Q)
- ± 0.02 for power factor
- ± 2 % for energy
6 Disturbance, fault and event recording

The relay shall be capable of recording and storing at least the 1000 latest time-tagged events in a non-volatile memory.

The disturbance recorder shall be capable of recording at least 12 freely selectable analogue input signals and 64 freely selectable internal signals or binary inputs. The sample frequency shall be selectable, maximum sample frequency being no less than 1.6 kHz (32 samples per cycle at 50 Hz). The recording time shall be selectable, including the pre-trigger time. All analog and binary input channels must be capable of triggering the function.

There shall be a settable "quarantine" time for triggering channels, in order to prevent successive recordings triggered by the same source. Analogue channels must have an adjustable triggering level. For binary channels it shall be possible to choose triggering either from the rising or falling edge of the signal, or both. It shall be possible to record either wave-forms or trends of the analog channels. When the maximum number of channels is connected, utilizing the highest sampling frequency, at least two recordings, each with a length of 10 seconds, shall be supported.

For uploading the recorded disturbances records support for a suitable software tool shall be included. The uploaded recording shall be of a well-recognized format, preferably the COMTRADE format.

6.1 Event registration

The SoE (Sequence of Events information must be accessible locally via the user interface on the relay front panel or remotely via the communication interface of the relay. The information should further be accessible, either locally or remotely, using the web-browser based user interface.

To collect sequence-of-events (SoE) information, the relay must incorporate a non-volatile memory with a capacity of storing at least 1000 event codes with associated time stamps. The non-volatile memory must retain its data also in case the relay temporarily loses its auxiliary supply. The event log should facilitate detailed pre- and post-fault analyses of feeder faults and disturbances.

6.2 Fault records

The relay should have the capacity to store the records of at least 100 fault events. The records must enable the user to analyze the four most recent power system events. Each record must include the current and voltage values (if applicable), the start times of the protection blocks, time stamps, etc.

It must be possible to trigger the fault recording by the start signal or the trip signal of a protection block, or by both. The available measurement modes include DFT, RMS and peak-to-peak. In addition, the maximum demand current with time stamp should be separately recorded. By default, the records must be stored in a non-volatile memory.
6.3 Disturbance records

The relay must be provided with a disturbance recorder featuring up to 12 analog and 64 binary signal channels. From the analog channels it should be possible to record either the waveform or the trend of the currents and voltage measured.

It must be possible to trigger the recording function by an analog channel when the measured value falls below or exceeds the set triggering value. The binary signal channels should be capable of starting a recording on the rising or the falling edge of the binary signal or on both.

Binary relay signals such as a protection start or trip signal, or an external relay control signal over a binary input should be capable of triggering a recording. The recorded information must be stored in a non-volatile memory and be uploadable for subsequent fault analysis.

6.4 Time synchronization

The relay should support the following time synchronization methods with a time-stamping resolution of 1 ms.

- SNTP (Simple Network Time Protocol)
- IRIG-B (Inter-Range Instrumentation Group - Time Code Format B)
7 Condition monitoring

The condition monitoring functions of the device must constantly monitor the performance and the condition of the circuit breaker. When specified the monitoring should at least cover the spring charging time, SF₆ gas pressure, the travel-time and the inactivity time of the circuit breaker.

7.1 Self-supervision

The device built-in self-supervision system must continuously monitor the state of the relay hardware and the operation of the relay software. Any fault or malfunction detected must be used for alerting the operator. A permanent device fault must block the protection functions of the relay to prevent incorrect operation.

7.2 Fuse-failure supervision

To avoid unwanted operation a fuse-failure supervision function should be available for blocking the voltage measuring functions at faults in the secondary circuits between the voltage transformer and the protection relay.

7.3 Motor run-time counter

A motor run time counter should be available for calculating and presenting the accumulated operation time of a machine. The function should generate a warning and an alarm when the accumulated operation time exceeds the set limits.
8 Communication interfaces

The relay shall be of "native" IEC 61850 design thus offering optimal connection interface to a substation automation systems based on the 61850-8-1 standard. The physical communication connection shall be based on an Ethernet bus with galvanic 100BaseTX (RJ45) interface.

For increasing station bus communication availability and reliability, the relay shall have support for Ethernet redundancy. At minimum, support for RSTP (Rapid Spanning Tree Protocol) redundancy shall be available, but more preferably HSR (High-availability Seamless Redundancy) or PRP (Parallel Redundancy Protocol) shall be supported. Other communication possibilities shall cover Modbus over WAN and Modbus serial. On the front side of the relay there shall be a local communication interface with an RJ45 connector. This connection shall be dedicated for the protection relay local user interface allowing parameterization, disturbance recorder upload, etc using software tools.

8.1 IEC 61850 GOOSE messaging

In applications where the IEC 61850 protocol is used for horizontal level communication the relays must be capable of utilizing GOOSE messages, as described in the IEC 61850-8-1 standard.

The GOOSE-message presentation and mapping shall be carried out in the relay in a user-friendly way, exposing the GOOSE incoming and outgoing signals to a very similar manner as the physical binary inputs and outputs. The GOOSE signal performance has to be in accordance with type 1A and fulfill the requirements of class P1.

8.2 User authorization

The relay shall support user authorization at least on four different levels. The authorization within the different levels shall start from basic viewer only functionality, ending with the highest authorization level having all rights, including password management.

There shall be settable separate passwords for each user level. The password shall be different for local and remote access.

9 Setting and configuration software

All necessary setting and configuration software, including cables, must be included. The software must be delivered together with the protection relays.
10 Environmental conditions

The relay must fulfill the environmental conditions listed below.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-25...+55°C (continuous)</td>
</tr>
<tr>
<td>Short-time service temperature range</td>
<td>-40...+85°C (<16h)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td><93%, non-condensing</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility tests

The EMC immunity test level meets the requirements listed below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MHz burst disturbance test, class III:</td>
<td>According to IEC 61000-4-18 and IEC 60255-22-1, level 3</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility tests

Fast transient disturbance tests: According to IEC 61000-4-4 and IEC 60255-22-4, class A

All ports 4 kV

Mechanical tests

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration tests (sinusoidal)</td>
<td>According to IEC 60255-21-1, class 2</td>
</tr>
<tr>
<td>Shock and bump test</td>
<td>According to IEC 60255-21-2, class 2</td>
</tr>
</tbody>
</table>

11 Quality assurance and standards

The provider of the device must have a quality system in place, which aims at securing a high quality of the manufactured device.

The product has to comply with RoHS directive 2002/95/EC