Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

www.abb.com/mediumvoltage
www.abb.com/substationautomation
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network. It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series and ANSI C37.90. This product complies with the UL 508 certification.
Safety information

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Non-observance can result in death, personal injury or substantial property damage.

Only a competent electrician is allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed.

The frame of the protection relay has to be carefully grounded.

When the plug-in unit has been detached from the case, do not touch the inside of the case. The relay case internals may contain high voltage potential and touching these may cause personal injury.

The protection relay contains components which are sensitive to electrostatic discharge. Unnecessary touching of electronic components must therefore be avoided.

Whenever changes are made in the protection relay, measures should be taken to avoid inadvertent tripping.
Table of contents

Section 1 Introduction
- This manual ... 7
- Intended audience ... 7
- Product documentation ... 8
 - Product documentation set .. 8
 - Document revision history ... 8
 - Related documentation ... 8
- Symbols and conventions ... 9
 - Symbols ... 9
 - Document conventions .. 9
 - Functions, codes and symbols 10

Section 2 Environmental aspects
- Sustainable development ... 15
- Disposal of a protection relay 15

Section 3 REF615R overview
- Overview .. 17
- Local HMI ... 17
 - Display ... 18
 - LEDs ... 20
 - Keypad ... 20
 - Programmable push buttons with LEDs 24
- Local HMI functionality ... 25
 - Protection and alarm indication 25
 - Parameter management ... 26
 - Front communication ... 26
- Web HMI ... 27
 - Command buttons .. 28
- Authorization ... 29
- Communication .. 30
- PCM600 tool ... 32
 - Connectivity packages .. 32
 - PCM600 and IED connectivity package version 33

Section 4 Using the HMI
- Using the local HMI .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging in</td>
<td>35</td>
</tr>
<tr>
<td>Logging out</td>
<td>36</td>
</tr>
<tr>
<td>Turning the display backlight on</td>
<td>37</td>
</tr>
<tr>
<td>Selecting local or remote use</td>
<td>37</td>
</tr>
<tr>
<td>Identifying the device</td>
<td>38</td>
</tr>
<tr>
<td>Adjusting the display contrast</td>
<td>39</td>
</tr>
<tr>
<td>Changing the local HMI language</td>
<td>40</td>
</tr>
<tr>
<td>Changing display symbols</td>
<td>40</td>
</tr>
<tr>
<td>Navigating in the menu</td>
<td>41</td>
</tr>
<tr>
<td>Menu structure</td>
<td>41</td>
</tr>
<tr>
<td>Scrolling the display</td>
<td>41</td>
</tr>
<tr>
<td>Changing the default view</td>
<td>42</td>
</tr>
<tr>
<td>Viewing single-line diagram</td>
<td>42</td>
</tr>
<tr>
<td>Changing single-line diagram symbol formats</td>
<td>44</td>
</tr>
<tr>
<td>Browsing setting values</td>
<td>44</td>
</tr>
<tr>
<td>Editing values</td>
<td>45</td>
</tr>
<tr>
<td>Editing numerical values</td>
<td>45</td>
</tr>
<tr>
<td>Editing string values</td>
<td>47</td>
</tr>
<tr>
<td>Editing enumerated values</td>
<td>48</td>
</tr>
<tr>
<td>Committing settings</td>
<td>48</td>
</tr>
<tr>
<td>Clearing and acknowledging</td>
<td>49</td>
</tr>
<tr>
<td>Using the local HMI help</td>
<td>50</td>
</tr>
<tr>
<td>Using the Web HMI</td>
<td>50</td>
</tr>
<tr>
<td>Logging in</td>
<td>50</td>
</tr>
<tr>
<td>Logging out</td>
<td>51</td>
</tr>
<tr>
<td>Identifying device</td>
<td>52</td>
</tr>
<tr>
<td>Navigating in menus</td>
<td>53</td>
</tr>
<tr>
<td>Menu structure</td>
<td>53</td>
</tr>
<tr>
<td>Selecting LCNTRL</td>
<td>54</td>
</tr>
<tr>
<td>Selecting single-line diagram</td>
<td>54</td>
</tr>
<tr>
<td>Showing parameters</td>
<td>55</td>
</tr>
<tr>
<td>Editing values</td>
<td>56</td>
</tr>
<tr>
<td>Committing settings</td>
<td>59</td>
</tr>
<tr>
<td>Clearing and acknowledging</td>
<td>60</td>
</tr>
<tr>
<td>Selecting programmable LEDs view</td>
<td>61</td>
</tr>
<tr>
<td>Selecting event view</td>
<td>62</td>
</tr>
<tr>
<td>Selecting DFR records view</td>
<td>63</td>
</tr>
<tr>
<td>Uploading DFR records</td>
<td>64</td>
</tr>
<tr>
<td>Triggering DFR recorder manually</td>
<td>65</td>
</tr>
<tr>
<td>Deleting DFR records</td>
<td>66</td>
</tr>
</tbody>
</table>
Section 5 IED operation 71
Normal operation 71
Disturbance identification 71
DFR recording triggering 72
DFR record analysis 72
DFR reports 72
Relay self-supervision 73
Relay parametrization 73
Settings for relay functionality 73
Settings for different operating conditions 74

Section 6 Operating procedures 75
Monitoring 75
Indications 75
Monitoring indication messages 75
Monitoring an internal relay fault 76
Monitoring condition monitoring data 76
Measured and calculated values 76
Measured values 77
Using the local HMI for monitoring 78
Recorded data 78
Creating digital fault records 78
Monitoring DFR data 79
Controlling and uploading of DFR recorder data 80
Monitoring fault records 80
Monitoring events 81
Monitoring and uploading load profile record 82
Remote monitoring 82
Monitoring protection relays remotely 82
Controlling 82
Controlling with single-line diagram 82
Controlling a circuit breaker 82
Controlling SLD buttons 83
Controlling via the control menu 84
Resetting IED 86
Clearing and acknowledging via the local HMI 86
Changing the IED functionality 87
Section 7 Troubleshooting ...93
Fault tracing..93
Identifying hardware errors..93
Identifying runtime errors...93
Identifying communication errors..93
 Checking front communication link operation...........................94
 Checking time synchronization...94
Running the display test...94
Indication messages..94
 Internal faults...94
 Warnings...97
Correction procedures..98
 Rebooting the software...98
 Restoring factory settings..99
 Setting passwords...99
 Identifying relay application problems...100
 Inspecting wiring...100
 Sample data interruptions...100

Section 8 Commissioning...101
Commissioning checklist..101
Checking the installation...102
 Checking the power supply..102
 Checking CT circuits...102
 Checking VT circuits...103
 Checking binary input and output circuits....................................103
 Checking binary input circuits..103
 Checking binary output circuits...104
 Checking optical connections..104
 Authorizations..104
 User authorization...104
 Setting IED and communication..105
 Setting the communication between protection relays and PCM600105
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication link options between PCM600 and protection relays</td>
<td>106</td>
</tr>
<tr>
<td>Communication settings</td>
<td>106</td>
</tr>
<tr>
<td>Serial communication ports and drivers</td>
<td>107</td>
</tr>
<tr>
<td>Serial link diagnostics and monitoring</td>
<td>108</td>
</tr>
<tr>
<td>Defining Ethernet port settings</td>
<td>111</td>
</tr>
<tr>
<td>Defining serial port settings</td>
<td>111</td>
</tr>
<tr>
<td>Setting communication protocol parameters</td>
<td>111</td>
</tr>
<tr>
<td>Connecting jumper connectors</td>
<td>112</td>
</tr>
<tr>
<td>Setting the local HMI</td>
<td>112</td>
</tr>
<tr>
<td>Changing the local HMI language</td>
<td>112</td>
</tr>
<tr>
<td>Adjusting the display contrast</td>
<td>112</td>
</tr>
<tr>
<td>Changing display symbols</td>
<td>113</td>
</tr>
<tr>
<td>Changing the default view</td>
<td>113</td>
</tr>
<tr>
<td>Setting the system time and time synchronization</td>
<td>113</td>
</tr>
<tr>
<td>Setting IED parameters</td>
<td>115</td>
</tr>
<tr>
<td>Defining setting groups</td>
<td>115</td>
</tr>
<tr>
<td>Relay parametrization</td>
<td>118</td>
</tr>
<tr>
<td>Defining DFR channel settings</td>
<td>119</td>
</tr>
<tr>
<td>Configuring analog inputs</td>
<td>119</td>
</tr>
<tr>
<td>Writing collective IED site information</td>
<td>119</td>
</tr>
<tr>
<td>Testing protection relay operation</td>
<td>120</td>
</tr>
<tr>
<td>Selecting the test mode</td>
<td>120</td>
</tr>
<tr>
<td>Testing the digital I/O interface</td>
<td>121</td>
</tr>
<tr>
<td>Testing functions</td>
<td>121</td>
</tr>
<tr>
<td>Selecting the internal fault test</td>
<td>122</td>
</tr>
<tr>
<td>ABB Product Data Registration</td>
<td>123</td>
</tr>
<tr>
<td>Section 9 Glossary</td>
<td>125</td>
</tr>
</tbody>
</table>
Section 1 Introduction

1.1 This manual

The operation manual contains instructions on how to operate the protection relay once it has been commissioned. The manual provides instructions for monitoring, controlling and setting the relay. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

1.2 Intended audience

This manual addresses the operator who operates the protection relay frequently.

The operator must be trained in and have a basic knowledge of how to operate protection equipment. The manual contains terms and expressions commonly used to describe this kind of equipment.
1.3 Product documentation

1.3.1 Product documentation set

Figure 1: The intended use of documents during the product life cycle

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>Product version</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/2013-11-22</td>
<td>4.0</td>
<td>First release</td>
</tr>
<tr>
<td>B/2019-07-02</td>
<td>4.1</td>
<td>Content updated</td>
</tr>
</tbody>
</table>

Download the latest documents from the ABB Web site http://www.abb.com/substationautomation.

1.3.3 Related documentation

1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventions

A particular convention may not be used in this manual.

- Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons.
 To navigate between the options, use ↑ and ↓.
- Menu paths are presented in bold.
Select **Main menu/Settings**.
- WHMI menu names are presented in bold.
- Click **Information** in the WHMI menu structure.
- LHMI messages are shown in Courier font.
- To save the changes in nonvolatile memory, select **Yes** and press **→**.
- Parameter names are shown in italics.
- The function can be enabled and disabled with the **Operation** setting.
- Parameter values are indicated with quotation marks.
- The corresponding parameter values are "Enabled" and "Disabled".
- Input/output messages and monitored data names are shown in Courier font.
- When the function picks up, the **PICKUP** output is set to TRUE.
- Dimensions are provided both in inches and mm. If it is not specifically mentioned, the dimension is in mm.

1.4.3 Functions, codes and symbols

All available functions are listed in the table. All of them may not be applicable to a specific configuration.

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>REF615R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage, instance 1</td>
<td>PHLPTOC1</td>
<td>3I> (1)</td>
<td>51P-1</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 1</td>
<td>PHHPnoc1</td>
<td>3I>> (1)</td>
<td>50P-1</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 2</td>
<td>PHHPnoc2</td>
<td>3I>> (2)</td>
<td>50P-2</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, instantaneous stage, instance 1</td>
<td>PHIPTOC1</td>
<td>3I>>> (1)</td>
<td>50P-3</td>
</tr>
<tr>
<td>Three-phase non-directional long time overcurrent protection, low stage, instance 1</td>
<td>PHLTPTOC1</td>
<td>3I> (3)</td>
<td>51LT</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, low stage, instance 1</td>
<td>DPHLPDOC1</td>
<td>3I>- X (1)</td>
<td>67/51P</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage, instance 1</td>
<td>DPHHPDOC1</td>
<td>3I>- X (1)</td>
<td>67/50P-1</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage, instance 2</td>
<td>DPHHPDOC2</td>
<td>3I>- X (2)</td>
<td>67/50P-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 1</td>
<td>EFLPTOC1</td>
<td>I> (1)</td>
<td>51G</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 2</td>
<td>EFLPTOC2</td>
<td>I> (2)</td>
<td>51N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 4</td>
<td>EFLPTOC4</td>
<td>I> (4)</td>
<td>50SEF</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 1</td>
<td>EFHPnoc1</td>
<td>I>> (1)</td>
<td>50G-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 2</td>
<td>EFHPnoc2</td>
<td>I>> (2)</td>
<td>50G-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 3</td>
<td>EFHPnoc3</td>
<td>I>> (3)</td>
<td>50N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 4</td>
<td>EFHPnoc4</td>
<td>I>> (4)</td>
<td>50N-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage, instance 1</td>
<td>EFIPTOC1</td>
<td>I>>> (1)</td>
<td>50G-3</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>REF615R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage, instance 2</td>
<td>EFIPTOC2</td>
<td>Io>>> (2)</td>
<td>50N-3</td>
</tr>
<tr>
<td>Directional earth-fault protection, low stage, instance 1</td>
<td>DEFLPDEF1</td>
<td>Io-> -> (1)</td>
<td>67/51N</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage, instance 1</td>
<td>DEFHPDEF1</td>
<td>Io>> -> (1)</td>
<td>67/50N-1</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage, instance 2</td>
<td>DEFHPDEF2</td>
<td>Io>> -> (2)</td>
<td>67/50N-2</td>
</tr>
<tr>
<td>Three phase directional power protection, instance 1</td>
<td>DPSRDIR1</td>
<td>I1-> (1)</td>
<td>32P-1</td>
</tr>
<tr>
<td>Ground directional power protection, instance 1</td>
<td>DNZSRDIR1</td>
<td>I2 ->, Io-> (1)</td>
<td>32N-1</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection, instance 1</td>
<td>NSPTOC1</td>
<td>I2> (1)</td>
<td>46-1</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection, instance 2</td>
<td>NSPTOC2</td>
<td>I2> (2)</td>
<td>46-2</td>
</tr>
<tr>
<td>Phase discontinuity protection</td>
<td>PDNSPTOC1</td>
<td>I2/I1></td>
<td>46PD</td>
</tr>
<tr>
<td>Residual overvoltage protection, instance 1</td>
<td>ROVPTOV1</td>
<td>Uo> (1)</td>
<td>59G</td>
</tr>
<tr>
<td>Residual overvoltage protection, instance 2</td>
<td>ROVPTOV2</td>
<td>Uo> (2)</td>
<td>59N-1</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 1</td>
<td>PHPTUV1</td>
<td>3U< (1)</td>
<td>27-1</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 2</td>
<td>PHPTUV2</td>
<td>3U< (2)</td>
<td>27-2</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 1</td>
<td>PHPTOV1</td>
<td>3U> (1)</td>
<td>59-1</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 2</td>
<td>PHPTOV2</td>
<td>3U> (2)</td>
<td>59-2</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 1</td>
<td>NSPTOV1</td>
<td>U2> (1)</td>
<td>47-1</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 2</td>
<td>NSPTOV2</td>
<td>U2> (2)</td>
<td>47-2</td>
</tr>
<tr>
<td>Frequency protection, instance 1</td>
<td>FRPFRQ1</td>
<td>f>/f<,df/dt (1)</td>
<td>81-1</td>
</tr>
<tr>
<td>Frequency protection, instance 2</td>
<td>FRPFRQ2</td>
<td>f>/f<,df/dt (2)</td>
<td>81-2</td>
</tr>
<tr>
<td>Voltage per hertz protection, instance 1</td>
<td>OEPVPH1</td>
<td>U/f> (1)</td>
<td>24</td>
</tr>
<tr>
<td>Three-phase thermal protection for feeders, cables and distribution</td>
<td>T1PTTR1</td>
<td>3Ith>F (1)</td>
<td>49F-1</td>
</tr>
<tr>
<td>transforms, Instance 1</td>
<td>LREFPNDF1</td>
<td>dLoLo></td>
<td>87LOZREF</td>
</tr>
<tr>
<td>Numerical stabilized low impedance restricted earth-fault protection</td>
<td>CCBRBF1</td>
<td>3I>Io>BF (1)</td>
<td>50BF-1</td>
</tr>
<tr>
<td>Circuit breaker failure protection, instance 1</td>
<td>INRPAR1</td>
<td>3I>2f> (1)</td>
<td>INR-1</td>
</tr>
<tr>
<td>Three-phase inrush detector, instance 1</td>
<td>TRPPTRC1</td>
<td>Master Trip (1)</td>
<td>86/94-1</td>
</tr>
<tr>
<td>Master trip, instance 1</td>
<td>TRPPTRC2</td>
<td>Master Trip (2)</td>
<td>86/94-2</td>
</tr>
<tr>
<td>Arc protection, instance 1</td>
<td>ARCSARC1</td>
<td>ARC (1)</td>
<td>AF1-1</td>
</tr>
<tr>
<td>Arc protection, instance 2</td>
<td>ARCSARC2</td>
<td>ARC (2)</td>
<td>AFD-2</td>
</tr>
<tr>
<td>Arc protection, instance 3</td>
<td>ARCSARC3</td>
<td>ARC (3)</td>
<td>AFD-3</td>
</tr>
<tr>
<td>High impedance fault detection</td>
<td>PHIZ1</td>
<td>PHIZ1</td>
<td>HIZ</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 1</td>
<td>LSHDPFRQ1</td>
<td>UFLS/R (1)</td>
<td>81LSH-1</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 2</td>
<td>LSHDPFRQ2</td>
<td>UFLS/R (2)</td>
<td>81LSH-2</td>
</tr>
<tr>
<td>Loss of phase, instance 1</td>
<td>PHPTUC1</td>
<td>3I< (1)</td>
<td>37-1</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>REF615R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit-breaker control, instance 1</td>
<td>CBXCBR1</td>
<td>I <-> O CB (1)</td>
<td>52-1</td>
</tr>
<tr>
<td>Auto-reclosing</td>
<td>DARREC1</td>
<td>O -> I</td>
<td>79</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>REF615R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronism and energizing check</td>
<td>SECRSYN1</td>
<td>SYNC</td>
<td>25</td>
</tr>
<tr>
<td>Condition monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breaker condition monitoring, instance 1</td>
<td>SSCBR1</td>
<td>CBCM (1)</td>
<td>52CM-1</td>
</tr>
<tr>
<td>Current circuit supervision</td>
<td>CCRDIF1</td>
<td>MCS 3I</td>
<td>CCM</td>
</tr>
<tr>
<td>Fuse failure supervision, instance 1</td>
<td>SEQRFUF1</td>
<td>FUSEF (1)</td>
<td>60-1</td>
</tr>
<tr>
<td>Cable fault detection</td>
<td>RCFD1</td>
<td>RCFD</td>
<td>CFD</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase current measurement, instance 1</td>
<td>CMMXU1</td>
<td>3I</td>
<td>IA, IB, IC</td>
</tr>
<tr>
<td>Sequence current measurement, instance 1</td>
<td>CSMSQI1</td>
<td>I1, I2, I0</td>
<td>I1, I2, I0</td>
</tr>
<tr>
<td>Residual current measurement, instance 1</td>
<td>RESCMXXU1</td>
<td>Io</td>
<td>IG</td>
</tr>
<tr>
<td>Three-phase voltage measurement, instance 1</td>
<td>VMMXU1</td>
<td>3U</td>
<td>VA, VB, VC</td>
</tr>
<tr>
<td>Residual voltage measurement, instance 1</td>
<td>RESVMMXU1</td>
<td>Uo</td>
<td>VG</td>
</tr>
<tr>
<td>Sequence voltage measurement, instance 1</td>
<td>VSMSQI1</td>
<td>U1, U2, U0</td>
<td>V1, V2, V0</td>
</tr>
<tr>
<td>Single-phase power and energy measurement, instance 1</td>
<td>SPEMMXU1</td>
<td>SP, SE</td>
<td>SP, SE-1</td>
</tr>
<tr>
<td>Three-phase power and energy measurement, instance 1</td>
<td>PEMMXU1</td>
<td>P, E</td>
<td>P, E-1</td>
</tr>
<tr>
<td>Current total demand distortion, instance 1</td>
<td>CMHAI1</td>
<td>PQM3I</td>
<td>PQI-1</td>
</tr>
<tr>
<td>Voltage total harmonic distortion, instance 1</td>
<td>VMHAI1</td>
<td>PQM3U</td>
<td>PQVPH-1</td>
</tr>
<tr>
<td>Voltage variation, instance 1</td>
<td>PHQVVR1</td>
<td>PQ 3U<></td>
<td>PQSS-1</td>
</tr>
<tr>
<td>Voltage unbalance, instance 1</td>
<td>VSQVUB1</td>
<td>PQMUBU(1)</td>
<td>PQVUB-1</td>
</tr>
<tr>
<td>Load profile</td>
<td>LDPMSTA1</td>
<td>-</td>
<td>LoadProf</td>
</tr>
<tr>
<td>Frequency measurement, instance 1</td>
<td>FMMXU1</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 1</td>
<td>TPGAPC1</td>
<td>TP (1)</td>
<td>TP (1)</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 2</td>
<td>TPGAPC2</td>
<td>TP (2)</td>
<td>TP (2)</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 3</td>
<td>TPGAPC3</td>
<td>TP (3)</td>
<td>TP (3)</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 4</td>
<td>TPGAPC4</td>
<td>TP (4)</td>
<td>TP (4)</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, second resolution), instance 1</td>
<td>TPSGAPC1</td>
<td>TPS (1)</td>
<td>62CLD-1</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, minute resolution), instance 1</td>
<td>TPMGAPC1</td>
<td>TPM (1)</td>
<td>62CLD-2</td>
</tr>
<tr>
<td>Pulse timer (8 pcs), instance 1</td>
<td>PTGAPC1</td>
<td>PT (1)</td>
<td>PT-1</td>
</tr>
<tr>
<td>Pulse timer (8 pcs), instance 2</td>
<td>PTGAPC2</td>
<td>PT (2)</td>
<td>PT-2</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 1</td>
<td>TOFGAPC1</td>
<td>TOF (1)</td>
<td>TOF-1</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 2</td>
<td>TOFGAPC2</td>
<td>TOF (2)</td>
<td>TOF-2</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 1</td>
<td>TONGAPC1</td>
<td>TON (1)</td>
<td>TON -1</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 2</td>
<td>TONGAPC2</td>
<td>TON (2)</td>
<td>TON -2</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 1</td>
<td>SRGAPC1</td>
<td>SR (1)</td>
<td>SR-1</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 2</td>
<td>SRGAPC2</td>
<td>SR (2)</td>
<td>SR-2</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>REF615R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set reset (8 pcs), instance 3</td>
<td>SRGAPC3</td>
<td>SR (3)</td>
<td>SR-3</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 4</td>
<td>SRGAPC4</td>
<td>SR (4)</td>
<td>SR-4</td>
</tr>
<tr>
<td>Move (8 pcs), instance 1</td>
<td>MVGAPC1</td>
<td>MV (1)</td>
<td>MV-1</td>
</tr>
<tr>
<td>Move (8 pcs), instance 2</td>
<td>MVGAPC2</td>
<td>MV (2)</td>
<td>MV-2</td>
</tr>
<tr>
<td>Move (8 pcs), instance 3</td>
<td>MVGAPC3</td>
<td>MV (3)</td>
<td>MV-3</td>
</tr>
<tr>
<td>Move (8 pcs), instance 4</td>
<td>MVGAPC4</td>
<td>MV (4)</td>
<td>MV-4</td>
</tr>
<tr>
<td>Move (8 pcs), instance 5</td>
<td>MVGAPC5</td>
<td>MV (5)</td>
<td>MV-5</td>
</tr>
<tr>
<td>Move (8 pcs), instance 6</td>
<td>MVGAPC6</td>
<td>MV (6)</td>
<td>MV-6</td>
</tr>
<tr>
<td>Move (8 pcs), instance 7</td>
<td>MVGAPC7</td>
<td>MV (7)</td>
<td>MV-7</td>
</tr>
<tr>
<td>Move (8 pcs), instance 8</td>
<td>MVGAPC8</td>
<td>MV (8)</td>
<td>MV-8</td>
</tr>
<tr>
<td>Generic control points, instance 1</td>
<td>SPCGGIO1</td>
<td>SPC(1)</td>
<td>CNTRL-1</td>
</tr>
<tr>
<td>Generic control points, instance 2</td>
<td>SPCGGIO2</td>
<td>SPC(2)</td>
<td>CNTRL-2</td>
</tr>
<tr>
<td>Generic control points, instance 3</td>
<td>SPCGGIO3</td>
<td>SPC(3)</td>
<td>CNTRL-3</td>
</tr>
<tr>
<td>Remote Generic control points, instance 1</td>
<td>SPCRGGIO1</td>
<td>SPCR(1)</td>
<td>RCNTRL-1</td>
</tr>
<tr>
<td>Local Generic control points, instance 1</td>
<td>SPCLGGIO1</td>
<td>SPCL(1)</td>
<td>LCNTRL-1</td>
</tr>
<tr>
<td>Programmable buttons(16 buttons), instance 1</td>
<td>FKEYGGIO1</td>
<td>FKEY</td>
<td>FKEY</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 1</td>
<td>UDFCNT1</td>
<td>CTR(1)</td>
<td>CTR-1</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 2</td>
<td>UDFCNT2</td>
<td>CTR(2)</td>
<td>CTR-2</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 3</td>
<td>UDFCNT3</td>
<td>CTR(3)</td>
<td>CTR-3</td>
</tr>
<tr>
<td>Shift register, instance 1</td>
<td>SHFTGAPC1</td>
<td>SHFT(1)</td>
<td>SHFT-1</td>
</tr>
<tr>
<td>Shift register, instance 2</td>
<td>SHFTGAPC2</td>
<td>SHFT(2)</td>
<td>SHFT-2</td>
</tr>
<tr>
<td>Shift register, instance 2</td>
<td>SHFTGAPC3</td>
<td>SHFT(3)</td>
<td>SHFT-3</td>
</tr>
</tbody>
</table>

Logging functions

<table>
<thead>
<tr>
<th>Function</th>
<th>RDRE1</th>
<th>-</th>
<th>DFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance recorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault recorder</td>
<td>FLTMSTA1</td>
<td>-</td>
<td>FR</td>
</tr>
<tr>
<td>Sequence event recorder</td>
<td>SER</td>
<td>-</td>
<td>SER</td>
</tr>
<tr>
<td>Fault location</td>
<td>DRFLO1</td>
<td>FLO</td>
<td>FLO</td>
</tr>
</tbody>
</table>
Section 2 Environmental aspects

2.1 Sustainable development

Sustainability has been taken into account from the beginning of the product design including the pro-environmental manufacturing process, long life time, operation reliability and disposing of the protection relay.

The choice of materials and the suppliers have been made according to the EU RoHS directive (2002/95/EC). This directive limits the use of hazardous substances which are the following:

Table 2: Maximum concentration values by weight per homogeneous material

<table>
<thead>
<tr>
<th>Substance</th>
<th>Proposed maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead - Pb</td>
<td>0.1%</td>
</tr>
<tr>
<td>Mercury - Hg</td>
<td>0.1%</td>
</tr>
<tr>
<td>Cadmium - Cd</td>
<td>0.01%</td>
</tr>
<tr>
<td>Hexavalent Chromium Cr (VI)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Polybrominated biphenyls - PBB</td>
<td>0.1%</td>
</tr>
<tr>
<td>Polybrominated diphenyl ethers - PBDE</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Operational reliability and long life time have been assured with extensive testing during the design and manufacturing processes. Moreover, long life time is supported by maintenance and repair services as well as by the availability of spare parts.

Design and manufacturing have been done under a certified environmental system. The effectiveness of the environmental system is constantly evaluated by an external auditing body. We follow environmental rules and regulations systematically to evaluate their effect on our products and processes.

2.2 Disposal of a protection relay

Definitions and regulations of hazardous materials are country-specific and change when the knowledge of materials increases. The materials used in this product are typical for electric and electronic devices.
All parts used in this product are recyclable. When disposing of a protection relay or its parts contact a local waste handler who is authorized and specialized in disposing of electronic waste. These handlers can sort the material by using dedicated sorting processes and dispose of the product according to the local requirements.

Table 3: Materials of the protection relay parts

<table>
<thead>
<tr>
<th>Protection relay</th>
<th>Parts</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Metallic plates, parts and screws</td>
<td>Steel, aluminium</td>
</tr>
<tr>
<td></td>
<td>Plastic parts</td>
<td>PC<sup>1)</sup>, LCP<sup>2)</sup></td>
</tr>
<tr>
<td></td>
<td>Electronics plug in module</td>
<td>Various</td>
</tr>
<tr>
<td>Plug-in unit</td>
<td>Electronics plug in modules</td>
<td>Various</td>
</tr>
<tr>
<td></td>
<td>Electronics LHMI module</td>
<td>Various</td>
</tr>
<tr>
<td></td>
<td>Plastic parts</td>
<td>PC, PBT<sup>3)</sup>, LCP, PA<sup>4)</sup></td>
</tr>
<tr>
<td></td>
<td>Metallic parts</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Package</td>
<td>Box</td>
<td>Cardboard</td>
</tr>
<tr>
<td>Attached material</td>
<td>Manuals</td>
<td>Paper</td>
</tr>
</tbody>
</table>

1) Polycarbonate
2) Liquid crystal polymer
3) Polybutylene terephthalate
4) Polyamide
3.1 Overview

REF615R is a dedicated feeder protection relay designed for the protection, control, measurement and supervision of utility substations and industrial power systems. REF615R is a member of ABB's Relion® product family. The REF615R protection relays are characterized by their versatility of 19" rack mounting and withdrawable design.

Re-engineered from the ground up, REF615R has been designed to unleash the full potential of the IEC 61850 standard for communication and interoperability between substation automation devices.

The protection relay provides main protection for overhead lines and cable feeders in distribution networks. The protection relay is also used as back-up protection in applications, where an independent and redundant protection system is required.

Depending on the chosen standard configuration, the protection relay is adapted for the protection of overhead line and cable feeders in isolated neutral, resistance grounded, compensated and solidly-grounded networks. Once the standard configuration protection relay has been given the application-specific settings, it can directly be put into service.

REF615R supports a range of communication protocols including IEC 61850 with GOOSE messaging, Modbus® and DNP3.

REF615R is designed to be a wire-alike replacement of an existing DPU2000R installation. It is designed to match existing DPU2000R cutout and external wiring except communication cable connections.

3.2 Local HMI

The LHMI is used for setting, monitoring and controlling the protection relay. The LHMI comprises the display, buttons, LED indicators and communication port.
3.2.1 Display

The LHMI includes a graphical display that supports one character size.

<table>
<thead>
<tr>
<th>Character size</th>
<th>Rows in the view</th>
<th>Characters per row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small, mono-spaced (6 × 12 pixels)</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

The display view is divided into four basic areas.
Figure 4: Display layout

1 Header
2 Icon
3 Content
4 Scroll bar (displayed when needed)

- The header area at the top of the display view shows the current location in the menu structure.
- The icon area at the upper right corner of the display shows the current action or user level.
 Current action is indicated by the following characters:
 - U: Font/Firmware is being updated
 - S: Parameters are being stored
 - !: Warning and/or indication
 Current user level is indicated by the following characters:
 - V: Viewer
 - O: Operator
 - E: Engineer
 - A: Administrator
- The content area shows the menu content.
- If the menu contains more rows than the display can show at a time, a scroll bar is displayed on the right.

The display is updated either cyclically or based on changes in the source data such as parameters or events.
3.2.2 LEDs

The LHMI includes three protection indicators above the display: Normal, Pickup and Trip.

There are 11 matrix programmable LEDs on the front of the LHMI. The LEDs can be configured with PCM600 and the operation mode can be selected with the LHMI, WHMI or PCM600. For more details on programmability of the LEDs, see the technical manual.

There are two additional LEDs which are embedded into the control buttons and . They represent the status of the selected breaker n (CBXCBRn).

3.2.3 Keypad

The LHMI keypad contains push buttons which are used to navigate in different views or menus. Using the push buttons, open or close commands can be given to objects in the primary circuit, for example, a circuit breaker, a contactor or a disconnector. The push buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.
Figure 5: ANSI LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port

1. Escape
2. Left
3. Up
4. Right
5. Enter
6. Open
7. Close
8. Uplink LED
9. Communication port
10. Communication LED
11. Down
12. Clear
13. Menu
14. Remote/Local
15. Key
16. Help
Object control

If the control position of the protection relay is set to local with the R/L button, the relay can be controlled using the object control buttons.

Table 5: Object control push buttons

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Close Icon]</td>
<td>Closing the object. The LED indicates the current object state.</td>
</tr>
<tr>
<td>![Open Icon]</td>
<td>Opening the object. The LED indicates the current object state.</td>
</tr>
</tbody>
</table>
Navigation

The arrow buttons are used for navigation. To scroll information, press the arrow button several times or simply keep it pressed down.

Table 6: Navigation push buttons

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| ESC | • Leaving setting mode without saving the values.
| | • Cancelling certain actions.
| | • Adjusting the display contrast in combination with ↑ or ↓.
| | • Changing the language in combination with ←.
| | • Running the display test in combination with Men.
| | • Deleting a character in combination with Clear when editing a string.
| | • Inserting a space in combination with when editing a string. |
| Enter| • Entering parameter setting mode.
| | • Confirming a new value of a setting parameter. |
| Up | • Moving up and down in menus.
| Down | • Scrolling active digits of a parameter when entering a new setting value. |
| Left | • Moving left and right in menus.
| Right| • Changing the active digit of a parameter when entering a new setting value. |
| Key | • Activating the authorization procedure, when the user is not logged in.
| | • Logging out, when the user is currently logged in. |

Commands

Table 7: Command push buttons

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Menu | • Moving directly to main menu, if currently in any other menu.
| | • Moving between main menu, measurements and single-line diagram views. |
| R/L | Changing the control position (remote or local) of the device.
| | • When the R LED is lit, remote control is enabled and local control disabled.
| | • When the L LED is lit, local control is enabled and remote control disabled.
| | • When none of the LEDs are lit, both control positions are disabled. |
| Clear| • Activating the Clear/Reset view.
| | • Clearing indications and LEDs. The first three-second press clears the indications. The second three-second press clears the programmable LEDs. Requires appropriate user rights. |
| Help | Showing context sensitive help messages. |
3.2.4 Programmable push buttons with LEDs

The LHMI keypad on the left side of the protection relay contains 16 programmable push buttons with red LEDs.

The buttons and LEDs are freely programmable, and they can be configured both for operation and acknowledgement purposes. That way, it is possible to get acknowledgements of the executed actions associated with the buttons. This combination can be useful, for example, for quickly selecting or changing a setting group, selecting or operating equipment, indicating field contact status or indicating or acknowledging individual alarms.

The push buttons are enabled in units ordered with the “Enhanced OCI” option. For ordering details, see the product guide. The push buttons are available for customer use though disabled by factory default for the LHMI options "A" and "C".

The LEDs can also be independently configured to bring general indications or important alarms to the operator's attention.

The lowest two buttons with LEDs on top are typically used for hot-line tag for the emergency operation of the circuit controlled by the protection relay.

To provide a description of the button function, it is possible to insert a paper sheet behind the transparent film next to the button.
3.2.5 Local HMI functionality

3.2.5.1 Protection and alarm indication

Protection indicators

The protection indicator LEDs are Normal, Pickup and Trip, when ANSI OCI is ordered. The descriptions are Ready, Start and Trip when IEC OCI is ordered.

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Auxiliary supply voltage is disconnected.</td>
</tr>
<tr>
<td>On</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Internal fault has occurred or the protection relay is in test mode. Internal faults are accompanied by an indication message.</td>
</tr>
</tbody>
</table>

Table 9: Pickup (ANSI OCI)/Start (IEC OCI) LED

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has picked up and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• If several protection functions pick up within a short time, the last pickup is indicated on the display.</td>
</tr>
<tr>
<td>Flashing</td>
<td>A protection function is blocked. The blocking indication disappears when the blocking is removed or when the protection function is reset.</td>
</tr>
</tbody>
</table>

Table 10: Trip LED

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has tripped and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• The trip indication is latching and must be reset via communication or by pressing press.</td>
</tr>
<tr>
<td></td>
<td>• If several protection functions trip within a short time, the last trip is indicated on the display.</td>
</tr>
</tbody>
</table>

Alarm indicators

The 11 matrix programmable LEDs are used for alarm indication.
Table 11: Alarm indications

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation. All activation signals are off.</td>
</tr>
<tr>
<td>On</td>
<td>• Non-latched mode: activation signal is still on.</td>
</tr>
<tr>
<td></td>
<td>• Latched mode: activation signal is still on, or it is off but has not been acknowledged.</td>
</tr>
<tr>
<td></td>
<td>• Latched flashing mode: activation signal is still on but has been acknowledged.</td>
</tr>
<tr>
<td></td>
<td>• Alarm color: the alarm color for the LEDs can be configured as red or green. Also, the alarm LEDs can show the opposite color in the OK state, if the OK input is mapped in Application Configuration Logic in PCM600.</td>
</tr>
<tr>
<td>Flashing</td>
<td>• Non-latched flashing mode: activation signal is still on.</td>
</tr>
<tr>
<td></td>
<td>• Latched flashing mode: activation signal is still on, or it is off but has not been acknowledged.</td>
</tr>
</tbody>
</table>

3.2.5.2 Parameter management

The LHMI is used to access the relay parameters. Three types of parameters can be read and written.

- Numerical values
- String values
- Enumerated values

Numerical values are presented either in integer or in decimal format with minimum and maximum values. Character strings can be edited character by character. Enumerated values have a predefined set of selectable values.

3.2.5.3 Front communication

The RJ-45 port in the LHMI enables front communication. Two LEDs are located above the communication port.

- The green uplink LED on the left is lit when the cable is successfully connected to the port.
- The yellow communication LED on the right flashes when the protection relay communicates with the connected device.
When a computer is connected to the protection relay, the relay's DHCP server for the front interface assigns an IP address to the computer. The fixed IP address for the front port is 192.168.0.254.

3.3 Web HMI

The WHMI allows secure access to the protection relay via a Web browser. The supported Web browser versions are Internet Explorer 7.0, 8.0 and 9.0.

WHMI is enabled by default. To disable the WHMI, select **Main Menu/Configuration/HMI/Web HMI mode** via the LHMI. Reboot the protection relay for the change to take effect.

WHMI offers several functions.

- Programmable LEDs and event lists
- System supervision
- Parameter settings
- Measurement display
- DFR records
- Phasor diagram
- Single-line diagram

The menu tree structure on the WHMI is almost identical to the one on the LHMI.
Figure 9: Example view of the WHMI

The WHMI can be accessed locally and remotely.

- Locally by connecting the laptop to the protection relay via the front communication port.
- Remotely over LAN/WAN.

3.3.1 Command buttons

Command buttons can be used to edit parameters and control information via the WHMI.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Write</td>
<td>Enabling parameter editing.</td>
</tr>
<tr>
<td>Disable Write</td>
<td>Disabling parameter editing.</td>
</tr>
<tr>
<td>Write to IED</td>
<td>Writing parameters to the protection relay.</td>
</tr>
<tr>
<td>Refresh Values</td>
<td>Refreshing parameter values.</td>
</tr>
<tr>
<td>Print</td>
<td>Printing out parameters.</td>
</tr>
<tr>
<td>Commit</td>
<td>Committing changes to protection relay's nonvolatile flash memory.</td>
</tr>
<tr>
<td>Reject</td>
<td>Rejecting changes.</td>
</tr>
<tr>
<td>?</td>
<td>Showing context sensitive help messages.</td>
</tr>
</tbody>
</table>

Table continues on next page
## Name	Description
>Error icon. | Error icon.
>Clear events | Clearing events.
>Manual trigger | Triggering the DFR manually.
>Save | Saving values to CSV file format.
>Freeze | Freezing the values so that updates are not displayed.
>Continue | Receiving continuous updates to the monitoring view.
>Delete | Deleting the DFR.
>Delete all | Deleting all DFRs.
> | Uploading part one of a DFR.
> | Uploading part two of a DFR.

3.4 Authorization

The user categories have been predefined for the LHMI and the WHMI, each with different rights and default passwords.

The default passwords can be changed with Administrator user rights.

User authorization is disabled by default for LHMI and can be enabled via the LHMI or the WHMI Main Menu/Configuration/Authorization. WHMI always requires authentication.
Table 13: Predefined user categories

<table>
<thead>
<tr>
<th>Username</th>
<th>User rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIEWER</td>
<td>Read only access</td>
</tr>
<tr>
<td>OPERATOR</td>
<td>• Selecting remote or local state with (only locally)</td>
</tr>
<tr>
<td></td>
<td>• Changing setting groups</td>
</tr>
<tr>
<td></td>
<td>• Controlling</td>
</tr>
<tr>
<td></td>
<td>• Clearing indications</td>
</tr>
<tr>
<td>ENGINEER</td>
<td>• Changing settings</td>
</tr>
<tr>
<td></td>
<td>• Clearing event list</td>
</tr>
<tr>
<td></td>
<td>• Clearing DFRs and load profile record</td>
</tr>
<tr>
<td></td>
<td>• Changing system settings such as IP address, serial baud rate or DFR settings</td>
</tr>
<tr>
<td></td>
<td>• Setting the IED to test mode</td>
</tr>
<tr>
<td></td>
<td>• Selecting language</td>
</tr>
<tr>
<td>ADMINISTRATOR</td>
<td>• All listed above</td>
</tr>
<tr>
<td></td>
<td>• Changing password</td>
</tr>
<tr>
<td></td>
<td>• Factory default activation</td>
</tr>
</tbody>
</table>

For user authorization for PCM600, see PCM600 documentation.

3.5 Communication

The protection relay supports different communication protocols: IEC 61850, Modbus® and DNP3 Level 2 - all using TCP/IP. DNP3 and Modbus also support serial communication. Operational information and controls are available through these protocols.

The protection relay utilizes Ethernet communication extensively for different purposes. The exact services depend on the ordered product variant and enabled functionality.

The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter setting and DFR records can be accessed using the IEC 61850 protocol. Oscillographic files are available to any Ethernet-based application in the standard COMTRADE format. The protection relay can send and receive binary signals from other protection relays (so called horizontal communication) using the IEC61850-8-1 GOOSE profile, where the highest performance class with a total transmission time of 3 ms is supported. Further, the protection relay supports sending and receiving of analog values using GOOSE messaging. The protection relay meets the GOOSE performance requirements for tripping applications in distribution substations, as
defined by the IEC 61850 standard. The protection relay can simultaneously report events to five different clients on the station bus.

The protection relay can support five simultaneous clients. If PCM600 reserves one client connection, only four client connections are left, for example, for IEC 61850, DNP3 and Modbus. Only one DNP3 client can be supported at a time.

All communication connectors, except for the front port connector, are placed on integrated optional communication modules. The protection relay can be connected to Ethernet-based communication systems via the RJ-45 connector (100Base-TX) or the fiber-optic LC connector (100Base-FX).

For the correct operation of redundant loop topology, it is essential that the external switches in the network support the RSTP protocol and that it is enabled in the switches. Otherwise, connecting the loop topology can cause problems to the network. The protection relay itself does not support link-down detection or RSTP. The ring recovery process is based on the aging of MAC addresses and link-up/link-down events can cause temporary breaks in communication. For better performance of the self-healing loop, it is recommended that the external switch furthest from the protection relay loop is assigned as the root switch (bridge priority = 0) and the bridge priority increases towards the protection relay loop. The end links of the protection relay loop can be attached to the same external switch or to two adjacent external switches. Self-healing Ethernet ring requires a communication module with at least two Ethernet interfaces for all protection relays.

Figure 10: Self-healing Ethernet ring solution
3.6 PCM600 tool

Protection and Control IED Manager PCM600 offers all the necessary functionality to work throughout all stages of the protection relay life cycle.

- Planning
- Engineering
- Commissioning
- Operation and disturbance handling
- Functional analysis

With the individual tool components, you can perform different tasks and functions and control the whole substation. PCM600 can operate with many different topologies, depending on the customer needs.

The system settings must be set before a new PCM600 project is started. For more information, see PCM600 documentation.

For information on creating a project in PCM600, see the engineering manual.

3.6.1 Connectivity packages

A connectivity package is a software component that consists of executable code and data which enables system tools to communicate with a protection relay. Connectivity packages are used to create configuration structures in PCM600. The latest PCM600 and connectivity packages are backward compatible with older protection relay versions.

A connectivity package includes all the data which is used to describe the protection relay. For example, it contains a list of the existing parameters, data format used, units, setting range, access rights and visibility of the parameters. In addition, it contains code which allows software packages that use the connectivity package to properly communicate with the protection relay. It also supports localization of text even when it is read from the protection relay in a standard format such as COMTRADE.

Update Manager is a tool that helps in defining the right connectivity package versions for different system products and tools. Update Manager is included with the products that use connectivity packages.
3.6.2 PCM600 and IED connectivity package version

- Protection and Control IED Manager PCM600 Ver.2.5 or later
- REF615R Connectivity Package Ver.4.0 or later

Download connectivity packages from the ABB Web site
http://www.abb.com/substationautomation
Section 4 Using the HMI

4.1 Using the local HMI

To use the LHMI, logging in and authorization are required. Password authorization is disabled by default and can be enabled via the LHMI.

To enable password authorization, select **Main menu/Configuration/ Authorization**. Set the *Local override* parameter to “False”.

4.1.1 Logging in

1. Press 📞 to activate the login procedure.
2. Press ↑ or ↓ to select the user level.

![Login](image)

Figure 11: Selecting access level

3. Confirm the selection with ←.
4. Enter the password when prompted digit by digit.
 - Activate the digit to be entered with ← and →.
 - Enter the character with ↑ and ↓.
5. Press \(\text{Confirm} \) to confirm the login.
 • To cancel the procedure, press \(\text{Cancel} \).

The current user level is shown on the display's upper right corner in the icon area.

4.1.2 Logging out

An automatic logout occurs 30 seconds after the backlight timeout.
1. Press →.
2. To confirm logout, select Yes and press →.

![Confirmation](image)

Figure 14: Logging out

- To cancel logout, press **Esc**.

4.1.3 Turning the display backlight on

The display backlight is normally off. It turns on during the display test at power up.

- To turn on the backlight manually, press any LHMI push button.

 The backlight turns on and the panel is ready for further operations.

If the panel has not been used for a predefined timeout period, the backlight is switched off. The user is logged out from the current user level 30 seconds after the display backlight has turned off.

The display returns to the default view and all unconfirmed operations such as parameter editing and breaker selection are cancelled.

💡 Change the backlight timeout period in **Main menu/Configuration/HMI/Backlight timeout.**

4.1.4 Selecting local or remote use

The control position of the protection relay can be changed with the R/L button. In local position primary equipment, such as circuit breakers or disconnectors, can be controlled.
via the LHMI. In remote position, control operations are possible only from a higher level, that is from a control center.

- Press 📲 for two seconds.
 - When the L LED is lit, local control is enabled and remote control disabled.
 - When the R LED is lit, remote control is enabled and local control disabled.
 - When neither of the LEDs is lit, both control positions are disabled.

The control position cannot be simultaneously local and remote but it can be disabled when neither of the positions is active.

To control the protection relay, log in with the appropriate user rights.

4.1.5 Identifying the device

The Information menu includes detailed information about the device, such as revision and serial number.

The protection relay information is shown on the display for a few seconds when the device starts. The same information is also found in the protection relay menu.

1. Select **Main menu/Information**.
2. Select a submenu with 🌟 and 🌟.
3. Enter the submenu with →.
4. Browse the information with ↑ and ↓.

4.1.6 Adjusting the display contrast

Adjust the display contrast anywhere in the menu structure to obtain optimal readability.

- To increase the contrast, press simultaneously ESC and ↑.
- To decrease the contrast, press simultaneously ESC and ↓.

The selected contrast value is stored in the non-volatile memory if you are logged in and authorized to control the protection relay. After an auxiliary power failure, the contrast is restored.
4.1.7 Changing the local HMI language

1. Select **Main menu/Language** and press ➜.
2. Change the language using ↑ or ↓.
3. Press ➜ to confirm the selection.
4. Commit the changes.

![Language menu](image)

Figure 17: Changing the LHMI language

To change the language using a shortcut, press IEC and ➜ simultaneously anywhere in the menu.

4.1.8 Changing display symbols

Use the keypad to switch between the display symbols IEC 61850, IEC 60617 and ANSI.

1. Select **Main Menu/Configuration/HMI/FB naming convention** and press ➜.
2. Change the display symbols with ↑ or ↓.
3. Press ➜ to confirm the selection.

The protection relay has to be rebooted if the WHMI display symbols are changed. With the LHMI, the change takes effect immediately.
4.1.9 Navigating in the menu

Navigate the menus and change the display views on the screen with the keypad.

• To navigate between main menu, measurements and single-line diagram, press .
• To move up or down in a menu, press ↑ or ↓.
• To move downwards in the menu tree, press →.
• To move upwards in the menu tree, press ←.
• To enter setting mode, press ←.
• To leave setting mode without saving, press ESC.

4.1.9.1 Menu structure

The Main menu contains main groups which are divided further into more detailed submenus.

• Control
• Events
• Measurements
• DFR records
• Settings
• Configuration
• Monitoring
• Tests
• Information
• Clear
• Language

4.1.9.2 Scrolling the display

If a menu contains more rows than the display can show at a time, a scroll bar is displayed on the right.
Figure 18: Scroll bar on the right

- To scroll the view upwards, press ↑.
- To scroll the view downwards, press ↓.
- To jump from the last row to the first row, press ↓ again.
 - Press ↑ to jump from the first row to the last row.
- To scroll parameter names and values that do not fit the screen, press →. Press ← once to return to the beginning.

4.1.9.3 Changing the default view

The default view of the display is Measurements unless set otherwise.

1. Select Main menu/Configuration/HMI/Default view and press ←.
2. Change the default view with ↑ or ↓.
3. Press ← to confirm the selection.

4.1.10 Viewing single-line diagram

The single-line diagram is created with PCM600. The single-line diagram is active only when the large screen is used.

1. Select Main menu/Control/SLD to view the single-line diagram or press ← to navigate between main menu, measurement and single-line diagram. The first page shows the single-line diagram.
2. Press ⇨ to move to the second page.

The second page shows the maximum and minimum demands for IA, IB and IC and the recent fault record information consisting of fault record number, protection function, fault time stamp, fault currents and distance to the fault.

Select the single-line diagram symbol format ANSI or IED in Main menu/Configuration/HMI/SLD.

Select the single-line diagram for the default view in Main menu/Configuration/HMI/Default view.
When single-line diagram is selected as the default view, the first single-line diagram page is shown when the default view is entered. The single-line diagram page can be changed using the left and right push buttons.

4.1.10.1 Changing single-line diagram symbol formats

1. Select **Main menu/Configuration/HMI/SLD symbol format** and press ↓.
2. Change symbol format with ↑ or ↓.
3. Press ↓ to confirm the selection.

![Figure 21: Selecting ANSI as single-line diagram symbol format](image)

4.1.11 Browsing setting values

1. Select **Main menu/Settings/Settings** and press ↓.
2. Select the setting group to be viewed with ↑ or ↓.
Figure 22: Selecting a setting group

3. Press \(\downarrow \) to confirm selection.
4. To browse the settings, scroll the list with \(\uparrow \) and \(\downarrow \) and to select a submenu press \(\rightarrow \). To move back to the list, press \(\leftarrow \).

Figure 23: Example of submenus in the Settings menu

4.1.12 Editing values

- To edit values, log in with the appropriate user rights.

4.1.12.1 Editing numerical values

1. Select Main menu/Settings and then a setting.
 The last digit of the value is active.
• When the symbol in front of the value is ↑, the active value can only be increased.
• When the symbol is ↓, the active value can only be decreased.
• When the symbol in front of the value is ↕, the active value can either be increased or decreased.

Figure 24: Last digit is active and it can only be increased

2. Press ↑ to increase or ↓ to decrease the value of an active digit.
One press increases or decreases the value by a certain step. For integer values, the change is 1, 10, 100 or 1000 (...) depending on the active digit. For decimal values, the change can be fractions 0.1, 0.01, 0.001 (...) depending on the active digit.

For parameters with defined steps, digits smaller than the step value cannot be edited.

3. Press ← or → to move the cursor to another digit.
4. To select the minimum or maximum value, select the arrow symbol in front of the value.
 • To set the value to the maximum, press ↑.
 • To set the value to the minimum, press ↓.
After pressing ↑, the previous value can be restored by pressing ↓ once, and vice versa. Another press of ↓ or ↑ sets the value to the lower or higher limit. The symbol in front of the value is ↓, when the previous value is shown.

4.1.12.2 Editing string values

1. Activate the setting mode and select a setting. When editing string values, the cursor moves to the first character.
2. Press ↑ or ↓ to change the value of an active character. One press changes the value by one step.
3. Press ← or → to move the cursor to another character.
 • To insert characters or space, press simultaneously Esc and ↓.
 • To delete characters, press simultaneously Esc and ↑.
4.1.12.3 Editing enumerated values

1. Activate the setting mode and select a setting.
 When editing an enumerated value, the selected value is shown inverted.
2. Press ↑ or ↓ to change the value of an active enumerated value.
 One press changes the enumerated value by one step in the parameter specific order.

4.1.13 Committing settings

Editable values are stored either in RAM or in non-volatile flash memory. Values stored in flash memory are in effect also after reboot.

Some parameters have an edit-copy. If editing is cancelled, the values with an edit-copy are immediately restored to the original value. The values without an edit-copy, such as string values, are restored to the original value only after a reboot even though the edited value is not stored in the flash memory.

1. Press ← to confirm any changes.
2. Press ← to move upwards in the menu tree or → to enter the Main Menu.
3. To save the changes in non-volatile memory, select Yes and press ←.

![Confirmation](Confirmation.png)

Figure 27: Confirming settings

- To exit without saving changes, select No and press ←.
- If the parameter has an edit-copy, the original parameter value is restored.
- If the parameter does not have an edit-copy, the edited parameter value remains visible until the protection relay is rebooted. However, the
edited value is not stored in non-volatile memory and the reboot restores the original value.

• To cancel saving settings, select Cancel and press .

After certain parameters are changed, the protection relay has to be restarted.

4.1.14 Clearing and acknowledging

The Clear button is used to reset, acknowledge or clear all messages and indications, including LEDs and latched outputs as well as registers and recordings. Press the Clear button to activate a selection menu, and select the wanted clearance or reset function. Events and alarms assigned to programmable LEDs are cleared with the Clear button as well.

1. Press to activate the Clear view.

2. Select the item to be cleared with or .

3. Press , change the value with or and press again. The item is now cleared.

4. Repeat steps 2 and 3 to clear other items.

Use the button as a shortcut for clearing. The first three-second press clears the indications. The second three-second press clears the programmable LEDs.
4.1.15 Using the local HMI help

1. Press to open the help view.
2. Scroll the text with ‹↑› or ‹↓› if the help text exceeds the display area.
3. To close the help, press .

4.2 Using the Web HMI

WHMI is enabled by default.

1. To enable the WHMI, select **Main menu/Configuration/HMI/Web HMI mode** via the LHMI.
2. Reboot the relay for the change to take effect.
3. Log in with the proper user rights to use the WHMI.

💡 To establish a remote WHMI connection to the protection relay, contact the network administrator to check the company rules for IP and remote connections.

ℹ️ Disable the Web browser proxy settings or make an exception to the proxy rules to allow the protection relay's WHMI connection, for example, by including the relay's IP address in **Internet Options/Connections/LAN Settings/Advanced/Exceptions**.

4.2.1 Logging in

1. Open Internet Explorer.
2. Type the protection relay's IP address in the Address bar and press ENTER.
3. Type the username with capital letters.
4. Type the password.
5. Click OK.
 The language file starts loading and the progress bar is displayed.

4.2.2 Logging out

The user is logged out after session timeout. The timeout can be set in **Main menu/Configuration/HMI/Web HMI timeout**.

- To log out manually, click **Logout** on the menu bar.
4.2.3 Identifying device

The Information menu includes detailed information about the device, for example, revision and serial number.

1. Click the **Information** menu in the left navigation bar.
2. Click a submenu to see the data.
4.2.4 Navigating in menus

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

- Use the menu bar to access different views.
 - The **General** view shows the protection relay version and status.
 - The **Events** view contains a list of events produced by the application configuration.
 - The **Programmable LEDs** view shows the status of programmable LEDs.
 - The **Phasor diagrams** view shows phasor diagrams.
 - The **DFR records** view shows the list of disturbance records.
 - The **Single Line Diagram** view shows the single-line diagram.
 - **Logout** ends the session.

![Navigating in Web HMI menus](image)

Figure 32: Navigating in Web HMI menus

4.2.4.1 Menu structure

The Main menu contains main groups which are divided further into more detailed submenus.

- Control
- Events
- Measurements
- DFR records
- Settings
- Configuration
- Monitoring
- Tests
- Information
4.2.5 Selecting LCNTRL

The local control function block LCNTRL is dedicated only for local controlling and it is not possible from any remote client including WHMI.

Figure 33: LCNTRL control is not possible from WHMI

4.2.6 Selecting single-line diagram

The single-line diagram is active only when the protection relay is equipped with the large display variant.

- Select Control/SLD in the left navigation bar or click Single Line Diagram in the menu bar to view the single-line diagram.
4.2.7 Showing parameters

Some function blocks have a function-specific On/Off setting. When the function setting is “Off”, all settings are hidden and when the function setting is “On”, all settings are visible based on the other visibility and hiding rules.

Switch a function block on or off via the *Operation* parameter under the required function block.
1. Click **Parameter list** in the left navigation bar.
2. Select **Enabled Settings** or **All Settings** from the drop-down menu.

3. Click **Save** to save selected parameters in the .csv file format.
4. Click **Print** to print all the selected parameters.

4.2.8 Editing values

1. Select a menu in the left navigation bar.
2. Click a submenu to see function blocks.
3. Click a function block to see the setting values.
4. Click **Enable Write**.

Some parameters, for example the relay test mode, cannot be set via the WHMI.
Figure 37: Enable writing to edit a value

The selected setting group is shown in the **Setting Group** drop-down list. The active setting group is indicated with an asterisk *.

5. Edit the value.
 - The minimum and maximum values for a parameter are shown in the Min. and Max. columns.
 - Setting group values are indicated with a hash #.

Figure 38: Editing a value

- If the entered value is within the accepted value range, the selection is highlighted in green. If the value is out of range, the row is highlighted in red and a warning dialog box is displayed. **Write to IED** is unavailable.
Figure 39: Warning indicating that the entered value is incorrect

- If writing values fails, a warning dialog box is displayed.

Figure 40: Warning indicating that the values were not written to the protection relay
If writing is enabled accidentally, click Disable Write. Disable Write cannot be selected when a value has already been written to the protection relay. After clicking Write to IED, click either Commit or Reject.

4.2.9 Committing settings

Editable values are stored either in RAM or a nonvolatile flash memory. Values stored in the flash memory are in effect also after a reboot.

Some parameters have an edit-copy. If editing is cancelled, the values with an edit-copy are immediately restored to the original value. The values without an edit-copy, such as string values, are restored to the original value only after a reboot even though the edited value is not stored in the flash memory.

1. Click Write to IED after editing parameter values to put the values into protection relay's database for use.

![Parameter Setting](image)

Figure 41: Writing values to protection relay

The values are not stored to the flash memory.

2. Click Commit to write the values to the flash memory.
 - Click Reject to cancel saving settings.
 - If the parameter has an edit-copy, the original parameter value is restored.
 - If the parameter does not have an edit-copy, the edited parameter value remains visible until the protection relay is rebooted. However, the edited value is not stored in the nonvolatile memory and thus the reboot restores the original value.
4.2.10 Clearing and acknowledging

All messages and indications, including LEDs and latched outputs as well as registers and recordings, can be reset, acknowledged or cleared using the Clear menu.

1. Click **Clear** in the left navigation bar.
2. In the **New Value** list, select **Clear** to choose the item to be cleared.
3. Click **Write to IED**.

4.2.11 Selecting programmable LEDs view

The programmable LEDs view shows the status of the programmable LEDs. These are the same LEDs that are located on the upper right side of the LHMI panel.

- Click **Programmable LEDs** on the menu bar.
4.2.12 Selecting event view

The event view contains a list of events produced by the application configuration. When the event page is opened, it displays up to 100 latest events at one time. The event list is updated automatically.

1. Click **Events** on the menu bar.

2. Click **Freeze** to stop updating the event list.

3. Select a page from the drop-down list to view older documents.
4. To save the events in the CSV file format, click **Save** and copy the CSV content to text editor and save in the CSV file format.

The CSV file can be opened with a spreadsheet program such as OpenOffice.org Calc or Microsoft Excel.

5. Click **Clear events** to clear all events from the protection relay.

4.2.13 Selecting DFR records view

DFR records are listed in the DFR records view.

- Click **DFR records** on the menu bar.
4.2.13.1 Uploading DFR records

1. Click **DFR records** on the menu bar.
2. To upload a DFR record, click the icons in the CFG and DAT columns of the record.

 Upload both .cfg and .dat files.
3. Save both files in the same folder on your computer.
4. Open the DFR record files with a suitable program.

4.2.13.2 Triggering DFR recorder manually

1. Click **DFR records** on the menu bar.
2. Click **Manual trigger**.
4.2.13.3 Deleting DFR records

1. Click **DFR records** on the menu bar.
2. Delete records.
 - Click **Delete all** to delete all records.
 - Select one or more recordings and click **Delete** to delete selected records.

3. Click **OK** to confirm or **Cancel** to cancel the deletion.

4.2.14 Selecting phasor diagrams

Install or enable the SVG plugin to view the phasor diagrams, if needed.

1. Click **Phasor diagrams** on the menu bar.
2. Toggle the diagram visibility by selecting the diagram from the drop-down menu.

Figure 53: Toggling the diagram visibility

Visible diagrams are indicated with an asterisk *.

3. Change the size of the diagram by changing the zoom value.
Figure 54: Zooming the diagram

4. Click **Freeze** to stop updating the phasor diagram.
 No updates are displayed in the diagram.

Figure 55: The arrow extends outside the circle if the current value is too high

4.2.15 Selecting fault records

- Select from the main menu **Monitoring/Recorded data/Fault record** to view a list of all available fault records.
 The newest fault record is first on the list. The fault records list is updated automatically.
4.2.16 Using Web HMI help

The context-sensitive WHMI help provides information on a single parameter, for example.

- Move the mouse over the 📚 to display the help dialog box.
Figure 58: Opening the WHMI help
Section 5 IED operation

5.1 Normal operation

In a normal protection relay use situation, the basic operation includes monitoring and checking procedures.

- Monitoring measured values
- Checking object states
- Checking function setting parameters
- Checking events and alarms

All basic operations can be performed via the LHMI, WHMI or with PCM600.

For more information, see the PCM600 documentation.

5.2 Disturbance identification

Disturbances and their causes can be identified by indicator LEDs: Normal, Pickup and Trip. During normal operation, the Normal LED is steady green.

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup LED</td>
<td>Yellow, steady</td>
<td>Protection picked up</td>
</tr>
<tr>
<td>Pickup LED</td>
<td>Yellow, flashing</td>
<td>Protection function blocked</td>
</tr>
<tr>
<td>Trip LED</td>
<td>Red, steady</td>
<td>Protection tripped</td>
</tr>
<tr>
<td>Normal LED</td>
<td>Green, flashing</td>
<td>Internal fault</td>
</tr>
</tbody>
</table>

Further actions to be taken to identify the disturbance:
• Checking programmable LEDs
• Reading event history
• Checking fault records
• Analyzing DFR recordings

Document the disturbance before clearing the information from the protection relay.

Only authorized and skilled personnel should analyze possible errors and decide on further actions. Otherwise, stored disturbance data can be lost.

5.2.1 DFR recording triggering

DFR recordings are normally triggered by protection relay applications when they detect fault events. DFR recordings can also be triggered manually or periodically. The manual trigger generates an instant disturbance report. Use this function to get a snapshot of the monitored signals.

5.2.2 DFR record analysis

The protection relay collects disturbance records of fault events which are set to trigger the DFR recorder. DFR data is collected and stored for later viewing and analysis. The DFR recorder data can be read and analyzed, for example, with PCM600.

For more information, see the PCM600 documentation.

5.2.3 DFR reports

PCM600 can be used for creating reports of DFR recorder data.

For more information, see the PCM600 documentation.
5.2.4 Relay self-supervision

The relay self-supervision handles internal run-time fault situations. The main indication of an internal fault is a flashing green Normal LED.

Internal faults can be divided to hardware errors, run-time errors in the application or operating system and communication errors. Further actions always depend on the cause of the error.

Only authorized and skilled personnel should analyze the errors and decide on further actions.

The protection relay records system registrations, relay status data and events.

Document all the recorded data from the protection relay before resetting the tripping and relay lockout functions.

5.3 Relay parametrization

Protection relay parameters are set via the LHMI, WHMI or PCM600.

Setting parameters need to be calculated according to the electrical network conditions and the electrical characteristics of the protected equipment. The protection relay's settings need to be verified before the protection relay is connected to a system.

Document all changes to parameter settings.

For more information, see the PCM600 documentation.

5.3.1 Settings for relay functionality

Function settings can be edited one by one by navigating to the individual setting values, for example via the LHMI. The values in other setting groups should be known before editing a certain setting value.
After completing the editing of setting group values, the new values are activated. The user can either commit the edited values or discard them. Setting values can also be copied from one setting group to another.

5.3.2 Settings for different operating conditions

Protection relay settings can be designed for various operation conditions by defining different setting values to different setting groups. The active setting group can be changed by the relay application or manually via the LHMI, WHMI or PCM600.
Section 6 Operating procedures

6.1 Monitoring

6.1.1 Indications

The operation of the protection relay can be monitored via three different indications on the LHMI.

- Three indicator LEDs with fixed functionality: Normal, Pickup and Trip
- 11 programmable LEDs
- Information on the display

6.1.1.1 Monitoring indication messages

Indication messages and tripping data are shown in a dialog box.

1. Read the indication message in the dialog box. The message can indicate the pickup or tripping of protection functions or an internal fault in the device.
2. Press to close the indication message without clearing it or press to activate the Clear view and to clear messages.

| Figure 59: Indication message |
6.1.1.2 Monitoring an internal relay fault

The flashing green LED indicates an internal relay fault. Internal relay fault messages are shown in a dialog box.

![Internal Fault]

1. Select Main menu/Monitoring/IED status/Self-supervision to monitor the latest fault indication.
2. Press ↑ or ↓ to scroll the view.

6.1.1.3 Monitoring condition monitoring data

1. Select Main menu/Monitoring/I/O status/Condition monitoring.
2. Press ↑ or ↓ to scroll the view.
3. Press ← to enter or → to exit a submenu.

With PCM600 the user can map output signals from condition monitoring related function blocks to the appropriate destinations.

6.1.2 Measured and calculated values

Measurement view in Main Menu/Measurements shows the momentary actual values for various power system measurements.

All values show the momentary measurement value and some include demand values calculated from a set period.
6.1.2.1 Measured values

Measured values can be accessed through the LHMI, WHMI or PCM600.

Measured values available in the IED depend on the chosen functionality, IED type and variant.

Table 15: Examples of the measured values

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-A</td>
<td>Measured current amplitude phase A</td>
</tr>
<tr>
<td>IB-A</td>
<td>Measured current amplitude phase B</td>
</tr>
<tr>
<td>IC-A</td>
<td>Measured current amplitude phase C</td>
</tr>
<tr>
<td>IG-A</td>
<td>Measured residual current</td>
</tr>
<tr>
<td>VG-kV</td>
<td>Measured residual voltage</td>
</tr>
<tr>
<td>VAB-kV</td>
<td>Measured phase-to-phase voltage amplitude phase AB</td>
</tr>
<tr>
<td>VBC-kV</td>
<td>Measured phase-to-phase voltage amplitude phase BC</td>
</tr>
<tr>
<td>VCA-kV</td>
<td>Measured phase-to-phase voltage amplitude phase CA</td>
</tr>
<tr>
<td>f-Hz</td>
<td>Measured frequency</td>
</tr>
<tr>
<td>S-kVA</td>
<td>Apparent power, magnitude of instantaneous value</td>
</tr>
<tr>
<td>P-kW</td>
<td>Active power, magnitude of instantaneous value</td>
</tr>
<tr>
<td>Q-kVAr</td>
<td>Reactive power, magnitude of instantaneous value</td>
</tr>
<tr>
<td>PF</td>
<td>Average power factor</td>
</tr>
<tr>
<td>SA-kVA</td>
<td>Apparent power, magnitude of instantaneous value, phase A</td>
</tr>
<tr>
<td>SB-kVA</td>
<td>Apparent power, magnitude of instantaneous value, phase B</td>
</tr>
<tr>
<td>SC-kVA</td>
<td>Apparent power, magnitude of instantaneous value, phase C</td>
</tr>
<tr>
<td>PA-kW</td>
<td>Active power, magnitude of instantaneous value, phase A</td>
</tr>
<tr>
<td>PB-kW</td>
<td>Active power, magnitude of instantaneous value, phase B</td>
</tr>
<tr>
<td>PC-kW</td>
<td>Active power, magnitude of instantaneous value, phase C</td>
</tr>
<tr>
<td>QA-kVAr</td>
<td>Reactive power, magnitude of instantaneous value, phase A</td>
</tr>
<tr>
<td>QB-kVAr</td>
<td>Reactive power, magnitude of instantaneous value, phase B</td>
</tr>
<tr>
<td>QC-kVAr</td>
<td>Reactive power, magnitude of instantaneous value, phase C</td>
</tr>
<tr>
<td>PFA</td>
<td>Power factor, magnitude of instantaneous value, phase A</td>
</tr>
<tr>
<td>PFB</td>
<td>Power factor, magnitude of instantaneous value, phase B</td>
</tr>
<tr>
<td>PFC</td>
<td>Power factor, magnitude of instantaneous value, phase C</td>
</tr>
<tr>
<td>I2-A</td>
<td>Measured negative-sequence current</td>
</tr>
<tr>
<td>I1-A</td>
<td>Measured positive-sequence current</td>
</tr>
<tr>
<td>I0-A</td>
<td>Measured zero-sequence current</td>
</tr>
</tbody>
</table>

Table continues on next page
6.1.2.2 Using the local HMI for monitoring

1. Select **Main menu/Measurements** to monitor measured and calculated values. The list of protection relay's basic measurements is shown.
2. Scroll the view with ↑ and ↓.

6.1.3 Recorded data

The protection relay is provided with intelligent and flexible functionality that collects different kinds of data. The recorded data gives substantial information for post fault analysis.

- DFR records
- Fault records
- Events
- Load profile record

6.1.3.1 Creating digital fault records

Normally DFR recordings are triggered by the protection relay applications but the recording can also be triggered manually.

1. Select **Main menu/DFR records**.
2. Select **Trig recording** with ↑ or ↓.
3. Press ←, change the value with ↑ or ↓ and press ← again.
Figure 61: Changing the value

The DFR recorder is now triggered.

6.1.3.2 Monitoring DFR data

Upload individual disturbance recordings from the protection relay with the PCM600 software to monitor DFR data.

1. Select **Main menu/DFR records**.
 All the DFR information is listed.
2. Scroll the view with ↑ or ↓.
 The following items are listed in the view:
 - Number of recordings currently in the protection relay's memory.
 - Remaining amount of recordings that fit into the available recording memory.
 - Recording memory used in percentage.
 - If the periodic triggering function is used, the time to trigger which indicates the remaining time to the next periodic triggering of the DFR.
6.1.3.3 Controlling and uploading of DFR recorder data

DFR recorder data can be controlled and read with PCM600. It can also be read via WHMI.

For more information, see the PCM600 documentation.

6.1.3.4 Monitoring fault records

Timestamps of the fault records are shown as a list. The first fault record is the newest.

1. Select Main Menu/Monitoring/Recorded data/Fault record.
2. To navigate between the fault records, press ↑ and ↓.
3. To enter or exit a submenu, press → or ←.
6.1.3.5 Monitoring events

Event view contains a list of events produced by the application configuration. Each event takes one view area. The header area shows the currently viewed event index and the total amount of the events. The most recent event is always first.

1. Select Main Menu/Events.
2. Press ▶ to view the first event.
 Date, time, device description, object description and event text elements of the event are shown.
3. Press ◀ or ▶ to scroll the view.
6.1.3.6 Monitoring and uploading load profile record

- Monitor the recording memory usage of the load profile via Main menu/Monitoring/Load profile record.
- Upload and analyze the load profile record with PCM600.

6.1.4 Remote monitoring

The protection relay supports comprehensive remote monitoring.

6.1.4.1 Monitoring protection relays remotely

Use the PCM600 tool and WHMI to operate the protection relay remotely.

- Read maintenance record and version log.
- Analyze DFR data.
- Create DFR records.
- Monitor protection relay values.

For more information, see the PCM600 documentation.

6.2 Controlling

6.2.1 Controlling with single-line diagram

In the single-line diagram view, controllable objects can be opened and closed.

To control the protection relay, logging in and authorization are required.

6.2.1.1 Controlling a circuit breaker

1. Select the object with ↑ or ↓ if it is not already selected.
2. Press 🔄 to open or 🔄 to close the selected object.
3. Select ✅ and press 🔄 to confirm.

6.2.1.2 Controlling SLD buttons

Buttons are controlled with the Open and Close buttons like any other controllable single-line diagram objects.

1. Select the button with 🔄 and 🔄 if it is not already selected.
The selected button has a square around it.
2. Press 🔄 or 🔄 to control the selected button.
The control position of the protection relay affects the controlling SLD buttons. Depending on the parameter settings, the protection relay may have to be in local state for the control to succeed.

6.2.2 Controlling via the control menu

The primary equipment can be controlled via the LHMI with the Open and Close buttons when the protection relay is set to the local-control mode and accessing the control operations is authorized.

1. Press \(\text{Open} \) to open or \(\text{Close} \) to close the object.
 - If there are several controllable objects, select the object with \(\text{↑} \) and \(\text{↓} \) and press \(\Rightarrow \) to confirm the selection.

\[
\begin{array}{|c|c|}
\hline
\text{Select object} & A \\
\hline
\text{CBXCBR1} & \text{CBXCBR1} \\
\text{DCXSWI1} & \text{DCXSWI1} \\
\text{DCXSWI2} & \text{DCXSWI2} \\
\text{ESXSWI1} & \text{ESXSWI1} \\
\hline
\end{array}
\]

Figure 67: Selecting a controlled object

2. To confirm the operation, select \(\text{Yes} \) and press \(\Rightarrow \).
Figure 68: Opening a circuit breaker

- To cancel the operation, select No and press .

Figure 69: Cancelling operation

The time between selecting the object and giving a control command is restricted by an adjustable time-out. When an object is selected, the control command has to be given within this time.

With default configurations it is possible to control a breaker open even when the breaker is in an intermediate state.
6.3 Resetting IED

6.3.1 Clearing and acknowledging via the local HMI

All messages and indications, including LEDs and latched outputs as well as registers and indications, including recordings can be reset, acknowledged or cleared with the Clear button. Pressing the Clear button activates a menu for selecting the wanted clearing or reset function. Events and alarms assigned to programmable LEDs can also be cleared with the Clear button.

1. Press to activate the Clear view. All the items that can be cleared are shown.
 - Indications and LEDs
 - Programmable LEDs
 - Events
 - Metering records
 - Power quality data
 - DFR records
 - Fault records
 - Load profile record
 - Acc. energy of circuit breaker condition monitoring, three-phase power and energy measurement and single-phase power and energy measurement
 - Rem. life of circuit breaker condition monitoring
 - Travel times of circuit breaker condition monitoring
 - Spr. charge time of circuit breaker condition monitoring
 - Temperature of three-phase thermal protection for feeders, cables and distribution transformers, and thermal overload protection for motors
 - Reset of autoreclosing and cable fault detection
 - Operation time of runtime counter for machines and devices
 - Counters for autoreclosing and motor startup supervision
 - Master trip
2. Select the item to be cleared with ↑ or ↓.
3. Press ✅, change the value with ↑ or ↓ and press ✅ again. The item is now cleared.
4. Repeat the steps to clear other items.

Use the ✅ button as a shortcut for clearing. The first three-second press clears the indications. The second three-second press clears the programmable LEDs.

6.4 Changing the IED functionality

6.4.1 Defining the setting group

6.4.1.1 Activating a setting group

Protection relay settings are planned in advance for different operation conditions by calculating setting values to different setting groups. The active setting group can be changed by the protection relay application or manually from the menu.

1. Select Main menu/Settings/Setting group/Active group and press ✅.
Section 6
Operating procedures

2. Select the setting group with ↑ or ↓.
3. Press ← to confirm the selection or ESC to cancel.

4. Commit the settings.

Remember to document the changes you make.

6.4.1.2 Copying a setting group

Setting group 1 can be copied to another group or to all available groups.
1. Select **Main menu/Settings/Setting group/Copy group 1** and press

2. Change the options with ↑ or ↓ and press ← to confirm the selection.

![Figure 73: Copying setting group 1 into 6](image)

Browsing and editing setting group values

1. Select **Main menu/Settings/Settings** and press →.
2. Select the setting group to be viewed with ↑ or ↓ and press ← to confirm the selection.

![Figure 74: Selecting a setting group](image)

3. To browse the settings, scroll the list with ↑ and ↓ and to select a setting press ←.
4. To browse different function blocks, scroll the list with ↑ and ↓ and to select a function block press →. To move back to the list, press ←. The function block list is shown in the content area of the display. On the left in the header, you see the current setting group, and on the right the menu path.

5. To browse the parameters, scroll the list with ↑ and ↓ and to select a parameter, press →. The setting group values are indicated with #.

![Figure 75: Setting group parameter](image)

6. To select a setting group value, press → and to edit the value press ←.

![Figure 76: Selecting the setting group value](image)

Only values within the selected setting group can be changed.

7. Press ↑ or ↓ to change the value and ← to confirm the selection.
Figure 77: Editing the setting group value

The active setting group is indicated with an asterisk *.

6.4.2 Activating programmable LEDs

1. Select **Main menu/Configuration/Programmable LEDs**.
2. Select a programmable LED with ↑ or ↓.
3. Press ← to enter the selection and → to change the programmable LED mode.
4. Change the mode with ↑ or ↓ and press ← to confirm the selection.

6.4.3 Setting autoscroll delay

Autoscroll delay parameter sets the delay of scrolling down measurements view if it is set as default view and the user is logged out. Autoscroll is active if the delay value is not zero.

1. Select **Main menu/Configuration/ HMI/Autoscroll delay** and press ←.
2. Select delay time with ↑ or ↓.
3. Press ← to confirm the selection.
Section 6
Operating procedures

Figure 78: Autoscroll delay
Section 7 Troubleshooting

7.1 Fault tracing

7.1.1 Identifying hardware errors

1. Check the module with an error. Check the relay supervision events in Main menu/Monitoring/IED status/Self-supervision for a faulty hardware module.
2. Inspect the protection relay visually.
 - Inspect the protection relay visually to find any physical error causes.
 - If you can find some obvious physical damage, contact ABB for repair or replacement actions.
3. Check whether the error is external or internal.
 - Check that the error is not caused by external origins.
 - Remove the wiring from the protection relay and test the input and output operation with an external test device.
 - If the problem remains, contact ABB for repair or replacement actions.

7.1.2 Identifying runtime errors

1. Check the error origin from the protection relay's supervision events Main menu/Monitoring/IED status/Self-supervision.
2. Reboot the protection relay and recheck the supervision events to see if the fault has cleared.
3. In case of persistent faults, contact ABB for corrective actions.

7.1.3 Identifying communication errors

Communication errors are normally communication interruptions or synchronization message errors due to communication link breakdown.

- In case of persistent faults originating from protection relay's internal faults such as component breakdown, contact ABB for repair or replacement actions.
7.1.3.1 Checking front communication link operation

- To verify front communication, check that both LEDs above the RJ-45 communication port are lit.

<table>
<thead>
<tr>
<th>LED</th>
<th>Communication ok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink</td>
<td>Steady green light</td>
</tr>
<tr>
<td>Communication</td>
<td>Flashing yellow light</td>
</tr>
</tbody>
</table>

7.1.3.2 Checking time synchronization

- Check the time synchronization via LHMI in Main menu/Monitoring/IED status/ Time synchronization.

7.1.4 Running the display test

A short display test is always run, when auxiliary voltage is connected to the protection relay. The display test can also be run manually.

- Press simultaneously ESC and Enter.

All the LEDs are tested by turning them on simultaneously. The display shows a set of patterns so that all the pixels are activated. After the test, the display returns to normal state.

Clear any indications on the display before running the display test manually.

7.2 Indication messages

7.2.1 Internal faults

Internal fault indications have the highest priority on the LHMI. None of the other LHMI indications can override the internal fault indication.
An indication about the fault is shown as a message on the LHMI. The text *Internal Fault* with an additional text message, a code, date and time, is shown to indicate the fault type.

Different actions are taken depending on the severity of the fault. The protection relay tries to eliminate the fault by restarting. After the fault is found to be permanent, the protection relay stays in internal fault mode. All other output contacts are released and locked for the internal fault. The protection relay continues to perform internal tests during the fault situation.

The internal fault code indicates the type of internal relay fault. When a fault appears, record the code so that it can be reported to ABB customer service.

<table>
<thead>
<tr>
<th>Fault indication</th>
<th>Fault code</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Fault System error</td>
<td>2</td>
<td>An internal system error has occurred.</td>
</tr>
<tr>
<td>Internal Fault File system error</td>
<td>7</td>
<td>A file system error has occurred.</td>
</tr>
<tr>
<td>Internal Fault Test</td>
<td>8</td>
<td>Internal fault test activated manually by the user</td>
</tr>
<tr>
<td>Internal Fault SW watchdog error</td>
<td>10</td>
<td>Watchdog reset has occurred too many times within an hour.</td>
</tr>
<tr>
<td>Internal Fault SO-relay(s),X100</td>
<td>43</td>
<td>Faulty Signal Output relay(s) in card located in slot X100</td>
</tr>
<tr>
<td>Internal Fault SO-relay(s),X110</td>
<td>44</td>
<td>Faulty Signal Output relay(s) in card located in slot X110</td>
</tr>
<tr>
<td>Internal Fault SO-relay(s),X120</td>
<td>45</td>
<td>Faulty Signal Output relay(s) in card located in slot X120</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Fault indication</th>
<th>Fault code</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Fault SO-relay(s),X130</td>
<td>46</td>
<td>Faulty Signal Output relay(s) in card located in slot X130</td>
</tr>
<tr>
<td>Internal Fault PO-relay(s),X100</td>
<td>53</td>
<td>Faulty Power Output relay(s) in card located in slot X100</td>
</tr>
<tr>
<td>Internal Fault PO-relay(s),X110</td>
<td>54</td>
<td>Faulty Power Output relay(s) in card located in slot X110</td>
</tr>
<tr>
<td>Internal Fault PO-relay(s),X120</td>
<td>55</td>
<td>Faulty Power Output relay(s) in card located in slot X120</td>
</tr>
<tr>
<td>Internal Fault PO-relay(s),X130</td>
<td>56</td>
<td>Faulty Power Output relay(s) in card located in slot X130</td>
</tr>
<tr>
<td>Internal Fault Light sensor error</td>
<td>57</td>
<td>Faulty ARC light sensor input(s)</td>
</tr>
<tr>
<td>Internal Fault Conf. error,X000</td>
<td>62</td>
<td>Card in slot X000 is wrong type</td>
</tr>
<tr>
<td>Internal Fault Conf. error,X100</td>
<td>63</td>
<td>Card in slot X100 is wrong type or does not belong to the original composition.</td>
</tr>
<tr>
<td>Internal Fault Conf. error,X110</td>
<td>64</td>
<td>Card in slot X110 is wrong type, is missing or does not belong to the original composition.</td>
</tr>
<tr>
<td>Internal Fault Conf. error,X120</td>
<td>65</td>
<td>Card in slot X120 is wrong type, is missing or does not belong to the original composition.</td>
</tr>
<tr>
<td>Internal Fault Conf.error,X130</td>
<td>66</td>
<td>Card in slot X130 is wrong type, is missing or does not belong to the original composition.</td>
</tr>
<tr>
<td>Internal Fault Card error,X000</td>
<td>72</td>
<td>Card in slot X000 is faulty.</td>
</tr>
<tr>
<td>Internal Fault Card error,X100</td>
<td>73</td>
<td>Card in slot X100 is faulty.</td>
</tr>
<tr>
<td>Internal Fault Card error,X110</td>
<td>74</td>
<td>Card in slot X110 is faulty.</td>
</tr>
<tr>
<td>Internal Fault Card error,X120</td>
<td>75</td>
<td>Card in slot X120 is faulty.</td>
</tr>
<tr>
<td>Internal Fault Card error,X130</td>
<td>76</td>
<td>Card in slot X130 is faulty.</td>
</tr>
<tr>
<td>Internal Fault LHMI module</td>
<td>79</td>
<td>LHMI module is faulty. The fault indication may not be seen on the LHMI during the fault.</td>
</tr>
<tr>
<td>Internal Fault RAM error</td>
<td>80</td>
<td>Error in the RAM memory on the CPU card.</td>
</tr>
<tr>
<td>Internal Fault ROM error</td>
<td>81</td>
<td>Error in the ROM memory on the CPU card.</td>
</tr>
</tbody>
</table>

Table continues on next page
7.2.2 Warnings

Warnings are indicated with the text `Warning` additionally provided with the name of the warning, a numeric code, and the date and time on the LHMI. The warning indication message can be manually cleared.

If a warning appears, record the name and code so that it can be provided to ABB customer service.

Table 18: Warning indications and codes

<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Warning code</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning System warning</td>
<td>2</td>
<td>An internal system error has occurred.</td>
</tr>
<tr>
<td>Warning Watchdog reset</td>
<td>10</td>
<td>A watchdog reset has occurred.</td>
</tr>
<tr>
<td>Warning Power down det.</td>
<td>11</td>
<td>The auxiliary supply voltage has dropped too low.</td>
</tr>
<tr>
<td>Warning IEC61850 error</td>
<td>20</td>
<td>Error when building the IEC 61850 data model</td>
</tr>
<tr>
<td>Warning Modbus error</td>
<td>21</td>
<td>Error in the Modbus communication</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Warning code</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning DNP3 error</td>
<td>22</td>
<td>Error in the DNP3 communication</td>
</tr>
<tr>
<td>Warning Dataset error</td>
<td>24</td>
<td>Error in the Data set(s)</td>
</tr>
<tr>
<td>Warning Report cont. error</td>
<td>25</td>
<td>Error in the Report control block(s)</td>
</tr>
<tr>
<td>Warning GOOSE contr. error</td>
<td>26</td>
<td>Error in the GOOSE control block(s)</td>
</tr>
<tr>
<td>Warning SCL config error</td>
<td>27</td>
<td>Error in the SCL configuration file or the file is missing</td>
</tr>
<tr>
<td>Warning Logic error</td>
<td>28</td>
<td>Too many connections in the configuration</td>
</tr>
<tr>
<td>Warning SMT logic error</td>
<td>29</td>
<td>Error in the SMT connections</td>
</tr>
<tr>
<td>Warning GOOSE input error</td>
<td>30</td>
<td>Error in the GOOSE connections</td>
</tr>
<tr>
<td>ACT error</td>
<td>31</td>
<td>Error in the ACT connections</td>
</tr>
<tr>
<td>Warning GOOSE Rx. error</td>
<td>32</td>
<td>Error in the GOOSE message receiving</td>
</tr>
<tr>
<td>Warning APL error</td>
<td>33</td>
<td>Analog channel configuration error</td>
</tr>
<tr>
<td>Warning Unack card comp.</td>
<td>40</td>
<td>A new composition has not been acknowledged/accepted.</td>
</tr>
<tr>
<td>Warning Protection comm.</td>
<td>50</td>
<td>Error in protection communication</td>
</tr>
<tr>
<td>Warning ARC1 cont. light</td>
<td>85</td>
<td>A continuous light has been detected on the ARC light input 1.</td>
</tr>
<tr>
<td>Warning ARC2 cont. light</td>
<td>86</td>
<td>A continuous light has been detected on the ARC light input 2.</td>
</tr>
<tr>
<td>Warning ARC3 cont. light</td>
<td>87</td>
<td>A continuous light has been detected on the ARC light input 3.</td>
</tr>
</tbody>
</table>

7.3 Correction procedures

7.3.1 Rebooting the software

1. Select **Main menu/Configuration/General/Software reset** and press ↵.
2. Change the value with ↑ or ↓ and press ↵.
7.3.2 Restoring factory settings

In case of configuration data loss or any other file system error that prevents the protection relay from working properly, the whole file system can be restored to the original factory state. All default settings and configuration files stored in the factory are restored.

1. Select **Main menu/Configuration/General/Fac特意 setting** and press
2. Set the value with ↑ or ↓ and press
3. Confirm by selecting Yes with ↑ or ↓ and press

The protection relay restores the factory settings and restarts. Restoring takes 1...3 minutes. Confirmation of restoring the factory settings is shown on the display a few seconds, after which the relay restarts.

Avoid the unnecessary restoring of factory settings, because all the parameter settings that are written earlier to the relay will be overwritten with the default values. During normal use, a sudden change of the settings can cause a protection function to trip.

To restore factory settings from bootloader mode, press ESC + KEY simultaneously for 5 seconds.

7.3.3 Setting passwords

If user authorization is off or the user is logged in as an administrator, user passwords can be set via the LHMI or WHMI or with PCM600.

For more information, see [User authorization](#).

1. Select **Main menu/Configuration/Authorization**.
2. Select the password to be reset with ↑ or ↓.
3. Press ←, change the password with ↑ or ↓ and press ← again.
4. Repeat steps 2 and 3 to set the rest of the passwords.
7.3.4 Identifying relay application problems

- Check that the function is on.
- Check the blocking.
- Check the mode.
- Check the measurement value.
- Check the connection to trip and DFR functions.
- Check the channel settings.

7.3.4.1 Inspecting wiring

The physical inspection of wiring connections often reveals the wrong connection for phase currents or voltages. However, even though the phase current or voltage connections to protection relay terminals might be correct, wrong polarity of one or more measurement transformers can cause problems.

- Check the current or voltage measurements and their phase information from Main menu/Measurements.
- Check that the phase information and phase shift between phases is correct.
- Correct the wiring if needed.
- Check the actual state of the connected binary inputs from Main menu/Monitoring/I/O status/Binary input values.
- Test and change the relay state manually in Main menu/Tests/Binary outputs.

7.3.4.2 Sample data interruptions

Occasionally protection relays can receive corrupted or faulty measurement data during runtime. In these cases the operation system halts the corresponding application execution until correct data is received. In case of permanent faults, the measurement chain should be checked to remove the origin of the faulty measurement data.

In case of persistent faults originating from protection relay's internal faults, contact ABB for repair or replacement actions.
8.1 Commissioning checklist

Familiarize yourself with the protection relay and its functionality before you start the commissioning work.

- Ensure that you have all the needed station drawings such as single line and wiring diagrams.
- Ensure that your version of the technical manual applies to the protection relay version you test.
- Ensure that your setting software and connectivity packages work with the protection relay version you test.
- Find out if you need any additional software.
- Ensure that you have the relay settings either on paper or in electronic format. The settings and logic should be well documented.
- Inspect the settings to ensure that they are correct.
- Ensure that you have the correct cable to connect your PC to the protection relay’s communication port. The RJ-45 port supports any CAT 5 Ethernet cable but the recommendation is STP.
- Test your PC’s communication port before you go to the site.
- Find out who to contact if you have trouble and make sure you have a means to contact them.
- Find out who is responsible for the settings.
- Ensure that you have with you the proper test equipment and all needed connection cables.
- Ensure that the owner of the switchgear familiarizes you with the work site and any special aspects of it.
- Ensure that you know how to operate in emergency situations. Find out where the first aid and safety materials and exit routes are.
8.2 Checking the installation

8.2.1 Checking the power supply

• Check that the auxiliary supply voltage remains within the permissible input voltage range under all operating conditions.
• Check that the polarity is correct before powering the IED.

8.2.2 Checking CT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

The CTs must be connected in accordance with the terminal diagram provided with the protection relay, both with regards to phases and polarity. The following tests are recommended for every primary CT or CT core connected to the protection relay.

• Primary injection test to verify the current ratio of the CT, the correct wiring up to the protection relay and correct phase sequence connection (that is A, B, C.)
• Polarity check to prove that the predicted direction of the secondary current flow is correct for a given direction of the primary current flow. This is an essential test for the proper operation of the directional function, protection or measurement in the protection relay.
• CT secondary loop resistance measurement to confirm that the current transformer secondary loop DC resistance is within specification and that there are no high resistance joints in the CT winding or wiring.
• CT excitation test to ensure that the correct core in the CT is connected to the protection relay. Normally only a few points along the excitation curve are checked to ensure that there are no wiring errors in the system, for example, due to a mistake in connecting the CT's measurement core to the protection relay.
• CT excitation test to ensure that the CT is of the correct accuracy rating and that there are no short circuited turns in the CT windings. Manufacturer's design curves should be available for the CT to compare the actual results.
• Grounding check of the individual CT secondary circuits to verify that each three-phase set of main CTs is properly connected to the station ground and only at one electrical point.
• Insulation resistance check.
• Phase identification of CT shall be made.
Both the primary and the secondary sides must be disconnected from the line and the protection relay when plotting the excitation characteristics.

If the CT secondary circuit is opened or its ground connection is missing or removed without the CT primary being de-energized first, dangerous voltages may be produced. This can be lethal and cause damage to the insulation. The re-energizing of the CT primary should be prohibited as long as the CT secondary is open or ungrounded.

8.2.3 Checking VT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

Correct possible errors before continuing to test the circuitry.

Test the circuitry.

• Polarity check
• VT circuit voltage measurement (primary injection test)
• Grounding check
• Phase relationship
• Insulation resistance check

The polarity check verifies the integrity of circuits and the phase relationships. The polarity must be measured as close to the protection relay as possible to ensure that most of the wiring is also checked.

The primary injection test verifies the VT ratio and the wiring all the way from the primary system to the protection relay. Injection must be performed for each phase-to-neutral circuit and each phase-to-phase pair. In each case, voltages in all phases and neutral are measured.

8.2.4 Checking binary input and output circuits

8.2.4.1 Checking binary input circuits

• Preferably, disconnect the binary input connector from the binary input cards.
• Check all the connected signals so that both the input level and the polarity are in accordance with the protection relay specifications.
Do not use AC voltage. Binary inputs are rated for DC voltage only.

8.2.4.2 Checking binary output circuits

• Preferably, disconnect the binary output connector from the binary output cards.
• Check all connected signals so that both load and voltage are in accordance with the protection relay specifications.

8.2.5 Checking optical connections

Check that the Tx and Rx optical connections are correct.

A relay equipped with optical connections requires a minimum depth of 180 mm (7.2 inches) for plastic fiber cables and 275 mm (10.9 inches) for glass fiber cables. Check the allowed minimum bending radius from the optical cable manufacturer.

8.3 Authorizations

8.3.1 User authorization

The user categories have been predefined for the LHMI and WHMI, each with different rights and default passwords.

Passwords are settable for all predefined user categories. The LHMI password must be at least four and WHMI password at least nine characters. The maximum number of characters is 8 for the LHMI password and 20 for the WHMI password. Only the following characters are accepted.

• Numbers 0-9
• Letters a-z, A-Z
• Space
• Special characters !"#$%&'()*+´-./:;<=>?@[\]^_`{|}~

User authorization is disabled by default and can be enabled via the LHMI or WHMI path Main Menu/Configuration/Authorization.
Table 19: Predefined user categories and default passwords

<table>
<thead>
<tr>
<th>Username</th>
<th>LHMI password</th>
<th>WHMI password</th>
<th>User rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIEWER</td>
<td>0001</td>
<td>remote0001</td>
<td>Only allowed to view</td>
</tr>
<tr>
<td>OPERATOR</td>
<td>0002</td>
<td>remote0002</td>
<td>Authorized to make operations</td>
</tr>
<tr>
<td>ENGINEER</td>
<td>0003</td>
<td>remote0003</td>
<td>Allowed to change protection relay parameters, but no operation rights</td>
</tr>
<tr>
<td>ADMINISTRATOR</td>
<td>0004</td>
<td>remote0004</td>
<td>Full access</td>
</tr>
</tbody>
</table>

For user authorization for PCM600, see PCM600 documentation.

8.4 Setting IED and communication

8.4.1 Setting the communication between protection relays and PCM600

The communication between the protection relay and PCM600 is independent of the used communication protocol within the substation or to the NCC. It can be seen as a second channel for communication.

The communication media is always Ethernet and the protocol is TCP/IP.

Each protection relay has an Ethernet front connector for PCM600 access. Depending on the station concept and the used station protocol, additional Ethernet interfaces may be available on the rear side of the protection relay. All Ethernet interfaces can be used to connect PCM600.

When an Ethernet based station protocol is used, the PCM600 communication can use the same Ethernet port and IP address. The protection relay is able to separate the information belonging to the PCM600 dialog.

To configure the physical connection and the IP addresses:

1. Set up or get the IP addresses of the protection relays.
2. Set up the PC for a direct link or connect the PC or workstation to the network.
3. Configure the IP addresses in the PCM600 project for each protection relay. The addresses are used for communication by the OPC interface of PCM600.
8.4.1.1 Communication link options between PCM600 and protection relays

Two options are available for the connection of PCM600 to the protection relay.

- Direct point to point link between PCM600 and the protection relay
- Indirect link via a station LAN or from remote via a network

Point to point link

The protection relay is provided with an RJ-45 connector on the LHMI. The connector is mainly for configuration and setting purposes. Any Ethernet cable can be used but it is recommended to use the shielded twisted pair cable.

The protection relay has a DHCP server for the front interface. The DHCP server assigns an IP address to the computer connected to the front interface. The computer's LAN interface has to be configured to obtain the IP address automatically.

LAN or WAN network

In TCP/IP networking, a LAN is often but not always implemented as a single IP subnet. A router connects LANs to a WAN. In IP networking, the router maintains both a LAN address and a WAN address. Design considerations for computer networks cover a wide range of topics including layout, capacity planning, and security. To some extent, the network configuration also depends on user preferences.

8.4.2 Communication settings

The IED is provided with an RJ-45 connector on the LHMI. The connector is mainly used for configuration and setting purposes. The fixed IP address for the front port is 192.168.0.254.

Different communication ports are available via optional communication modules. Ethernet RJ-45 and optical Ethernet LC are the two rear port Ethernet communication options. Rear port Ethernet is intended for station bus communication. Communication protocols used via Ethernet ports are IEC 61850-8-1, DNP3 TCP/IP and Modbus TCP/IP.

For more information, see the communication protocol manuals and the technical manual.

If the protocol does not operate as expected, check that other serial protocols are not using the COM port.
DNP3 protocol ignores any parity setting in the COM settings group; DNP3 is defined as an 8 bit/no parity protocol with a 16-bit CRC every 16 bytes. This provides better error detection than parity.

8.4.2.1 Serial communication ports and drivers

Depending on the hardware configuration, the protection relay can be equipped with one or several UART-based serial communication ports. The communication ports can be either galvanic (RS-485, RS-232) or fiber optic. The protection relay uses serial ports and drivers as different types of serial communication protocol links.

Serial ports are called COM1, COM2 and so on, depending on the number of serial ports in the relay hardware configuration. Each COM port driver has its own setting parameters found via the LHMI in Configuration/Communication/COMn (n=1,2,…).

Since the same protection relay usually supports a variety of different communication hardware options, all COM port driver setting parameters are not relevant for every communication hardware type.

Table 20: COM port parameters in different HW options

<table>
<thead>
<tr>
<th>COM parameter</th>
<th>Values</th>
<th>Hardware options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber mode</td>
<td>0 = No fiber</td>
<td>Used in the fiber optic mode only. Note that "No fiber" mode is the same as the galvanic mode.</td>
</tr>
<tr>
<td></td>
<td>1 = Fiber light ON/loop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiber light OFF/loop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Fiber light ON/star</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Fiber light OFF/star</td>
<td></td>
</tr>
<tr>
<td>Serial mode</td>
<td>0 = RS485 2wire</td>
<td>For galvanic modes. RS-type depends on the communication card used. Note that this setting parameter is relevant only if Fiber mode is set to "No Fiber".</td>
</tr>
<tr>
<td></td>
<td>1 = RS485 4wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = RS232 no handshake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = RS232 with handshake</td>
<td></td>
</tr>
<tr>
<td>CTS Delay</td>
<td>0…60000 [ms]</td>
<td>RS232 mode only</td>
</tr>
<tr>
<td>RTS Delay</td>
<td>0…60000 [ms]</td>
<td>RS232 mode only</td>
</tr>
</tbody>
</table>

Table continues on next page
COM parameter Values Hardware options

<table>
<thead>
<tr>
<th>COM parameter</th>
<th>Values</th>
<th>Hardware options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baudrate</td>
<td>1 = 300</td>
<td>All modes</td>
</tr>
<tr>
<td></td>
<td>2 = 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = 2400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = 4800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = 9600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 = 19200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = 38400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 = 57600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 = 115200 [bits/sec]</td>
<td></td>
</tr>
</tbody>
</table>

1) When fiber mode is used, the *Serial mode* parameter value must be “RS485 2wire”.

In addition to setting the COM parameter, a communication card with many hardware options may also require changing the jumpers on the communication card.

Connection of a serial communication protocol to a specific serial port

The serial communication protocol (instance) settings include a setting parameter called *Serial port n* (n = protocol instance number). Setting options for this parameter are “COM1”, “COM2” and so on. The desired serial port for the protocol instance is selected through this parameter.

All link setting parameters are not found in the COMn settings. Additional link setting parameters are found in the setting parameter list of the used serial protocol, since some serial protocol standards allow changes in link parameters, while other protocol standards do not.

8.4.2.2 Serial link diagnostics and monitoring

Serial communication diagnostics and monitoring is divided between the serial link driver and the serial communication protocol. The lower level physical and protocol-independent aspects of the UART-based serial communication are monitored in the serial link driver. Diagnostic counters and monitoring values are found via the LHMI in Monitoring/Communication/COMn (n= 1,2,…).
Depending on the communication protocol, the serial driver software receives single characters or complete protocol frames, based on the frame start/stop characters or on timing.

Monitoring data for a COM channel can be divided into basic and detailed diagnostic counters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters received</td>
<td>0…2147483646</td>
<td>Basic</td>
<td>Number of separate characters received.</td>
</tr>
<tr>
<td>Frames received</td>
<td>0…2147483646</td>
<td>Basic</td>
<td>Number of successfully received complete frames.</td>
</tr>
<tr>
<td>Frames discarded</td>
<td>0…2147483646</td>
<td>Basic</td>
<td>Number of frames discarded.</td>
</tr>
<tr>
<td>Frames transmitted</td>
<td>0…2147483646</td>
<td>Basic</td>
<td>Number of frames transmitted.</td>
</tr>
<tr>
<td>CD Lost</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of carrier-detect signal lost during receive.</td>
</tr>
<tr>
<td>Collision</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of collisions detected.</td>
</tr>
<tr>
<td>CTS Timeout</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of clear-to-send signal timeout errors.</td>
</tr>
<tr>
<td>Transmission timeout</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of transmission timeout errors.</td>
</tr>
<tr>
<td>Parity errors</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of character parity errors detected.</td>
</tr>
<tr>
<td>Overrun errors</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of character overrun errors detected.</td>
</tr>
<tr>
<td>Framing errors</td>
<td>0…2147483646</td>
<td>Detailed</td>
<td>Number of character overrun errors detected.</td>
</tr>
<tr>
<td>Link status</td>
<td>1</td>
<td></td>
<td>1 = Reset counters (by entering 1 the diagnostic counters are reset)</td>
</tr>
</tbody>
</table>

Whether all diagnostic counters are relevant depends on the communication hardware and communication protocol.
Table 22: Basic diagnostic counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters received</td>
<td>Counts all incoming non-erroneous characters. This counter operates regardless of if the serial driver is set to detect a whole protocol link frame or just separate characters.</td>
</tr>
<tr>
<td>Frames received</td>
<td>Counts all protocol specific non-erroneous frames received. Protocol-specific frames can be based on timing (for example, Modbus RTU) or on special start and stop characters (for example, Modbus ASCII).</td>
</tr>
<tr>
<td>Frames discarded</td>
<td>Counts all protocol-specific erroneous frames received. If the driver detects an error while receiving a frame, the frame is automatically discarded. This also means that the protocol in question will never receive a faulty frame from the driver. When this counter is increased, one of the detailed error counters is also incremented.</td>
</tr>
<tr>
<td>Frames transmitted</td>
<td>Counts all protocol-specific frames transmitted from the COM channel.</td>
</tr>
</tbody>
</table>

Table 23: Detailed error counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Lost</td>
<td>In RS-232 handshake mode, characters are to be received as long as Carrier Detect (CD) signal is active. This counter is incremented if the CD signal is lost during reception.</td>
</tr>
<tr>
<td>Collision</td>
<td>Counts transmission collisions. Used in RS-485 mode by some protocols where transmissions could collide. For example, DNP3 unsolicited mode.</td>
</tr>
<tr>
<td>CTS Timeout</td>
<td>In RS-232 handshake mode the Clear To Send (CTS) signal is not received as reply to this device Request To Send (RTS) signal.</td>
</tr>
<tr>
<td>Transmission timeout</td>
<td>In RS-232 handshake mode. If the CTS signal goes inactive during transmission then the transmission is halted. Transmission will be resumed when CTS goes active again. The whole frame transmission must anyhow be ready within a specified time. If this timeout elapses then this counter is incremented. Result will be that the end of the frame is not being transmitted out.</td>
</tr>
<tr>
<td>Parity errors</td>
<td>Counts parity errors detected in characters.</td>
</tr>
<tr>
<td>Overrun errors</td>
<td>Counts overrun errors detected in characters.</td>
</tr>
<tr>
<td>Framing errors</td>
<td>Counts framing errors detected in characters</td>
</tr>
</tbody>
</table>
Table 24: Link status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link status</td>
<td>Link status in write direction: By writing 1 to the parameter the diagnostic counters are reset to 0.</td>
</tr>
<tr>
<td></td>
<td>Link status in monitoring direction: If the driver is in use by any communication protocol, the monitoring value shows 1. In other case, the value is 0.</td>
</tr>
</tbody>
</table>

8.4.2.3 Defining Ethernet port settings

Change the Ethernet port settings primarily via PCM600 to ensure that PCM600 is able to export a consistent configuration to SYS600. Ethernet port settings are recommended to be changed only when the device is stand-alone and properly configured.

1. Select **Main menu/Configuration/Communication/Ethernet/Rear port**.
2. Define the settings for the Ethernet port.
 - IP address
 - Subnet mask
 - Default gateway of the optional rear port Ethernet connector

8.4.2.4 Defining serial port settings

The serial COM setting is not currently supported.

1. Select **Main menu/Configuration/Communication/COM1** or **COM2**.
2. Define the settings for the serial port.
 It is possible to change the general serial communication parameters per port. Select fiber or galvanic mode with the proper baud rate, parity and delays depending on the system architecture and the selected physical communication port.

8.4.2.5 Setting communication protocol parameters

1. Select **Main menu/Configuration/Communication/<protocol>**.
2. Change the protocol specific settings.
 Possible settings to be changed are, for example, the selected communication port, address and link mode.
8.4.2.6 Connecting jumper connectors

See the technical manual for details on jumper connectors.

8.4.3 Setting the local HMI

8.4.3.1 Changing the local HMI language

1. Select Main menu/Language and press ↵.
2. Change the language using ↑ or ↓.
3. Press ↵ to confirm the selection.
4. Commit the changes.

![Language Selection](image)

To change the language using a shortcut, press ESC and ↵ simultaneously anywhere in the menu.

8.4.3.2 Adjusting the display contrast

Adjust the display contrast anywhere in the menu structure to obtain optimal readability.

- To increase the contrast, press simultaneously ESC and ↑.
- To decrease the contrast, press simultaneously ESC and ↓.
The selected contrast value is stored in the non-volatile memory if you are logged in and authorized to control the protection relay. After an auxiliary power failure, the contrast is restored.

8.4.3.3 Changing display symbols

Use the keypad to switch between the display symbols IEC 61850, IEC 60617 and ANSI.

1. Select **Main Menu/Configuration/HMI/FB naming convention** and press →.
2. Change the display symbols with ↑ or ↓.
3. Press ← to confirm the selection.

The protection relay has to be rebooted if the WHMI display symbols are changed. With the LHMI, the change takes effect immediately.

8.4.3.4 Changing the default view

The default view of the display is **Measurements** unless set otherwise.

1. Select **Main menu/Configuration/HMI/Default view** and press ←.
2. Change the default view with ↑ or ↓.
3. Press ← to confirm the selection.

8.4.3.5 Setting the system time and time synchronization

1. Select **Main menu/Configuration/Time/System time**.
2. Select the parameter with ↑ or ↓.
3. Press ←, change the value with ↑ or ↓ and press ← again.
4. Repeat steps 2 and 3 to set the rest of the system time parameters.
5. Select **Main menu/Configuration/Time/Synchronization/Synch source** and press ←.
6. Select the time synchronization source with ↑ or ↓.
7. Press ← to confirm the selection.

Setting daylight saving time

The protection relay can be set to determine the correct date for the DST shift every year. The UTC time is used to set the DST.
1. Set the \textit{DST on day} and \textit{DST off day} parameters to define on which week day the time shift occurs.
2. Set the \textit{DST on date} and \textit{DST off date} parameters to define on which month and week the time shift occurs.

 The DST on/off date must precede the selected DST on/off day and be within the same week as the DST shift.

\begin{table}[h]
\centering
\caption{Possible date values for DST change on Sunday}
\begin{tabular}{|l|l|}
\hline
Day of the DST shift & DST on/off date (dd) \\
\hline
First Sunday of the month & 1 \\
Second Sunday of the month & 8 \\
Third Sunday of the month & 15 \\
Fourth Sunday of the month & 22 \\
Last Sunday, if the month has 30 days & 24 \\
Last Sunday, if the month has 31 days & 25 \\
\hline
\end{tabular}
\end{table}

For example, if the DST is observed from the last Sunday in March to the last Sunday in October and the time shift occurs at 01:00 UTC, the setting parameters are the following.

\begin{itemize}
\item DST on time: 01:00
\item DST on date: 25.03
\item DST on day: Sun
\item DST off time: 01:00
\item DST off date: 25.10
\item DST off day: Sun
\end{itemize}

Set the \textit{DST on day} and \textit{DST off day} to "not in use" to determine the exact date and time for the DST shift. Repeat the setting yearly, as the time for the DST shift is not on the same date every year.

To disable the DST, set the \textit{DST offset} parameter to "0 min".
8.4.4 Setting IED parameters

8.4.4.1 Defining setting groups

Selecting a setting group for editing

1. Select Main Menu/Settings/Edit setting group.
2. Select the setting group to be edited with ↑ or ↓.
3. Press → to confirm the selection.
4. Edit the settings.

Browsing and editing setting group values

1. Select Main menu/Settings/Settings and press →.
2. Select the setting group to be viewed with ↑ or ↓ and press → to confirm the selection.
3. To browse the settings, scroll the list with ↑ and ↓ and to select a setting press ➕.

4. To browse different function blocks, scroll the list with ↑ and ↓ and to select a function block press ➖. To move back to the list, press ➖. The function block list is shown in the content area of the display. On the left in the header, you see the current setting group, and on the right the menu path.

5. To browse the parameters, scroll the list with ↑ and ↓ and to select a parameter, press ➖. The setting group values are indicated with #.

6. To select a setting group value, press ➕ and to edit the value press ➖.
Figure 85: Selecting the setting group value

Only values within the selected setting group can be changed.

7. Press \(\text{or} \) to change the value and \(\text{to confirm the selection.} \)

Figure 86: Editing the setting group value

The active setting group is indicated with an asterisk *.

Activating a setting group

Protection relay settings are planned in advance for different operation conditions by calculating setting values to different setting groups. The active setting group can be changed by the protection relay application or manually from the menu.

1. Select Main menu/Settings/Setting group/Active group and press \(\text{.} \)
2. Select the setting group with ↑ or ↓.
3. Press ← to confirm the selection or → to cancel.

Figure 87: Active setting group

4. Commit the settings.

Remember to document the changes you make.

8.4.4.2 Relay parametrization

Protection relay parameters are set via the LHMI, WHMI or PCM600.
Setting parameters need to be calculated according to the electrical network conditions and the electrical characteristics of the protected equipment. The protection relay's settings need to be verified before the protection relay is connected to a system.

Document all changes to parameter settings.

For more information, see the PCM600 documentation.

8.4.4.3 Defining DFR channel settings

1. Select Main Menu/Configuration/DFR/Channel settings.
2. Press ↑ or ↓ to select the wanted channel and parameter.
3. To change channel settings, press →.

Analog channels are fixed except channel 4 which is selectable based on the Ground CT option.

8.4.4.4 Configuring analog inputs

1. Select Main Menu/Configuration/Analog inputs.
2. Select the analog input to be configured with ↑ or ↓.
3. Press ←, change the value with ↑ or ↓ and press → again.
 • For CTs, the secondary current and primary current need to be set to the correct values.

8.4.4.5 Writing collective IED site information

Use the Site Information tool to write the site information to several IEDs at the same time.

1. Ensure that the connection between the substation and PCM600 is working.
2. Right-click the substation object in the object tree in Project Explorer.
3. Select Site Information Tool from the shortcut menu.
 The Site Information Tool dialog box opens.
4. Define the customer name and the substation address. Select the correct country from the Country drop-down list.
Do not use the ‘&’ character in any of the fields.

The Site Information tool currently limits the number of characters to 20 for any of the Site Identifier fields. If any of the field is required to be more than 20 characters, the field can be left as blank and the Parameter Setting tool in PCM600 or WebHMI can be used to update the corresponding field.

5. Click **Write to IEDs** to write the site information to IEDs located below the selected substation object.

6. The **Writing Site Information to IEDs** dialog shows the writing progress.
 - To stop the writing process, click **Cancel**.

 The **Writing Site Information to IEDs** dialog box shows the writing progress.

 The written collective IED site information is shown in the **Output** window.

8.5 Testing protection relay operation

The protection relay has to be in the test mode before the digital outputs and certain output signals of protection and other functions can be activated.

8.5.1 Selecting the test mode

The test mode can be activated using the LHMI. The green Normal LED is flashing to indicate that the test mode is activated.

The Normal LED also flashes if the protection relay detects a diagnostic failure. Check the test mode setting and the protection relay's IRF alarm contact status to find the reason for the failure.

The test mode is useful for simulated testing of functions and outputs without providing current inputs.

1. Select **Main menu/Tests/IED test/Test mode** and press .
2. Select the test mode status with ↑ or ↓.
3. Press ← to confirm the selection.

If the test mode is not cancelled, it remains on and the Normal LED remains flashing.

8.5.2 Testing the digital I/O interface

To activate or deactivate, for example, a digital output:

1. Select Main menu/Tests/Binary outputs/X100 (PSM)/X100-PO1 and press ←.
2. Select the value with ↑ or ↓.
3. Press ← to confirm the selection.

If the optional BIO-module (X110) is included in the protection relay, the menu path could also be Main menu/Tests/Binary Outputs/X110 (BIO)/<binary output>.

8.5.3 Testing functions

Activate or deactivate an output signal for protection or other function to test the function.
1. Select **Main Menu/Tests/Function tests/Current protection/<function block name>** and press ↵.

2. Select the output signal to be activated or deactivated with ↑ or ↓ and press ↵.

3. To deactivate all output signals for the function, select **Reset** with ↑ or ↓ and press ↵.

8.5.4 Selecting the internal fault test

The internal fault may be tested by using the LHMI. When enabling the test, the internal relay fault output contact is activated, the green Normal LED will be blinking and internal fault test indication is shown on the LHMI. See Technical Manual for internal relay fault output contact location.

![Diagram](image.png)

Differing from real internal fault situation, the other output contacts are not released and locked during the test. In other words, protection functions can operate and trip the outputs when the internal fault is tested.

1. Select **Main menu/Tests/IED test/Internal fault test** and press ↵.

![Screenshot](image.png)

Figure 90: Internal fault test

2. Select the value with ↑ or ↓.

3. Press ↵ to confirm the selection.
8.6 **ABB Product Data Registration**

The ABB Product Data Registration feature traces composition changes related to the IED's SW or HW.

After a composition change, an LCT indication is seen on the LHMI at the IED startup. At this point, PCM600 should be connected to the IED as it reads the changed data from the IED. The LCT indication is cleared in the same way as other indications. If PCM600 is not connected to the IED, the indication is seen again after the IED's reboot.

If the LCT indication appears, update the IED composition to avoid information mismatch. The LCT indication does not affect the functionality of the IED.

The number of composition changes can be seen from the *Composition changes* parameter in **Main Menu/Monitoring/IED status**.
Section 9 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-FX</td>
<td>A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses fiber optic cabling</td>
</tr>
<tr>
<td>100BASE-TX</td>
<td>A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses twisted-pair cabling category 5 or higher with RJ-45 connectors</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
</tbody>
</table>
| **ACT** | 1. Application Configuration tool in PCM600
2. Trip status in IEC 61850 |
| **ANSI** | American National Standards Institute |
| **CAT 5** | A twisted pair cable type designed for high signal integrity |
| **COMTRADE** | Common format for transient data exchange for power systems. Defined by the IEEE Standard. |
| **CPU** | Central processing unit |
| **CRC** | Cyclical redundancy check |
| **CSV** | Comma-separated values |
| **CT** | Current transformer |
| **DC** | 1. Direct current
2. Disconnector
3. Double command |
| **DFR** | Digital fault recorder |
| **DHCP** | Dynamic Host Configuration Protocol |
| **DNP3** | A distributed network protocol originally developed by Westronic. The DNP3 Users Group has the ownership of the protocol and assumes responsibility for its evolution. |
| **DPU2000R** | ABB’s Distribution Protection Unit 2000R, an advanced microprocessor-based relay that protects electrical power subtransmission and distribution systems |
| **DST** | Daylight-saving time |
| **EEPROM** | Electrically erasable programmable read-only memory |
| **EMC** | Electromagnetic compatibility |
| **Ethernet** | A standard for connecting a family of frame-based computer networking technologies into a LAN |
| **FB** | Function block |
| **Firmware** | System software or hardware that has been written and stored in a device’s memory that controls the device |
| **FPGA** | Field-programmable gate array |
| **GOOSE** | Generic Object-Oriented Substation Event |
| **HMI** | Human-machine interface |
| **HW** | Hardware |
| **IEC 61850** | International standard for substation communication and modeling |
| **IEC 61850-8-1** | A communication protocol based on the IEC 61850 standard series |
| **IED** | Intelligent electronic device |
| **IP address** | A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol. |
| **IRF** | 1. Internal fault
2. Internal relay fault |
<p>| LAN | Local area network |
| LC | Connector type for glass fiber cable |
| LCD | Liquid crystal display |
| LCP | Liquid crystal polymer |
| LCT | Life cycle traceability |
| LED | Light-emitting diode |
| LHMI | Local human-machine interface |
| Modbus | A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices. |
| Modbus ASCII | Link mode using 7-bit ASCII characters |
| Modbus RTU | Link mode using 8-bit binary characters |
| Modbus TCP/IP | Modbus RTU protocol which uses TCP/IP and Ethernet to carry data between devices |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC</td>
<td>Network control center</td>
</tr>
<tr>
<td>OPC</td>
<td>Object linking and embedding for process control</td>
</tr>
<tr>
<td>PA</td>
<td>Polyamide</td>
</tr>
<tr>
<td>PBT</td>
<td>Polybutylene terephthalate</td>
</tr>
</tbody>
</table>
| PC | 1. Personal computer
| | 2. Polycarbonate |
| PCM600 | Protection and Control IED Manager |
| R/L | Remote/Local |
| RAM | Random access memory |
| REF615R | Wire-alike replacement option for DPU2000R with the same form factor |
| RJ-45 | Galvanic connector type |
| RoHS | Restriction of hazardous substances |
| ROM | Read-only memory |
| RS-232 | Serial interface standard |
| RS-485 | Serial link according to EIA standard RS485 |
| RSTP | Rapid spanning tree protocol |
| RTC | Real-time clock |
| Rx | Receive/Received |
| SCL | XML-based substation description configuration language defined by IEC 61850 |

Single-line diagram
Simplified notation for representing a three-phase power system. Instead of representing each of three phases with a separate line or terminal, only one conductor is represented.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLD</td>
<td>Single-line diagram</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal Matrix tool in PCM600</td>
</tr>
<tr>
<td>STP</td>
<td>Shielded twisted-pair</td>
</tr>
<tr>
<td>SVG</td>
<td>Scalable vector graphics</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit/Transmitted</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated universal time</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage transformer</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide area network</td>
</tr>
<tr>
<td>WHMI</td>
<td>Web human-machine interface</td>
</tr>
</tbody>
</table>