

High Speed Transfer Device and System SUE 3000

Agenda

High-speed transfer device SUE 3000

- Philosophy / Benefits
- Construction
- Functional modes
- High-speed transfer system
 - Idea
 - Concept / construction
 - A real system approach

Task of High Speed Transfer Devices

 Ensuring continuous power supply to essential electrical equipment by changing over from a main to a stand-by feeder as fast as possible

Interruption of processes results in

- Lost productivity
- Damaged production equipment
- Damaged products
- Delays in delivery
- Lost confidence of clients
- Injury to people
- Pollution of environment

Key issues

- Power quality
- Uninterrupted power supply
- Permanent availability of electricity
- Assurance of continuous processes
- Prevention of outages
- Protection of facilities
- Protection of employees

Application of High Speed Transfer Devices

- Supply systems of power stations
 - Steam-power stations
 - Combined cycle power stations
 - Nuclear power stations
- Environmental plants
 - Flue gas cleaning systems
 - Incineration plants
- Chemical plants
 - Fiber industry
 - Petrochemical plants
- Industrial plants with sensitive load

Important processes

Pumps

- Boiler feed-water pump
- Condensate extraction pump
- Cooling water pump
- District heating circulation pump
- Limestone slurry feed and absorbent circulation pump
- Fans
 - Primary and secondary air fan
 - ID and ID booster fan
- Other
 - Conveyor
 - Coal mill
 - Oxidation air compressor
 - Gas turbine starter
 - Fuel gas booster compressor

Prerequisites for the application

 Existence of at least two - usually independent synchronous feeders

- Circuit-breakers with short operating times
- General suitability of plant for network change-over
- Load configuration with rotating devices
- Existence of appropriate initiation devices

Interfaces

- Circuit Breakers
 - Control
 - Indication
- Analogue Measurements
 - Voltage
 - Feeder current (optional)
- External protection
- Instrumentation & Control

Block diagram

Communication capability

• IEC 61850-8-1

- LON / LAG 1.4 according to IEC 60870-5-101/103 with interbay communication
- IEC 60870-5-103 interface according to VDEW recommendation
- MODBUS RTU interface
- SPA interface
- Ethernet interface
- PROFIBUS DP (with protocol conversion)

Construction of the device

Mechanical options

 Installation in LV-Compartment of MV-Switchbay

 Installation in a steel sheet cubicle

2-Circuit-breaker configuration

One busbar

 Transfer takes place between the two feeders

3-Circuit-breaker configuration

 2 busbar sections, Busbar coupling breaker

 Transfer between each feeder and busbar coupling breaker

3-Circuit-breaker configuration with internal pre-selection

- One busbar
- 2 of 3 selection

3-Circuit-breaker configuration with internal pre-selection

- 2 busbar sections, Busbar coupling breaker
- Transfer between:
 - Each feeder and busbar coupling breaker and
 - Feeder 1 and feeder 2 when bus coupler breaker is closed

3-Circuit-breaker configuration with internal pre-selection

- One busbar
- Transfer between each feeder

FUPLA

FUPLA-Monitor

Fault recorder module and visualization

HSTD (High Speed Transfer Device)

Busbar

Transfer modes

Transfer modes Fast Transfer

Fast transfer

© ABB Group July 29, 2010 | Slide 25

Transfer modes Transfer at first coincidence

Transfer modes Transfer at first coincidence (1)

Transfer modes Transfer at first coincidence (2)

Transfer modes Transfer at first coincidence (3)

Transfer modes Transfer at first coincidence (4)

Transfer modes Transfer at first coincidence (5)

Transfer modes Residual Voltage Transfer

Transfer modes Residual Voltage Transfer

Transfer modes Time depending Transfer

Fast transfer

Transfer modes - from fast to ...

super-fast!

30ms High Speed Transfer System

- For sensible plants with highest demands like
 - Semiconductor industry
 - Plants with high degree of automation, etc.
- Unique performance
 - VM 1-T Circuit breaker
 - 16 ms Making-time
 - 9 ms Breaking time
- References
 - Otto Versand (mail-order business)
 - Philips Semiconductors
 - Wiegand Glas factory
 - Petrochemicals (RU)

30ms Transfer

30ms HSTS – optimized architecture

ABB

FDI/VS-Object

VS-Object

5			<u>.</u>		
General Sensors Parameters Pins					
Parameter Set	Set 1	Set 2			
VS undervoltage limit	0.80	0.80	0.20 1.00 Un		
VS overvoltage limit	1.20	1.20	1.00 2.00 Un		
VS overcurrent limit	2.00	2.00	0.20 5.00 In		
Time delay On	3	3	0100 Ts		
Time delay Off	96	96	01000 Ts		
OK Cancel Apply					

- VS: Voltage Supervision
 - Extremely fast (undelayed) Under- and Overvoltage detection
 - Blocking by substantial overcurrent

FDI-Object

DI		×		
General Sensors Parame	eters Pins			
Parameter Set	Set 1 Set	2		
Undervoltage limit	0.80	0.10 1.00 Un		
Undercurrent limit	0.10 0.10	0.01 1.00 In		
Overcurrent limit	5.00 5.00	1.00 30.00 In		
Time delay On	10 10	0100 Ts		
Time delay Off	48 48	0100 Ts		
OK Cancel Apply				

- FDI: Fast Direction Indication
 - Determination of reverse power case
 - Blocking by substantial overcurrent

Requirements for HSTS (30ms transfer time)

- Integration of Fast fault detection
 - VS (Voltage supervision)
 - FDI (Fast direction indication)
- Optimized Controller
 - Improvements on REF542plus architecture
- Accelerated Circuit breakers
 - VM1-T (ca. 16ms operating time)
- Optimized signal flow
 - Optical links
 - IRQ-architecture

Transfer duration

Transfer mode	Average transfer duration	
Fast Transfer	30 – 100 ms	
Transfer at 1st phase coincidence	250 – 500 ms	
Residual voltage dependent transfer	400 – 1200 ms	
Time delayed transfer	> 1500 ms	

VM1-T (Transfer Switch)

Used for <u>High Speed Transfer Systems</u> to ensure uninterrupted power supply

- Ratings available (fixed & withdrawable):
 - 12/17,5kV, ...2500A, ...25kA
 - 24kV, ...1250A, ...25kA

• Faster opening / closing times:

	VM1-T	VM1
Closing time	approx. 16ms	approx. 45…60ms
Opening time	approx. 10ms	approx. 35…50ms
Arcing duration (50Hz)	<=15ms	<=15ms
Total opening time	<=25ms	<=60ms

- Hardware differences (compared to VM1):

- Electronic board with booster board
- More capacitors
- Less windings of the actuator coils

VM1-T Truck version

- Frame and contact system for the following switchgear types available:
 - UniGear ZS1
 - UniSafe
 - PowerBloc
 - ZS 8.4

Major benefits

- Improvement of plant availability
- Protection of production facilities
- Prevention of costly outages
- Improvement of product quality
- Protection of employees and environment

Power and productivity for a better world[™]

