Bigger is better
ABB drive systems designed to power mega mills in mining

The challenge of decreasing ore grade quality around the world, makes higher productivity levels a must for mine operators. As a consequence, bigger mills with more powerful drive systems are becoming more popular every day. Designed to fit individual site requirements, ABB’s drive systems are the ideal match for these mega mills.
VENKAT NADIPURAM – One of the key challenges in the mining industry today is maintaining throughput in the face of ore grade quality that has declined by 40 percent in the last decade. Returns must be attractive even with energy costs and environmental regulations increasing. Industry analysts expect the mining industry to register modest growth in the coming decades, thereby making higher productivity essential. As an industry leader in mill drives, ABB combines its extensive industry knowledge with its application experience to provide a diverse portfolio of drive solutions for the mining industry.

ABB drive systems enable the mining industry to employ bigger mills

Title picture
ABB drive solutions help operate the enormous mills being used in the mining industry today. This is the GMD at Esperanza Copper mine in Chile.
Throughout the comminution process, different mills are driven by different types of electrical drives.

An example of an industry-standard comminution circuit providing high throughputs can be seen in ➔3. This circuit, however, has a high specific energy consumption per ton of ore processed, driven primarily by the low efficiency of the ball mills and the need to use steel media for grinding.

Ring-geared mill drive
Throughout the comminution process, different mills are driven by different types of electrical drives. ABB provides a variety of different types of drive solutions for the mining industry.

For example, ring-geared mill drive (RMD) systems are good solutions when the power required to drive the mill is under 18 MW, i.e., a maximum of 9 MW per pinion ➔4. Yet as tube mills grow in size in order to meet the demand for larger throughputs, the power required to drive them increases. Although ABB can manufacture drive systems for very large power ratings, the physical limitation of a mechanical gear limits its application for driving tube mills where the power required is over 18 MW.

Gearless mill drive
The limitation of an RMD system was overcome by ABB when it introduced the first gearless mill drive (GMD) in 1969 for the cement industry. ABB introduced the first GMD into the minerals industry in 1985 and since then it has become the de facto standard equipment for mines with larger throughput requirements. ABB has sold and installed over 120 GMD units worldwide.

1 Different processes used in comminution

<table>
<thead>
<tr>
<th>Process</th>
<th>Size range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion</td>
<td>∞ – 1000</td>
</tr>
<tr>
<td>Gyratory crusher</td>
<td>200 – 1000</td>
</tr>
<tr>
<td>Cone crusher</td>
<td>20 – 200</td>
</tr>
<tr>
<td>AG / SAG mill</td>
<td>2 – 200</td>
</tr>
<tr>
<td>Rod mill</td>
<td>5 – 20</td>
</tr>
<tr>
<td>Ball mill</td>
<td>0.2 – 5</td>
</tr>
<tr>
<td>HPGR</td>
<td>1 – 20</td>
</tr>
<tr>
<td>Stirred mills</td>
<td>0.001 – 0.2</td>
</tr>
</tbody>
</table>

Explosion
Crushing
Grinding

2 Ball mill at Boliden Aitik copper mine
By not having a gearbox (gear and pinion), the mechanical limitation associated with gears is eliminated. This allows mill diameters to increase as required. The world’s largest GMD, with a diameter of 12.8 meters, will be delivered by ABB to the Conga mine in Peru. Eliminating gears improves the efficiency and availability of the mills and less maintenance work is needed.

The advantages of a GMD application in the minerals grinding process have been well established over the past 40 years, with the benefits increasing exponentially as the mills get bigger.

In the GMD solution the drum of the mill forms the rotor of the motor, with the motor poles mounted along the external circumference of the drum → 5. The stator is mounted around the pole assembly. The operation is carried out with high precision so that the final gap between the poles and the stator is no more than 14–16 mm, depending on the mill size.

Eliminating gears improves the efficiency and availability of the mills and less maintenance work is needed.
ABB provides optimized, state-of-the-art drive solutions for HPGR mills and currently has the largest installed base for the over 2 MW power range.

charge protection, controlled roll back and positioning for mill maintenance needs.

Design improvements
Since the introduction of GMDs, ABB has delivered customized solutions for every individual mine and process requirement, from power ratings and size to site altitude. ABB’s most recent achievement in this area was commissioning a 28 MW system at 4,600 m above sea level.

ABB continues to develop new features and designs to guarantee higher availability and reduced maintenance, particularly for high-altitude and remotely located mines.

For example, particular attention has been given to the stator winding insulation. The stator winding consists of a bar winding with individually insulated strands that are intertwined to use the entire copper cross section almost evenly while reducing losses and lowering eddy currents. These strands are packed in a Mica-based VPI insulation. The whole stator bar is “VPlled,” including the slot section and the winding overhang area, which is important for high-altitude applications. The stator core sheets are pressed together to increase the overall stiffness, which minimizes the retightening work required during the ring-motor lifetime.

GMD condition monitoring
ABB has developed advanced remote diagnostic tools for troubleshooting as well as predictive maintenance. For example, with up-to-date operation information from the system, operators are notified of any potential problem long before an automatic alarm or trip is activated. Notifications are sent by e-mail or text messages to the mine operators as well as ABB remote diagnostic engineers.

The diagnostic tools monitor a wide range of signals from all the key components of the GMD system including transformers, cycloconverters and the ring motor. This allows for continuous analysis of the system status and the ability to inform the customer in a reliable and timely manner of any potential problems that may arise during operation.

A maturing grinding technology
Today’s mining industry is increasingly facing a new challenge: how to develop bigger grinding machines to sustain the grinding process with HPGRs is a dry process, thus saving water, which is a scarce resource in many mining sites.
throughput with steadily declining grades, while at the same time minimizing energy consumption.

One way of meeting the challenge is to use high-pressure grinding rolls (HPGRs). HPGRs have proven to be extremely effective for grinding mineral raw materials, especially since manufacturers have developed roll-wear protection systems to better deal with hard and abrasive ores.

Additionally, the grinding process with HPGRs is a dry process, thus saving water, which is a scarce resource in many mining sites, eg, Chile.

Comminution circuits with HPGRs

The multiple benefits of including an HPGR mill in comminution circuits has operators looking to combine them with other types of mills in order to optimize the total specific energy consumption of a comminution setup.

There are numerous benefits of using HPGRs in comminution circuits in comparison with conventional grinding processes using SAG mills. The most significant benefit is an up to 20 percent increase in energy savings. Also, metal liberation is improved, a reduced grind-
HPGRs are poised to play an important role in the comminution circuits to help reduce energy costs, water requirements and footprint compared with the traditional SABC circuits. While being a standard solution in mineral processing, HPGR technology continues to undergo constant development. ABB is at the forefront of this development with many new features being added to further optimize drive system performance.

Venkat Nadipuram
ABB Process Automation, Industry Solutions
Baden-Dättwil, Switzerland
venkat.nadipuram@ch.abb.com
Global Competence and Execution Center for grinding solutions

ABB Switzerland Ltd.
Segelhofstrasse 9P
5405 Baden 5 Dättwil
Switzerland
Phone: +41 58 586 84 44
E-mail: minerals@ch.abb.com

ABB’s Mining business is represented in the following countries:
Australia, Brazil, Canada, Chile, China, Germany, Peru, South Africa, Sweden and Switzerland.

For contact details, please visit our website:
www.abb.com/mining