Optimize ^{IT} Inferential Modeling Platform

Rise of Data Driven Modeling

- n Wide spread availability of data historians and lab information systems has made data a commodity
- n Plants are "data manufacturers" with hundreds of thousands data points stored each day
- n Historical data are a valuable asset for better control, management decision support and process optimization, but extracting useful information requires discriminating tools

Key Reasons Spurring Inferential Applications

- Data-driven modeling is a flexible and powerful tool that transforms data into valuable process information
- Inferential sensors are an established and mature technology
- Process industry applications of inferential technology deliver significant benefits
- Inferentials are complementary to Multivariable Process
 Controls for many applications
- Statistical process Control (SPC) and MultiVariate Statistical Process Control (MvSPC) are valuable technologies to keep process under control

Optimize^{IT} Inferential Modeling Platform

- Inferential Modeling Platform: a comprehensive toolkit for data-driven modeling
- All the steps required for the development and implementation of models are executed inside the platform.

IMP

Project Execution Steps

Inferential Modeling Platform - Architecture (1)

supervision of implemented models

© ABB - 6

Integration of the best technologies

Phase 1: IMP Model Builder

© ABB - 9

Offline Enviroment - The Concept

© ABB - 10

IMP Model Builder - Technical Details

- An open software platform, that integrates the best technologies on the market.
- Highly automated tools allow quick and easy model building and validation; building models takes a fraction of the total project effort
- Easy and effective data import; outlier detection is provided through automatic built-in functions and wizards
- Data treatment is executed through a visual approach (preview function)
- Data treatment is performed with a step-by-step approach; execution of steps can be undo and automated through a scripting language
- Built-in functions to tackle process delays and Merge merge data files

Data Preparation

- n Data Preprocessing
- n Data Analysis

🙀 PCA Details

100

50

Eigenvalue #

Help

Value

2

3

4

5

6

7

8

9

5.40628

5.08334

3.76682

2.37970

1.62341

1.56467

1.23487

1.12204

0.93438

Threshold

Value %

Eigenvalues Eigenvectors

IMP Model Builder - Advantages

- Combines Neural Networks,
 Statistical Regressions and
 Advanced Statistical Analysis
 (MVSPC) in a single environment
- Modeling functions are provided by proven, field-tested, latest generation routines.
- Model development is executed through Wizards, to reduce effort for inexperienced users
- The Model Explorer facility allows off-line use of models for engineering purposes

Online environment - The Concept (2)

© ABB - 15

IMP OnLine - Technical Details

- A unique deployment environment for real-time use of models statistical monitoring, featuring different technologies:
 - ü Neural Networks
 - ü Statistical Regressions

- ü MVSPC
- ü Equation-based models

ü PLS

- ü Custom-based models (DLLs)
- ü Locally Weighted Regressions
- Ø The Platform is designed to allow straightforward integration of existing client models through use of DLLs.

IMP Online: Advantages

- Quick and effective real-time implementation on different DCS through OPC;
- Single window interface is achieved by writing back through the OPC Server
- Configurable filtering of inputs and outlier removal strategies
- Direct connection to
 Laboratory Information
 Management Systems
- Built-in functions for periodic recalibration (Bias calculation)

Quality Control

n Monitor effect of the inferential application on the quality variable with SPC

MvSPC Example

n Process Performance Monitoring: an example with Bivariate T² (MVSPC) -3σ \overline{X} 3σ

Standard operative zone: inside ellipse Abnormal condition: outside ellipse

The Multivariate SPC Process

From Start to Process Improvement

Solutions

- **n** Typical solutions based on IMP:
 - n Inferential measurements
 - n Sensor validation
 - **n Predictive Emission Monitoring**
 - n Quality Monitoring
 - n Process Performance Monitoring
 - n Maintenance Trigger

#