Protection Relay
REX 521

Operator’s Manual
Contents

1. About this manual ...7
 1.1. This manual ...7
 1.2. Use of symbols ...7
 1.3. Related documents ...7
 1.4. Document revisions ..8

2. Safety information ..9

3. Introduction ..11
 3.1. REX 521 protection relay ...11

4. Instructions ..13
 4.1. HMI features ...13
 4.2. Push-button functions ..15
 4.2.1. Selecting language ...16
 4.2.1.1. Changing language by using button combination ..16
 4.2.2. Selecting function block naming17
 4.2.3. Passwords ...17
 4.2.4. Display backlight ..18
 4.2.5. Display contrast ..18
 4.2.6. Display test ...18
 4.2.7. Selecting primary values19
 4.2.8. Optically isolated serial communication port19
 4.3. Menu chart ..20
 4.3.1. Measurement menu ..21
 4.3.2. Event menu ..22
 4.3.3. Manual control ..23
 4.3.3.1. Local/Remote position selection23
 4.3.3.2. Controlling breaker24
 4.3.4. Setting parameters ..26
 4.3.5. Setting bit masks ...26
 4.4. Indication messages ...27
 4.4.1. Protection indications28
 4.4.2. Self-supervision ...28
 4.4.3. Condition monitoring indication29
 4.5. LED indicators ..30
 4.5.1. Green indication LED (READY)30
 4.5.2. Yellow indication LED (START)30
 4.5.3. Red indication LED (TRIP)31
 4.5.4. Alarm LED 1-8 ..31
5. **Test mode** ... 33
 5.1. I/O test ... 33
 5.2. IRF test ... 34
 5.3. Function block test ... 34

6. ** Abbreviations** ... 35

7. **Index** ... 37
The information in this document is subject to change without notice and should not be construed as a commitment by ABB Oy. ABB Oy assumes no responsibility for any errors that may appear in this document.

In no event shall ABB Oy be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB Oy be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB Oy, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Copyright © 2006 ABB Oy
All rights reserved.

Trademark

ABB is a registered trademark of ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Guarantee

Please inquire about the terms of guarantee from your nearest ABB representative.
1. About this manual

1.1. This manual

The purpose of this manual is to provide the user with basic information on the protection relay REX 521 Revision G, and to especially focus on explaining the use of the human-machine interface (HMI).

For information about the new features of the relay, refer to REX 521 Technical Reference Manual, General (see “Related documents” on page 7).

1.2. Use of symbols

This publication includes the following icons that point out safety-related conditions or other important information:

- The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

- The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

- The information icon alerts the reader to relevant facts and conditions.

Although warning hazards are related to personal injury, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.3. Related documents

Manuals for REX 521

• Technical Reference Manual, General 1MRS751108-MUM
• Technical Reference Manual, Standard Configurations 1MRS751802-MUM
• Installation Manual 1MRS750526-MUM
• Technical Descriptions of Functions (CD-ROM) 1MRS750889-MCD
• Modbus Remote Communication Protocol for REX 521, Technical Description 1MRS755017
• DNP 3.0 Remote Communication Protocol for REF 54_, RET 54_ and REX 521, Technical Description 1MRS755260
Parameter and event lists for REX 521

• Parameter List for REX 521 1MRS751999-RTI
• Event List for REX 521 1MRS752000-RTI
• General Parameters for REX 521 1MRS752156-RTI
• Interoperability List for REX 521 1MRS752157-RTI

Tool-specific manuals

• CAP505 Installation and Commissioning Manual 1MRS751901-MEN
• CAP505 User’s Guide 1MRS752292-MEN
• CAP505 Protocol Mapping Tool Operator’s Manual 1MRS755277
• Tools for Relays and Terminals, User’s Guide 1MRS752008-MUM
• CAP 501 Installation and Commissioning Manual 1MRS751899-MEN
• CAP 501 User’s Guide 1MRS751900-MUM

1.4. Document revisions

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>25.03.2004</td>
<td>Document layout changed</td>
</tr>
<tr>
<td>E</td>
<td>04.06.2004</td>
<td>Pictures updated in tables, chapter 4.3.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes in tables, chapters 4.5.1. and 4.5.4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning text added, chapter 5.1.</td>
</tr>
<tr>
<td>F</td>
<td>17.2.2006</td>
<td>Relay face plate updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CB close delay added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language change shortcut added</td>
</tr>
</tbody>
</table>
2. Safety information

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Non-observance can result in death, personal injury or substantial property damage.

Only a competent electrician is allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed.

The frame of the device has to be carefully earthed.

The device contains components which are sensitive to electrostatic discharge. Unnecessary touching of electronic components must therefore be avoided.

Breaking the sealing tape on the rear panel of the device will result in loss of warranty and proper operation will no longer be guaranteed.
3. Introduction

3.1. REX 521 protection relay

The protection relay REX 521 is designed for protection, control, measuring and supervision in medium voltage networks. Typical applications include incoming and outgoing feeders as well as substation protection. The protection relay is provided with energizing inputs for conventional current and voltage transformers. Also a hardware version with inputs for current and voltage sensors is available.

The protection relay is based on a multiprocessor environment. The HMI including an LCD (liquid crystal display) with different views makes the local use easy and informs the user via indication messages. Modern technology is applied both in hardware and software solutions.

The REX 521 is part of the substation automation concept for distribution automation and extends the functionality and flexibility of the concept.
4. Instructions

4.1. HMI features

- Push-buttons for navigating, [C] Clear/Cancel and [E] Enter
- Language selection
- Setting values are protected by passwords
- Display backlight
- Adjustable display contrast
- Display test
- Selection of primary values
- Optically isolated serial communication port
- Three LED indicators
- Eight programmable alarm LEDs
Fig. 4.1.-1 HMI front view

1. Alarm LEDs
2. LED indicator: Trip, CBFP
3. LED indicator: Start, Block
4. LED indicator: Ready, IRF, Test mode
5. LCD
6. Optical PC connector
7. Navigation buttons
8. Clear/Cancel
9. Enter
4.2. Push-button functions

The HMI includes push-buttons for operating the protection relay.

A quick touch on the arrow button up [↑] or down [↓] is interpreted as one step upwards or downwards in a menu or as the minimum step up or down in setting mode of a parameter.

- The cursor stops at the first and last rows in a menu; pressing the [↑] button at the first row or [↓] button in the last row is ignored.
- If the [↑] or [↓] button is kept pressed, the menus are automatically scrolled faster than with single button pressings.

![Navigation push buttons](image)

![Clear and Enter buttons](image)

Fig. 4.2.-1 Push-buttons

The table below gives a short explanation of the push-buttons and their functions.

<table>
<thead>
<tr>
<th>Table 4.2.-1 Push-button functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up/Down</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Left /Right</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Clear/Cancel</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Enter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.2.1. Selecting language

1. Select Configuration in the main menu with the [↓] and [→] buttons, General in the group menu, Software in the subgroup menu and Active language in the parameter menu.

2. Press the [E] button until the second row of the display starts flashing. Then select the desired language with the [↓] and [↑] buttons.

3. Confirm the selection by pressing the [E] button once more or cancel the selection by pressing the [C] button.

After altering the language, the display menus are shown in the new language and the selection is restored after a disconnection of the power supply.

4.2.1.1. Changing language by using button combination

Simultaneously press and hold the [←] and [E] buttons for 5 seconds in order to change language from English to the additional language or vice versa. This button combination can be used anywhere in the HMI menu structure. The selected language is restored after a relay reset or a disconnection of the power supply.
4.2.2. Selecting function block naming

The user can select the function block naming convention. Two alternatives are available: ANSI and IEC. ANSI follows the ANSI standard and IEC follows the IEC standard function block naming.

Navigate to Configuration\Display\FB naming conv. and select ANSI or IEC. The change will be effective immediately.

When Chinese is selected, some of the IEC FB names are translated into Chinese.

4.2.3. Passwords

Setting values are protected by passwords. There are two different passwords, one for protecting the HMI setting values and another for protecting settings through serial communication.

- The default value of the serial communication password is 001 and of the HMI password 999.
- The HMI password is not active until it has been changed from the default value. After changing it, the relay prompts for password whenever the [E] button is pressed in the setting value menu. Once the right password has been given, it stays active until the display is returned to idle state by time-out. To disable the HMI password, change it back to the default value 999.
- In case a password is forgotten, the HMI password can be viewed and changed via serial communication.
4.2.4. Display backlight

The backlight of the display is normally off. When a button on the HMI is pressed, the backlight turns on automatically and the panel is ready for further operations.

- At power up, the backlight is also turned on during the display test.
- After a time-out period (5 min), the backlight is automatically switched off if there has not been any activity on the panel.
- When changing between Local/Remote mode by a digital input, the backlight is turned on for 10 seconds.

4.2.5. Display contrast

The display contrast is temperature compensated, which means that the contrast automatically adjusts itself with temperature to preserve readability.

- To obtain optimal readability, the contrast of the display can be adjusted. Simultaneously pressing the \([E]\) button and \([↑]\) or \([↓]\) button increases or decreases the contrast.

![Push \(E\) and \(↑\) or \(↓\) to adjust contrast.](image)

Fig. 4.2.5.-1 Adjusting display contrast

- The display contrast may be adjusted anywhere in the menu structure except in the setting menus where the \([E]\) button is used for entering the setting mode.
- The selected contrast value is stored in a non-volatile memory and thus, after an auxiliary power failure, the contrast is restored automatically.

4.2.6. Display test

Upon auxiliary voltage connection, the backlight is turned on and a short display test is run. This display test includes all the LEDs and the LCD. The LEDs are tested by turning them on simultaneously while the LCD shows two patterns so that all the pixels are activated. After the test, the display returns to normal state.

- The display test can also be started manually by navigating to Configuration\Display\Test display and then selecting Test display (refer to section “Menu chart” on page 20).
4.2.7. Selecting primary values

The setting values, input data and recorded values that are relative to some quantity can be obtained directly in amperes and volts. For the relay to know how to convert between primary and per unit values, the setting values describing the measurement devices (CT, VT, VD, RS) need to be properly set.

1. Navigate to Configuration\Display\Primary values and select Primary values instead of the default Per unit values.
2. Navigate to Configuration\Meas. devices and enter the data for all the CTs and VTs, VDs and RSs that are in use in that particular hardware. For information about setting the rated values for the protected unit and about the technical data of the measuring devices, refer to Technical Reference Manual, General (see “Related documents” on page 7).

4.2.8. Optically isolated serial communication port

The front panel of the protection relay is provided with an optical serial communication connector. The connector is used for programming the relay with a PC via a RS-232 cable, type 1MKC950001-2.
4.3. Menu chart

The contents of the menu chart depend on the configuration of the relay. However, the main menu structure is always preserved.

Fig. 4.3.-1 Example of a menu chart structure
4.3.1. Measurement menu

The contents of the measurement menu depend on the relay configuration.

If a measurement view is selected, it remains active after the time-out period. The same is true with the manual control view. From other views, the display reverts to idle mode at the same time as the backlight is switched off.

- If energy measurements are present, accumulated values can be reset by pressing the [C] button for 2 s.

Table 4.3.1-1 Measurement view

<table>
<thead>
<tr>
<th>Function block</th>
<th>Measurand View</th>
</tr>
</thead>
<tbody>
<tr>
<td>3I</td>
<td>MEASURED VALUES</td>
</tr>
<tr>
<td></td>
<td>IL1 (A)</td>
</tr>
<tr>
<td></td>
<td>IL2 (A)</td>
</tr>
<tr>
<td></td>
<td>IL3 (A)</td>
</tr>
<tr>
<td>Io</td>
<td>DEMAND VALUES</td>
</tr>
<tr>
<td></td>
<td>Io (A)</td>
</tr>
<tr>
<td>Uo</td>
<td>MEASURED VALUES</td>
</tr>
<tr>
<td></td>
<td>Uo (V)</td>
</tr>
<tr>
<td>3U</td>
<td>U1 (kV)</td>
</tr>
<tr>
<td></td>
<td>U2 (kV)</td>
</tr>
<tr>
<td></td>
<td>U3 (kV)</td>
</tr>
<tr>
<td></td>
<td>U12 (kV)</td>
</tr>
<tr>
<td></td>
<td>U23 (kV)</td>
</tr>
<tr>
<td></td>
<td>U31 (kV)</td>
</tr>
<tr>
<td>3U_B</td>
<td>U12s (kV)</td>
</tr>
<tr>
<td></td>
<td>U23s (kV)</td>
</tr>
<tr>
<td></td>
<td>U31s (kV)</td>
</tr>
<tr>
<td>f</td>
<td>f (Hz)</td>
</tr>
<tr>
<td></td>
<td>MEASURED VALUES</td>
</tr>
<tr>
<td></td>
<td>U3 (kV)</td>
</tr>
<tr>
<td></td>
<td>U12a (kV)</td>
</tr>
<tr>
<td></td>
<td>U23s (kV)</td>
</tr>
<tr>
<td></td>
<td>U31s (kV)</td>
</tr>
<tr>
<td></td>
<td>f (Hz)</td>
</tr>
</tbody>
</table>
4.3.2. Event menu

The event menu (Main menu\Measured values\Events) contains the function block name and the event in the same manner as the indication messages (See “Indication messages” on page 27.). The first view of the event menu shows the amount of events (maximum 50). The most recent event is stored on top of the list.

When a certain event is selected, date and time of the event in question can be read by moving one step right with the [→] button. If the event in question is a trip event and its data in the recorded data menu (Main menu\Protection...\Recorded data1...3) has not been overwritten, it is possible to move directly to the associated recorded data by moving right [→] again in the date and time view. This possibility is indicated with a ">" (greater-than sign) on the first row of the event.¹ Return to the event view with the [C] button or with the [←] button, like in normal menu navigation. When viewing recorded data, the return is directed to the event summary view (Main menu\Measured values\Events) if

- the recorded data is overwritten, or
- the original event is overwritten in the event list, or
- the event list is cleared.

These events are stored in the non-volatile memory, which means that they can also be seen after a disconnection of the power supply. When displayed, the event list can be cleared by pressing the [C] button for 2 seconds.

¹ Not valid when Chinese is selected
4.3.3. Manual control

4.3.3.1. Local/Remote position selection

The control position can be changed in **Control\Manual control\Local/Remote**.

- The control mode can be selected by pressing the [E] button and using the [↑] and [↓] buttons.
- The [E] button confirms the selected mode and the [C] button cancels the selection and keeps the current mode.

For password handling, refer to section “Passwords” on page 17.

Table 4.3.3.1-1 Control positions

<table>
<thead>
<tr>
<th>Control position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control off</td>
<td>Local and remote operations are inhibited. The current state of the object is shown in the control menu.</td>
</tr>
<tr>
<td>Local</td>
<td>Object can be controlled from the HMI and the digital inputs. Remote control is inhibited.</td>
</tr>
<tr>
<td>Remote</td>
<td>Object can be controlled via remote communication. Control from the HMI and digital inputs is inhibited and the object state is shown in the control menu.</td>
</tr>
<tr>
<td>External input</td>
<td>The digital input programmed for selector Local/Remote is used for selecting between the local and remote modes. When selected the mode will be displayed as Local (ext.) or Remote (ext.) depending on the digital input state.</td>
</tr>
</tbody>
</table>

The selected control position remains the same during auxiliary power-off.

When the local mode is selected, the character “L” is shown in the bottom-right corner of the HMI main view. However, if the language in the relay is other than English, the character that is shown in the display depends on the selected language.
4.3.3.2. **Controlling breaker**

The object control menu is in Control\Manual control\Control CB. Only the current position of the breaker is shown and no control is possible in remote or control off mode. In local mode the state of the breaker is shown and the possible target states can be scrolled with [→] and [←] buttons. Possible target states are open and closed. When the desired target state is selected the object can be selected by using the [E] button.

The message =Preparing... can be briefly shown before the text =Are you sure? is displayed. The operation can then be confirmed with the [E] button and cancelled with the [C] button. If the operation is cancelled the text =Aborted is displayed for three seconds and then the current state of the breaker is shown. The same happens if the =Are you sure? has been displayed for 30 seconds.

Notice that an adjustable timeout in Control\General\Select timeout restricts the time between the object selection and the control request. If the timeout is shorter than 30 seconds and it elapses before the operation is confirmed, controlling the object will not be possible before the object is selected again. If the operation is confirmed, the appropriate transition text (=Opening... or =Closing...) is shown for at least four seconds after which the current state of the object is shown.

The current state of the interlocking of the object can prevent the select or execute requests. In that case the text =Interlocked is displayed for three seconds. The attempted operation is cancelled and after the three seconds the current state of the object is displayed.

Delayed closing of circuit breaker

When closing a circuit breaker from the local HMI, it may be required to delay the actual close operation for safety reasons. By delaying the operation, the operator has got time to step back, thus avoiding the risk of injury in case of a serious fault. The delay is optional and adjustable. The parameter Control/General/CB close delay is used to adjust the delay. The settable range is 0...30 seconds. The value zero, which is the default value of the parameter, means that the delay function is disabled.

Only close operations are affected by the delay; open operations are always performed immediately. The delay is not in use when the control position is set to REMOTE.

If the close delay is active and set to 15 s, the countdown texts Closing in 15s, Closing in 14s,..., Closing in 1s will be displayed instead of the text =Closing... When the delay has elapsed, the breaker will be closed and the text =Closed. E=Open will be displayed.

If the closing fails due to interlocking or other reasons, the control sequence will be interrupted and the reason for the failure will be displayed on the LCD until cleared. After this message, the text =Open. E=Close will be shown again.
The delayed close operation is cancelled either by pressing any key during the delay countdown or by changing the control position (when control position is LOGIC). In both these cases, the text `Aborted` is shown on the LCD. `Aborted` is also shown if the [C] button is pressed when the text `Are you sure?` is displayed.

The `Select timeout` setting is by default 30 s. This timeout commences when the text `Are you sure?` is displayed on the LCD. The CB close delay time commences when `Are you sure?` is shown on the LCD and the [E] button is pressed. At the same moment as the [E] button is pressed, the relay checks that the remaining time of the `Select timeout` is longer than the set CB close delay time. If this is not the case, the text `Failed` is shown on the LCD when the [E] button is pressed.

Fig. 4.3.3.-1 Manual control

Table 4.3.3-1 Manual control messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aborted</td>
<td>The current operation was aborted either by user or state change in object status or timeout.</td>
</tr>
<tr>
<td>Are you sure?</td>
<td>Waiting for confirmation for the selected operation. [E] accepts it and [C] cancels it.</td>
</tr>
<tr>
<td>Closed</td>
<td>Object state is closed. Control is not possible due to remote or control off state.</td>
</tr>
<tr>
<td>Closed. E=Close</td>
<td>Object state is closed. [E] will close it.</td>
</tr>
<tr>
<td>Closed. E=Open</td>
<td>Object state is closed. [E] will open it.</td>
</tr>
<tr>
<td>Closing...</td>
<td>Object is being closed.</td>
</tr>
</tbody>
</table>
4.3.4. Setting parameters

The setting parameters are listed in the CD-ROM Technical Descriptions of Functions (see “Related documents” on page 7).

1. Navigate to the right parameter using the buttons $↑$, $↓$ and $→$, $←$ and the menu chart structure as reference.

2. Activate setting mode by pressing the [E] button.

3. If the default HMI password has been changed, it is now prompted. To enter the valid password, change the active digit by pressing the buttons $←$ and $→$, then set the digit value by pressing the buttons $↑$ and $↓$.

4. Once the password has been entered, press the [E] button to confirm. Now the selected setting value starts flashing.

5. Enter the new setting value using the buttons $↑$, $↓$ and $→$, $←$.

6. Press the [E] button to confirm.

7. If the new value is within the allowed limits, it is now stored in the non-volatile memory and restored after disconnection of power supply.

8. If an illegal setting value is confirmed, a message in the display tells the user that the setting is out of range by showing the message Invalid value, and the previous parameter value remains unchanged.

4.3.5. Setting bit masks

Event masks and switchgroups are presented as bit masks with a checksum. Most of the events can be included in or excluded from the event reporting by altering the bits of the event masks. Switchgroups are used for changing the connections of inputs and outputs to the relay function blocks.

<table>
<thead>
<tr>
<th>Event mask 1</th>
<th>0:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event mask 2</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 4.3.5.-1 Bit mask in setting mode
When navigating in menus containing bit masks, only the checksum is shown. If setting mode is entered, the single bit presentation (bit 0, value 1, in the example above) appears in the rightmost lower corner of the display. The contents of the bit mask may be altered by entering single bit values. However, the new values are not valid until setting mode has been exited by pressing the [E] button.

1. Navigate to the right parameter using the buttons [↑], [↓] and [→], [←] and the menu chart structure as reference.
2. Activate setting mode by pressing the [E] button.
3. If the default HMI password has been changed, it is now prompted. To enter the valid password, change the active digit by pressing the buttons [←] and [→], then set the digit value by pressing the buttons [↑] and [↓].
4. Once the password has been entered, press the [E] button to confirm. Now the selected setting value starts flashing.
5. Enter the new setting value using the buttons [↑], [↓] and [→], [←].
6. Press the [E] button to confirm.

When entering single bit values, the bit to be edited may be shifted by pressing the [→] button when the cursor is located in the rightmost corner of the display. In that way, the cursor does not have to be moved back and forth between the bit number and the value during the setting period, thus simplifying the procedure.

For information about the meaning of each event, refer to Event List for REX 521 on the CD-ROM Technical Descriptions of Functions (see “Related documents” on page 7).

4.4. Indication messages

There are two different kinds of indication messages:

- A text message together with a LED indication.
 - This type of messages are related to information from the protection functions and information concerning the condition of the protection relay (self-supervision).
- A text message without a LED indication.
 - This type of messages are related to condition monitoring, alarms and warnings or help texts appearing when certain display operations are performed.

Indication messages have a certain priority. If different types of indications occur simultaneously, the message with the highest priority appears on the display. Priority order of the messages:

1. Internal fault, CBFP
2. Trip
3. Start, Block
4. Help messages

Indication messages may be cleared with the [C] button, until the display reverts to the menu active before the events.

Help messages are displayed when certain operations are done. For example, when resetting output relays, events and registered values by pressing the [C] and [E] buttons for 5 s, a help text describing the operation is displayed at the same time.
4.4.1. Protection indications

When a protection function starts, the symbol of the protection function and the text "START" are displayed. The corresponding yellow LED indicator is also lit. In case of three-phase or two-phase protection functions, the faulted phases are displayed as well.

![Indication of start](image1.png)

Fig. 4.4.1.-1 Indication of start

If a started protection function is blocked, the name of the function and the text "BLOCK" are displayed. Now, the yellow LED indicator is blinking.

![Indication of blocking](image2.png)

Fig. 4.4.1.-2 Indication of blocking

If a protection function trips, the name of the function and the text "TRIP" appear on the display. The red LED indicator is lit. The faulted phases are displayed in this case.

Should the protection function deliver a delayed trip for circuit-breaker failure protection (CBFP), the red indicator starts blinking.

![Indication of trip](image3.png)

Fig. 4.4.1.-3 Indication of trip

4.4.2. Self-supervision

The protection relay is provided with an extensive self-supervision system. The self-supervision system handles run-time fault situations and informs the user about existing faults over the display and the serial communication.
When a fault has been detected, the green READY indicator starts blinking. At the same time, the self-supervision (IRF) output relay is activated. Additionally, a fault indication text INTERNAL FAULT appears on the display and an event is generated.

![Indication of fault](image)

Fig. 4.4.2.-1 Indication of fault

The fault indication has the highest priority and no other indication can overrun it. The fault indication text is displayed until it is cleared by pressing the [C] button. The green READY indicator continues blinking as long as the fault is present. Should the fault disappear after a reset, the indicator stops blinking and an event is generated over the serial communication. The self-supervision (IRF) output relay is returned to its normal state.

4.4.3. Condition monitoring indication

If the relay configuration includes condition monitoring functions that are not directly related to any protection function or to the internal relay condition, indication messages with the message SUPERV and an explanatory text appear if faults are found.

![Condition monitoring indication](image)

Fig. 4.4.3.-1 Condition monitoring indication
LED indicators

4.5.1. Green indication LED (READY)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-active LED: OFF</td>
<td>Auxiliary supply voltage has been disconnected. Check that the auxiliary voltage is disconnected before taking any further action.</td>
</tr>
<tr>
<td>Steady LED: READY</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>Blinking LED: IRF or TEST MODE</td>
<td>Internal relay fault (IRF) has occurred or the relay is in test mode(^7). Internal faults are accompanied by an indication message, provided the HMI panel is operative.</td>
</tr>
</tbody>
</table>

\(^7\) - Relay - Function block

4.5.2. Yellow indication LED (START)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-active LED: OFF</td>
<td>Normal operation mode. No function has started.</td>
</tr>
<tr>
<td>Steady LED: START</td>
<td>A protection function has started and an indication message is displayed. The start indication can be selected to be of latching/non-latching type. Non-latching means that the indicator is deactivated when the fault disappears while latching means that the indicator remains lit until cleared by pressing the ([C]) button. Should several protection functions start within a short time, the last start is indicated on the display.</td>
</tr>
<tr>
<td>Blinking LED: BLOCK</td>
<td>A protection function is blocked. The blocking indication disappears when the blocking is removed or when the protection function is reset. A message indicating which function has been blocked appears on the display. Should several protection functions be blocked within a short time, the last blocked function is indicated on the display. Blocking indications have higher priority than start indications.</td>
</tr>
</tbody>
</table>
4.5.3. Red indication LED (TRIP)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-active LED: OFF</td>
<td>Normal operation mode. No function has tripped.</td>
</tr>
<tr>
<td>Steady LED: TRIP</td>
<td>A protection function has tripped and an indication message is displayed. The trip indication is latching, that is, it must be reset by pressing the [C] button or via the serial communication. If several protection functions trip within a short time, the indication of the first tripping remains on the display until the time determined by the “new trip indication” setting value has expired. After this, a new trip indication overwrites the old one. This setting value can be set to indefinite (999); in this case, the first trip indication remains on the display until reset.</td>
</tr>
<tr>
<td>Blinking LED: TRIP (CBFP)</td>
<td>Trip with CBFP (circuit-breaker failure protection). The indication is reset by pressing the [C] button.</td>
</tr>
</tbody>
</table>

4.5.4. Alarm LED 1-8

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-active LED: OFF</td>
<td>Normal operation. All the alarms are OFF.</td>
</tr>
<tr>
<td>Steady LED</td>
<td>Non-latched mode: alarm is still ON. (^{ab})</td>
</tr>
<tr>
<td></td>
<td>Latched mode: alarm is still ON or it is OFF but has not been acknowledged.(^{a})</td>
</tr>
<tr>
<td></td>
<td>Latched blinking mode: alarm is still ON but has been acknowledged.(^{ab})</td>
</tr>
<tr>
<td>Blinking LED</td>
<td>Latched blinking mode: alarm is ON and has not been acknowledged.(^{b})</td>
</tr>
</tbody>
</table>

\(^a\) Valid only if the LED is not activated by the parameter Alarm LED States.

\(^b\) The alarm can also be OFF if an auxiliary supply break has occurred. The state of the LED is then preserved and has to be acknowledged (cleared) from the main view.
5. **Test mode**

Digital inputs, output relays and IRF relay may be tested by setting the parameter **Test mode** to **Testing** in the menu **Main menu\Tests\General**.

When test mode is activated, the green READY indicator is blinking. For more information, refer to Technical Reference Manual, General (see “Related documents” on page 7).

Test mode can be cancelled by setting the parameter to **No test** or by disconnecting the power supply.

If the user does not cancel the test mode, it remains active and the Ready LED remains blinking.

5.1. **I/O test**

The picture below shows the menu used for digital input testing (**Tests\Inputs**) in the hardware variant with nine digital inputs. The digits correspond to the inputs DI1...DI9, starting from the right side.

![Digital input testing](image)

Fig. 5.1.-1 Digital input testing

The following picture shows the menu used for output relay testing **Tests\Outputs**. Observe that the self-supervision relay is activated in another menu and is thus not included in this menu. The relays are activated in the order: SO, PO and HSPO, starting from the right side.

![Output relay testing](image)

Fig. 5.1.-2 Output relay testing

If the user forgets to cancel the test mode, it remains on and the Ready LED indicator remains flashing.
5.2. **IRF test**

The IRF relay may be tested by activating the IRF relay in the menu `Main menu\Tests\General\Activate IRF`.

5.3. **Function block test**

The outputs (Start and Trip) of a function block can be activated locally via the HMI or externally via serial communication. This is possible without setting the relay in test mode as described in “Test mode” on page 33. The outputs are activated by using control parameters of the function. For more information about the functions, refer to the CD-ROM Technical Descriptions of Functions (see “Related documents” on page 7).
6. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBFP</td>
<td>Circuit-breaker failure protection</td>
</tr>
<tr>
<td>CT</td>
<td>Current transformer</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>HSPO</td>
<td>High-speed power output</td>
</tr>
<tr>
<td>IRF</td>
<td>Internal relay fault</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display</td>
</tr>
<tr>
<td>PO</td>
<td>Power output</td>
</tr>
<tr>
<td>RS</td>
<td>Rogowski sensor</td>
</tr>
<tr>
<td>SO</td>
<td>Signalling output</td>
</tr>
<tr>
<td>VD</td>
<td>Voltage divider</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage transformer</td>
</tr>
</tbody>
</table>
7. **Index**

A
Alarm LEDs ... 13
1-8 .. 31
Modes ... 31

B
Bit masks .. 26
Breaker ... 24
Buttons .. 15

D
Digital inputs
 Testing ... 33
Display
 Adjusting Contrast ... 18
 Backlight .. 18
 Contrast ... 18
 Display test ... 18
 Language ... 16

E
Event view ... 22

H
HMI features .. 13

I
Indication messages
 Condition monitoring .. 29
 Green LED .. 30
 Help messages .. 27
 Internal fault .. 27
 Protection indication .. 28
 Self-supervision .. 28
 Start, Block ... 27
 Trip, CBFP ... 27
Introduction ... 11
IRF relay
 Testing ... 33
L
Latched output relays
- Resetting ... 15
LED indicators ... 13, 30
 READY ... 30
 START ... 30
 TRIP ... 31
Local control ... 23
Local/Remote position .. 23
 Changing control position 23
 Control positions .. 23

M
Manual control .. 23
 Messages .. 25
Measurement menu .. 21
Measurement view .. 21
Menu chart .. 20

O
Object control menu .. 24
Optically isolated serial communication port 19
Output relays
 Testing .. 33

P
Parameters ... 26
 Setting ... 26
Passwords ... 17
 Disabling HMI password 17
 HMI password .. 17
 Serial communication password 17
Primary values ... 19
Push-buttons .. 15
 Arrow button .. 15
 Functions .. 15
 Operating the relay .. 15

R
Remote control .. 23
REX 521 protection relay features 11

S
Selecting language .. 16
Protection Relay

Operator's Manual

T
Test
 Display ... 18
 Function block ... 34
 I/O ... 33
 IRF ... 34
Test mode ... 33
 Cancelling ... 33
Timeout ... 24