APPLICATION NOTE

AC500 V3 OOP KEYWORDS
DESCRIPTIONS AND EXAMPLES




Contents

1

Introduction 3
11 SCOPE Of the AOCUMENT ...ttt ne 3
1.2 COMPATTDTITTY ¢ttt ettt ettt st 3
13 OVEIVIBW ..etiiieeteieetee it este et e st e ste et e st este et esse s sa st esse e sasstasseessasstasssensasssaseensesstanseansesssenseessasseenes 3
Objects that can be added 4
2.1 INEEITACES ..ottt et e e e e e e beete et e be et e ess e baestasse e ssenbaessessenteeseasaentansaensas 4
2.2 FUNCEION BIOCKS ...ttt ettt e te ettt ebe et e s be e ba et e baesss e st e ssansaensansaennas 4
ARG S Yot o TP RTR SRR 4
R (1Y o T Y OO PSSO 5
2.5 PrOPEITY ettt st sttt e e et n e n e st neenes 5
2.6 TrANSTHION ittt ettt e te et e e e be et essa e beeabaese e bsebaesteessesbaestessensaessaseaneas 5
Keywords 6
3.1 oY aT=T 1= o Lol USRS 6
3.1.1 Q= Lo [ TSP 6
3.1.2 10T o] 1=T 3 Y=Y o =TSSR 7
3.13 FANL ettt ettt e e ettt e et et e et e teebeeat e sa e sa et e ssesaensasranaas 8
3.14 ADSTIACT ..ttt ettt ettt e te et et eeae e teeae e beerta st e seeaseessanseeanans 9
3.15 THIS & SUP BT .ttt sttt e e e e st e s se s e e e ssaesa s e esasseesaessensensans 9
3.2 ACCESS SPECITIEN ettt ettt ettt et e et et e s e e esa e s e s ess et e s et ensensessensenaans 1
3.2.1 U] o | oS TRSTRS 11
3.2.2 0 =T ot =T TSRS 11
3.23 INEEINAL ..ottt et et et e be et e e ae e asebeesseeseensaessesaensasssenss 11
324 P VAL .. ettt ettt et e et e te et et eebe et e e ab e be et e tseeba et aest e beentaseannas 11
3.25 OVEIVIBW......ceieeeeeeeeteeteeeee et ecte et eeteeste et eesees e e st eeseessaessessseasaesseesasaseessenseensaessanssensans 12
3.3 Reference INSEEAA POTNTEN ........cceieeeeeieeeieeeeetetetee ettt e e s s e s e s e ssese s essensessensensans 13
I S 0] o 1= - o) .- J PSPPSR 15
34.1 __ISVALIDREF ...ttt ettt se et e st e seessae st e s st e ssaeasaesssaessnnesssssnsassnseenen 15
34.2 __ QUERYINTERFACE ... teecceteecctteeceiee e sttt e s sveeeeseeesssaaesssaeaesssnassssnassssaasanns 15
34.3 __TRY, _CATCH, __FINALLY and _ENDTRY ...ccitiieieeieeeeeeteeeteeteeeeeeeeveenenns 16
344 _VARINFO ..ttt te e ree s st e s e s aae s s sa e s s s aae e s s abaeessasaasssnnaaeesasaaeanns 19

3ADRO010569, 1, en_US



1.1

1.2

1.3

AC500 V3 OOP KEYWORDS

Introduction

Scope of the document

This document explains the new keywords in CoDeSys V3 that can be used for Object Ori-
ented Programming (OOP), improving programming style, debugging, ... Although there are
separate capters for each keyword, it is recommended that you also read the previous as they
might explain basic principles which are assumed later.

Compatibility

The application note explains the functionalities and Keywords that can be used with an
AC500 V3. Some features are linked to several Firmware versions. More information can be
found in the online help.

Overview

The main topic of this document is the Object Oriented Programming. This document is not
describing a real use case but more the possibilities which can be archived with OOP. De-
tailed descriptions can be found in the Automation Builder Online help.

H Online Help
Qsack . (2] & | Hcontents [Hindex A search | &
Contents [\, ~ & X | Object-Oriented Programming
-2 Automation Buider CODESYS Development System > of Applications > Gbject-Oriented Programming
4@ Automation Builder Instalation Manager
14 Getting Started
A EEC 611313 editor Object-Oriented Programming
=-{() Programming for PMS6xx
= (CODESYS Development System
@ Configuring 1jO Links
=12 Programming of Appiications CODESYS supports object oriented programming with function blocks and for this purpose provides the following features and objects:
[=] Designating Identifiers
@ Dedaring Variables * Methods
@ Creating Source Code in IEC » Interfaces
-] Configuring the memary reserve for online change *» Properties
- [E] Function Block — Caling Functions or Methods with External Implementat « Inheritance
+ 2] Using Input Assistance *» Method call, virtual function call
- [2] Using Pragmas N ) )
. 2] Using Library PO * Definition of function blocks as extensions of other function blocks
@ Managing Text in Text Lists See also
[£] Using Image Pools
@ Programmed Access to 1/0s * & "Objekt ‘Schnittstelle”
@ Checking Syntax and Analyzing Code
@ Orientation and Navigation
[2] searching and Replading in the Entire Project * Extension of Function Blocks
Eﬁ;ﬁ:;‘::g;urannn * Implementing Interfaces
@ Dot Persistence = Extending Interfaces
@ Alarm Management
] using POUS for Implicit Checks » Calling Methods
SwEEE———
£~ |2] Extension of Function Blocks
+.-[2] Implementing Interfaces
£ [2] Extending Interfaces
#. ] Calling Methods
@ Working with Contral Networks

As an addition to the Automation Builder online help three whitepapers from Plan Automa-
tion-Technology are used.!

¢ GOTO OOP
e Benefiting from OOP in IEC61131-3
e OOPinIEC61131-3 for experts

This document can give an overview how OOP can be realized in an AC500. Furthermore, it
explains some basics about OOP. In addition, other Keywords are described that can be used
to improve the programming style and the robustness.

! Accessed on 2020-05-19

3ADR010569, 1, en_US 3


https://industry.plantautomation-technology.com/whitepapers/1485926434-goto-oop.pdf
https://industry.plantautomation-technology.com/whitepapers/1485926312-benefiting-from-oop-in-iec-61131-3.pdf
https://industry.plantautomation-technology.com/whitepapers/1485925902-oop-in-iec-061131-3-for-experts.pdf

2.1

2.2

2.3

Objects that can be added

This chapter focuses on the objects that can be added to an existing application, interface or
function block. Only a few objects are described in this note. In the Automation Builder online
help all objects can be found. This chapter is just an introduction and does not contain any
information about OOP or other keywords.

Interfaces

An interface can be added to an application.
@ 210031 vanaoie LISt

Image Pool
bt Interface
i‘ MNetwork Varable List (Receiver)

An interface can itself have method and property prototypes. This means an interface con-
tains only declarations but no implementation. This allows different function blocks to have
the identical interface. This allows to use different function blocks in the same way. For more
information please refer to chapter 3.1.2.

Function Blocks

When adding an POU to the application Function Block can be selected.

Add POU X
@ Create a new POU (Program Organization Unit)

Name:
[Pou

Type
O program
(® Function Block
[extends:
[ implements:
[ Final [] Abstract

Access specifier:

Method implementation language:
Structured Text (ST)

) Function
Return type:

Implementation language:
Structured Text (ST) ~

Add Cancel

The Function Block is the main Object for OOP and can be treated as class which can have
several instances. The new possibilities in V3 which extend the functionality in V2 are de-
scribed in chapter 3.1.

Action

An action can be added to any POU. The action is additional program code which doesn’t
have any own variables. The action is using the resources from its base implementation.

The Action can be programmed in another language as the Base fb. In addition the action can
be also called from other POUs by calling <fb_instance>.<action>;

3ADRO010569, 1, en_US



2.4

2.5

2.6

AC500 V3 OOP KEYWORDS

Method

A Method is an extension for OOP for data encapsulation similar to Actions. The main differ-
ence is that Methods have own Input Variables, Local Variables and a Return. Furthermore, a
Method can also use the variables which are used in the base fb similar to the Action.

Similar to a function a method can return a value at the end of the call. It is not possible to
wait for a done flag or have an internal step chain inside a method. All local variables will be
initialized with the next program call. In contrast to functions Methods are linked to a func-
tion block or program.

Methods can also be called from other POU without calling the Base function block: <fb_in-
stance>.<method> or <POU>.<method>;

Property

A Property is an extension for OOP. It can be added to a POU or a global variable list. The be-
havior of a Property is similar to a variable. A Property can be read and written. In case the
property is read the get function is called. Here the definition of reading a variable can be re-
alized. By writing the set function is called.

The read and write via a Property has two advantages. The direct reading/writing of fb varia-
bles can be controlled. A set method can prohibit a write to the variables. In addition, a scal-
ing can be realized. Furthermore, two intern variables of the fb can be shown as one to the
instantiating POU. For example, a tank control function block has the property Tank_Filling-
Level. By reading the property the variable currentFillLevel is returned. By writing Tank_Filling-
Level the variable desiredFillLevel is changed.

Transition

Transitions are usually used for SFC programming. A transition is a condition which can be
True or False. In SFC the Transition is needed if multiple instructions are used. The transitions
are not highlighted in this document.

3ADR010569, 1, en_US 5



3.1

3.11

Keywords

This chapter gives an overview about new Keywords which can be user to program an AC500
V3.

Inheritance

Inheritance is the key feature of object oriented programming (OOP).

Extends

One Function Block can extend another one. Details to function blocks can be found in chap-
ter2.2.

POU_A POU_B

A INT: < }—Extends B:INT,
METH FOO() METH BAR

As shown above the POU_B extends the POU_A. Below a screenshot from the same imple-
mentation in Automation Builder is visible. By adding the POU_B the extension of POU_A can
be selected. On the left side the two function blocks with the method FOO or BAR are visible.
In the middle the implementation of POU_B is shown where the Extend of POU_A can be seen
in the first line. The local variable B is declared below. On the right side POU_B is instantiated
in PLC_PRG as instB. As visible this instance has not only the variable B and the Method BAR
as members but also the method BAR and the Variable A from POU_A. No reimplementation
in the extending function block is necessary.

Devices -2 x PLC_PRG
=) Keyworcs < 1| FUNCTION_BLOCK FOU_B EXTENDS EOUR A i PROGRAM PLC_PRG
= i PLC_ACS00_3 (PMS650-2ETH - TBS620-2ETH) 2 VAR INPUT = 2 VR
= B i Logic s EwaR d 3 instd : POU_B:
= 10 Application VR ovreUT ¢ ENDVAR
-3 Diagnosis s ED v
=D extend 2 ¢ wm 100% |E
PLC_PRG (PRG) o Y imems]
=[5 rou_a Fa) -
[7 oo 100% [@]v
=3 rou_s re) T -
[Fremm

e JIY - |

As POU_B is extending POU_A it inherits all Attributes, Properties and Methods of POU_A.

Everything which is described here for the inheritance between two function blocks is the
same for interfaces. One interface can also extend another one and inherit the methods and
properties.

In OOP this is called parent and child class. The child will inherit all properties and methods of
his parent. A parent which has no parent itself is called root. A child which doesn’t have any
children itself is called leaf. Each Parent can have several children. But a child has only one par-
ent class. The described tree is shown in the picture below. In blue the root and the leaf are
highlighted. In red a not allowed class is shown. Because two parents are not allowed.

3ADRO010569, 1, en_US



3.1.2

AC500 V3 OOP KEYWORDS

root
parent

child
parent

Implements

Similar to the function block which can extend another function block an Interface can be im-
plemented by a function block. The function block which implements an interface inherits all
methods and properties from the interface. As the interface is only a prototype the imple-
mentation has to be done in the function block. Detailed information about Interfaces can be
found in chapter 2.1.

The advantage of interfaces is, that all function blocks which implement one interface behave
the same way. As visible in the picture below the interface Shape can be implemented by dif-
ferent classes. As shape has the method area. All classes that implement Shape have also to
implement the method area. Even if the implementation of this method is different in Rectan-
gle, Triangle and Circle a POU which instantiates these function blocks can call the Method
area in the same way. Even an exchange of the function block would be possible as the inter-
face is still the same.

<<znterface=>
Shape

color : DWORD;

METH area() : REAL

area() : REAL

area() : REAL

Rectangle Triangle Circle
length : REAL,; base: REAL; radius: REAL;
width : REAL; hight. REAL; color : DWORD;
color : DWORD; color : DWORD;

area() : REAL

In contrast to the extending of function blocks one function block can implement multiple in-
terfaces. For example, the function block Button can implement the interface Clickable and

Shape.

3ADR010569, 1, en_US



3.1.3

Shape
color : DWCRD;

METH area() : REAL

=<z|nterface==

METH click()

allowClick: BOOL:

=<Interface==
Clickable

allowClick: BOOL;
color : DWORD:;

rarea() : REAL
click()

Also a combination of Implementing and Extending is possible. Similar pictures shown above
a Button could also implement Clickable and extend Rectangle. Then the method area is pre-

defined in Rectangle.

When implementing an interface in Automation Builder the prototype Methods and Proper-
ties are added automatically to the function block. As visible in the picture below in the mid-
dle Rectangle Implements ITF_Shape. On the left the method area as well as the Color Prop-
erty is visible below Rectangle. By compiling some warnings are thrown. On the right the
Method Rectangle.area() is visible. In the first row the warning is thrown to remind the pro-
grammer to add an implementation and delete this warning afterwards.

(2D implement
=~ ITF_Shape
G area FUNCTION BLOCK Rectangle IMPLEMENTS ITE_Shape ~ 1 ~
=57 coler VAR_INFUT o 2 VETHOD area : REAL
B et END_VAR &)
B st \2R_OUTEUT 100% [@v
=-[E] Rectangle (F8) | EmoMAR 1| area := length * wideh;
= = & v
W area N
S o length : REAL;
coer B width : REAL;
[ et s Eoovr
[E set
0%
) Library Manager < Av B~
(3 Task Configuration - B w0 [@3)
=8 Task Me N | 100 % @‘
8 e pre [Build [-] [ 0emorts) | 5 wamingts) [ @ 0 messagets) | X K
Bus
Description
terfaces
D Buid started: Application: PLC_ACS00_V3. Application ——
Sot_1 (<Empty») ® by code
Sot_2 (<Enpty>) C0373: add property implementation
® €0373: add property implementation
® C0373: add method implementation
® Co373: add property implementation
® 0373 add property implementation

Final

Add POU x
@ Create a new POU (Program Organization Unit)

Name:
[Pou

Type
() Program
(@) Function Block
[Jextends
[implements:
[ Final [ abstract

Access specifier:
Method implementation language:
Structured Text (ST)

O Function
Return type:

Implementation language:
Structured Text (ST) ae

3ADRO010569, 1, en_US



3.14

3.1.5

AC500 V3 OOP KEYWORDS

When adding a function block Final can be checked in addition to the extends and imple-
ments. This means that the function block is a leave and cannot be extended by another func-
tion block. When trying to extend a function block with the attribute Final the compiler
throws an error.

Abstract

Similar to Final also Abstract can be checked when adding a function block. An abstract func-
tion block is a prototype which cannot be instantiated directly. When trying to instantiate a
function block with the attribute Abstract the compiler throws an error.

Similar to an interface an abstract class cannot be instantiated directly. Another function
block is needed. Following table shows the differences between them.?

Interface Abstract class

A fb can implement multiple interfaces A fb can extend only one Abstract class

Can have abstract Methods and Properties Can have abstract or concrete Methods and
Properties

By changing the interface all implementing By changing the abstract class all extending
fbs have to change the implementation of fbs. Inherit this changes by default.
this method / property

Interfaces does not have access modifiers. Abstract classes can have access modifiers
Interfaces cannot have local variables Abstract classes can have local variables
This & Super

Each function block has a THIS pointer available. This is a Pointer to its own instance. In con-
trast to the THIS Pointer SUPER is a Pointer to the Parent function block.

As usage for the This pointer shadowing is used as example. A function block has the local
variables A and B which are assigned to 1 and 2.

PLC_ACS00_V3.Application.PLC_PRG.Myfb

Expression Type Value
A INT 1
@ B INT 2

The function block itself has a method which also has the variables A and B that are 3 and 4.

PLC_ACS00_V3.Application.PLC_PRG.Myfb.Meth

Expression Type Value
A INT 3
% B INT 4

2 Cf. https://www.guru99.com/interface-vs-abstract-class-java.html Accessed 20.05.2020

3ADR010569, 1, en_US 9


https://www.guru99.com/interface-vs-abstract-class-java.html

By reading the variable A inside the Method the local variable is read as the variable A from
the function block is shadowed by the new variable in the Method. To access also the varia-
bles from the function block which are shadowed the This pointer has to be used. That is visi-
ble on the screenshot below.

THIS*.Z[ 1 |
THIS.B[ 2 |
B3 |

B < Jlreromn

The same shadowing can also be used for Methods itself. The screenshot below shows a im-
plementation in Automation Builder. The Parent function block has the Method FOO where
two integer values are added. The Children has also the Method Foo. But here the two values
are subtracted. Depending of the input variable xAdd in the Child function block either the
own Method (THIS) or the parent Method (Super is called).

1 METHOD FOO : INT 1 METHOD FOO : INT 1 FUNCTION BLOCK Child EXTENDS Parent n
= 2 VAR INFUT =z VAR INPUT = 2 VAR INFUT 0
3 a : INT; 3 a : INT; 3 a : INT;
b : INT: 4 L : INT: 4 L & INT;
END VAR s END VAR 5 xhdd : BOOL;
- - ¢ END VAR
2= 7 VAR OUTPUT
1 FOO := & + b; 1 FOO := a - b: = Tresult : INT:
END_VAR
VAR
END VAR 100% |8 v

=
= 1 IF xRdd THEN

2 result := SUFER*.FCO(a,b):
= 3 ELSE
result := THIS".F0O({a,b);

END_IF

When instantiating the child fb and running it the result will be the Sum when xAdd is TRUE
and the Difference when xAdd is FALSE.

instChild{a[_3 | := 3, B35 | := 5, x2dJME] := TRUE, result[ 2 | => Resultll & i:
instChild{a[_2 | := 3, b5 | := 5, xhdd@Eg := ERLSE, result[ =2 | => Resulu2l2 ;|

3ADRO010569, 1, en_US



3.2

3.21

3.2.2

3.23

3.24

AC500 V3 OOP KEYWORDS

Access Specifier

When adding a function block, method or property an Access specifier can by specified.

Add POU X | Add Method ®

@ Create a new POU (Pragram Organization Unit)
531 Create a new method

Name:

|POU | Name:
- [mETH v]
O Program Return type:

(®) Function Block

[Jimplements:  ITF_Shape

[T |-

Implementation language:
[1 Final [] Abstract Structured Text (ST) ks

Access specifier:

~ Access specifier:

DTERNAL [] Abstract

PUBLIC

O Function
Return type:

Implementation language:
Structured Text (ST) ~

e s

This can be INTERNAL and PUBLIC for function blocks and PUBLIC, PRIVATE, PROTECTED and
INTERNAL for Methods and Properties.

Public

Public is selected the default setting when no Access is specified. Public means the element
can be accessed from an extending function block and any instance.

Protected

Protected means the element can be accessed from an extending function block but not in
any instance.

Internal

Internal means the element cannot be accessed from an extending function block but in any
instance.

Private

Private means the element can neither be accessed from an extending function block nor in
any instance.

3ADR010569, 1, en_US 11



3.2.5 Overview

The table and the picture below are showing how methods with different access specifiers
can be accessed by extending or instantiating.

Access specifier Fb instance Extending fb

Public v v

Protected

Internal

Private

X & X
X X <

W AT

=2 Access PLC_PRG a Extending_Main_FB B
Extending_Mein_F8 (FB) 1| PROGRAM LG PEG N 1 FUNCTION BLOCK Extending_Main FB EXTENDS Main_FB_Public "
=[] main_FB_Public (F8) = oz v N 2| vAR_INPOT 0
[F4 METH_Internal (ntemaly 3 MainBOU : Main FB Public: = 3 ﬂ,‘é‘;m
E!} VETH Private (orivate) 9 mD VR _— 10% [&v s ED VAR
[ METH_Pratected (protected) 1| Maineon VAR
[ METH_Public b i . 100% | v
PLC_PRG (PRG) = |
& MAX
F{METH Protected
METH_Public
[E Mo
& MIN

12 3ADRO010569, 1, en_US



3.3

AC500 V3 OOP KEYWORDS

Reference instead Pointer

Pointers are usually used for arrays or structs to avoid copying many data. A Reference is also

a pointer, but it has some advantages.

To compare the usage of References with pointers two values B and C are used. B as Pointer
and C as Reference. As visible from the screenshot below pB and refC are the pointer/refer-
ence to the variables. Assigning a value to a reference variable can just be done without

dereferencing the value. This can be seenin line 7.

1 FROGRAM FLC FREG

3 VAR - Expression Type Value
3 B : INT: § B INT 3
a pE : POINTER TO INT; = @ pB POINTER TO INT 162B67CC1ES
: C : INT: $ pB” INT 3
e refC : REFERENCE TO INT; wC INT 5
§ refc REFERENCETOINT 5
L B = 0;
4 pB := ADR(B):
5 pB* = 3;
£ refl REF= C;
7 refC := 5; 7

Furthermore functions with a Reference input can just be assigned to the value direct. No
ADR operation is necessary. This can be found in the example below in line 4.

PLC_PRG B

1 FUNCTION Test Ref Fun : bool 1| PROGRAM PLC_PRG ~
= 2 VAR INPUT = z AR
] B : POINTER TO INT: ] B : INT: E
4 C : REFERENCE TO INT; 4 pB : POINTER TO INT;
s END VAR 5 C : INT:
£ VAR £ refC : REFERENCE TO INT;
7 END VAR 7 refC2 : REFERENCE TO INT;
I | . . 100 % |[E v
1 B~ 1= 1 1 B = 0: o
Test_Ref Fun({ADR(B),C);
S -

i= 11;RETURN] -

i

4 0 Test Ref Fun{ADR{B[ 0 |),c 01 J:

The third advantage is the possibility to check references during compile. This is not possible
for pointers. As visible in the screenshot below B and C are integers, D and E are real varia-
bles. In line 10 a REAL POINTER is assigned to an INT POINTER. This gives no compile error.
Assigning a REAL REFERENCE to an INT REFERENCE like in line 11 is throwing a compiler Error.

3ADR010569, 1, en_US 13



14

/i PLC_PRG X

1 PROGRAM FLC PR
- 2 VAR

3 B : INT;

4 pB : POINTER TO INT;

5 C : INT:

& D : REAL;

7 E : REAL;

1 B := 0;

2 C = 0;

3 D = 0;

4 E = 0;

5 B := ADR(B):

€ refC REF= C;

7 pD := ADR(D)r

g refE REF= E:

5

1a pB := pD;

11 refC := refE;

Build - ||€¥ 1 error(s) | &

Descripticn
——— Build started: Application: PLC_ACS00_V 3. Application

typify code ...
€} C0032: Cannot convert type 'REFERENCE TO REAL' to type 'REFERENCE TO INT

Working with References instead of Pointers is much easier for programming and code read-
ability and furthermore safer to avoid invalid assignment and access.

3ADRO010569, 1, en_US



3.4

34.1

3.4.2

AC500 V3 OOP KEYWORDS

Operators

__ISVALIDREF

The operator __ISVALIDREF can be used to check if a reference is valid to avoid an invalid ac-
cess. The usage can be seen in the screenshot below. refC is referencing C but refC2 is not
referencing a variable.

i@ C INT 0

g refC REFEREMCETQINT O

i refC2 REFEREMCE TQOINT  <Dereference of ..
& o] &= ¢

20 refc_ 0 |REF=C[ 0 |
2 cIsRefQGUE := ISVALIDREF(refC[ 0 )
¢ clsRef2fMEE] := ISVALIDREF (refC2[ 777 |):

__QUERYINTERFACE

Querylinterface is an operator which should be only used by experienced users. The operator
can be used for a type conversation of an interface into another. The requirement for the ex-
plicit conversation is that both interfaces extend __System.IQuerylinterface.

The operator itself is defined as  QUERYINTERFACE (<ITF_ Source>,<ITF Dest>);
and returns true if the interface conversation was successful. As an example, following layout
is used. A Base interface is extended by two other interfaces. One interface has also another
child. The tree resulting interfaces have all one implementing function block. In the Program
each function block has one instance.

«interfaces
Base
C Extends £Extendsﬁ
«interfaces «interfaces
1 2
A JA

r—ExlendsA : ]

«interface»

1.1 N '
Class Class Class
FB_1_1 FB_1 FB_2
Inst1_1 Inst1 Insi2

3ADR010569, 1, en_US 15



3.4.3

16

As Instl, Inst2 and Instl_1 are all implementing Base following declaration is allowed.
iBase : ITF_BASE := Inst1;
Instead of Instl also the other instances can be used to define iBase.
With
iBase : ITF BASE := Instl;

il ¢ ITF 1 := 0;

__QUERYINTERFACE (Instl, il);
Instl which is decelerated as ITF_BAASE can be assigned to il which is ITF_1

Following table shows the result of trying to convert the instances from ITF_BASE to other
interfaces.

+ means the result is TRUE, ¥ means the result is false

Src/Dest ITF_BASE ITF_1 ITF.1.1 ITF2
Instl ‘ v ‘ v ‘ X X
Instl_1 v v v X
Inst2 ‘ v ‘ X ‘ X v

A use case for this function is a function which has a reference to an interface as input. De-
pending on the function block which is inputted to this function different actions can take
place.

Similar to this operator _ QUERYPOINTER converts an interface to a Pointer.

__TRY, _CATCH, _ FINALLY and __ ENDTRY

These statements are used for exception handling in the IEC Code. If not allowed statements
like a division by 0 are executed an exception is thrown and the PLC goes to stop.

If a statement in TRY throws an exception the PLC executes CATCH instead of going to stop
to handle the exception. The statements in FINALLY are called independent if there was an ex-
ception or not. These statements are usually used to clean up a program or function block in
depended of the success of the execution.

To give a short example where different exceptions can happen a division function is used.
Inputted are A and B as well as a Pointer to the Variable C.

The main logic is in the try part. The C pointer is dereferenced and assigned to the quotient
of Aand B.

3ADRO010569, 1, en_US



FUNCTION Exception Check
VAR _INFUT

A ¢ INT := 0y

B : INT := 0;

C : POINTER TO INT;
END VAR
WAE

EHC :
END VAR

__ SYSTEM.

__TRY
FATry to divaide and assign
= R/B;
__ CATCH({exc)
iNrFailed :=
CASE exc OF
__ SYSTEM.ExceptionCode.
Exception Check :=
__ SYSTEM.ExceptionCode.
Exception Check :=
ELSE
Exception_Check
END CASE
__ FINALLY
iNrExecuted :=
__ENDTRY

i~
-

iHNrFailed +1;

iNrExecuted

AC500 V3 OOP KEYWORDS

STRING

ExceptionCode;

RTSEXCPT_ACCESS_VIOLATION:
'RISEXCPT_ACCESS_VIOLAT
RTSEXCPT_DIVIDEBYZERO:

'"RISEXCPT_DIVIDEBYZERO';

= DWORD_TO_STRING (exc) ;

+ 1;

An exception can either be thrown if the pointer to C is invalid and cannot be dereferenced or
B is O as a division is not possible. In this case the execution of the try part is stopped and
catch is called. Depending on the thrown exception a different system behavior is possible.
Here the exception name is returned as a string. Each time the Catch part is called iNrFailed is
incremented. Independent if the try was successful or the catch has been called finally will be
executed. Here iNrExecuted is incremented by 1.

In the main program the function is called

@ testResult
@ testResult[0]
@ testResult[1]
@ testResult[Z]

ARRAY [0,.2] OF 5T...

STRING !
STRING ‘RTSEXCPT_DIVIDEBYZERD'
STRING ‘RTSEXCPT_ACCESS_VIOLATION'

CASE test[ 2 | OF

iNrExecuted 2 | := 0;
1NrFalle = 07

oo s W

12 test[ 3 | := 2

test_ 3 | = 3
20 END_CASERETUGN]

3ADR010569, 1, en_US

testResultl ]I:I
testResult l-]m

17 testBesult [2][ RTSEXCFT AR | :=

Excepticn_:hec}:{ﬁl 44 B[ 12 [ADR{C] 2= |:

Exception_Check(A] 44 | B 12 |ADR{C[_ 2 |):

Exception Check(a[ & | B[ 32 ].0);

17



18

In line 6 A and B are set to 44 and 12. The function calculates the integer division 44/12 = 3
successfully. In line 11 B is set to 0. The program tries to divide 44/0 which causes an excep-
tion. As visible in the variable testResult at position 1 the reason for this exception was a divi-
sion by zero. In line 16 B is set to 12 again. In line 17 is visible that the pointer to Cis not
ADR(C) anymore but 0. The function tries to dereference a zero pointer which causes an ex-
ception. As visible in the variable testResult at position 2 the reason for this exception was an
access violation.

In line 3 and 4 the counter variables are set to 0. As iNrExecuted is 3 now the finally statement
was called three times. Accordingly catch was called two times. Depending on the exceptions
the Program is still in run and has not stopped.

In the PLC Log the exceptions can be found for debugging.

Severity Time Stamp Description Component ~
E 01.01.1870 05:15:41 *50URCEPOSITION= App=[Application] area=0, offset=118515 SysInternallb
01011970 05:18:41 *EXCEPTION® App=[Application], Exception =[AccessViolation] SysInternallib
E 01011970 05:18:41 *SOURCEPOSITION™ App=[Application] area=0, offset=119503 SysinternalLib
5 “EXCERTION® App=[Applcation], Exception = [DivisionByZero] SysInternallb

During the development process it might be also necessary to find out state of different vari-
ables when the exception happens. Therefore, stop execution on handled exceptions can be
selected. This Command has to be added to Automation Builder.

Close all opened projects - Select Tools Customize... 2 In the Menu tab Online any position
can be selected. Click on Add command... 2> Select “Stop execution on handled exceptions”
in the Category “Online”.

Add Command X
Menu  Toohbars | Keyboard | Command Icons Categories: Cormands;
cFe ~| [ source upload...
+ B configuraton ~| [CAddcommand.. ] Clipboard } Start [active application]
: % :EESZDE:TS Add separator Core Dump } Start [selected application]
Dedaration b Start all applications
: - SFC Add popup menu... Device Communication W Stop [active application]
B :sﬂkue Edit popup menL... Devices m Stop [selected application]
FEDAD/L m Stop al applications
+ B Textist e File [ 5top execution on handied exceptions |
: % Z;amce R Find/Replace " Taggle Flow Contral made
- GVL Commands Unforce all vaiues [selected appiication]
*+ B Visualization Move down Help " Unforce and keep all sslected values
| + Build IEC 61850 " Unforce and restore al selected values
' = & online Image Pool | Unforce values [active application]
©% Login [active applcation] Installation " Unforce vaues [3ll appications]
' G Logout [acve applcatior] Library Manager " Update symbol configuration
| | Creste st appicaton Reset Message View & Wink
' g t:ilffﬁ:iﬁ;i:ﬂn] = Objects 1 Write al values [selected application]
- [onine ]| Write values [active applcation]
2 > Save.. Iz 5 | * Write values [all applications]
oK Cancel Use Shift# Click or Ctri+ Click for multiple sefection. Cancel

When being logged into the PLC the command can be checked.

lAgtop execution on handled exceptions
Login [PLC_ACS500_V3]
&% Logout [PLC_ACS00_v3]
Create boot application [PLC_ACS500_V3]
Logoff current device user
Download
Online Change
Source download to connected device
*@1 Download Manager...
Reset warm [PLC_ACS00_V3]
Reset cold [PLC_ACS00_V3]

Reset origin [PLC_ACS500_V3]

Alt+F8

Ctrl+Fa

By running the same Program again, it will stop now. The PLC Log can be used to jump to the
source position. Now also the values that cause the exception are visible and the programmer
can try to check why B is 0 in this case.

3ADRO010569, 1, en_US



344

LA

__VARINFO

AC500 V3 OOP KEYWORDS

The operator __VARINFO returns a structure containing more information about the variable.
The information can be stored in a structure with the type _ SYSTEM.VAR_INFO.

As an example, an Array with 10 bytes is used. The screenshot below shows the structure

which is be filled by calling infoArr := __VARINFO(bArrVar);

+ @ bArvar

= @ infoArr
@ ByteAddress
& ByteOffset
& Area
# Bithr
& BitSize
@ BitAdress
@ TypeClass
& TypeName
# NumElements
# BaseTypeClass
& ElemBitSize
# MemoryArea
& Symbol
& Comment

ARRAY [0..5] OF BYTE
__SYSTEM.VAR_INFO
DWORD

DINT

INT

INT

UDINT

UDINT

TYPE_CLASS
STRING(78)

UDINT

TYPE_CLASS

UDINT
MEMORY_AREA
STRING(38)
STRING(78)

3ADR010569, 1, en_US

3061361184
10784

0

255

80

0
TYPE_ARRAY

ARRAY [0..9] OF BYTE

10

TYPE_BYTE

8
MEM_GLOBAL
‘bArrvar

This is an array’

This is an array

Address of variable: forbits, address of byte ..
Offset in Bytes. hi
Number of Area. #
number of Bit in Bytes...r non-Bit Types this ...
size of variable in Bits

bitaddress of variable (if variable is at %M/J/...
type class of variable

type name (for userdeftypes : name of functi...
for arrays : number of base elements
forarrays : type dlass of basetype

for arrays : bit size of base element

area information : me..., input, output, ret..
symbol name : input o.__erator as string: up ...
comment of variable

19






ABB Automation Products GmbH
Eppelheimer StraBe 82
69123 Heidelberg, Germany

Phone: +49 62217011444
Fax: +49 62 217011382
E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical
changes or modify the contents of this
document without prior notice. With re-
gard to purchase orders, the agreed par-
ticulars shall prevail. ABB AG does not ac-
cept any responsibility whatsoever for
potential errors or possible lack of infor-
mation in this document.

We reserve all rights in this document and
in the subject matter and illustrations con-
tained therein. Any reproduction, disclo-
sure to third parties or utilization of its
contents - in whole or in parts - is forbid-
den without prior written consent of ABB
AG.

Copyright© 2020 ABB. All rights reserved



