目录

手册简介
本章内容 .. 7
适用性 ... 7
安全须知 .. 7
面向读者 ... 7
相关手册 .. 7

操作和硬件介绍
本章内容 .. 9
RSYC 同步单元的适用性 .. 9
操作 .. 9
单元外观 .. 10
RSYC-01 同步单元（有盖板） .. 10
RSYC-01 同步单元（无盖板） .. 10
接线图 ... 11
RSYC 单元的端子/连接 .. 12
RSYC 单元与传动连接 .. 12

机械安装
本章内容 .. 13
交货检查/RSYC 组件 .. 13
机械安装 .. 14
RSYC 单元安装 ... 14

电气安装
本章内容 .. 15
接线图 ... 15
注意事项 ... 15
电缆夹紧和接地示范 ... 16

启动
本章内容 .. 17
参数设置 ... 17
RSYC 单元操作检查 ... 18
修正功能和同步的检查 .. 19
最终检查 .. 20
禁止同步 ... 20
系统复位 .. 20

故障跟踪 .. 21
本章内容 .. 21
故障处理指示 ... 21
用示波器测量 ... 22
综合测量图 .. 24

技术数据 .. 25

外形规格图 .. 27
RSYC 盖板 ... 27
RSYC 外形规格 ... 28

附录 ... 29
本章内容 .. 29
相关手册 .. 29
接线图 ... 30
RSYC 单元的端子/连接 .. 31
RSYC 单元与传动连接 .. 31
参数设置 .. 32
手册简介

本章内容

本章包括手册内容介绍，以及适用性、安全性和面向读者的相关信息。

适用性

本手册适用于 RSYC-01 同步单元，传动参数数据请参考 ACS800 标准应用程序。
（如果把 RSYC-01 应用于 ACS510/550，则需要参考 ACS510/550 相关手册。更详细的内容参见附录。）

安全须知

遵循随传动发货时相配的安全须知。

• 安装、调试和适用传动之前，必须阅读完整的安全须知。在传动手册的开始部分可以找到完整的安全须知。

• 在改变传动功能的缺省设置之前，阅读软件功能特别警告和注意事项。对于每种功能的警告和注意事项，在本手册用户可调参数部分介绍。

面向读者

本手册适合那些在 RSYC 同步单元组成的同步系统中，负责安装、调试、使用及故障排除的人员。这些人员应该具备电气原理、电气配线、电子器件和电气图形符号的知识与经验。负责试验和调试该系统的人员必须是在电气领域有经验的专业人员。

相关手册

传动手册。

ACS800 标准应用程序 7.x 固件手册 (3ABD00009803 [中文])。
（如果用于 ACS510/550，则参看 ACS510/550 用户手册，3ABD00016170(中文)/3ABD0001743(中文)。）
操作和硬件介绍

本章内容

本章介绍了同步应用的操作，并展示 RSYC 同步单元的接线图和外形图。

RSYC 同步单元的适用性

RSYC 同步单元主要用于与装有标准应用程序的 ACS800 变频器配合（也可用于 ACS510/550），在较弱电网中启动大功率电机，从变频工作切换至工频的无冲击软启动切换控制过程。变频器平滑地启动电机，同时产生大转矩，没有工频直起的大电流。当达到额定频率时，RSYC 检查供电电网与变频器输出的电压相位，以及快速调 整变频器输出电压的相位与电网一致，控制接触器将电机从变频器输出侧切换至电 网。

操作

RSYC 单元监控两个电压信号，一个是电源进线，另一个是传动输出。监控信号是相 位和频率。

RSYC 单元的输出（BUFOUT，0 ... 10 V）指示传动的同步状态。当 BUFOUT 到达 5V 时，供电电源和传动输出同步，也就是相位和频率相同。

传动控制程序在 BUFOUT 信号的基础上使用修正功能不断纠正传动给定频率（设为 50Hz）。当同步条件达到的时候，即传动输出和供电电源相位匹配、频率一致：

- BUFOUT 信号达到 5 伏，说明传动已经与供电电源“同步”。
- RSYC 单元给接触器控制电路一个控制脉冲。
- 传动控制逻辑关闭逆变调制（IGBT 的控制脉冲）。
- 接触器控制电路打开接触器 K1，断开电机与传动的连接。
- 接触器控制电路闭合接触器 K2，连接电机与供电电源。
单元外观

RSYC-01 同步单元（有盖板）

1) RSYC-01 单元 +24 V DC 电源
2) SYNC 信号（K4）和 BUFOUT 信号
3) 逆变输出（T2）和网侧电源（T1）测量
4) 屏蔽电缆夹
接线图
T1 – 网侧电压测量，信号范围 10…120 V AC（3 相电压测量变压器，带静电屏蔽）
T2 – 电机电压测量，信号范围 10…120 V AC（3 相电压测量变压器，带静电屏蔽）

RSYC 单元的端子/连接

<table>
<thead>
<tr>
<th>端子</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>+24 V</td>
<td>来自 RMIO 板端子 X23 的同步单元供电电源。</td>
</tr>
<tr>
<td></td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>SYNC</td>
<td>输出 0/24 V 控制脉冲给外部接触器控制电路</td>
</tr>
<tr>
<td></td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUFOUT</td>
<td>输出 0 … 10 V 信号，指示传动同步状态</td>
</tr>
<tr>
<td>J3</td>
<td>INVRTR</td>
<td>电机电压测量</td>
</tr>
<tr>
<td></td>
<td>MAINS</td>
<td>网侧电压测量</td>
</tr>
</tbody>
</table>

RSYC 单元与传动连接

<table>
<thead>
<tr>
<th>RMIO 板端子</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>X21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AI1+</td>
<td>同步状态指示</td>
</tr>
<tr>
<td>4</td>
<td>AI1-</td>
<td>同步状态指示</td>
</tr>
<tr>
<td>X22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DI5</td>
<td>运行允许</td>
</tr>
<tr>
<td>6</td>
<td>DI6</td>
<td>保留</td>
</tr>
<tr>
<td>7</td>
<td>+24 V</td>
<td>运行允许 24 V 电源</td>
</tr>
<tr>
<td>X23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+24 V</td>
<td>RSYC 电源</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>RSYC 电源</td>
</tr>
</tbody>
</table>
机械安装

本章内容

本章包含 RSYC 组件的导轨安装指导和内容。

交货检查/RSYC 组件

RSYC 组件包括：

- RSYC 单元
- 两个同步变压器
- RSYC 连接 8 米电缆
- 本手册

注意：以下物品没有包括在内，但也是必须的：转换接触器，接触器控制回路继电器，变压器 T1 和主回路之间的电缆（熔断器），变压器 T2 和主回路之间的电缆（熔断器）。
RSYC 单元安装

单元通过导槽安装在 7.5 × 35 mm 的导轨上。
电气安装

本章内容

本章包含接线参考图和电气安装所需器件。

接线图

见11页接线图。

注意事项

请遵循传动硬件手册推荐电缆连接。

在同步单元和功率电缆、传动之间至少有0.5m的距离。如果0.5m不能保证，就装得尽可能远。

在变压器和RSYC单元之间使用屏蔽双绞电缆。屏蔽接地尽可能短。在电缆两端剪掉没用的导线芯。见接线图。

在RSYC单元和传动之间使用屏蔽双绞电缆。传动模块一侧的屏蔽接地根据硬件手册中的指导接线。

在RSYC单元和接触器控制电路之间使用屏蔽双绞电缆。屏蔽接地尽可能短。

主回路和同步变压器之间的电缆选择依据主回路电压。如果必须，用熔断器保护电缆。
电缆夹紧和接地示范
启动

本章内容
本章包含传动参数设置和系统检查的指导。

参数设置

下表指导使用 ACS800 标准应用程序启动一个四极电机（50Hz）如何进行参数设置。在这些参数设置的情况下，修正功能在最终速度给定±20 rpm 的范围（1%的最高速度极限）起作用。此处，控制盘被用来作为外部控制信号接口。这个启动是推荐的练习。如果需要，以后也可以改为 I/O 控制或者现场总线控制。但是，模拟输入 A11 和数字输入 DI5 必须保留，供同步使用。

启动之前，确保接触器控制回路与 RSYC 单元端子 J2 的连接是打开的。

对于如何使用控制盘，见 ACS800 标准应用程序 7.x 固件手册（3ABD00009803 [中文]）。

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>控制地和信号源的选择</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ 选择外部控制地 EXT2。</td>
<td>11.02 = EXT2</td>
<td>仅可以使用给定（REF2）%进行修正。REF2 可以来自不同接口，在这里，它来自控制盘（KEYPAD）。</td>
</tr>
<tr>
<td>□ 定义控制盘作为外部控制地 EXT2 的控制命令源。</td>
<td>10.02 = KEYPAD</td>
<td></td>
</tr>
<tr>
<td>□ 定义控制盘作为外部控制地 EXT2 的速度给定源。</td>
<td>11.06 = KEYPAD</td>
<td></td>
</tr>
<tr>
<td>□ 电机旋转方向固定为正转。</td>
<td>10.03 = FORWARD</td>
<td>禁止改变旋转方向。</td>
</tr>
<tr>
<td>□ 解除恒速选择功能。</td>
<td>12.01 = Inactive</td>
<td></td>
</tr>
<tr>
<td>□ 设置数字输入 DI5 作为运行允许信号源。</td>
<td>16.01 = DI5</td>
<td>见 11 页接线图。</td>
</tr>
<tr>
<td>□ 定义电机最大和最小速度。</td>
<td>20.01 = 0.00 rpm 20.02 = 2000.00 rpm</td>
<td>最大速度必须超过电机额定转速。对一个 4 极、50Hz 的电机，2000 是适合的。</td>
</tr>
<tr>
<td>□ 定义运行允许的停车方式。</td>
<td>21.07 = COAST</td>
<td>运行允许信号消失后，传动立即切断输出电压。</td>
</tr>
</tbody>
</table>

使用修正功能，参数组 40 设置 PID 控制器

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 激活偏差值取反功能。</td>
<td>40.05 = YES</td>
<td>RSYC 单元特性。</td>
</tr>
<tr>
<td>□ 设置 ACT1 为 PID 控制器实际值。</td>
<td>40.06 = ACT1</td>
<td>-</td>
</tr>
<tr>
<td>□ 选择模拟输入 Al1 为 PID 控制器实际值信号。</td>
<td>40.07 = Al1</td>
<td>来 RSYC 单元 BUF OUT 信号。0...10 V。5 V 以下= 网侧频率超过传动输出频率。5 V = 网侧与传动输出频率一致、相位匹配。</td>
</tr>
</tbody>
</table>

启动
启动

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 设置 ACT1 最小值。</td>
<td>40.09 = 0.00%</td>
<td>5 V 以上 = 网侧频率低于传动输出频率。</td>
</tr>
<tr>
<td>□ 设置 ACT1 最大值。</td>
<td>40.10 = 100.00%</td>
<td>-</td>
</tr>
<tr>
<td>□ 关闭 PID 控制器的积分器。</td>
<td>40.13 = OFF</td>
<td>-</td>
</tr>
<tr>
<td>□ 激活修正功能，定义修正相关最大速度。</td>
<td>40.14 = DIRECT</td>
<td>PID 控制器输出与最大速度极限相关（参数 20.02）。</td>
</tr>
<tr>
<td>□ 选择参数 40.16 作为修正给定源。</td>
<td>40.15 = PAR 40.16</td>
<td>-</td>
</tr>
<tr>
<td>□ 设置修正给定到 50%。</td>
<td>40.16 = 50.00%</td>
<td>当同步条件有效，即 AI1 = 5 V，修正给定与实际信号相同。见参数 40.07。</td>
</tr>
<tr>
<td>□ 定义修正最大效用（加到传动给定上）。</td>
<td>40.17 = 1.00%</td>
<td>-</td>
</tr>
</tbody>
</table>

应用宏和电机控制方式选择

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 选择工厂宏。</td>
<td>99.02 = FACTORY</td>
<td>除了 PID 控制宏，其他宏也可以使用（PID 中，PID 不能用作修正功能）。</td>
</tr>
<tr>
<td>□ 选择电机控制方式。</td>
<td>99.04 = DTC</td>
<td>-</td>
</tr>
<tr>
<td>□ 定义电机参数。</td>
<td>99.05 ...99.10</td>
<td>见 ACS800 标准应用程序 7.x 固件手册 (3ABD0009803 [中文])。</td>
</tr>
</tbody>
</table>

RSYC 单元操作检查

警告! 请阅读和遵循传动硬件手册。忽视这些指导可能会导致人身伤害甚至死亡，或者损坏设备。

确认传动与供电电源断开，安全指导中的预防措施已经考虑到。

启动之前，确保接触器控制回路与 RSYC 单元端子 J2 的连接是断开的。

对于如何使用控制盘，见 ACS800 标准应用程序 7.x 固件手册 (3ABD0009803 [中文])。
操作	附加信息
□ 仔细观察单元。 | -
□ 根据指导设置传送参数，但是要暂时关闭修正功能（参数 40.14 = OFF）。 | 见 17 页 参数设置。
□ 切换控制盘到本地控制模式。 | 用 LOC/REM 键。显示屏第一行字母 L 表示本地控制。
□ 以下实际值可供选择显示：01.02 速度，01.03 频率，01.18 AI1 [V]。 | AI1 是来自单元 0...10 V DC 状态信号。
□ 启动传动，增加速度给定，让给定尽可能接近 50Hz。记下输出频率 50Hz 时的实际速度和速度给定。 | 速度给定和实际值之间的差异取决于由负载决定的滑差。
□ 降低速度，使输出频率 45...47Hz，确认 A11 是 8...10 V DC。 | -
□ 增加速度给定，使输出频率为 52...55Hz，确认 A11 是 0...1 V DC。 | -
□ 停止传动。 | -

修正功能和同步的检查
此项检查使修正功能以正确的方式影响速度控制。找到修正范围（参数 40.17）内的正确值对控制的稳定性和同步的快速性是必须的。系统逐步减少震荡达到同步 50Hz，此时，修正功能实际信号（A11）近似 5 V DC。
对于如何使用控制盘，见 ACS800 标准应用程序 7.x 手册 (3ABD00009803 [中文])。
就近保留输出频率 50Hz（前面所述）时的速度给定和实际值。检查 18 页 RSYC 单元的操作检查。

操作	信息
□ 根据指导设置参数。但是要暂时关闭修正功能（参数 40.14 = OFF）。 | 见 17 页 参数设置。
□ 用 LOC/REM 键选择远程控制。传动现在准备好由控制盘控制。 | 显示屏第一行字母 R 表示控制盘远程控制。
□ 启动传动。 | -
□ 设置相当于 50Hz 输出频率时的速度给定值。 | -
□ 在显示屏上观察输出频率。如果不是 50Hz，缓慢调整，使显示屏显示输出频率 50Hz。再次记下这个值。 | -
□ 停止传动。 | -
□ 打开修正功能（参数 40.14 TRIM MODE = DIRECT）。 | 修正功能将影响速度给定和频率输出。
启动

操作	信息
启动传动，监视控制盘和 RSYC 状态 LED 灯。以下指导一个成功的修正控制环：
- 传动加速到上面的速度给定。
- 输出频率在 50 Hz 附近震荡。
- AI1 输入 2.5 V ... 7 V。
- RSYC LED 5 ... 20 秒后开始闪烁。
- LED 开始是间隔很短的闪烁，最终是几秒钟的亮灭交替。

- 如果要求更快同步，略微增加 40.17 修正范围（例如：1 ... 5%）。
 - 修正太大会使系统不稳。
- 停止传动。

最终检查

操作	附加信息
连接接触器控制回路与 RSYC 单元（J2/SYNC）之间的电缆。 | -
测试系统并验证运行是否正常。 | -

在安装和调试的时候，系统会在 15 秒内同步，同步状态保持数十秒。

禁止同步

为了禁止同步功能：

- 在传动应用程序中，把外部控制地由 EXT2 改为 EXT1（参数 11.02），或者用控制盘上的 LOC/REM 键改为本地控制。
- 把接触器控制回路拨码开关 S1 拨到 OFF 位。

系统复位

把接触器控制回路开关 S1 拨到 OFF 位，然后拨到 ON（1-0-1），继电器逻辑可以复位开始新的同步周期。
故障跟踪

本章内容

本章给出故障处理的信息。

故障处理指示

<table>
<thead>
<tr>
<th>故障</th>
<th>原因</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>尽管接线和参数正确，单元 运行不正常。</td>
<td>电路板受辐射影响。 BUF OUT 信号不稳，因此不能同步。</td>
<td>确保所有连接到 RSYC 单元的电缆是屏蔽电缆并且屏蔽层正确接地。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>在辐射源和 RSYC 单元之间安装附加的金属屏蔽。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>改变单元的安装地点，就是在辐射源（传动模块和电机电缆）和单元之间留有更大的空间。</td>
</tr>
<tr>
<td>RSYC 板 BUF OUT 信号恒定在低值区 0 ... 1 V DC。</td>
<td>RSYC 单元上的同步变压器信号相反。</td>
<td>检查和改正接线。</td>
</tr>
<tr>
<td>传动输出保持在 50 Hz 附近，偶尔丢失同步脉冲。</td>
<td>参数 40.17 修正范围太小。传动不能控制速度（输出频率）。</td>
<td>提高参数 40.17 的值。</td>
</tr>
<tr>
<td>速度控制不稳。 参数 40.17 修正范围太大导致过补偿。</td>
<td>降低参数 40.17 的值。</td>
<td>降低参数 40.17 的值。</td>
</tr>
<tr>
<td>同步时电机电流尖峰过高。</td>
<td>电机减速太快，定子与转子之间的磁通相位变化太大。</td>
<td>让接触器动作更快。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>触换接触器期间，在电机交流输入侧连接一个续流电感器（3 相电抗器）。电抗器通过接触器旁路（电抗器选型不是根据连续电流，而是根据接触器）。电抗器不能饱和。见 11 页接线图。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查和改正接线。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>触换接触器期间，电机磁通降低过多。电机需要大电流重新励磁。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查和改正变压器连接。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>由于同步变压器连接错误，电源（电机）和传动输出相位差 180°。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查和改正变压器连接。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>由于电机与电源之间的相序和电机与传动输出之间的相序不同，电源和传动输出相位差 180°。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查和改正接线。</td>
</tr>
</tbody>
</table>
用示波器测量

如果没有同步信号，想了解原因，检查电路板来自电源（MAINS）和逆变输出（INVTR）的信号可能是唯一的方法。用示波器测量时，由于探针可能会拾取到干扰并把它传到电路板，所以有潜在的风险。所有回路应尽可能的小，测量电路应距离传动和其他电缆尽可能的远。下图显示的是测量点 TP3-TPVREF 和 TP4-TPVREF。
信号同步时，示波器显示如下波形：

存在相位差时，波形如下：

当传动输出频率与网侧频率不同的时候，传动输出频率会在网频附近振荡变化并且向网频靠近。如果传动输出频率的变化“速度”足够低，同步单元电路板产生 SYNC 脉冲。
下图显示同步至电网时刻测量到的电压（U_{u-v} and U_{v-w}）和相电流（I_u and I_w）。

下图显示传动输出电压、网侧电压和一相电流。
技术数据

<table>
<thead>
<tr>
<th>参数</th>
<th>详细信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSYC 电源电压</td>
<td>24 V DC (-5 … +5%)</td>
</tr>
<tr>
<td>RSYC 功耗</td>
<td>25 … 35 mA</td>
</tr>
<tr>
<td>信号电缆类型</td>
<td>JAMAK by NK Cables</td>
</tr>
<tr>
<td>信号电缆规格</td>
<td>2 × (2+1) × 0.5 mm²</td>
</tr>
<tr>
<td>信号电缆使用</td>
<td>连接 RSYC 到传动、变压器和控制继电器。</td>
</tr>
<tr>
<td>同步准确度</td>
<td>-21 … +21º</td>
</tr>
<tr>
<td>变压器电缆规格</td>
<td>最大横截面 = 4 mm²</td>
</tr>
<tr>
<td>变压器电缆使用</td>
<td>连接测量变压器和主回路（传动输出和输入）。</td>
</tr>
<tr>
<td>安装导轨</td>
<td>7.5 × 35 mm (EN50022)</td>
</tr>
</tbody>
</table>

测量变压器	例如: 3AFE58125130，690/43.3 V，3 VA，45 … 65 Hz
原边电压	690 V AC 45 … 65 Hz
副边电压	43.3 V AC 45 … 65 Hz
功率	3 VA
绕组形状	Dyn 11
绕组隔离	静电屏蔽
技术数据
外形规格图

RSYC 盖板

尺寸以毫米表示。

尺寸，单位 mm。
1 mm = 0.039”
1” = 25.4 mm
RSYC 外形规格

外形规格图
附录

本章内容
本章主要介绍 RSYC 同步单元用于 ACS510/550 时的相关内容，包括相关手册、接线图、RSYC 单元的端子/连接、RSYC 单元与传动连接、参数设置。其他相关的安装、操作、检查、故障跟踪等请参见前面 RSYC 单元在 ASC800 中的应用。

相关手册
参看 ACS510/550 用户手册，3ABD00016170(中文)/3ABD00011743(中文)。
T1 – 网侧电压测量，信号范围 10…120 V AC（3 相电压测量变压器，带静电屏蔽）
T2 – 电机电压测量，信号范围 10…120 V AC（3 相电压测量变压器，带静电屏蔽）

RSYC 单元的端子/连接

<table>
<thead>
<tr>
<th>端子</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+24 V</td>
<td>来自 RMIO 板端子 X1（24V 和 GND）的同步单元供电电源。</td>
</tr>
<tr>
<td>2</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SYNC</td>
<td>输出 0/24 V 控制脉冲给外部接触器控制电路</td>
</tr>
<tr>
<td>2</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BUFOUT</td>
<td>输出 0 … 10 V 信号，指示传动同步状态</td>
</tr>
<tr>
<td>J3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INVRTR</td>
<td>电机电压测量</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MAINS</td>
<td>网侧电压测量</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RSYC 单元与传动连接

<table>
<thead>
<tr>
<th>SMIO 板端子</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AI1</td>
<td>同步状态指示</td>
</tr>
<tr>
<td>34</td>
<td>AGND</td>
<td>同步状态指示</td>
</tr>
<tr>
<td>10</td>
<td>24 V</td>
<td>RSYC 电源</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>RSYC 电源</td>
</tr>
<tr>
<td>12</td>
<td>DCOM</td>
<td>数字输入公共端</td>
</tr>
<tr>
<td>17</td>
<td>DI5</td>
<td>运行允许</td>
</tr>
<tr>
<td>18</td>
<td>DI6</td>
<td>保留</td>
</tr>
</tbody>
</table>
参数设置

下表指导使用 ACS510/550 变频器启动一个四极电机 (50Hz) 如何进行参数设置。此处，控制盘被用来作为外部控制信号接口。这个启动是推荐的练习。如果需要，以后也可以改为 I/O 控制或者现场总线控制。但是，模拟输入 AI1 和数字输入 DI5 必须保留，供同步使用。

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>控制地和信号源的选择</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ 选择外部控制地 EXT2。</td>
<td>11.02 = EXT2</td>
<td>仅可以使用给定（REF2）% 进行修正。REF2 可以来自不同接口，在这里，它来自控制盘（KEYPAD）。</td>
</tr>
<tr>
<td>□ 定义控制盘作为外部控制地 EXT2 的控制命令源。</td>
<td>10.02 = KEYPAD</td>
<td></td>
</tr>
<tr>
<td>□ 定义控制盘作为外部控制地 EXT2 的速度给定源。</td>
<td>11.06 = KEYPAD</td>
<td></td>
</tr>
<tr>
<td>□ 电机旋转方向固定为正转。</td>
<td>10.03 = FORWARD</td>
<td>禁止改变旋转方向。</td>
</tr>
<tr>
<td>□ 解除恒速选择功能。</td>
<td>12.01 = NOT SEL</td>
<td></td>
</tr>
<tr>
<td>□ 设置数字输入 DI5 作为运行允许信号源。</td>
<td>16.01 = DI5</td>
<td>见 30 页接线图。</td>
</tr>
<tr>
<td>□ 定义电机最大和最小速度。</td>
<td>20.07=0.0Hz 20.08=55.0Hz</td>
<td>最大速度必须超过电机额定转速。ACS550 中需设置 20.01=0.00 rpm 20.02=2000.00 rpm</td>
</tr>
<tr>
<td>□ 定义运行允许的停车方式。</td>
<td>21.02 = COAST</td>
<td>运行允许信号消失后，传动立即切断输出电压。</td>
</tr>
</tbody>
</table>

使用修正功能，参数组 42 设置 PID 控制器

<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 激活偏差值取反功能。</td>
<td>42.05 = YES</td>
<td>RSYC 单元特性。</td>
</tr>
<tr>
<td>□ 设置 ACT1 为 PID 控制器实际值。</td>
<td>42.14 = ACT1</td>
<td>-</td>
</tr>
<tr>
<td>□ 选择模拟输入 AI1 为 PID 控制器实际值信号。</td>
<td>42.16 = AI1</td>
<td>来 RSYC 单元 BUF OUT 信号，0...10 V。5 V 以下 = 网侧频率高于传动输出频率。5 V = 网侧与传动输出频率一致，相位匹配。5 V 以上 = 网侧频率低于传动输出频率。</td>
</tr>
<tr>
<td>□ 设置 ACT1 最小值。</td>
<td>42.18 = 0.00%</td>
<td>-</td>
</tr>
<tr>
<td>□ 设置 ACT1 最大值。</td>
<td>42.19 = 100.00%</td>
<td>-</td>
</tr>
<tr>
<td>□ 关闭 PID 控制器的积分器。</td>
<td>42.02 = 0.0</td>
<td>-</td>
</tr>
<tr>
<td>□ 激活修正功能，定义修正相关最大速度。</td>
<td>42.30 = DIRECT</td>
<td>PID 控制器输出与最大速度极限相关（参数 20.02）。</td>
</tr>
<tr>
<td>□ 选择参数 42.11 作为修正给定源。</td>
<td>42.10 = INTERNAL</td>
<td></td>
</tr>
<tr>
<td>□ 设置修正限定到 50%。</td>
<td>42.11 = 50.00%</td>
<td>当同步条件有效，即 AI1= 5 V，修正限定与实际信号相同。见参数 42.16。</td>
</tr>
<tr>
<td>□ 定义修正最大效用（加到传动给定上）。</td>
<td>42.31 = 1.00%</td>
<td>-</td>
</tr>
</tbody>
</table>

应用宏和电机控制方式选择
<table>
<thead>
<tr>
<th>设置</th>
<th>参数值</th>
<th>附加信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>选择工厂宏。</td>
<td>99.02 = STANDARD</td>
<td></td>
</tr>
<tr>
<td>选择电机控制方式。</td>
<td>99.04 = VECTOR:SPEED</td>
<td>注：ACS510没有此参数。</td>
</tr>
<tr>
<td>定义电机参数。</td>
<td>99.05 …99.10</td>
<td>见ACS510用户手册（3ABD00016170 [中文]）或ACS550用户手册（3ABD00011743 [中文]）。</td>
</tr>
</tbody>
</table>

注：除参数设置外，ACS510/550的其他操作、检查、故障跟踪，请参考ACS800相关内容。