Table of Contents

Summary-Features and Protective Functions ... 1
Metering and Records Summary ... 2
Protective Functions and Recloser ... 2-4
User Interface - Operator Control Interface ... 5
Windows External Communications Program (WinECP) .. 5
Metering - Details ... 6
Digital Fault Recorder (DFR-Waveform Capture) ... 6
Load Profile .. 7
Records - Fault and Operations Communication Ports .. 7
Communication Ports ... 8
Programmable Curves ... 8
Monitoring Physical Inputs/Outputs ... 8
Programmable Logic Outputs ... 9
Programmable Logic Inputs ... 11
Miscellaneous Commands .. 12
Built-In Testing and Diagnostics .. 12
Ratings and Tolerances .. 12-13
Uninterruptible Power Supply (UPS) .. 13
Enhanced Operator Control Interface (OCI) .. 14
Case Dimensions .. 15
External Connections .. 16-19
Rear Terminal Connections .. 20
Ordering Instructions ... 21-24
Panel Mount Kit .. 25
DPU2000R Catalog Number Selection Sheet ... 26
The Distribution Protection Unit 2000R (DPU2000R) is an advanced microprocessor-based distribution unit for protecting electrical distribution systems. The DPU2000R offers unique protective, monitoring, metering, and programmable control features for expanding the protective limits normally provided by multiple single-function devices. The accurate metering on the DPU2000R can replace separate meters and reduces wiring on panels.

The 256 cycles per phase oscillographic record analyzer and event log provide detailed system disturbance data. Three groups of settings tables allow for on-line switching between groups for adaptive relaying techniques.

The DPU2000R electronics can be completely withdrawn for convenient relay testing.

Features

- ANSI and IEC time overcurrent characteristic curves provide greater flexibility
- Isolated Communication ports provide superior remote communications
- Multiple communications protocol support DNP 3.0, PRICOM™, WRELCOM™, Modbus™, Modbus Plus™ etc.), as well as an open protocol communication structure
- Easy-to-use OCI with graphical display that shows all metered values and programmable settings
- Battery backed-up clock keeps time even during powerdown
- Event records and logs are not lost by resetting of targets
- Protection is based on RMS or fundamental values
- Three user-programmable curves accommodate special coordination requirements
- Self-correction of settings tables maintains integrity of user's relay settings
- Optional isolated and hardened serial ports
- Front and rear communication ports for simultaneous local and remote access
- Programmable inputs and outputs with time delays
- Test mode allows logic monitoring of the unit's functions
- Advanced 32-bit microprocessor technology plus Digital Signal Processor (DSP)
- Windows™ based configuration software included at no charge
- Enhanced Operator Control Interface (OCI) available

Protective Functions

In each setting group (Primary, Alternate 1, and Alternate 2) the following protection is provided:

- Phase time overcurrent protection - 51P (3I>)
- Phase instantaneous overcurrent protection - 50P-1, 50P-2, 50P-3 (3I>>1, 3I>>2, 3I>>3)
- Ground overcurrent protection - 51N (IN>)
- Ground instantaneous overcurrent protection - 50N-1, 50N-2, 50N-3 (IN>>1, IN>>2, IN>>3)
- Negative sequence time overcurrent - 46 (Insc>) and negative sequence time overcurrent alarm elements 46A (InscA>)
- Phase and ground directional overcurrent protection - 67P, 67N (3I>>>, IN>>>)
- Two frequency shed and restore sequences with voltage block - 81S, 81R (f<, f>)
- Three phase & single phase undervoltage and overvoltage elements - 27-1 (U<), 27-3 (3U<), & 59-1 (U>), 59-3 (3U>)
- Negative sequence voltage element 47 (V 2) is included in the unit. A time delay of 0-60 seconds is available.
- Four zones of distance protection are available. Two zones are in the forward direction Zone 1 & 2, while Zones 3 & 4 are in the reverse direction. All zones pass through the origin of the R-X diagram with independent settings. Positive sequence current (I1) may be selected for supervisory purposes. There is included voltage memory of six (6) cycles duration in the event of a voltage deterioration.
- Multishot reclosing; each reclose step allows independent programming of protective functions
- Synchronism check, element 25, is an option available in the DPU relay. It is based on the secondary voltage and phase angle comparison of the line, and a single phase voltage source connected to the bus.
- Sensitive Earth Fault (SEF) is an option available in the DPU relay. It utilizes the 50N-2 protective element and is extremely sensitive to detect a minute amount of current flowing to ground. Directional supervision is also available as well as time delay. The SEF is not applicable to 4 wire multi-grounded systems.
- Ground overvoltage protection V₀ is included, device 59G
- 32P (I→) and 32N (I₀→) power directional functions are provided for torque controlling other elements within the DPU relay.
- Pre-programmed adaptive relay schemes include:
 - Zone sequence coordination
 - Cold load pickup detection
 - Automatic reclose blocking
 - Multiple device trip and single-phase trip modes

Modbus Plus™ is a registered trademark of Modicon, Inc.
Modbus™ is a registered trademark of Modicon, Inc.
INCOM™ is a registered trademark of Westinghouse Electric Corporation.
ABB Distribution Protection Unit 2000R

Metering and Records

- Optional load profile records of single-phase voltages, watts, and VARs
- Load profile data-storage of per-phase voltage, watts, and VARs in 5 minute intervals for 13 days expandable up to 180 days at 60 minute intervals
- Peak demand and demand amperes, voltages, watts, VARS, kWh, kVARh with power factor and frequency
- Oscillographic waveform capture and harmonic analysis data storage capability provides up to 256 cycles of per-phase recorded data
- Operations Summary including overcurrent trips, breaker operations, and reclosures
- Fault summary and records of last 32 trips
- Operations Record of last 255 operations
- Accumulation of breaker interrupting duty

Monitoring and System Highlights

- Accurate fault locator that estimates distance to fault, reducing system downtime
- On-board network-compatible remote interface capabilities that streamline operational data collection
- True 16-bit resolution with 32 samples-per-cycle on each phase for high-resolution oscillographic analysis
- Advanced Windows-based oscillographic waveform analysis program displaying analog and digital event data
- Standard 80-character, front panel LCD for changing all settings and viewing all metered data

Protective Functions

Time Overcurrent Functions: 50 (I>>)

- Three phase settings and three ground settings
- Curve: Various overcurrent and user-programmable characteristic curves (see Table 2)
- Pickup: 0.5 to 40 x 51P (3I>) and 51N (IN>) pickup setting
- Time dial selections: 1 to 10 (.05 to 1.0 IEC)
- Time delay selections: 0 to 10.0 seconds (s) in 0.01 steps (for Definite Time curve selection only)
- 50P-2 (3I>>2) and 50N-2 (IN>>2) time delay: 0 to 9.99s in 0.01-second steps
- 50P-3 (3I>>3) and 50N-3 (IN>>3) standard curve

Table 1. Time Overcurrent Curves

<table>
<thead>
<tr>
<th>Curve Definition</th>
<th>ANSI (587X)</th>
<th>IEC (687X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Instantaneous</td>
<td></td>
<td>Long Time Inverse</td>
</tr>
<tr>
<td>Inverse</td>
<td></td>
<td>Normal Inverse</td>
</tr>
<tr>
<td>Short Time Inverse</td>
<td></td>
<td>Very Inverse</td>
</tr>
<tr>
<td>Definite Time</td>
<td></td>
<td>Extremely Inverse</td>
</tr>
<tr>
<td>Long Time Extremely Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Very Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recloser Curve #8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only available with the user-programmable curve option.

Table 2. Instantaneous Overcurrent Curves

<table>
<thead>
<tr>
<th>Curve Definition</th>
<th>ANSI (587X)</th>
<th>IEC (687X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Instantaneous</td>
<td></td>
<td>Long Time Inverse</td>
</tr>
<tr>
<td>Inverse</td>
<td></td>
<td>Normal Inverse</td>
</tr>
<tr>
<td>Short Time Inverse</td>
<td></td>
<td>Very Inverse</td>
</tr>
<tr>
<td>Definite Time</td>
<td></td>
<td>Extremely Inverse</td>
</tr>
<tr>
<td>Long Time Extremely Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Very Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recloser Curve #8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only available with the user-programmable curve option.

Instantaneous Overcurrent Function: 50 (I>>)

- Three phase settings and three ground settings
- 50P-1 (3I>>1) and 50N-1 (IN>>1)
 - Curve: Various overcurrent and user-programmable characteristic curves (see Table 2)
 - Pickup: 0.5 to 40 x 51P (3I>) and 51N (IN>) pickup setting
- Time dial selections: 1 to 10 (.05 to 1.0 IEC)
- Time delay selections: 0 to 10.0 seconds (s) in 0.01 steps (for Definite Time curve selection only)
- 50P-2 (3I>>2) and 50N-2 (IN>>2) time delay: 0 to 9.99s in 0.01-second steps
- 50P-3 (3I>>3) and 50N-3 (IN>>3) standard curve

*Only available with the user-programmable curve option.
Reclosing Features: 79 (O->I)

After a fault has occurred, the 79 (O->I) Reclosing function closes the breaker when the programmed open interval time expires. Zero to five reclosures may be selected, and each reclosure has an independently set open interval timer, except for the final reclose operation which goes to lockout. The multishot reclose sequence only occurs if the DPU2000R initiates an overcurrent trip, a programmable 79M (O->I) multishot input is initiated, or 79S (O->I) single shot input is initiated.

At each step in the reclose sequence, you can enable or disable the 50P-1 (3I>>1), 50P-2 (3I>>2), 50P-3 (3I>>3), 51N (IN>, 50N-1 (IN>>1), 50N-2 (IN>>2), or 50N-3 (IN>>3) functions, and lockout reclosing as a result of tripping on any one of these functions.

Table 3. 79 (O->I) Reclosing Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Reclosures</td>
<td>0 to 5</td>
<td>1</td>
</tr>
<tr>
<td>Open Interval Time</td>
<td>0.1 to 200 s</td>
<td>0.1 s</td>
</tr>
<tr>
<td>Reset Time</td>
<td>3 to 200 s</td>
<td>1.0 s</td>
</tr>
</tbody>
</table>

Negative Sequence: 46 (Insc>)

- Curve: Various time overcurrent and user-programmable characteristic curves (see Table 1)
- Pickup: 1 to 12 A in 0.1 steps or 0.2 to 2.4 A in 0.02 steps (based on catalog selection)
- Time dial selections: 1 to 10 in 0.1 steps
- Time delay selections: 0 to 10.0 s in 0.1 steps (for Definite Time curve selection only)

Negative Sequence Alarm: 46A (InscA>)

- Curve: Various time overcurrent and user-programmable characteristic curves (see Table 1)
- Pickup: Percentage of the 51P setting
- Range: Minimum of 5% to 50% of the 51P setting
- Steps: Setting range step is 5%

Directional Overcurrent: 67 - Phase and Ground (3I->, IN>>>)

- Curve: Various time overcurrent and user-programmable characteristic curves (see Table 1)
- Pickup: 1 to 12 A in 0.1 steps or 0.2 to 2.4 A in 0.02 steps (based on catalog selection)
- Time dial selections: 1 to 10 in 0.1 steps
- Time delay selections: 0 to 10.0 s in 0.1 steps (for Definite Time curve selection only)
- Positive sequence polarized phase unit, adjustable maximum torque angle: 0 to 355 (I, LEAD V)
- Negative sequence polarized ground unit, adjustable maximum torque angle: 0 to 355 (I, LEAD V)

Frequency: 81(f)

- Two independent steps for load shed, restoration, and overfrequency
- Load shed pickup: 81S-1 (f<1), 81S-2 (f<2)
 - 60-Hz application 56 to 64 Hz in steps of 0.01
 - 50-Hz application 46 to 54 Hz in steps of 0.01
- Shed time delay: 0.08 to 9.98 seconds in steps of 0.02s
- Load restoration: 81R-1 (f>1), 81R-2 (f>2)
 - 60-Hz application 56 to 64 Hz in steps of 0.01
 - 50-Hz application 46 to 54 Hz in steps of 0.01
- Restoration time delay 0 to 7200 seconds in steps of 1 s
- Overfrequency alarming (based on 81 R settings): 81O-1 (f>fs1), 81O-2 (f>fs2)
- Voltage block: 40 to 200 V in steps of 1 V

Undervoltage: 27-1 (U<) & 27-3 (3U<)

- Pickup: 10 to 200 V in steps of 1 V
- Time delay: 0 to 60 seconds in steps of 1 s

Overvoltage: 59-1 (U>) & 59-3 (3U>)

- Pickup: 70 to 250 V in steps of 1 V
- Time delay: 0 to 60 seconds in steps of 1 s

Negative Sequence Voltage Element: 47

Negative sequence voltage protection, device 47, is included in the DPU unit.

- \(V_2 \) Voltage Pickup Range: 5.0 to 25.0 volts
- Time delay: 0 to 60 seconds in steps of 0.1 s

Distance Protection: 21-1, -2, -3, -4

Four zones of distance protection, device 21-1, -2, -3, -4, are included in the DPU relay. There are two forward zones and two reverse Zones. Zones 1 & 2 are in the forward direction, while Zones 3 & 4 are in the reverse direction. All zones pass through the origin of the R-X diagram with independent settings utilizing the MHO or circular characteristic. Positive sequence current (I_1) may be selected for supervisory purposes. There is included voltage memory of six (6) cycles duration in the event of a voltage deterioration.

- \(0.1 \) to 50.0 ohms for the 0.4 to 12.0 amp relay model in steps of 0.1 \(\Omega \) steps
- \(0.5 \) to 250 ohms for the 0.08 to 2.4 amp relay model in steps of 0.5 \(\Omega \) steps
- Characteristic Angle: 10 to 90 degrees for Zones 1 & 2 in steps of 0.1 degree steps
 190-270 degrees for Zones 3 & 4 in steps of 0.1 degree steps
- Time delay: 0 to 10.0 seconds in steps of 0.1 s
- \(I_1 \) Current Supervision: 1.0 to 6.0 amps in steps of 0.1 amps for the 0.40 to 12.0 amp model
 0.2 to 1.2 amps in steps of 0.02 amps for the 0.08 to 2.40 amp model
ABB Distribution Protection Unit 2000R

Ground Overvoltage Element: 59G

• V_0 Voltage Pickup: 5.0 to 50 volts in steps of 0.5 volts
• Time Delay: 0 to 30 seconds in steps of 0.10 seconds

Power Directional Function: 32P (I→→→→)

The 32P (I→→→→) power directional function is provided for torque controlling other elements within the DPU relay.

• Angular Setting: 0 to 355 degrees in 5 degree steps
• Angular Sector Width: 180 degrees

Power Directional Function: 32N (I₂→→)

The 32N (I₂→→) power directional function is provided for torque controlling other elements within the DPU relay.

• Angular Setting: 0 to 355 degrees in 5 degree steps
• Angular Sector Width: 180 degrees
• Setting selected for I₂ or I₀ detection.

Cutout Time Function: 79-CO (O→I-CO)

The 79 Cutout Time 79-CO (O→I-CO) function allows for the detection of low-level or intermittent faults prior to resetting the reclose sequence. At the end of the selected cutout time period, overcurrent functions are re-enabled based on the 79-1 (O→I₁) settings. The 79-CO (O→I-CO) setting is programmable from 1 to 200 seconds.

Cold Load Pickup Time Delay

This function disables the 50-1 (I>>1) and 50-2 (I>>2) instantaneous phase and ground protective functions for a programmable period of time. Use this function to block unintentional tripping due to cold load inrush for a selected time delay between 0 to 254 seconds or minutes with a stop of one second or minute. During the time delay, an output alarm (CTA) is also asserted.

Two-Phase 50P (3I>>) Tripping

Enabling this function blocks 50P (3I>>) element from tripping the breaker for a single-phase fault condition.

Reclosing Voltage Block Function: 79V (O→IU<)

The 79V (O→IU<) voltage block function delays or blocks reclosing when any voltage input is below the 79V (O→IU<) Voltage Block setting.

• 10-200 V range with 1-V steps
• 4-240 second or minute range with 1-second or minute steps

Frequency Loadshed & Restoration Block: 81V (fU<)

The 81V setting blocks the 81S-1 (f<1) and 81S-2 (f<2) underfrequency functions if the voltage drops below the setting, which ranges from 40 to 200 VAC with 1-V steps.

Zone Sequence Coordination (ZSC) Function

The zone sequence coordination function coordinates the instantaneous functions in the reclosing sequence of the upstream device with the downstream reclosing devices. The DPU2000R increments (steps up to the next reclose number) through its reclose sequence after it senses that fault current has been interrupted by a downstream device.

Fault Locator

The DPU2000R uses a patented fault algorithm to compute an apparent distance to the fault in miles or kilometers and an estimated fault resistance for a homogeneous distribution line. Using the sampled voltage and current quantities and user defined line impedances, the relay calculates the apparent fault distance and estimated fault resistance in the background mode, so as not to interfere with the protective functions of the unit.

Multiple Device Trip Mode

In Multiple Device Trip (MDT) mode a DPU2000R can control up to three single-pole reclosers. A second application for MDT mode allows a single DPU2000R relay on the bus to back up multiple feeder DPU2000Rs. The feeder DPU2000R SELF-CHECK ALARM output contact supervises the tripping logic from the bus relay. This allows the bus relay to trip the feeder breaker, thus avoiding a bus breaker operation. (See Application Note AN-22 on MDT mode.)

Single-Shot Reclose: 79S (IO->I)

The programmable 79S (IO->I) input function initiates a single-shot reclose when the 52a (XO) and 52b (XI) contact inputs indicate that the breaker has been externally tripped. The close signal is initiated after the 79-1 (O->I₁) open interval time expires.

Multi-Shot Reclose: 79M (O->I)

When the 79M (O->I) input is enabled, a multishot reclose sequence is initiated or continued when the 52a (XO) and 52b (XI) contact inputs indicated that the breaker had been tripped by an external device.
User Interface
You can change settings, monitor metering activities, and view operations records through two interfaces: either of the two operator control interfaces and the Windows External Communications Program. In addition, with the Windows External Communications Program you can logically map inputs and outputs to any associated logic function, and you can download Oscillographic Data Storage files and Load Profile data (see “Optional Features”).

Operator Control Interface (OCI) - Standard or Enhanced
Both OCI designs are temperature compensated, allowing clear viewing throughout the entire temperature range (-40° to +85° C) of the DPU2000R. The standard (OCI) consists of a 4 row by 20 character backlit display and a six-button keypad. See page 14 for a description of the enhanced OCI. The OCI continuously displays rms current magnitudes for la, lb, lc, and In and the corresponding line-to-neutral voltages (in wye configuration) or line-to-line voltages (in delta configuration). When a fault occurs, the OCI displays the distance to the fault and the four fault current magnitudes until the targets are reset. During the reclose sequence, the time remaining in the open interval or reset time period is also displayed. Relay settings, metering, fault and operations records, and a test mode can be accessed directly from the OCI.

Metering Display

la: 500 KV	an: -13.00
lb: 500 KV	bm: 13.00
lc: 500 KV	cn: 13.00
In: 0 Primary Set	

Main Menu

| MAIN MENU |
| Meter Settings Records |

Display After a Fault Interruption

| Distance - Km: 10.1 |
| la: 3320 lb: 430 |
|lc: 420 In: 331 C |
| Reset Time: 14 |

Windows External Communications Program (WinECP)
The Windows External Communications Program (WinECP) provides point-to-point communications with the DPU2000R relay. By using WinECP, you can program the settings for the DPU2000R’s various functions. WinECP can be used off-line to explore the capabilities and functionality of the relay. When the software is not communicating to a DPU2000R, the settings and configurations displayed are the factory default values. The relay settings can be edited, then saved to a file, and retrieved for downloading to a DPU2000R later. When the software is connected to a DPU2000R, you can view the records, save them to a file, or view them later.

WinECP contains terminal emulation commands to dial through a modem to access the relay or other devices connected to a remote modem. WinECP is a Windows-based program and can be installed to your computer’s hard drive. The initial screen of the WinECP is shown below with other typical screens shown throughout this bulletin.
Metering

The Meter Menu has the following selectable metered data:

Load Values

- Phase and ground currents (magnitude and angle)
- Zero (I_0), positive (I_1), and negative (I_2) sequence currents
- Phase voltages for wye or delta VTs (volts and angle)
- Positive (V_1) and negative (V_2) sequence voltages
- Kilowatts single-phase and 3-phase for wye VTs and 3-phase for delta VTs
- KiloVARs single-phase and 3-phase for wye VTs and 3-phase for delta VTs
- Kilowatt-hours single-phase for wye and 3-phase for delta VTs
- KiloVAR-hours single-phase for wye and 3-phase for delta VTs
- Power factor
- Frequency

Demand and Maximum/Minimum Demand Values

Demand and maximum/minimum demand values are metered in single-phase for wye and 3-phase for delta VTs with time and date stamp on the maximum and minimum metered values. The demand currents are calculated by using a log function; these currents replicate the response of thermal demand ammeters. The demand kilowatts and kiloVARs are averaged values that are calculated by using the kilowatt-hours, kiloVAR-hours and the selected demand interval.

Maximum and Minimum Values

- Maximum and minimum (phase and ground) currents
- Time and date stamp for maximum and minimum
- Maximum, and minimum kilowatts
- Time and date stamp for maximum and minimum kilowatts
- Maximum, and minimum kiloVARs
- Time and date stamp for maximum and minimum kiloVARs

Digital Fault Recorder (DFR – Waveform Capture)

The DPU2000R relay includes an optional digital fault recorder (DFR) to analyze fault and disturbance conditions. This new and enhanced program has been introduced in the DPU2000R relay with firmware version 5.20.

The user can select to record any of the analog waveforms available at the analog inputs of the relay from the connected current and voltage transformers. Settings of the triggering sources, and also specifically the number of cycles of pre-trigger and post-trigger data to be captured, are all selectable. Digital input signals associated with the operation of the protective functions of the relay are also recorded. The data collected is held within the memory elements of the relay until downloaded to a file on a PC. A separate Wave Win Program is used to display the various waveforms. This analysis program is supplied when the relay is ordered with the waveform capture feature. The Wave Win analysis program is included in the WinECP communication software provided with the DPU2000R relay.

The figure below shows the screen display of the Waveform Capture Settings menu from the WinECP relay communications program. The selection of any one of these will create a capture. It is also possible to trigger a capture from an external contact chosen by assigning a contact input to a programmable input function.
Optional Features

Load Profile

The Load Profile feature stores single-phase voltage, demand watts, and demand VARs for a selectable time interval of 5, 15, 30, or 60 minutes (Demand Meter Constant) for which the load profile record will then contain 13.3, 40, 80, or 160 days of information, respectively. The recorded data is stored in a comma-delimited ASCII format, which allows for importing in most text editor programs word processor (or spreadsheet for load analysis and graphing).

Not Used Year Month Day Kilowatts Volts
1, 93 08 13 00, 6668, 6692, 6688, -116, -124, 11397, 11404, 11395
1, 930813700, 6668, 6692, 6688, -116, -138, 11397, 11404, 11395
1, 930813715, 6676, 6660, 6690, -116, -128, 11376, 11414, 11393
1, 930813730, 6678, 6660, 6690, -116, -128, 11376, 11404, 11391

Records

Under the Records Menu are selections for the various fault and operations records and summaries kept by the DPU2000R.

Fault Summary

A summary of the last 32 faults is provided. The fault summary includes the fault number, recloser sequence number, date and time, tripping element, and the phase and neutral currents.

Fault Record

The fault record contains the last 32 faults. The fault record displays one fault at a time and includes the following:

- Fault number
- Reclose sequence number and enabled settings table
- Date and time
- Tripping element
- Apparent distance to the fault
- Phase and neutral currents (magnitude, fault resistance, and angle)
- Positive, negative, and zero sequence currents
- Phase voltages
- Positive and negative sequence voltages
- Relay operate time
- Breaker operate time

Operations Record

This record stores the last 255 operations. Operations include manual opening and closing of the breaker, overcurrent trips and reclose sequences, activation of binary inputs and output contacts, alarm conditions, and Functional Test Mode data. The operations record includes the following data:

- Record number
- Operation number
- Description of the operation
- Date and time of the operation

Operations Summary

This record includes the following counters:

- Summation of breaker interruption duty per phase (A, B, and C) in KSI (thousand symmetrical amperes)
- The total number of breaker operations
- Total number of overcurrent trips
- Two recloser (79) counters
- Total number of successful reclosures by sequence number: 1st, 2nd, 3rd, and 4th
Communication Ports

The DPU2000R has a nine pin, standard non-isolated RS-232C serial communications interface on the front panel. This port is used to interrogate or program the unit by using WinECP. Additional communication port configurations are available on the back panel of the DPU2000R, including:

- Isolated RS-232C (3-wire)
- Isolated RS-485 (3-wire)
- Isolated RS-485 Auxiliary Communication Port
- Isolated INCOM (2-wire) port
- IRIG-B (Unmodulated)

The baud rate selections for the front and rear ports are:

- FRONT 300, 1200, 2400, 4800, or 9600
- REAR 300, 1200, 2400, 4800, 9600, or 19200

An ABB RS-232 to RS-485 converter (Catalog No. 245X2000) can be used to connect a network of DPU2000Rs with RS-485 ports to a communications device (modem) or personal computer. For long runs and high electrical noise environments, fiber-optic communications links are recommended. An ABB RS-485 to fiber-optic converter (Catalog No. 245X4000) can be used to network multiple DPU2000Rs to a central communications center up to 1000 meters away.

The DPU2000R provides the following communications protocol options:

ABB Ten-byte-oriented protocol through the front RS-232 and rear RS-232/RS-485 ports. WinECP is provided with the relay and can be used to communicate with the DPU2000R via this protocol.

Modbus Plus™ - A token ring network capable of high speed communication (1MB per second)

INCOM™ two-wire, RF carrier-based communications system and protocol

DNP 3.0 - A byte-oriented protocol

(Note: Protocol documentation available on request for interfacing with the relay.)

Programmable Curve Menu

An external PC-based program, CurveGen, is used to create and program custom time-current curves for the DPU2000R. With CurveGen you can generate three time-overcurrent curves in addition to the standard curves provided in the DPU2000R. You can manipulate the curves in the time and current domains just like any other curve currently programmed into the DPU2000R.

WinECP allows you to download a curve generated on CurveGen to the DPU2000R as a User 1, 2, or 3 curve. Upload an existing user-programmable curve from the DPU2000R to a computer for editing or graphing. Downloading pre-programmed curves that match common recloser curves is also possible.

Monitoring the DPU2000R

WinECP displays options for viewing the physical condition (Energized or De-Energized) and logic state (Open or Closed) of the programmable input and output contacts. This menu is useful in analyzing the programmed logic mapping of the output contacts and contact inputs.

Physical Input/Output Status

This contact input/output screen displays the present physical state of digital input contacts and contact outputs. With this screen you can verify that the logic you programmed for input contacts is responding properly without physically measuring the input voltage status.

Logical Input Status

The WinECP logical input screen shows the present status of the logical inputs.
Logical Output Status

The logical output screen shows the present status of the logical outputs, energized or de-energized. Use this screen to verify the proper operation of the relay functions' logic states.

<table>
<thead>
<tr>
<th>Logical Output Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Contacts (Password Protected)</td>
</tr>
</tbody>
</table>

The output contact test mode allows activation of all permanently programmed and user-programmed output contacts via the man-machine interface or the communications WinECP.

Programmable Logic Outputs

Up to six (6) user-programmable output contacts are available. Program these contacts by using the WinECP. Time delay on pickup and dropout can also be programmed to each contact output. The time delay interval is adjustable from 0 to 250 seconds in 0.01 steps, for both pickup and dropout. The user-programmable outputs can be configured to indicate the following conditions:

- Trip - Trip Output Contact
- Close - Reclose Output Contact
- Alarm - Trip Output Contact
- BFA - Breaker Failure Alarm
- 79LOA (O->ILO) - Lockout Alarm
- TCFA - Trip Circuit Failure Alarm
- TCC - Tap Changer Cutout Contact
- PUA - Overcurrent Pickup Alarm
- 51P (3I>) - Phase Time Overcurrent Trip Alarm
- 51N (IN>) - Ground Time Overcurrent Trip Alarm
- 46 (Insc>) - Negative Sequence Time Overcurrent Trip Alarm
- 46A (InscA>) - Negative Sequence Overcurrent Alarm
- 47 (V>) - Negative Sequence Voltage
- 50P-1 (3I>>1) - 1st Phase Instantaneous Overcurrent Trip Alarm
- 50N-1 (IN>>1) - 1st Ground Instantaneous Overcurrent Trip Alarm
- 50P-2 (3I>>2) - 2nd Phase Instantaneous Overcurrent Trip Alarm
- 50N-2 (IN>>2) - 2nd Ground Instantaneous Overcurrent Trip Alarm
- 50P-3 (3I>>3) - 3rd Phase Instantaneous Overcurrent Trip Alarm
- 50N-3 (IN>>3) - 3rd Ground Instantaneous Overcurrent Trip Alarm
- 67P (3I>->) - Phase Directional Time Overcurrent Trip Alarm
- 67N (IN>->) - Ground Directional Time Overcurrent Trip Alarm
- PATA (L1TA) - Phase A (L1) LED Target Alarm
- PBTA (L2TA) - Phase B (L2) LED Target Alarm
- PCTA (L3TA) - Phase C (L3) LED Target Alarm
- 81S-1 (<1) - 1st Frequency Load Shed Trip
- 81R-1 (t=1) - 1st Frequency Load Restoration Closure
- 81O-1 (t=fS1) - 1st Overfrequency Alarm
- 81S-2 (<2) - 2nd Frequency Load Shed Alarm
- 81R-2 (t=2) - 2nd Frequency Load Restoration Closure
- 81O-2 (t=fS2) - 2nd Overfrequency Alarm
- 27-1P (U<1) - Single-Phase Undervoltage Alarm
- 27-3P (3U<) - Three-Phase Undervoltage Alarm
- 59 (U>) - Single-Phase Overvoltage Alarm
- 59-3 (3U>) - Three-Phase Overvoltage Alarm

List continues next page
• 59G (V\textsubscript{v}) - Zero Sequence Overvoltage Alarm
• 79DA (O->IDA) - Recloser Disabled Alarm
• 79CA1 (O->I-1) - Recloser Operations Counter 1 Alarm
• 79CA2 (O->I-2) - Recloser Operations Counter 2 Alarm
• OCTC (I>TC) - Overcurrent Trip Counter Alarm
• KSI - KSI Summation Alarm
• PDA - Phase Current Demand Alarm
• NDA - Neutral Current Demand Alarm
• PVARA - Positive Three-Phase kiloVAR Alarm
• NVARA - Negative Three-Phase kiloVAR Alarm
• LOADA - Load Current Alarm
• 50-1D (I>>1D) - 50-1 (I>>1) Instantaneous Function Disabled Alarm
• LPFA - Low Power Factor (lagging) Alarm
• HPFA - High Power Factor (lagging) Alarm
• ZSC - Zone Sequence Coordination Enabled Indicator
• 50-2D (I>>2D) - 50-2 (I>>2) Instantaneous Function Disabled Alarm
• BFUA - Blown Fuse Alarm
• STCA - Settings Table Changed Alarm
• PH3-D (3I>D) - Phase Overcurrent Functions Disabled Alarm
• GRD-D (IN>D) - Ground Overcurrent Functions Disabled Alarm
• 32PA (3I>Is) - 67P (3I>->) Pickup Alarm
• 32NA (IN>Is) - 67N (IN>->) Pickup Alarm
• VARDA - Three-Phase KiloVAR Demand Alarm
• TRIP A (L1) - Phase A (L1) Trip
• TRIP B (L2) - Phase B (L2) Trip
• TRIP C (L3) - Phase C (L3) Trip
• 27-1P* (U<1*) - Single-Phase Undervoltage Seal In Alarm
• 27-3P* (3U<*) - Three-Phase Undervoltage Seal In Alarm
• 46* (Insc>*) - Negative Sequence Overcurrent Seal In Alarm
• 50P-1* (3I>->1*) - 1st Phase Instantaneous Overcurrent Seal In Alarm
• 50N-1* (IN>->1*) - 1st Ground Instantaneous Overcurrent Seal In Alarm
• 50P-2* (3I>>2) - 2nd Phase Instantaneous Overcurrent Seal In Alarm
• 50N-2* (IN>>2) - 2nd Ground Instantaneous Overcurrent Seal In Alarm
• 50P-3* (3I>>3) - 3rd Phase Instantaneous Overcurrent Seal In Alarm
• 50N-3* (IN>>3) - 3rd Ground Instantaneous Overcurrent Seal In Alarm
• 51P* (3I>*) - Phase Time Overcurrent Seal In Alarm
• 51N* (IN>*) - Ground Time Overcurrent Seal In Alarm
• 59* (U<*) - Single-Phase Overvoltage Seal In Alarm
• 67P* (3I->*) - Phase Directional Time Overcurrent Seal In Alarm
• 67N* (IN->*) - Ground Directional Time Overcurrent Seal In Alarm
• 81S-1* (f<1*) - 1st Frequency Load Shed Seal In Alarm
• 81R-1* (f>1*) - 1st Frequency Load Restoration Seal In Alarm
• 81O-1* (f>fs1*) - 1st Overfrequency Seal In Alarm
• 81S-2* (f<2*) - 2nd Frequency Load Shed Seal In Alarm
• 81R-2* (f>2*) - 2nd Frequency Load Restoration Seal In Alarm
• 81O-2* (f>fs2*) - 2nd Overfrequency Seal In Alarm
• TRIP A* (L1*) - Phase A (L1) Trip Seal In Alarm
• TRIP B* (L2*) - Phase B (L2) Trip Seal In Alarm
• TRIP C* (L3*) - Phase C (L3) Trip Seal In Alarm
• 79CA1* (O->I-1*) - Recloser Operations Counter 1 Seal In Alarm
• 79CA2* (O->I-2*) - Recloser Operations Counter 2 Seal In Alarm
• 21P-1 - Phase Distance Element Zone 1
• 21P-2 - Phase Distance Element Zone 2
• 21P-3 - Phase Distance Element Zone 3
• 21P-4 - Phase Distance Element Zone 4
• DBDL - Dead Bus Dead Line
• DBLL - Dead Bus Live Line
• LBGL - Live Bus Dead Line
• LBLL - Live Bus Live Line
• ULO1-16 (User Logical Outputs 1 through 16) - Allow you to operate any of the nine user-programmable OUT contacts for a function other than those listed above. Each ULO is asserted by the corresponding User Logical Input or an INCOM/SCADA communications command. For example, ULO 8 is asserted by ULI 8; it cannot be asserted by any other User Logical Input.
• CLTA - Cold Load Timer Alarm
• PWATT1 - Positive Watt Alarm 1
• PWATT2 - Positive Watt Alarm 2
• 79CA1* (O->I-1*) - Recloser Operations Counter 1 Seal In Alarm
• 79CA2* (O->I-2*) - Recloser Operations Counter 2 Seal In Alarm
• 21P-1 - Phase Distance Element Zone 1
• 21P-2 - Phase Distance Element Zone 2
• 21P-3 - Phase Distance Element Zone 3
• 21P-4 - Phase Distance Element Zone 4
• DBDL - Dead Bus Dead Line
• DBLL - Dead Bus Live Line
• LBGL - Live Bus Dead Line
• LBLL - Live Bus Live Line
• ULO1-16 - User Logical Outputs 1-16
• LO1-8 - Latching Logical Outputs 1-8
• SBA - Slow Breaker Alarm
• SEF - Sensitive Earth Fault
• ZSC - Zone Sequence Coordination
• TR_ON - Hot LineTag ON

Note: All output contacts are rated for tripping or alarm duty.
WinECP Output Mapping Logic Screen — You can map each output contact logically AND or OR to any function with time delay for pickup and dropout.

Programmable Logic Inputs

The DPU2000R also provides eight (8) user-programmable contact inputs that may be configured in an AND or OR logic map and in a normally open or normal closed state. The user-programmable inputs can monitor, enable, initiate, or actuate the following input functions:

- **TCM (TCS)** - Trip Coil Monitoring monitors continuity through the trip coil when the breaker is closed
- **GRD (IN)** - Ground Control enables the 51N (IN>), 50N-1 (IN>>1), and 50N-2 (IN>>2) functions
- **PH3 (I3)** - Phase Control enables the 51P (I3>), 46 (INsc>), 50P-1 (I3>>1), and 50P-2 (I3>>2) functions
- **50-1 (I>>1)** - Instantaneous Control enables the 50P-1 (I3>>1) and 50N-1 (IN>>1) functions
- **50-2 (I>>2)** - Instantaneous Control enables the 50P-2 (I3>>2) and 50N-2 (IN>>2) functions
- **50-3 (I>>3)** - Instantaneous Control enables the 50P-3 (I3>>3) and 50N-3 (IN>>3) functions
- **ALT1** Enables Alternate 1 Settings Table
- **ALT2** Enables Alternate 2 Settings Table
- **ZSC** Enables Zone Sequence Coordination Scheme
- **SCC** Monitors Spring Charging contact when breaker is opened
- **79S (O->I1)** - Initiates a single-shot reclosure when breaker is opened by another device
- **79M (O->I)** - Initiates multishot reclosing when breaker is opened by another device
- **OPEN** Initiates Trip Output Contact
- **CLOSE** Initiates Close Output Contact
- **ECI1** Initiates storage of data in fault summary and fault record
- **ECI2** Initiates storage of data in fault summary and fault record
- **WCI** Initiates oscillographic data storage in the waveform capture record
- **46 (INsc>)** - Negative Sequence Control enables the 46 (INsc>) function
- **46A (INscA>)** - Enables the Negative Sequence 46A (INscA>) function
- **67P (I3->>)** - Phase Directional Control enables the 67P (I3->>) function
- **67N (IN->>)** - Ground Directional Control enables the 67N (IN->>) function
- **UL1–UL9** (User Logical Inputs 1 through 9) - Allows you to logically AND OR contact inputs together. User Logical Inputs 1 through 9 are mapped to the corresponding User Logical Outputs 1 through 9 in the Programmable Output Settings. The User Logical Inputs allow you to define functions for the contact inputs that are not listed above.
- **CRI** - Resets Recloser Counters 1 and 2 and the Overcurrent Trip Counter to zero
- **TARC** Initiate Trip and Auto Reclose
- **ARCI** Timed Reclose Block
- **52A** (XO) Breaker Contact
- **52B** (XI) Breaker Contact
- **43A** (AR) Recloser Disable
- **LIR 1-8** - Latching Input Reset Logicals 1-8
- **LIS 1-8** - Latching Logical Inputs 1-8
- **LOCAL** - Supervisory control - clears forced I/O’s
- **UL1-16** - User Logical Inputs 1-16
- **TGT** - Reset target LED’s
- **TR_SET** - Set the Hot Line Tag
- **TR_RST** - Reset the Hot Line Tag

WinECP Input Mapping Logic Screen — You can map each input contact logically AND or OR to any function. You can program an input contact to be enabled when closed or when open.
Miscellaneous Commands

WinECP also lets you:

- Reset targets and alarms
- Reset minimum and maximum demand values
- Reset Seal In alarms
- Set or reset alarms for user-programmable logic functions
- Set communication configuration
- Set security mask
- Define user display messages

Functional Test Mode (Password Protected)

The Functional Test Mode allows testing of programmed overcurrent functions and reclose sequences (upon removal of test current) without simulating operation of the 52a (XO) and 52b (XI) contact inputs. The DPU2000R stays in the Functional Test Mode for fifteen minutes or until the Test Mode is exited. The test sequences, including overcurrent trips, are written only into the Operations Record, leaving the other records free from any test data.

Ratings and Tolerances

Current Input Circuits

- 5-A input rating, 16 A continuous and 450 A for 1 second
- 1-A input rating, 3 A continuous and 100 A for 1 second
- Input burden at 0.245 VA at 5 A (1 - 12 A range)
- Input burden at 0.014 VA at 1 A (0.2 - 2.4 A range)
- Frequency 50 or 60 Hz

Voltage Input Circuit

Voltage ratings based on the VT connection setting.

BURDEN

- 0.04 VA for V(A-N) at 120 Vac

VOLTAGE

- **Wye** Connection: 160V continuous and 480V for 10 seconds
- **Delta** Connection: 260V continuous and 480V for 10 seconds. This is for an open delta.

Contact Input Circuits (Input Burden)

- 2.10 VA at 220 Vdc and 250 Vdc
- 0.52 VA at 125 Vdc and 110 Vdc
- 0.08 VA at 48 Vdc
- 0.02 VA at 24 Vdc

Control Power Requirements

- 48 Vdc model, range = 38 to 58 Vdc
- 110/125/220/250 Vdc models, range = 70 to 280 Vdc
- 24 Vdc model, range = 19 to 29 Vdc

Built-In Testing

The DPU2000R provides continuous self-testing of its power supply voltages, memory elements, digital signal processor, and program execution. In the event of a system failure, the protective functions are disabled and the self-check alarm contacts are actuated. Self-Test Failures are recorded in the Operations Record.

Diagnostics

- Continuous self-checking of power supply voltages, memory elements, and digital signal processor
- Trip failure detection adjustable from 5 to 60 cycles

DPU2000R Settings Tables Diagnostics

Three copies of each settings table are stored in nonvolatile memory, preventing data loss during control power cycling. A background diagnostics task continuously runs a checksum on each copy of the settings tables.
Uninterruptible Power Supply (UPS) Battery Backup Unit

The UPS may be used as an alternate source to provide dependable backup power only to the DPU2000R in the event that the primary AC power source is lost. Ordering information and functional characteristics for the UPS are listed below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Type</td>
<td>Nickel cadmium (NiCd), high-temperature cells</td>
</tr>
<tr>
<td>Size</td>
<td>Twenty “D” cells, 1.2 V per cell</td>
</tr>
<tr>
<td>Capacity</td>
<td>4.3 amp-hours</td>
</tr>
<tr>
<td>Storage Temperature Ranges</td>
<td>–40º C to 70º C</td>
</tr>
<tr>
<td>Discharge Temperature Ranges</td>
<td>–20º C to 70º C</td>
</tr>
<tr>
<td>Charge Temperature Ranges</td>
<td>0º C to 70º C</td>
</tr>
</tbody>
</table>

Ordering Information: **SELECT 24 Vdc rated DPU2000R for use with this device** (For more information including mounting dimensions see I.B. 7.12.1.7-9)

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270B0024</td>
<td>UPS charger, NiCd battery pack (20 “D” cells) and the battery support tray</td>
</tr>
<tr>
<td>270B0024-LB</td>
<td>UPS charger and the battery support tray</td>
</tr>
<tr>
<td>270B0024-LT</td>
<td>UPS charger and the NiCd battery pack (20 “D” cells)</td>
</tr>
<tr>
<td>612024-T2</td>
<td>Only the NiCd battery pack (20 “D” cells)</td>
</tr>
</tbody>
</table>

Ratings and Tolerances (Continued)

Control Power Burden
- 24 Vdc = 0.7 A @ 19 V
- 48 Vdc = 0.35 A max @ 38 V
- 110/125 Vdc = 0.25 A max @ 70 V
- 220/250 Vdc = 0.16 A max @ 100 V

Operating Temperature
- –40º to +85º C

Humidity
- Per ANSI 37.90, up to 95% without condensation

Output Contacts Ratings

<table>
<thead>
<tr>
<th>Vdc</th>
<th>125 Vdc</th>
<th>220 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 A tripping</td>
<td>30 A tripping</td>
</tr>
<tr>
<td></td>
<td>5 A continuous</td>
<td>5 A continuous</td>
</tr>
<tr>
<td></td>
<td>0.25 A break inductive</td>
<td>0.1 A break inductive</td>
</tr>
</tbody>
</table>

Transient Immunity
- Surge withstand capability
 - SWC and fast transient tests per ANSI C37.90.1 and IEC 255-22-1 class III and 255-22-4 class IV for all connections except comm or AUX ports
 - Isolated comm ports and AUX ports per ANSI 37.90.1 using oscillatory SWC Test Wave only, and per IEC 255-22-1 class III and 255-22-4 class III
 - EMI test per ANSI C37.90.2

Dielectric
- 3150 Vdc for 1 second, all circuits to ground except comm ports
- 2333 Vdc for 1 second, for isolated communication ports

Weight
- Unboxed: 5.36 kg (11.80 lbs)
- Boxed: 5.67 kg (12.51 lbs)
Enhanced Operator Control Interface Panel

Introduction

The enhanced Operator Control Interface (OCI) is designed to give the user greater flexibility to access information from the system than available with the standard operator control interface. The OCI provides the following features:

- Control buttons with access to the DPU’s logical inputs
- Breaker control buttons
- 24 target indications for the DPU logical outputs: 22 programmable
- Larger LCD with eight lines to display the DPU menu
- A top level menu of popularly accessed information
- Hot Line Tag control buttons are available as an optional feature in the new enhanced OCI panel

The enhanced OCI panel and the standard OCI panel are both available in the DPU2000R model. The OCI panel option provided is represented in the catalog number of the DPU2000R relay. The seventh position of the relay catalog number indicates the front panel option.

The four (4) new front panel options available are as follows:

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Operator Control Interface Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Horizontal enhanced OCI panel</td>
</tr>
<tr>
<td>3</td>
<td>Horizontal enhanced OCI with Hot Line Tagging</td>
</tr>
<tr>
<td>7</td>
<td>Vertical enhanced OCI panel</td>
</tr>
<tr>
<td>8</td>
<td>Vertical enhanced OCI with Hot Line Tagging</td>
</tr>
</tbody>
</table>

Note: See page 26 for complete catalog selections.

Hot Line Tagging

For the enhanced OCI with HLT option, the user has access to the Hot Line Tag control buttons on the enhanced OCI panel. This replaces the conventional 31TR control switch. There are two Hot Line Tag control buttons: left arrow and right arrow. The button de-bounce and recognition are identical and the same as the six control buttons C1-C6. The on, off and tag panel indication follow the status of the hot-line-tag logical outputs (ON, OFF, TAG) in the conventional DPU2000R. If the enhanced OCI catalog number is without the HLT option, the operation of the HLT’s logical inputs is per the normal programmable I/O function.
Case Dimensions (Standard 19” Rack Mount 3 Units High)

Standard Operator Control Interface (OCI) shown.
Exterior dimensions with Enhanced OCI are the same.

Dimensions are in: inches [millimeters]

Top View

Bracket Position for Flush Mounting

Bracket Position for Semi-flush Mounting

17.12 [434.8]
Note:
In this case, OUT 2 is shown programmed as the breaker close contact. Inputs 1, 2 and 3 on terminals 4, 5 and 6 are shown mapped to the 52A (XO), 52B (XI) and 43A (AR) logic functions respectively. Refer to Section 6 for other available I/O logic mapping functions.
Self check alarm contacts are shown in the powered down condition. When control power is applied, contacts will change state.

** = OPTIONAL: OPEN DELTA PT CONFIGURATION

Typical Minimum External Connections

- **VA** (UL1)
- **VB** (UL2)
- **VC** (UL3)
- **VN** (UN)
- **VA** (UL1)
- **VB** (UL2)
- **VC** (UL3)
- **VN** (UN)

![Diagram](image)

* = OPTIONAL CONTACT CONFIGURATION
SELECTABLE N.O. OR N.C.
Typical Connections for Units with Sensitive Earth Fault Option

USER SELECTABLE PHASE ROTATION
A-B-C (L1-L2-L3) or A-C-B (L1-L3-L2)

NORMAL LOAD FLOW

IMPORTANT:
For models with the SEF feature, it is a REQUIREMENT that the CT Input at terminals 47-48 be used at all times that the SEF Input at 45-46 is used.

SENSITIVE EARTH FAULT USING WINDOW CT

SENSITIVE EARTH FAULT USING RESIDUAL CONNECTION OF CT'S

ABB Distribution Protection Unit 2000R
USER SELECTABLE PHASE ROTATION
A-B-C (L1-L2-L3) or A-C-B (L1-L3-L2)

Typical VT and CT Connections for Directional Sensitive Earth Fault Units
VT INPUTS 31-32-33 ARE DEFINED AS THE LINE-VT INPUTS. (SEE NOTE 1)

IMPORTANT NOTES:

1. Observe the definitions of “Line-Side” and “Bus-Side” as they apply to the relay’s VT inputs. This is important when using the DEAD-LINE/DEADBUSBUS closing functions of the Sync-check element. These relay designations may not match the actual system arrangement, so care must be taken in selecting the relay settings to obtain the desired mode of operation.

2. If the LINE-VT’s are connected line-to-neutral, the Sync-check option allows the BUS-VT to be connected either line-to-neutral, or line-to-line, based on the setting “Bus VT Phase”. If the LINE-VT’s are connected line-to-line, then the BUS-VT should also be connected line-to-line.

NOTE: VT Input 35-36 is defined as the BUS-VT input (see Notes 1, 2).

Typical Connections with Sync Check Option
Rear Terminal Connection

Rear Terminal Blocks and Communication Ports
Ordering Instructions

The 2000R series of relays have a structured catalog number ordering system. The unit's catalog number is built up from 13 customer-selectable characters. Each character identifies features or functions that can be incorporated into the relay.

Sample Catalog Number

```
587 R 0 4 1 1 - 6 1 0 1 0
```

<table>
<thead>
<tr>
<th>ANSI/IEC Configuration</th>
<th>Current Range</th>
<th>Control Voltage</th>
<th>OCI Display and Mounting Orientation</th>
<th>Communications Protocol</th>
<th>Software Options</th>
<th>Frequency</th>
<th>Rear Communications Port Configuration</th>
</tr>
</thead>
</table>

How To Order

Using the Ordering Selection sheet, select those special features or options that are required to adapt the 2000R to your specific application. Create the catalog number, as shown above, by selecting the associated number or letter that refers to the desired feature or option from each category.

Communication Port Configurations

The 2000R platform provides several variations of communication ports, such as a 9-pin RS-232, RS-485, INCOM™ and Modbus Plus™. Also available is a list of factory supported common communication protocols for networking the unit.

RS-232 ports are available in two different configurations, Isolated and Non-Isolated. Isolated ports provide isolation between the communication port and the rest of the relay.

COM 1 port is configured as a non-isolated port only. Units having an MMI display use the RS-232 port on the front panel as COM 1, thereby permanently disabling the RS-232 port marked COM 1 on the rear of the unit. Units not having an MMI Display permit the user to select, via jumper setting, either the front or rear (labeled COM 1) RS-232 connectors to act as COM 1.

COM 2 port is a non-isolated configuration and COM 3 port is an isolated configuration. Refer to the following list of options to select the most suitable configuration.

The 2000R series also features ABB’s innovative RS-485 isolated communications capability available when the optional Auxiliary Communication board is installed. This isolated RS-485 configuration provides superior communication quality recommended for applications in areas of high electrical noise or that require connecting cables longer than 10 feet (3m).

![Rear Terminal Blocks and Communication Ports](image-url)
Non-isolated RS-232 ports are susceptible to electrical noise. For that reason it is recommended that connecting cables be no longer than 10 feet (3m) when connecting to a non-isolated port. Devices connected to non-isolated ports must have the same ground return as the 2000R unit.

Refer to the Select Communication Options Table when making option selections.

In addition to the standard front or rear non-isolated RS-232 port (COM 1), the following rear communication port options are available:

Option 0
This option provides RS-232 communication via the non-isolated COM 2 port and is suitable only in applications where communication to the unit is local through a direct connection to a PC or remote through an external isolating communication device, such as an RS-232 to fiber optic converter, which is connected to the relay using a short cable.

Options 1 through 8 and E are provided on an independent communication card installed in the unit.

Option 1
This option provides RS-232 communication via the isolated COM 3 port for transient immunity and isolation and must be used where communication cable lengths are greater than 10 feet (3m) or a common ground is not guaranteed. In general, RS-232 communication is limited to a maximum distance of 50 feet (15m). Aux Com and COM 2 ports are disabled in this configuration.

Option 2
This option provides RS-232 communication via isolated COM 3 port and RS-485 communication via the isolated Aux Com ports. The auxiliary port is an isolated RS-485 configuration that supports several communication protocols (See Communication Protocol Category On Ordering Sheet).

Option 3
This option provides INCOM™ availability, via the Aux Com port, in applications where either the Westinghouse INCOM™, or ABB WRELCOM™, network is used.

Option 4
This option provides RS-485 communication and INCOM™ availability, via the isolated Aux Com port. In this configuration, the INCOM™ port provides the same functionality as option 3.

Option 5
This option provides RS-485 communication via the isolated Aux Com port, and is highly recommended for applications requiring communication over distances of up to 300 feet (100m). This option has an advantage over RS-232 by allowing networking of multiple relays via a simple 3 wire connection.

An RS-485 to RS-232 converter (Catalog Number 245X2000) is available to connect the network to an external device such as a modem or a personal computer.
Option 6
This option provides a Modbus Plus™ interface, via the COM 3 port, and RS-232 communication via the non-isolated COM 2 port.

Option 7
This option provides a Modbus Plus™ interface via the COM 3 and RS-485 communication via the isolated Aux Com port.

Option 8
This option provides RS-485 communication via the isolated COM 3 and Aux Com ports.

Option E
This option provides Ethernet with a 10/100 meg twisted pair (RJ45) and 10 meg fiber optic (ST connector).

Communication Protocols
The Select Options Table shows the communication protocols and the respective hardware port assignments that are currently available.

The ABB 10-Byte Protocol
The “Standard” protocol referenced throughout this publication refers to an ABB 2000R series-specific 10 byte ASCII oriented communication protocol. This protocol is standard for COM 1 and is selectable for other rear ports as per the Select Options Table. The 2000R series Windows External Communication Program (WinECP) provided, at no charge, with the relay uses the standard protocol. Product specific protocol documents are available from the factory upon request.

Special Software Options
The special software options available on the 2000R series include Load Profile, Customer Programmable Curves, Special Recloser Curves and Oscillographic Data. Any combination of these options may be selected.

– 3 character locations in the catalog number define your selection of software options.
– Special recloser curve options duplicate popular recloser time current characteristic curves. Contact ABB Allentown for curve details.
ABB Distribution Protection Unit 2000R

The table below illustrates all possible hardware configurations for the communication ports and the supported protocols. The Catalog Number Select Option columns list every communication option for which the relays can be configured.

The different protocol variations are outlined under the corresponding communication ports that support them. Select the row containing the protocol combination that best suits your communications requirements and use the corresponding catalog number options to fill in the brackets [] of the catalog number.

The auxiliary port is labelled IRIG-B receives a demodulated IRIG-B signal for 2000R clock synchronization purposes.

For example, if your system requires DNP 3.0 protocol, the ordering catalog number would be 587R041[2]-6101[1] (4th row), 587R041[4]6101[1] (10th row) or 587R041[8]-6101[1] (18th row) based on your choice for the second port provided.

Select Communication Options Table

An empty selection box indicates communication port is either not provided or is disabled.

* Main board jumper selectable front or rear.

Protocol selectable in settings process, all 4 combinations possible.
Panel Mounting Kit

The complete kit will include a bezel, its associated hardware and gasket, as well as a lens cover with its associated hardware. This kit will provide a means for panel mounting and dustproofing.

Ordering Information:

<table>
<thead>
<tr>
<th>Kit Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Panel Mounting Kit</td>
<td>604513-K1</td>
</tr>
<tr>
<td>Vertical Panel Mounting Kit</td>
<td>604513-K2</td>
</tr>
</tbody>
</table>

Spare Parts List:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezel/gasket assembly only</td>
<td>604513-K3</td>
</tr>
<tr>
<td>Horizontal lens cover assembly</td>
<td>613724-K1</td>
</tr>
<tr>
<td>Vertical lens cover assembly</td>
<td>613724-K2</td>
</tr>
</tbody>
</table>

Note: The Bezel Assembly is available as an option for mounting the DPU2000R units in a panel application.

Note: Below is the panel drilling cutout for the DPU2000R unit and the bezel assembly.

NOTE: DIMENSIONS ARE INCHES [MILLIMETERS]
DPU2000R Catalog Number Selection Sheet

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Cat # 587 (ANSI)</th>
<th>R</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>1</th>
<th>6</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Standard with Earth Fault Protection</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Standard with Synchronism Check</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Range</th>
<th>Phase Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard or Non-Directional Sensitive Earth Fault</td>
<td></td>
</tr>
<tr>
<td>0.4-12A 0.4-12A</td>
<td>0 0</td>
</tr>
<tr>
<td>0.4-12A 0.08-2.40A</td>
<td>1</td>
</tr>
<tr>
<td>0.08-2.4A 0.08-2.40A</td>
<td>2</td>
</tr>
</tbody>
</table>

Directional Sensitive Earth Fault	
0.4-12A 04-12A	4
0.4-12A 0.08-2.40A	5
0.08-2.40A 0.08-2.40A	6

Control Voltage	
38-58 VDC	3
70-280 VDC	4
19-29 VDC	9

Operator Control Interface (OCI)	
Standard OCI, horizontal mounting	1 1
Enhanced OCI, horizontal mounting	2
Enhanced OCI, with dedicated “Hot-Line-Tag”	
Recloser Control for horizontal mounting	3
Standard OCI, vertical mounting	6
Enhanced OCI, vertical mounting	7
Enhanced OCI, with dedicated “Hot-Line-Tag”	
Recloser Control for Vertical mounting	8

Rear Communications Port	
RS-232 (isolated) only	1 1
INCOM (isolated)	2
RS-485 Port (isolated) & RS-232 Port (isolated)	3
RS-485 Port (isolated) & INCOM (isolated)	4
RS-485 (isolated) only	5
Modbus Plus & RS-232 (non-isolated)	6
Modbus Plus & RS-485 (isolated)	7
Two RS-485 Ports (isolated)	8
Ethernet 10/100 meg twisted pair (RJ45) and 10 meg Fiber Optic (ST connector)	E

Frequency	
50 Hertz	5
60 Hertz	6

Software	
No Digital Fault Recorder (DFR)	0
Digital Fault Recorder (DFR)	1
No User Programmable Curves	0
User Programmable Curves	1
Special Recloser Curves	2
Special Recloser Curves and User Programmable Curves	3
No Load Profile	0
Load Profile	1

Communications Protocol	
Standard (ABB 10-Byte Protocol – Com Port digits all but 6, 7 & E)	0 0
DNP 3.0 (Com Port digits 2 or 8)	1
Modbus (Com Port digits 2 or 8)	4
Modbus Plus (Com Port digits 6 or 7)	4
UCA (Com Port digit “E”)	6
Modbus/UCA (Com Port digit “E”)	7