

Refinery Product Blending Optimisation

Refining & Downstream Product and Solution Centre

Alan Munns – Product Manager alan.munns@gb.abb.com

14 June 2012 Refinery Product Blending_IRPC2012 pr

Oil Refinery Offsites Automation Advanced Blend Control & Oil Movements Manager

- Oil Movements used for crude terminals, refineries, petrochemical complexes, bulk storage terminals etc
- Advanced Blend Control used for refineries and bulk storage terminals
- Advanced Blend Control integrated with Oil Movements Manager
- Comprehensive System for:
 - Blend and oil movement order management
 - Physical blend and movement line-up
 - Pre-blend optimization
 - Online control and blend recipe optimization
 - Monitoring & reporting
 - Configuration and maintenance

www.HPIRPC.com

In-line Product Blending - Equipment

Business Objective – Fulfil Orders for Product at Lowest Cost

www.HPIRPC.com

In-line Product Blending - Constraints

Refinery Product Quality Specifications & Constraints

- Feasible solution space squeezed by changing specifications
- Solution space sometimes disappears completely infeasible

www.HPIRPC.com

Typical Differences in Optimised Blend Recipe

_ P	lor	ino ——							
	ł	Header	Blend	Inte	ervals	1			
		MATERIAL	TANK	MIN	PLAN	INIT	AVG	MAX	VOLUME
	►	HVY CAT	SR-56	50,40	56.00	55.23	52.71	61.60	27722.890
		LT CAT	SR-63	5.40	6.00	5.71	6.65	8.00	3496.477
		МΙΧ	SR-60	11.98	14.98	17.71	17.90	17.97	9413.106
		BUTANE	SR-747576	10.96	15.66	15.43	16.37	20.36	8608.386
		SR-37 COMP	SR-37	6.00	7.36	6.00	6.37	8.10	3349.602

Planner / Scheduler

Initial recipe with offline optimisation

Actual closed loop optimised recipe

www.HPIRPC.com

Blending Business Opportunity – Reduce Costs of...

- Inventory (blend right-first-time, just-in-time)
- Quality giveaway (Octane, RVP, Cetane, Sulfur, CFPP, Viscosity etc)
- Sub-optimal blend recipes
- Correction blends & reblends
- Distress & panic blends
- Downgrading to lower quality grades
- Contamination errors
- Demurrage for missed shipments & pipeline slots
- Tank maintenance & investment in new tanks

www.HPIRPC.com

- Increase quantity of premium grades
- Sell petrochemical naphtha at gasoline price
- Sell higher / buy lower quality components
- Gasoline prices Regular US\$ 2.80, Premium US\$ 3.19, / us gallon
- Premium Regular = US\$ 3.19 US\$ 2.80 = US\$ 0.39 / usg = US\$ 16.38 / bbl
 - Premium Regular = 93 87 = 6 AKI ON
 - ON giveaway = US\$ 16.38 / 6 = US\$ 2.73 / ON / bbl
- Cost to refinery of 100,000 bpd gasoline with 0.25 ON giveaway =
 - 100,000 * 365 * 2.73 * 0.25 = US\$ 24.9 million / year

www.HPIRPC.com

Business Opportunity - Reduce Quality Giveaway Cost RVP

Sell additional butane at gasoline price

- Gasoline forecourt prices Regular US\$ 2.80 / us gallon = US\$ 117.6 / bbl
- LPG sales price US\$ 0.84 / kg = US\$ 82.5 / bbl
- Regular LPG = US\$ 35.1 /bbl
- Regular with 0.5 psi RVP giveaway would allow + 0.86 % n-butane to be added to increase RVP from 9.5 to 10 psi
- Gasoline 100,000 bpd production increased to 100,859 bpd
 - Sell 859 bpd of butane at Regular price
- Cost to refinery of 100,000 bpd gasoline with 0.5 psi RVP giveaway =
 - 859 * 365 * 35.1 = US\$ 11.00 million / year
- Use Planning LP to calculate cost of giveaway

Margin Between Sales Specification & Control Target – Depends on Confidence Level

www.HPIRPC.com

How Much of the Business Opportunity Can Be Captured?

	Sales	Control	Actual
	Specification	Target	
RON	95.00	95.03	95.04
MON	85.00	85.03	85.03
RVP	93.00	92.60	92.60

How Is This Achieved?

-F	}er	ine ———						
j	ł	Header	Blend	Intervals				
		MATERIAL	TANK	MIN	INIT	AVG	MAX	VOLUME
	►	REFORMAT_2	TK5303	0.00	34.08	31.74	100.00	2538.687
		ISOMERISAT	ISOMPOOL	20.00	23.00	23.78	24.00	1902.282
		BUTAN	TK4901	0.80	7.02	8.17	10.00	653.506
		HEXAT	TK4703	2.00	2.00	2.00	5.00	160.047
		LCN	TK4702	12.00	24.30	24.00	40.00	1919.781
		POLY	TK4704	3.60	3.60	3.58	5.00	286.088
		HCN	TK4404	3.80	6.00	6.72	7.00	537.611
		ANTISTAT	TK5309		3.00	1.21		24.259

Ρ	roj	perties —								
	ŀ	Header	Tank	Int	ervals	1				
		PROPERTY S_ MIN		C_MIN CUR		FINALPRED	C_MAX	CNTRL		
	▶	DENSITET	720.0	722.0	730.8	730.8	773.0	775.0		F
		MON	85.00	85.03	85.03	85.03				(
		VP	60.0	60.0	92.6	92.6	92.6	93.0		ł
		RON	95.00	95.03	95.04	95.04				(
		E70	22.0	23.0	38.7	38.7	49.0	50.0		١
		E100	46.0	47.0	56.5	56.5	70.0	71.0		١
		E150	75.00	76.00	87.38	87.38				١
		E180			94.4	94.4				١
		FBP			191.2	191.2	208.0	210.0		1
		VATTEN			27.3	27.3				ł
		BENSEN			0.71	0.71	0.86	1.00		١
		AROMATER			32.2	32.2	41.7	42.0		١
		OLEFINER			10.3	10.3	17.5	18.0		١
		SVAVEL			3.2	3.2	7.0	10.0		ł
		VLI			1197.0	1196.9				1
		SYREHALT			0.0	0.0				١
		MTBE-HALT			0.0	0.0	0.3	0.3		١
		10% PT			35.6	35.6				[
		50% PT			78.0	78.0				[
		90% PT			167.7	167.7				[
	_									-

www.HPIRPC.com

Key Issue #1 – Organisation & Culture

- Cross-Functional team
- Cooperative & collaborative working can do attitude
- Using the same system and data
 - Planners / Schedulers / Blend Schedulers
 - Offsites Operators & Supervisors
 - Blend System Technical Services / Control Engineer
 - Laboratory QA Manager / Technicians
 - Analyser Engineers & Technicians
 - Instruments / Mechanical Equipment / IT Engineers & Technicians
- Close the loop feedback results to optimise the refinery

Key Issue #1 – Organisation & Culture Using the Same System and Data

Key Issue #2 - Blend Header Analysers - FTNIR

Key Issue #2 - Blend Header Analysers - FTNIR

www.HPIRPC.com

Key Issue #2 - Blend Header Analysers - FTNIR

- Model calibration & validation sets must be representative
- And cover whole range of operation
- Use bottles of components and mix in the Lab

Customer data inadequate, ABB combined data from other refineries

- X No data at / below Sales Specification or Premium
- X Model data sets highly clustered

www.HPIRPC.com

Key Issue #3 – Optimiser Functionality

- Allows optimization and recipe correction even <u>without</u> analyzers
- Multiple bias source types for each property
- Spot and Composite sample handling
- Allows retroactive correction of the blend based on samples and lab result
- Tank quality integration over time TQI
- Data entry can be integrated with LIMS or manual entry in ABC
- Manages all Tank heels, user-tunable heel correction rate
- Manages rundown piping quantity and heel quality

122	📲 Blend Interval Property BiasCalc Type											
File	File Edit View Help											
6	🖆 🗏 👌 - 🛍 🔁 📎 🢡											
	Blend	Interval	Property B									
	PROPERTY	BIAS	ANZ RES	Bias Override:								
▶	MON	0.65889		ANALYZER		Advanced Property BiasCalc Type Update						
	E100	2.88684		ANALYZER		Set BiasCalc Type to: Apply Update on:						
	E70	0.19689	31.89069	ANALYZER								
	OLEFINER	-0.55004	5.939594	ANALYZER		O NULALC O						
	AROMATER	0.88171		ANALYZER		ANALYZER C						
	BENSEN	0.07509	0.7524752	ANALYZER		C COMPOSITE C						
	MTBE-HALT	0		COMPOSITE		O SPOT O						
	VATTEN	47.6041		COMPOSITE		C CURRENT ALL C						
	E180	0		COMPOSITE		G Datas						
	VP	0.22328		COMPOSITE		Apply Update on Intervals Between:						
	SYREHALT	0		COMPOSITE		Dates						
	DENSITET	3.93969		COMPOSITE		08/31/2011 🔽 10:01:11 PM 🛨						
	FBP	8.68600		COMPOSITE		08/31/2011 T 10:01:11 PM						
	E150	1.79432		COMPOSITE								
	90% PT			COMPOSITE		└ Volumes						
	50% PT			COMPOSITE	•	15823.89190625 15823.89190625						
	1/20											

	Name: HSD_BS29	UM .	▼ State	DONE		De	stination:	61		Header:	HSD-BLND	
S	ample: Name: 892 SPT1		▼ Samp	sple Type: SPOT SI			art Volume	186	186 Stop Volum		186	
Γ	PROPERTY	USED?	SAMPLE	ANALYZER	FEEDBACK	HEADER	S_MIN	S_MAX	ACCURACY		UNITS	
Þ	FLASH		33.9	38.0	46.5	33.4	35.0		0	DEG C		
	POUR POINT		-3.20		-3.21	-3.20		15.00	0	DEG C		
	SULFUR		421.0		424.4	414.9		500.0	0	PPM WT		
	DENSITY		837.0		839.7	838.7	820.0	860.0	0	KG/M3		
	KVISC_40		2.29		2.21	2.18	2.00	5.00	0	CST@40C		
L	CETANE		46.00		45.75	45.90	48.00		0	CETANE NO.		
L												
		_										
L												
L												
L												
L												
L												
L		_		_								
L		_		_								
L												
L												
L		_										
L				_								
L												
ŧΓ				1					1	1		
	1/4 1/	6										
0	6/18/2007 12:5 <u>1:15</u>	- ABSMGR	HAS LOGGE	D INTO TH <u>e vi</u>	B DISPLAY <u>S</u>							
0	6/18/2007 12:51:15	- ABSMGR	HAS LOGGE	D INTO THE VI	3 DISPLAYS							
110	met 🗠 🚳 🚳	» 🙆 🗤	1000	100 an 100 a	ha 🎦 ad	ها مداها	hs l®ha	B Men		a 📾 🛃 🔿 802 🌰 🌶	30 M 4	

www.HPIRPC.com

Key Issue #3 – Optimisation Infeasibility Handling

- Optimiser diagnostics advise Operator why infeasible
- Limiting Min and max constraint shown in red
- User Min / Max consider freeing up if constraining

	Recipe Constraint Diagnostic											
Fi	le Edit View Help											
	🔊 🔳 🛛 🗛 🗸	🛱 🔁 🛛										
Ir	iterval		м	IN		OPT			MAX			
	COMPONENT	USER	INV	LINEUP	DELTA	OPT	USER	INV	LINEUP	DELTA	PACING	
	REFORMAT	0.00	0.00	11.54	29.41	36.27	100.00	100.00	100.00	43.41	71.16	
	POLY	3.00	0.00	2.31	0.00	3.00	3.00	42.49	19.23	10.00	8.57	
	LCN	12.00	0.00	3.08	13.88	20.83	23.00	100.00	51.54	27.88	33.14	
	ISOMERISAT	15.00	0.00	2.69	16.10	23.00	23.00	100.00	25.38	30.10	34.79	
	HEXAT	2.00	0.00	2.23	0.00	3.00	3.00	100.00	22.31	10.01	12.53	
	HCN	5.00	0.00	1.54	0.00	6.00	6.00	100.00	22.31	12.90	14.58	
	BUTAN	0.80	0.00	3.08	0.70	7.90	15.00	100.00	15.38	14.70	13.67	
4	verage		<u> </u>	IN		OPT			MAX			
	COMPONENT	USER	INV	LINEUP	DELTA	OPT	USER	INV	LINEUP	DELTA	PACING	
	REFORMAT	0.00	0.00	11.54	29.41	36.26	100.00	100.00	100.00	43.41	71.16	
	POLY	3.00	0.00	2.31	0.00	3.00	3.00	42.49	19.23	10.00	8.57	
	LCN	12.00	0.00	3.08	13.88	20.85	23.00	100.00	51.54	27.88	33.14	
L	ISOMERISAT	15.00	0.00	2.69	16.10	23.00	23.00	100.00	25.38	30.10	34.79	
	HEXAT	2.00	0.00	2.23	0.00	3.00	3.00	100.00	22.31	10.01	12.53	
	HCN	5.00	0.00	1.54	0.00	6.00	6.00	100.00	22.31	12.90	14.58	
	BUTAN	0.80	0.00	3.08	0.70	7.90	15.00	100.00	15.38	14.70	13.67	
	1/7	1/7									11.	

www.HPIRPC.com

HYDROCARBON PROCESSING

Does your refinery need offsites automation?

If you answer YES to the following questions:-

- •Capacity > 50,000 bpd crude ?
- Refinery > very low complexity ?
- Components > 2 per product (gasoline, diesel, fuel oil, bunkering) ?
- •Products > 1 grade per product ?
- Unconstrained market ?
- Degrees of freedom > 2 ?
- Technical sophistication > minimum ?
- Product quality giveaway > ASTM repeatability ?
- Inventory (products + components) > 15 days ?
- Not enough tanks ?
- •Reblends & corrections > 1 / month ?
- Typical project payback < 0.8 years

www.HPIRPC.com

ABB Offsites Automation - Product and Solutions Centre

- Alan Munns PSC Manager & Product Owner
 <u>alan.munns@gb.abb.com</u> +44 1480 488143
- Work with local ABB company to deliver & support solution
- Consultancy for offsites automation, project justification, blending system design & operation
- Projects
- Business Development
- Customer Support & Training
- Software Product Development & Maintenance
- Located in StNeots 80km north of London UK

Power and productivity for a better world[™]

www.HPIRPC.com