

Wireless Controller REC601/603 Technical Manual

Document ID: 1MRS757104 Issued: 2011-09-14 Revision: A Product version: 1.0

© Copyright 2011 ABB. All rights reserved

Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

Trademarks

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB Oy Distribution Automation P.O. Box 699 FI-65101 Vaasa, Finland Telephone: +358 10 2211 Facsimile: +358 10 22 41094 http://www.abb.com/substationautomation

Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/ or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.

Conformity

This product complies with the following Electro Magnetic Combatibility (EMC) standards: ETSI EN 301489-1 (V1.8.1 2008-04), IEC 61000-6-1 (Second edition 2005–01) and IEC 61000-6-3 (2006–07).

Table of contents

Section 1	Introduction	7
	This manual	7
	Intended audience	7
	Product documentation	7
	Document revision history	7
	Related documentation	7
	Symbols and conventions	8
	Symbols	8
	Manual conventions	8
Section 2	REC601/603 overview	9
	Overview	9
	Product version history	11
	Front panel	12
	Serial panel	13
	Antenna panel	14
	System status LEDs	14
	DIN rail mounting	15
	Product label	15
	Firmware version	15
Section 3	Physical connections	17
Section 3	Physical connections	
Section 3	÷	17
Section 3	Communication connections	17 17
Section 3	Communication connections	17 17 17
Section 3	Communication connections Serial ports Console/serial port 1	17 17 17 17
Section 3	Communication connections Serial ports Console/serial port 1 Serial port 2	17 17 17 18 19
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet.	17 17 17 18 19 20
Section 3	Communication connections Serial ports Console/serial port 1 Serial port 2 Ethernet GPRS	17 17 17 18 19 20 22
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections.	
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections. Power connector.	
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections. Power connector. X2.1 connector.	
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections. Power connector. X2.1 connector. X2.3 connector.	
Section 3	Communication connections Serial ports Console/serial port 1 Serial port 2 Ethernet GPRS I/O connections Power connector X2.1 connector X2.3 connector X3 connector	
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections. Power connector. X2.1 connector. X2.3 connector. X3 connector. X4 connector.	
Section 3	Communication connections Serial ports Console/serial port 1 Serial port 2 Ethernet GPRS I/O connections Power connector X2.1 connector X2.3 connector X3 connector X4 connector I/O LEDs	
Section 3	Communication connections. Serial ports. Console/serial port 1. Serial port 2. Ethernet. GPRS. I/O connections. Power connector. X2.1 connector. X2.3 connector. X3 connector. X4 connector. I/O LEDs. AC and LINK LEDs.	

	Control functions	29
	Condition monitoring functions	29
	Communication diagnostics and watchdog	29
	Disconnector control condition monitoring functions	29
	Disconnector travel time monitoring	29
	Disconnector actuator motor overload protection	30
	Monitoring of the pressure of SF6 gas	31
	Battery charging and monitoring functions	31
	Power backup	32
	Heater control	32
	Low auxiliary voltage indication	32
	Over/undertemperature indication	32
	Measurement functions	32
Section 5	REC601/603 Configurator	25
Section 5	Overview	
	Login to the Web Configurator	
	System menu	
	Network menu	
	Ethernet.	
	GPRS	
	Dial-in	
	SSH-VPN	
	L2TP-VPN	
	GRE	
	Monitor	
	Routing	
	S-NAT	
	D-NAT	
	DNS Update	
	DynDNS client	
	NTP client	
	SMS Config	51
	Firewall menu	
	Service menu	53
	WWW	53
	SSH	54
	Telnet	54
	DHCP	54
	Application menu	56
	Tools menu	58
	IEC-104 application settings	59
	General settings	60
	Serial settings	60

REC601/603 Technical Manual

	Network settings	61
	IEC-104 settings	63
	IEC-101 settings	66
	ASDU converter	
	Packet collector	70
	Other settings	72
Section 6	Technical data	73
Section 7	Ordering data	79
Section 8	Appendix 1 Installation and mounting instructions	83
	Unpacking the device	83
	Installing the device	83
	Installing the SIM card	84
	Setting the IP address via a Web browser	84
	Configuring the GPRS settings	86
Section 9	Appendix 2 Controller configuration reference	89
	Physical pins	
	Digital inputs	89
	Analog inputs	90
	Digital outputs	91
	Configuration file syntax	91
	Sections	92
	Parameters	92
	Comments	92
	Duplicate section names	92
	Duplicate parameter values	93
	[GLOBAL]	93
	Low-level I/O settings	93
	[PHYSICAL_DI]	94
	[PHYSICAL_AI]	94
	[PHYSICAL_TEMP]	95
	[PHYSICAL_DO]	95
	Analog scaling settings	95
	[PHYSICAL_EXTAIMODE_1]	96
	[PHYSICAL_EXTAIMODE_2]	96
	[CURRENT_SENSOR]	
	Protocol communication settings	97
	[IEC_104_SLAVE_LINK]	
	[IEC_104_SLAVE_APP]	
	[IEC_TIME]	
	[IEC_CYCLIC_GROUP]	100

Common objects	101
Single-point information settings	101
Double-point information settings	102
Double-point information value mapping	103
Measured value, short floating-point information	103
Single-command settings	104
Double-command settings	105
Disconnector settings	106
[DISCONNECTOR_CONTROL_N] (where N=1, 2, 3)	107
[DISCONNECTOR_STATUS_N] (where N=1, 2, 3)	108
[DISCONNECTOR_LOCREM_N] (where N=1, 2, 3)	109
[DISCONNECTOR_TRAVELTIME_N] (where N=1, 2, 3)	110
[DISCONNECTOR_TRAVELVOLT_N] (where N=1, 2, 3)	112
[DISCONNECTOR_TRAVELCURRENT_N] (where N=1, 2, 3)	113
[DISCONNECTOR_TRAVELCHARGE_N] (where N=1, 2,	
3)	114
Default sections	115
Internal inputs	
[POWER_SUPPLY_STATUS_SPI]	116
[MODEM_RELAY_STATUS_SPI]	117
[BATTERY_RELAY_STATUS_SPI]	117
[CHARGER_RELAY_STATUS_SPI]	
[BATTERY_LOW_SPI]	117
[BATTERY_PROTECT_SPI]	117
[TEMPERATURE_LOW_SPI]	118
[TEMPERATURE_HI_SPI]	118
[HEATER_RELAY_STATUS_SPI]	118
[BATTERY_CHARGEVOLTAGE_FPI]	118
[BATTERY_CHARGECURRENT_FPI]	118
[TEMPERATURE_FPI]	119
[LOAD_LIMITER_STATUS_DPI]	119
[LOAD_LIMITER_REASON_DPI]	119
[LOAD_LIMITER_CHARGE_FPI]	119
[LOAD_LIMITER_TIME_FPI]	119
[BATTERY_TEST_STATUS_DPI]	120
[BATTERY_TEST_CHARGE_FPI]	120
Physical general-purpose inputs	120
[DIGITAL_INPUT_SPI_N] (where N=1 17)	120
[DIGITAL_INPUT_DPI_N] (where N=1 6)	121
[ANALOG_INPUT_FPI_N] (where N=1, 2)	121
Default sections	121
Internal outputs	122
[LOAD_LIMITER_CONTROL_SC]	122

REC601/603 Technical Manual

	[BATTERY_TEST_CONTROL_SC]	122
	General-purpose outputs	122
	[DIGITAL_OUTPUT_SC_N] (where N=1 10)	123
	[DIGITAL_OUTPUT_DC_N] (where N=1, 2, 3)	123
	Default sections	123
	Functions	124
	[POWER_MONITOR]	124
	[BATTERY_MONITOR]	125
	[BATTERY_DISCHARGE_PROTECTION]	125
	[LOTEMP_MONITOR]	126
	[HITEMP_MONITOR]	126
	[LOAD_LIMITER]	127
	[HEATER]	128
	[BATTERY_TEST]	128
	[PWM_CHARGER]	130
	Updating the configuration file on command prompt	131
Section 10	Appendix 3 IEC 60870-5-104 interoperability	133
	Interoperability	133
	System or device	134
	Network configuration	134
	Physical layer	134
	Link layer	135
	Application layer	136
	Basic application functions	143
Section 11	Glossary	151

Section 1 Introduction

1.1 This manual

The technical manual contains product overview, installation and mounting instructions, descriptions of physical connections, functionalities, Web configurator interface, IEC 60870-5-104 interoperability and controller configuration. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

1.2 Intended audience

This manual addresses system engineers and installation and commissioning personnel, who use technical data during engineering, installation and commissioning, and in normal service.

1.3 Product documentation

1.3.1 Document revision history

Document revision/date	Product series version	History
A/2011-09-14	1.0	First release

Download the latest documents from the ABB Web site <u>http://www.abb.com/substationautomation</u>.

1.3.2 Related documentation

Product series- and product-specific manuals can be downloaded from the ABB Web site <u>http://www.abb.com/substationautomation</u>.

1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Manual conventions

Conventions used in manuals. A particular convention may not be used in this manual.

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Parameter names are shown in italics. The function can be enabled and disabled with the *Operation* setting.
- Parameter values are indicated with quotation marks. The corresponding parameter values are "On" and "Off".

Section 2 REC601/603 overview

2.1 Overview

REC601 and REC603 are controlling devices for disconnector stations with integrated wireless communications. They are used in direct remote control configurations of disconnectors.

- Controls three disconnectors and grounding separators
- Advanced charging and monitoring of external battery pack
- Measurement of disconnector transaction time and energy
- Software and hardware protection of disconnector faults
- Supports both local and remote disconnector control
- A LED display for disconnector and grounding status
- Full support for the IEC 60870-5-101 and IEC 60870-5-104 protocols
- Redundant IEC 60870-5-104 connections provide extra availability
- External heater control
- 15 digital inputs for disconnector control
- Two digital outputs for battery control
- Two analog inputs for battery control
- One digital output for motor control (over-current)
- Six digital outputs for disconnector control
- One analog input for motor control (0...15 A)
- 4...20 mA input
- Heater control output
- One general purpose digital input
- One general purpose digital output

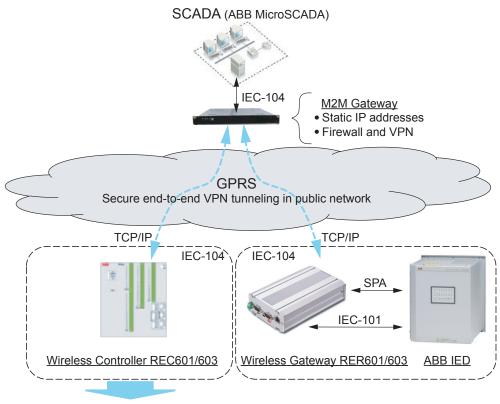
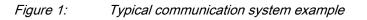



ABB load break switches

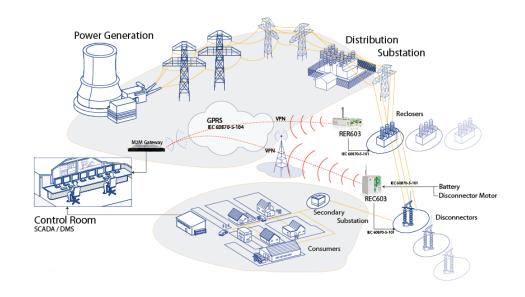


Figure 2: Distribution automation system overview

2.1.1 Product version history

Product version	Product history
1.0	First release

Section 2 REC601/603 overview

2.2

Front panel

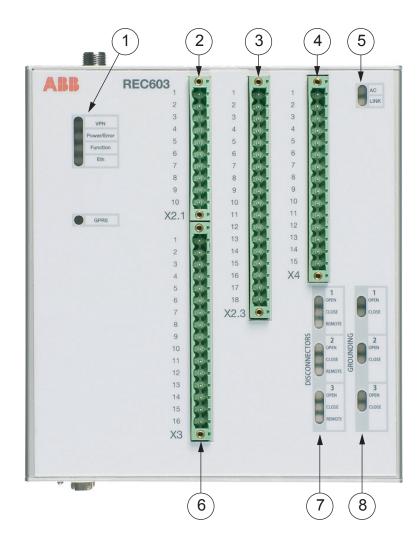


Figure 3:

Front panel

- System status LEDs
 X2.1 connector
- 3. X2.3 connector
- 4. X4 connector
- 5. AC and LINK LEDs
- 6. X3 connector
- 7. Disconnector status LEDs
- 8. Grounding disconnector status LEDs

2.3 Serial panel

Figure 4: Serial panel

- 1. Serial port 1 (console or application port)
- 2. Power switch
- 3. Serial console switch
- 4. Serial port 2 configuration DIP switches
- 5. Serial port 2
- 6. Ethernet connector

2.4

Antenna panel

Figure 5: Antenna panel

- 1. SIM card tray connector
- 2. SIM card tray release button
- 3. Antenna FME connector (male)

2.5 System status LEDs

The device has eight LEDs indicating the system status. They are located on the front panel.

Table 1: System status LEDs		
LED	State	Description
VPN	On	VPN connection is up
	Blink	VPN connection is starting
	Off	VPN connection is disabled
Power/Error	On	Operating power is turned on
	Off	Operating power is turned off
Function	On	Device is starting
	Blink	Device is operating normally
Table continues on next page		

LED	State	Description
Eth	On	Ethernet link is up
	Blink	Ethernet link is transferring data
	Off	Ethernet link is down
GPRS	Blink	GPRS is starting or transferring data
	Off	GPRS is inactive

2.6 DIN rail mounting

The device has mounting holes for DIN rail mounting brackets.

2.7 Product label

The product label is located on the bottom of the device. It contains the basic information about the unit such as product name, serial number and Ethernet MAC address.

Figure 6: Product label

B Firmware version

The device firmware version can be checked from the REC601/603 configurator start page (**System/Information**), or by executing the "firmware" command via the console.

This manual describes the series 5 firmware version REC60x 5.2.1.

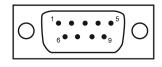
	<u>System</u> Network Firewall S	ervices Applications Tools
Information		System Information
Time <u>Environment</u>	Product name Product serial number HW serial number	REC601 ARC5272-48-328-0209C9 2432042
Filesystems Password	HW version Operating system Firmware Processor MAC address RAM memory Flash memory	3.1 3.1 Linux version 2.4.19-uc1 REC60x EDGE GW 5.2.1 (build 1098) COLDFIRE(m5272) 00:08:70:02:09:C9 31336 kB 8MB
Commit Reboo	pt	

Figure 7: Firmware version

Section 3 Physical connections

3.1 Communication connections

REC601/603 uses the serial ports for console or application communication, the Ethernet port for network communication and GPRS for wireless applications.


3.1.1 Serial ports

The device has two application serial ports. Serial port 1 is configurable to either console or data mode and supports RS-232 only. Serial port 2 is configurable to multiple serial modes (RS-232/422/485). Serial port connectors are 9-pin D-sub male connectors. Serial ports function as DTE devices.

3.1.1.1 Console/serial port 1

The console switch enables or disables console access. When the switch is in the right position, serial port 1 is in the serial port mode, and when it is in the left position, serial port 1 is in the console mode.

The console switch is located below the serial port 1 connector. Turn off power from the device before toggling the console switch, as the switch position is read during the boot sequence only. The baud rate is fixed to 19200 when the port is configured in the serial console mode.

PIN	Function
1	DCD
2	RXD
3	TXD
4	DTR
5	GND
6	DSR

Table 2:

Console/RS1 port pinout

Section 3 Physical connections

PIN	Function
7	RTS
8	CTS
9	RI

Table 3:	Console/RS1 port configuration
1 4010 01	eeneene per eengalaten

Parameter	Value
Baud rate	300230400 (console 19200)
Data bits	8
Parity	No parity
Stop bits	1
Flow control	No flow control

3.1.1.2 Serial port 2

Serial port 2 can be configured to multiple serial formats (RS-232/422/485). The default is RS-232.

|--|

Figure 9: Application serial port

Table 4:Application serial port pinout (RS-232)

PIN	Function	
1	DCD	
2	RXD	
3	TXD	
4	DTR	
5	GND	
6	DSR	
7	RTS	
8	CTS	
9	RI	

Table 5:	Application serial port configuration	
Parameter		Value
Baud rate		300230400
Data bits		8
Parity		No parity
Stop bits		1
Flow control		CTS/RTS

By default, all DIP switches are set to the 0 position (RS-232 mode). DIP switches 2-4 apply only when the port is set in the RS-485 mode (DIP switch 1 in the 1 position).

Table 6: Application serial port DIP switches

DIP	Function	State	Description
1	RS-232 / RS-485	0 = RS-232, 1 = RS-485	Selects the serial port operation mode
2	DUPLEX	0 = FULL, 1 = HALF	Selects between half (2-wire) and full (4- wire) duplex
3	BIAS	0 = OFF, 1 = ON	RS-485 biasing
4	TERMINATION	0 = OFF, 1 = ON	RS-485 termination

Ethernet

Do not connect RS-422 or RS-485 cables to a serial port configured to the RS-232 mode. This could damage the port and the connected equipment.

Table	7:
1 0010	••

Application serial port pinouts in RS-422/485 modes

PIN	RS-485 full-duplex (4-wire)	RS-485 half-duplex (2-wire)
1	-	-
2	RXD positive (in)	-
3	TXD negative (out)	TXD/RXD negative (out/in)
4	-	-
5	GND	GND
6	-	-
7	TXD positive (out)	TXD/RXD positive (out/in)
8	RXD negative (in)	-
9	-	-

3.1.2

The device has an RJ-45 connector for 10/100 Mbps Ethernet connection. The maximum length of the Ethernet cable is 100 m.

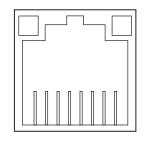


Figure 10: Ethernet connector

Table 8: Ethernet port configuration

Description	Value
Number of ports	1
Speed	10Base-T, 100Base-TX
Duplex	Half and full duplex
Auto-negotiation	No
Recommended cabling	Cat5e or better

The cross-connected cable is only used for connecting the device to the PC network interface. When connecting to a local network like a hub or switch, a direct Ethernet cable must be used.

3.1.3

GPRS

The device supports GPRS allowing the use of wireless applications. The device supports wireless data speed up to 86 kbit/s. The practical data transfer rates depend on the subscription details and wireless network capacity.

Table 9: Wireless specifications

Network	Frequencies	Maximum data rate
GPRS class 10	900/1800 MHz	86 kbit/s downlink

The device with GPRS includes an FME male type connector for an external antenna. It is possible to use any kind of external 50 Ω dual-band antenna intended for GSM900 (880–960 MHz) and GSM1800, also known as PCN, (1710–1880 MHz) frequency bands. Connect the antenna directly to the connector located on the device's back panel.

Typically, commercially available antennas are provided with a flexible 50 Ω cable with a length of 2–3 meters and a female type FME connector.

The device's IEC 60870-5-104 gateway is tested with antennas from Hirschmann Rheinmetall Elektronik GmbH. Examples of tested external antennas include the sticker type and magnetic mount antennas.

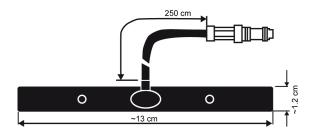


Figure 11: Sticker type patch antenna (MCA 18 90 STRIPE)

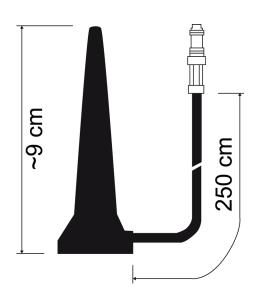


Figure 12: Magnetic mount antenna (MCA 18 90 MH)

Both antennas have an FME connector (female) and a 250 cm RG174 cable.

A SIM card with enabled data transfer is required for using the wireless connection. Standard 3 V SIM cards may be used with the IEC 60870-5-104 gateway. A SIM card holder is located on the back panel near the GPRS antenna connector.

If the PIN code query is enabled, check that the REC601/603 configurator has the correct PIN code entered in the GPRS submenu.

3.2 I/O connections

REC601/603 has four connectors in the front panel for power input and for control, condition monitoring, battery charging and measurement functions. The I/O LEDs indicate the AC, LINK, disconnector and grounding statuses.

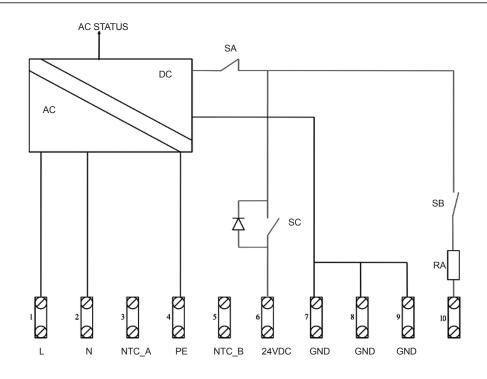
3.2.1 Power connector

Operating power for the device is supplied from connector X2.1. The device can use either an unregulated AC line input or a regulated DC input.

The power switch is located on the serial panel. It turns the unit on and off.

Table 10:Operating voltages of X2.1 connector pins

Input pins	Operating voltage range
1 and 2 (AC)	90264 V AC or 85200 V DC
6 and 7 (DC)	2030 V DC


3.2.2 X2.1 connector

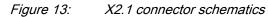

Table 11: X2.1 connector pinout		
Pin	Symbol	Description
1	L	230 V AC
2	Ν	230 V AC
3	NTC_A	NTC resistor (battery temperature comp.)
4	PE	Protective earth
5	NTC_B	NTC resistor (battery temperature comp.)
6	24VDC	24 V DC output/input
7	GND	DC ground
8	GND	DC ground
9	GND	DC ground
10	BAT	Battery charging

Table 12:

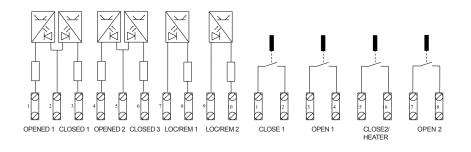
X2.1 connector types

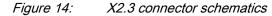
Connector	Manufacturer	Connector type (part number)
Panel header	Phoenix Contact	MSTBV 2,5 HC/10–GF-5,08 (1924606)
Matching plug	Phoenix Contact	MSTB 2,5 HC/10–STF-5,08 (1912265)

3.2.3 X2.3 connector

REC-501 X2.3

Table 13: X2.3 connector pil


	· ,		
PIN	Symbol	Description	Disconnector function
1	DI1	Digital input 1	Disconnector 1 opened
2	DI_C1	Common supply voltage for DI1 and DI2	
3	DI2	Digital input 2	Disconnector 1 closed
4	DI3	Digital input 3	Disconnector 2 opened
5	DI_C2	Common supply voltage for DI3 and DI4	
6	DI4	Digital input 4	Disconnector 2 closed
7	DI5_A	Digital input 5	Local/Remote switch for disconnector 1
8	DI5_B	Digital input 5	
9	DI6_A	Digital input 6	Local/Remote switch for disconnector 2
10	DI6_B	Digital input 6	
11	DO1_A	Relay output 1	Close disconnector 1
12	DO1_B	Relay output 1	
13	DO2_A	Relay output 2	Open disconnector 1
Table continues	on next page		


Section 3 Physical connections

PIN	Symbol	Description	Disconnector function
14	DO2_B	Relay output 2	
15	DO3_A	Relay output 3	Close disconnector 2/ Heater
16	DO3_B	Relay output 3	
17	DO4_A	Relay output 4	Open disconnector 2
18	DO4_B	Relay output 4	

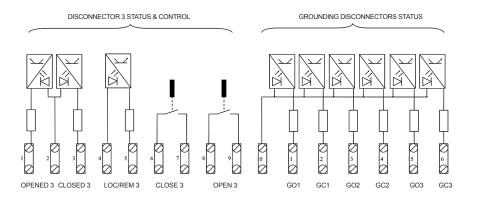
Table 14:X2.3 connector types

Connector	Manufacturer	Connector type (part number)
Panel header	Phoenix Contact	MSTBV 2,5/18–GF-5,08 (1777235)
Matching plug	Phoenix Contact	MSTB 2,5/18–STF-5,08 (1778140)

3.2.4

X3 connector

Disconnector 3 and grounding disconnectors


Table 15:	IO3 connector pinout		
PIN	Symbol	Description	Disconnector function
1	DI7	Digital input 7	Disconnector 3 opened
2	DI_C3	Common supply voltage for DI7 and DI8	
3	DI8	Digital input 8	Disconnector 3 closed
4	DI9_A	Digital input 9	Local/Remote switch for disconnector 3
5	DI9_B	Digital input 9	
6	DO5_A	Relay output 5	Close disconnector 3
7	DO5_B	Relay output 5	
8	DI5_A	Relay output 6	
9	DI6_B	Relay output 6	Open disconnector 3
Table continues on next page			

PIN	Symbol	Description	Disconnector function
10	DI_C4	Common supply voltage for DI10, DI11, DI12, DI13, DI14 and DI15	
11	DI10	Digital input 10	Grounding disconnector 1 open
12	DI11	Digital input 11	Grounding disconnector 1 closed
13	DI12	Digital input 12	Grounding disconnector 2 open
14	DI13	Digital input 13	Grounding disconnector 2 closed
15	DI14	Digital input 14	Grounding disconnector 3 open
16	DI15	Digital input 15	Grounding disconnector 3 closed

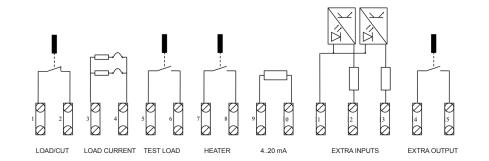
Table 16: X3

X3 connector types

Connector	Manufacturer	Connector type (part number)
Panel header	Phoenix Contact	MSTBV 2,5/16–GF-5,08 (1777219)
Matching plug	Phoenix Contact	MSTB 2,5/16–STF-5,08 (1778124)

X3 connector schematics

3.2.5


X4 connector

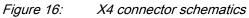

Table 17: X4 connector pinout			
PIN	Symbol	Description	
1	LOADCUT_A	Load control relay	
2	LOADCUT_B	Load control relay	
3	Al1_A	Load measurement/420 mA measurement	
4	Al1_B	Load measurement/420 mA measurement	
5	TESTLOAD_A	Test load relay	
6	TESTLOAD_B	Test load relay	
7	HTR_A	Heater/Extra relay	
8	HTR_B	Heater/Extra relay	
9	AI2_A	420 mA measurement	
10	AI2_B	420 mA measurement	
11	DIC_5	Common supply voltage for DI16, DI17	
12	DI16	Digital input 16	
13	DI17	Digital input 17	
14	DO7_A	Relay output 7	
15	DO7_B	Relay output 7	

Table 18:

X4 connector types

Connector	Manufacturer	Connector type (part number)
Panel header	Phoenix Contact	MSTBV 2,5/15-GF-5,08 (1777206)
Matching plug	Phoenix Contact	MSTB 2,5/15-STF-5,08 (1778111)

3.2.6 I/O LEDs

The device has two LEDs indicating the AC and LINK status. REC601 has three LEDs and REC603 has nine LEDs to indicate the disconnector status. For indicating the grounding disconnector status, REC601 has two LEDs and REC603 has six LEDs.

3.2.6.1 AC and LINK LEDs

The device has two LEDs indicating the AC and LINK status.

Table 19: AC and LINK LEDs

LED	Description
AC	AC power is connected to connector X2.1 pins 1 and 2
LINK	The IEC control link to SCADA is active

3.2.6.2 Disconnector LEDs

REC601 has three LEDs and REC603 has nine LEDs to indicate the disconnector status. They are located on the device front panel. Each disconnector has three LEDs, which indicate the status of the disconnector.

Table 20: Disconnector LEDs

Disconnector LED	Description
Disconnector 1 open	Disconnector 1 is opened
Disconnector 1 close	Disconnector 1 is closed
Disconnector 1 remote	Disconnector 1 is on remote control
Disconnector 2 open	Disconnector 2 is opened
Disconnector 2 close	Disconnector 2 is closed
Disconnector 2 remote	Disconnector 2 is on remote control
Disconnector 3 open	Disconnector 3 is opened
Disconnector 3 close	Disconnector 3 is closed
Disconnector 3 remote	Disconnector 3 is on remote control

Disconnector LEDs can indicate two special cases.

Table 21: Disconnector LED special cases

Disconnector LED state	Description
Open and close LEDs are both OFF	Disconnector is changing state
Open and close LEDs are both ON	Disconnector error

3.2.6.3 Grounding LEDs

REC601 has two LEDs and REC603 has six LEDs indicating the grounding status. They are located on the device front panel. Each grounding disconnector has two LEDs, which indicate the status of the grounding disconnector.

Table 22:Grounding LEDs

Grounding LED	Description
Disconnector 1 open	Connector X3 digital input on pin 11 is active high
Disconnector 1 close	Connector X3 digital input on pin 12 is active high
Disconnector 2 open	Connector X3 digital input on pin 13 is active high
Disconnector 2 close	Connector X3 digital input on pin 14 is active high
Disconnector 3 open	Connector X3 digital input on pin 15 is active high
Disconnector 3 close	Connector X3 digital input on pin 16 is active high

All grounding disconnector digital input pins have connector X3 pin 10 as the common ground pin.

Section 4 Functional description

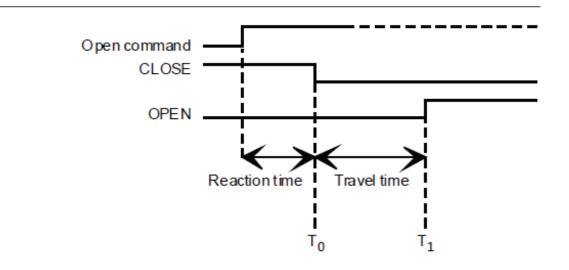
4.1 Control functions

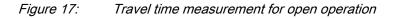
The device is capable of controlling and monitoring an object, for example, a circuit breaker or disconnector, and handling the object status information. The device can control and monitor up to three objects. The device can monitor the earthing switch position indications, with one function per disconnector object. Local/ Remote indications are also a standard; each disconnector has its own Local/ Remote position monitoring. In the Local position, control operations (open or close) can be performed at the site only. In the Remote position, control operations can be performed from the SCADA system in the network control center.

4.2 Condition monitoring functions

4.2.1 Communication diagnostics and watchdog

The device is provided with a self-supervision system, that is, a watchdog function. The self-supervision system handles run-time fault situations and informs the user of faults through the user HMI (function LED) on the front panel.


In addition to hardware supervision, the self-supervision system is able to reestablish the cellular connection and VPN connection (if applicable). Furthermore, it is able to restart the device as a last resort.


4.3 Disconnector control condition monitoring functions

4.3.1 Disconnector travel time monitoring

The OPEN and CLOSE indications are monitored. When a change occurs due to an activated control operation, the opening or closing travel time is measured. If the measured travel time is greater than or equal to the set limit values, an alarm is given. The settings define how the disconnector travel time duration (state change from open to close or vice versa) is reported.

Travel time is reported in seconds. The alarm signals remain active until the fault condition is acknowledged.

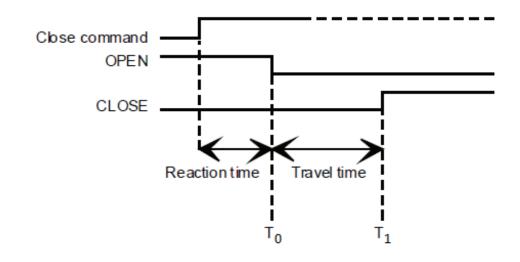


Figure 18: Travel time measurement for close operation

4.3.2

Disconnector actuator motor overload protection

With an optional Hall effect sensor, the device is able to measure the load current that flows through the actuator during the control operation of the disconnector. This current measurement is effectively used to detect an abnormality in the mechanical motion, when the lever that operates the disconnector moves from one end position to the other (for example, from Open to Close). A slip in the mechanical gear unit or a mechanically stiff operation, due to insufficient lubrication or deviation in operation tube positioning, can cause an overload situation which may be harmful to the actuator motor if no action is taken to prevent overloading.

Even if MCB's are used as an overload protection, they are not optimal from the maintenance point of view, as they require a site visit because the resetting is typically managed manually. The device's intelligent overload protection function, for example, the resetting and adjustment of the current pick-up level, is managed remotely from a utility dispatch center, using a system such as SCADA. The overload protection is coordinated with the possible MCB in the same circuit so that the current pick-up setting is lower than the MCB operational level to avoid unnecessary site visits.

4.3.3 Monitoring of the pressure of SF6 gas

The SF6 insulated primary equipment is arranged by wiring the pressure sensor contact to one input of the device, used for monitoring the SF6 gas pressure. When the gas pressure drops below the acceptable limit, the falling edge of the digital signal triggers and activates an alarm signal. This information can be obtained as an alarm event from the network control system.

4.4 Battery charging and monitoring functions

Power backup for the station can be arranged by connecting 24 V (2 x 12 V) sealed lead acid batteries to the device. The batteries supply power to both the device and the communication device during a mains failure. As the batteries are charged by the device, the communication between the unit and the network control center is always operating irrespective of distribution network faults or planned outages.

The battery condition is secured by a battery load and condition monitoring test, activated remotely via a command from the SCADA system. In the test, a discharge resistor is connected in parallel to the batteries. During the test, the battery capacity is measured and reported as an Ah value to indicate the remaining capacity, so that maintenance can be optimized. The battery load test is performed twice an hour and always after the power-up of the unit. During the battery load test, which takes 2-5 h, the voltage of the battery charger is shut off and the control functionality is blocked.

If the battery voltage drops to less than the set value, for example, 22 V, during the battery load test, the device generates an alarm event. This indicates that the lifetime of the batteries is ending or that an internal fault has occurred in the battery or its circuitry. In both cases, the battery must be replaced.

During normal control operations, the device makes condition measurements, such as the battery voltage minimum value and the maximum current. The battery condition and lifetime can be estimated based on these recorded values.

4.4.1 Power backup

Power backup for the station can be arranged by connecting 24 V (2 x 12 V) sealed lead acid batteries to the REC601/603 device. The batteries supply the device and keep the communication alive during a mains failure. Thus the communication between the device and a network control centre operates in any situation.

Depending on the application and the required maximum operation time, batteries of different capacity are used; the typical capacity is 17 Ah. With the 17 Ah battery, the maximum operation time is 48 hours (including safety coefficient) at ambient temperature of $+20^{\circ}$ C.

A low temperature reduces battery capacity and lifetime.

4.4.2 Heater control

The heater control is based on the environmental temperature. Heating is needed if the device is installed in a separate enclosure outdoors, where the ambient temperature may be below 0°C. Heating is especially required in very damp conditions when dehumidifying is needed. The heating control consists of switching on and off an output relay connected to an external heating resistor, which is located in the enclosure, preferably next to the batteries and the electronics components.

4.4.3 Low auxiliary voltage indication

The power supply module gives an internal alarm signal when a drop in the power supply voltage is detected (AC Fail). The indication of a low auxiliary voltage can be reported to any available communication protocol supported by the device.

4.4.4 Over/undertemperature indication

The power supply module gives an internal alarm signal when over- or undertemperature is detected inside the enclosure. The alarm is activated when the temperature inside the enclosure surpasses a set limit or decreases below a set limit. Hysteresis can be set for both indication functions. The indication can be reported through any available communication protocol supported by the device.

4.5 Measurement functions

The device measures the battery voltage and the ambient temperature. The temperature measurement is calibrated to measure the ambient temperature of the device mounted in an enclosure. The temperature measurement is used to compensate for the charging voltage of the batteries and for activating or deactivating heating in cold environments. The battery voltage is measured as two values: the minimum battery voltage and the maximum current during control

operation. The minimum battery voltage indicates the lowest voltage measured during a battery test or during an object's operation. The battery charging voltage indicates the present voltage on the battery poles. The values can be read from the network control centre via the supported communication protocols. The minimum battery voltage and the maximum current can be reset via the serial bus.

The device supports a general purpose analog input that can be used as a transducer input. It supports two different modes: voltage mode 0...+/-5 V and current mode 0...+/-20 mA. The measurement value can be reported as Volts or milli-Amperes depending on the selected mode. The mode selection can be done with internal DIP switches and in the device parameter setting.

Section 5 REC601/603 Configurator

5.1 Overview

REC601/603 configurator is a tool which is used to manage the device properties via a user-friendly, Web-based interface.

To use the Web configurator, only a computer with an HTML browser and a connection to the device are needed. With the configurator, it is possible to receive status information and set parameters and variables that control which applications and processes are used with the device.

After a successful login, the main window is displayed. It consists of the main navigation menu on the top, the navigation bar on the left, and the content area that displays the currently active content and controls.

When the program starts for the first time, the System/Information window is displayed in the content area. The main navigation menu on the top of the window is used to navigate between the different subsets of the available settings. Selecting an item from the main menu displays the available items related to this subset in the navigation bar. The first of these is displayed in the content area by default.

The navigation bar on the left contains the parameter groups in the subset. Selecting an item from this menu displays the content related to the selected group in the content area.

Three buttons are always visible at the bottom of the navigation bar.

- The **Commit** button is used to save the memory-resident data for "soft" parameters permanently to the nonvolatile memory. The values for the previous parameters are not saved permanently unless this button is pressed.
- The **Reboot** button is used to reboot the device.
- The **Logout** button ends the current session and returns to the login window.

5.2 Login to the Web Configurator

- 1. Open the device from the URL where the device is located.
- 2. On the device main page, click the **Start Configurator** link.

ABB	REC601/603 Configurate
	Log in to the system Username:root Password:
	Login


Figure 19: Start Configurator link

3. Enter the password for the device's root account and click the **Login** button to start the Web configurator tool.

The default password for the root is empty. Set the password before connecting the device to a public network. Change the password from the **System/Password** menu.

5.3 System menu

The System menu can be used to view information about the system or the current executing environment and to set the date and time.

Updated time information is not saved permanently until the Commit button is pressed.

Information

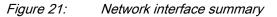
Contains general information about the device. Information on this submenu should be provided, if possible, when contacting technical support.

Time

For adjusting time information. The device has a real-time clock with battery backup.

Environment

Contains information about the device's memory usage, uptime and inside temperature.


Password

For changing the password. The default password is blank. When changing the password for the first time, the same password has to be written in all three boxes.

5.4 Network menu

The network interface properties are controlled through the Network menu. The menu contains items for the Ethernet, GPRS and VPN interfaces. The Email, Proxy and firewall settings are also located in this menu. The Network Interface Summary page shows the currently active interfaces and routing information.

	System <u>Network</u> F							
Summary			Networ	k Interface Su	mmary			
thernet	Ethernet (eth0)							
GPRS	HW address		:06:70:02					
Dial-in	Internet address Status			I CAST RUNNINI		-		
	Rx packets		48	CASTRONNIN	5 MULTICAS			
SSH-VPN	Tx packets	11						
.2TP-VPN	Loopback (lo)							
GRE tunnel	Internet address		7.0.0.1					
Monitor	Status Rx packets	0	P LOOPB/	ACK RUNNING				
Routing	Tx packets	0						
S-NAT	TX publicity	Ű	R	unning Route	s			
	Destination	Gat	eway		mask	Fla	as	lface
)-NAT	10.0.0.0	*	5.1.0,		.0.0.0	U	30	eth0
)NS Update	127.0.0.0	*			.0.0.0	U		lo
ynDNS client	default	10.1	0.10.1	0.0.		UG		ethO
TP client				ning ARP ca	che			
SMS Config	Address 10.10.1	HWtype ether		dress 7F:3E:35:C6		Flags C	Mask	lface eth0
Commit Reboo	t							

5.4.1 Ethernet

The device's Ethernet interface is configured via the Ethernet command in the Network menu. Clicking this command displays the Ethernet settings in the content area.

ABB				REC601/603 Configurator	r
	System <u>Network</u>	Firewall Services	Applications	Tools	
Summary Ethernet	Override Etherne	I et configuration by DHC	Ethernet Settin P?	O Enabled	
GPRS Dial-in SSH-VPN L2TP-VPN GRE tunnel	Host name Domain name Ethernet IP addr	ess		Disabled ABB (none) 10.10.10 Page 0 0	
Monitor Routing S-NAT D-NAT DNS Update	Network mask Use Ethernet as Default router IP MTU	default route (usually N address	4o)	255.0.00 Yes 10.10.10.1 1500	
DynDNS client NTP client SMS Config	DNS servers (op MAC address	otional)		00:06:70:02:09:C9	
Commit Reboot		A	pply Re	vset	
Logout					

Figure 22: Ethernet settings

Override Ethernet configuration by DHCP? If enabled, the device gets the IP address and other related information from a local DHCP server. When enabled, all other settings are disabled on this page.

Host name sets the device host name. Each device connected to the gateway must have a unique host name. This is important to set up correctly when using the gateway and VPN.

Domain name determines the domain name for name resolution (optional).

Ethernet IP address determines the IP address used by the eth0 interface.

Network mask determines the network mask used by the eth0 interface.

Use Ethernet as default route should be set to "Yes" only if Ethernet is used as the default gateway or router. Usually this parameter is set to "No", because either GPRS or VPN is used as the default route. This parameter overrides the next parameter *Default Route IP Address*, so that parameter has no effect if *Use Ethernet as default route* is set to "No"

Default Router IP address determines the default router or default gateway used when the direct route to the host or network is not known. Applies to the eth0 interface only. When GPRS or VPN is used as the default gateway, this parameter is set to "0".

MTU determines the maximum transfer unit (MTU) for the Ethernet interface (usually 1500).

DNS servers (optional) determines the name server IP (DNS) address for resolving host names to the IP address and vice versa. Applicable when the GPRS parameter DNS servers is set to "User defined".

GPRS 5.4.2

The GPRS settings include APN and other settings for the GPRS network connection.

Авв					REC601/603 Co	onfigurator
	System <u>Network</u>	Firewall	Services	Applications	Tools	
Summary		-	-	GPRS Setting	S	_
Ethernet	GPRS enabled			Yes 💌		
GPRS	Access Point N	ame (GPRS)		INTERNET		
Dial-in	PIN code			NoPin		
SSH-VPN	Operator Code	(empty=auto)				
L2TP-VPN	DNS servers			User defined	~	
GRE tunnel	LED indication			Data only	¥	
Monitor	GPRS usernam	ne		username		
Routing	GPRS passwor			passwd		
S-NAT D-NAT	PPP idle timeou			1800		
D-NAT DNS Update	Maximum MTU			1500		
DynDNS client	Waxingin wro	Value		Fisce Enabled		
NTP client	Use GPRS as c	iefault route		 Disabled 		
SMS Config	IMPORTANT:Defin	e also Netwo	ork->Monito	<u> </u>		
SMS COMING						
			_Ap	oply Re:	set	
Commit Reboot						
Logout						

Figure 23: GPRS settings

GPRS enabled When set to "Yes", the GPRS interface is automatically connected to the GPRS network.

Access Point Name (GPRS) determines the GPRS Access Point Name (APN) for the connection.

PIN code determines the SIM card PIN code.

Operator Code (empty=auto) is a manually selected operator code. Leave empty for automatic network selection (default).

5.4.3

<i>DNS servers</i> When set to "User defined", DNS servers defined on the Ethernet page are used. If set to "From GPRS network", the device receives the DNS server IP addresses automatically from the GPRS network.
<i>Led indication</i> When set to "Data only", the GPRS LED blinks green when transmitting data. When set to "Informative", the LED blinks also when connected to the GPRS network without data transfer (GPRS context is active).
<i>GPRS username</i> determines the user name used for authentication, if APN requires it.
GPRS password determines the password used for authentication, if APN requires it.
<i>PPP idle timeout</i> determines the maximum idle time for the GPRS interface. If the GPRS interface has been idle (no traffic) for this period, the GPRS connection is restarted.
Maximum MTU value determines the maximum transfer unit (MTU) for GPRS.
<i>Use GPRS as default route</i> If enabled, GPRS is used as the default route. The Ethernet default gateway has to be disabled by setting the parameter <i>Use Ethernet as default route</i> to "No" in Network/Ethernet .
Dial-in
The device's PPP dial-in interface is configured via the Dial-in command in the Network menu. Clicking this command displays the Dial-in settings in the content area.
<i>Dial-in enabled</i> If enabled, PPP connections can be made to the device (GSM data).
<i>Require authentication (PAP)</i> determines if password authentication is used for incoming data calls.
Required username determines the PAP user name.
Required password determines the PAP password used for authentication.
<i>Idle timeout</i> determines the length of idle time before the PPP connection is terminated.
Local IP address determines the IP address used in the PPP peer.
Peer's IP address determines the IP address used in the PPP peer.
<i>Maximum MTU value</i> determines the maximum transfer unit (MTU) for dial-in connections.
SSH-VPN
The device has a VPN client that can be used with the gateway.

5.4.4

SSH-V	PN Settings
Use SSH-VPN?	No 💌
Primary server	
Primary interface	GPRS 💌
Primary server IP	127.0.0.1
Primary server port	22
Primary server GW	0
Max duration (0=unlimited)	0
Connection start timeout (sec)	80
Connection retry interval (sec)	10
Connection retry mode	Increment delay 😪
Hello interval (sec)	200
Hello failure limit	2 💌
Backup server (optional)	
Use backup SSH-VPN?	No 💌
Primary failure limit	3 💌
Backup interface	GPRS 💌
Backup server IP	127.0.0.1
Backup server port	22
Backup server GW	0
Max duration (0=unlimited)	7200
Connection start timeout (sec)	80
Connection retry interval (sec)	10
Connection retry mode	Increment delay 😒
Hello interval (sec)	200
Hello failure limit	2 💌
Routing	
Routing mode	None 💌
Remote network IP	0.0.0.0
Remote network mask	255.255.0.0
Link management	
MTU	1420
Idle timeout (sec)	3600
Apply	Reset

Figure 24: SSH-VPN settings

Primary server

Use SSH-VPN? When set to "Yes", the device automatically establishes a SSH-VPN connection to the primary gateway.

Primary interface determines the interface used to reach the gateway server.

Primary server IP determines the IP address of the gateway SSH-VPN server.

Primary server port determines the SSH-VPN TCP port on the primary server. The default is 22.

Primary server GW is used if another gateway than the default route is needed to reach the gateway.

Max duration (0=unlimited) determines the maximum duration of the VPN connection. On the primary server, this should be set to zero. With the backup server, the primary server is tried again after this time-out.

Connection start timeout (sec) determines the time to wait until the connection is established.

Connection retry interval (sec) determines the time interval after which the connection is retried.

Connection retry mode increases incrementally the retry interval on each connection attempt. Constant delay always uses the same delay.

Hello interval (sec) determines the Hello packet interval for the VPN. This can be used as a keep-alive message on very critical links.

Hello failure limit determines the number of Hello packets that can be lost before restarting the connection.

Backup server (optional)

Use backup SSH-VPN? When set to "Yes", the device tries to establish a VPN connection to back up the gateway, if the primary gateway cannot be reached.

Primary failure limit determines the number of times the primary must not be reached before changing to the secondary. The other parameters are same as in the primary server. The duration of the connection can be set, for example, to 3600 seconds, so after one hour's connection time to the backup server, the system tries to reach the secondary gateway.

Routing

Routing mode has three modes.

- Tunnel the following network. This adds the "Remote network IP" to be reached via the SSH-VPN. The parameters *Remote network IP* and *Remote network mask* must be set.
- Default route. The VPN interface is used as the default route.
- None. No routing is added when the VPN is established. The VPN peer IPs can be used for communications.

Remote network IP determines the remote network IP behind the VPN on the gateway side that the device needs to reach.

Remote network mask determines the network mask for the remote network IP.

Link management

MTU determines the maximum transfer unit (MTU) for the SSH-VPN interface.

Idle timeout (sec) determines the idle time-out for the SSH-VPN interface. If the time-out is reached, the VPN connection is restarted.

5.4.5 L2TP-VPN

The device has an L2TP client that can be used with an L2TP server.

Section 5 REC601/603 Configurator

L2TP-VPI	N Settings
Use L2TP-VPN?	No 🗸
Primary server	
Primary interface	GPRS 💌
Primary server IP	0.0.0.0
Primary server port	1701
Primary server gateway	0
Max duration (0=unlimited)	0
Connection start timeout (sec)	80
Connection retry interval (sec)	10
Connection retry mode	Increment delay 💌
Hello interval (secs)	20
MTU	1420
L2TP username (same as hostname)	primary_user
L2TP password	pass
Backup server (optional)	
Use backup L2TP-VPN?	No 💌
Backup interface	GPRS 💌
Backup server IP	0.0.0.0
Backup server port	1701
Backup server gateway	0
Max duration (0=unlimited)	7200
Connection start timeout (sec)	80
Connection retry interval (sec)	10
Connection retry mode	Increment delay 💌
Hello interval (secs)	20
MTU	1420
L2TP username (same as hostname)	backup_user
L2TP password	passwd
Routing	
Routing mode	None 🗸
Remote network IP	0.0.0.0
Remote network mask	255.255.0.0

Figure 25: L2TP-VPN Settings

If the primary server cannot be reached, the L2TP VPN connection is established with a backup server.

Primary server

Use L2TP-VPN? When set to "Yes", the device establishes an L2TP VPN connection with the primary gateway.

Primary interface determines the interface used to reach the gateway server.

Primary server IP determines the IP address of the gateway L2TP server.

Primary server port determines the L2TP VPN server port (UDP, default 1701).

Primary server gateway is used if another gateway than the default route is needed to reach the gateway.

Max duration (0=unlimited) determines the maximum duration of the VPN connection. On the primary server, this should be set to zero.

Hello interval (secs) determines the Hello interval for keeping the connection alive. The default is 20 seconds.

MTU determines the maximum transfer unit for the L2TP interface.

L2TP username (usually hostname) determines the user name for authentication.

L2TP password determines the L2TP password for authentication.

Routing

Routing mode is used if routing is needed with the L2TP interface. The parameters are the same as for SSH-VPN.

5.4.6 GRE

The GRE tunnel command in the Network menu is used to configure the GRE settings.

GRE tunnel enabled When set to "Yes", the device establishes the GRE connection automatically.

Interface determines the interface used for the GRE server.

GRE server IP determines the IP address of the GRE server.

Gw to GRE server (Ethernet mode) (Optional) is used if another gateway than the default route is needed for the GRE server.

Local GRE interface IP (usually eth0 IP) determines the local IP address used in the GRE tunnel.

Remote GRE interface IP (Optional) determines the remote IP address used in the GRE tunnel.

TTL value determines the time to live value for the interface.

Checksum (Optional) determines the checksum value.

Incoming key determines the authentication key.

Outgoing key (Optional) determines the outgoing key for the server.

The optional routing parameters *Routing mode*, *Remote network* and *Remote network mask* are the same as in SSH-VPN and L2TP.

5.4.7 Monitor

The monitor settings are used for checking the GPRS and VPN connections. If the connection to the selected IP address is lost, the connection is restarted. The monitor uses ICMP echo (ping) packets to check the connection. The monitor also keeps the connection alive, so that idle time-out does not end the connection.

ABB			REC601/603 Configurator
	System <u>Network</u> Firewall	Services Applications	Tools
Summary	_	Connection monitor	settings
Ethernet GPRS	ICMP Echo sending		 Enabled Disabled
Dial-in SSH-VPN L2TP-VPN GRE tunnel Monitor	Interval (sec) Reply timeout (secs) Retries Target IP address Secondary target IP address	(O=none)	300 20 3 0.0.0.0 0
Routing S-NAT D-NAT DNS Update DynDNS client NTP client SMS Config		Apply Re	set
Commit Reboot Logout			

Figure 26: Monitor settings

ICMP Echo sending is used to enable the monitor. The monitor must always be enabled for the correct IP. When VPN is used, the remote VPN peer IP address (or other IP address reached only via VPN) must be used for checking the connection.

Interval (sec) determines how often the connection is checked by sending ICMP echo packets. The interval should be smaller than the GPRS idle time-out (typically maximum 2/3 of GPRS idle time-out) for uninterrupted communication.

Reply timeout (secs) determines the waiting time for reply packets.

Retries determines the number of retries before the connection is restarted.

Target IP address determines the host IP address to which the ICMP echo packets are sent.

Secondary target IP address determines the secondary host IP address to which ICMP echo packets are sent if sending to the primary target host IP address fails.

5.4.8	Routing			
	The routing settings of the device can be configured in the Routing menu.			
5.4.8.1	S-NAT			
	These parameters are used to configure the S-NAT settings. When enabled, the private IP address used in the LAN is changed to the GPRS interface IP address.			
	<i>From IP</i> determines that only S-NAT connections from the defined IP address are allowed. If defined with wildcard $(0/0)$, all IP addresses are handled in the same way.			
5.4.8.2	D-NAT			
	These parameters are used to configure the D-NAT settings. When enabled, packets coming to the defined GPRS interface port are forwarded to the local IP address.			
	<i>Source IP</i> determines the D-NAT connections coming from the IP address. If defined with wildcard (0/0), all IP addresses are handled in the same way.			
	<i>Protocol</i> determines the protocol that is forwarded. If the value "Any" is selected, other parameters are ignored.			
	Dest.port determines the GPRS interface that is forwarded to the local Ethernet.			
	Redirect to IP determines the IP address used in the forwarding.			
	Redir. port determines the port used in the forwarding.			
5.4.8.3	DNS Update			
	The DNS Update parameters are used to configure the dynamic DNS. The device can report its dynamic IP address to a DNS server. These settings are RFC2136 compliant, for example, for BIND DNS server.			

ABB

REC601/603 Configurator

	System <u>Network</u> Firewall Servi	ces Applications Tools
Summary	DNS Update setting	s (RFC2136 compliant, e.g. BIND DNS server)
Ethernet	Enable	No 💌
GPRS	Record TTL (seconds)	1200
Dial-in	Record refresh interval(seconds)	1000
SSH-VPN	Zone	exampledomain.com
L2TP-VPN	Authoritative name server address	0.0.0.0
GRE tunnel	Our domain name	device.exampledomain.com
Monitor Routing	Use Transaction Signatures (TSIG) No 💙
S-NAT	TSIG key name	key.exampledomain.com
D-NAT	TSIG key value	
DNS Update		
DynDNS client		Apply Reset
NTP client		
SMS Config		
Commit Reboot		

Figure 27: DNS Update settings

Authoritative name server determines the server that must be configured to accept the incoming DNS update messages, for example, the company's own DNS server, such as ISC BIND.

TSIG key name TSIG keys can be used for better security in DNS updates.

5.4.8.4 DynDNS client

These settings can be used with the DynDNS service available at <u>http://www.dyndns.org</u>.

The public IP address is required for GPRS and the user account from the DynDNS service operator.

ABB				REC601/603 Configurator
	System <u>Network</u> Firewal	I Services	Applications	Tools
Summary	DynDNS client setting			service. GPRS must have public IP
Ethernet	DynDNS service client en:		ress to use Dy	NDNS.
GPRS	DynDNS service provider		dyndns.org	1 🗸
Dial-in SSH-VPN	DynDNS Hostname			
L2TP-VPN	DynDNS Username			
GRE tunnel	DynDNS Password			
Monitor				
Routing		A	pply Re	eset
S-NAT				
D-NAT				
DNS Update				
DynDNS client NTP client				
SMS Config				
olito coning				
Commit Reboot				
Logout				

DynDNS service client enabled disables or enables the DNS name update.

DynDNS service provider determines the service provider. Only dyndsn.org is currently supported.

DynDNS Hostname determines the service provider account host name.

DynDNS Username determines the service provider user name.

DynDNS Password determines the service provider password.

5.4.8.5 NTP client

The NTP client settings can be used to update the real-time clock of the device using the NTP protocol.

NTP server When enabled, the device updates the system clock from the NTP server.

Query interval determines the time interval for an NTP query.

Minimum time difference (seconds) determines the minimum time difference when the clock is updated.

Maximum time difference determines the maximum time difference between local system time and NTP time when the clock is updated.

Time adjust mode adds or subtracts time from the received NTP value.

Time adjust value (minutes) determines the value to add or substract from the NTP value.

5.4.8.6 SMS Config

The SMS Config settings can be used to monitor the device status and to issue simple commands remotely via SMS messages.

Enabled enables or disables the SMS configuration.

Get commands

Access determines if the get commands are allowed for everybody or only for the defined phone, or if they are disabled.

Allowed phone determines the phone number for get commands.

Require password determines if the system password is required for get commands.

Set commands

Access determines if the set commands are allowed for everybody or only for the defined phone, or if they are disabled.

Allowed phone determines the phone number for set commands.

Require password determines if the system password is required for set commands.

Allow execute commands determines if execute commands are allowed to be run on the device.

Other

Reply error to unknown commands If set to "No", incorrect commands are silently disregarded. If set to "Yes" the device sends an error message via SMS.

Reply error to unauthorized commands If set to "No" unauthorized commands are silently disregarded. If set to "Yes", the device sends an error message via SMS.

Factory reset command (8 chars min) resets the device to the factory settings. Does not require a system password. After an SMS command is sent, the factory settings are applied. The password is also set back to the factory default.

5.5 Firewall menu

The Firewall menu is used to configure the device's built-in firewall. The firewall can be disabled or enabled and separate rules may be created for the GPRS to the device, GRPS to the LAN, and LAN to the GPRS configurations.

ABB			REC	601/603 Configurator
	System Network <u>Fir</u>	<u>ewall</u> Service:	s Applications Tools	
Enabled		GPRS	to device Firewall setti	ngs
GPRS to device	Use GPRS to device	Firewall	Yes 🗸	
GPRS to LAN	Action	Protocol	From IP	Destination port
LAN to GPRS	ACCEPT 🔽		0/0	
Additional	ACCEPT 💌	тср 💌	0/0	80
	ACCEPT 💌	ТСР 💌	0/0	22
	ACCEPT	TCP 💌	0/0	23
	ACCEPT 💌	ТСР 💌	0/0	2402
	ACCEPT 💌	TCP 💌	0/0	2404
	ACCEPT 💌	TCP 💌	0/0	504
	NO RULE 💌	ANY 💌		
	NO RULE 💌	ANY 💌		
	NO RULE 💌	ANY 💌		
			Apply Reset	
		-		
Commit Reboot	1			
Logout				

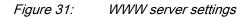
Figure 29: GPRS to device firewall settings

The firewall rules are processed from top to bottom. If strict rules are wanted, the last rule should be DROP. The parameter *From IP* can be used to limit access based on the IP address. For example, "192.168.100.0/24" would limit access to packets coming from the 192.168.100.0 network only.

		to device Firewall se	ungs
Jse GPRS to devi	ce Firewall	Yes 💌	
ction	Protocol	From IP	Destination port
ACCEPT 🔽	ICMP 💌	0/0	
ACCEPT 🔽	TCP 💌	0/0	80
ACCEPT 🔽	TCP 💌	0/0	22
ACCEPT 🔽	TCP 💌	0/0	23
ACCEPT 🔽	TCP 💌	0/0	2402
ACCEPT 🔽	TCP 💌	0/0	2404
ACCEPT 🔽	TCP 💌	0/0	504
NO RULE 💌	ANY 💌		
NO RULE 🔽	ANY 💌		
NO RULE 💌	ANY 💌		

Figure 30: Example rules of the GPRS settings

These example rules would allow incoming connection to the GPRS interface: ICMP, Web (TCP port 80) and Telnet (TCP port 22) from any IP access.


5.6 Service menu

The Service menu contains the settings for the WWW, SSH, Telnet and DHCP servers.

5.6.1 WWW

These settings are used to enable or disable the WWW server.

ABB					REC60)1/603 Configurato	r
	System Netw	ork Firewall	<u>Services</u>	Applications	Tools		
WWW Server	_	_	w	VW Server Set	ttinas		
Telnet Server DHCP Server	Web Serve	r			© ©) Enabled) Disabled	
DNS Proxy Eserv Buffer		guration Acces			0	Disabled	
	Server por	(standard=80)		pply Re	80 Iset		
			_				
Commit Reboot							
Logout							

Web Server enables or disables the WWW server.

Web Configuration Access enables or disables the Web configuration access.

If the Web access settings are disabled, the Web configurator stops functioning and it must be enabled via the console.

5.6.2	SSH

The SSH server is available in the device for secure connections. The configuration file is located at /etc/sshd_config. It can be edited manually.

SSH Server enables or disables the SSH server.

5.6.3 Telnet

A Telnet server can be used to make terminal connections to the device shell. A more secure way of performing remote management is based on the SSH.

Telnet server enables or disables the Telnet server.

5.6.4 DHCP

The DHCP server listens to broadcast DHCP queries and assigns an IP address for the host from the configured pool. If needed, the device can act as a DHCP server. This is suitable for small remote networks that have, for example, few laptops connected to the device via an Ethernet hub or a switch.

Configuring the DHCP server in an erroneous way may cause the network to function badly or may prevent functioning altogether. Consult the network administrator for the necessary information before setting up the service.

	DHCP Server Settings	
DHCP Server	 Enabled Disabled 	
Mandatory parameters		
	of Ethernet interface to listen	7
Subnet	10.0.0.0	
Netmask	255.255.255.0	
Address range to share		-
Low	10.0.0.10	
High	10.0.0.20	
	device Ethernet address to DNS ser osts type device Ethernet address to	
Subnet mask	255.255.255.0	
Domain name	"exampledomain.com"	
DNS servers	10.0.0.2,10.0.0.3	
Default gateway	10.0.0.1	
Broadcast address		
Default lease time		
Max. lease time		
NTP server		
Lpr server		
WINS server		
A	pply Delete leases Re	set

Figure 32: DHCP Server settings

DNS Proxy enables computers connected to the device's Ethernet interface to use the device as a DNS server. The device forwards DNS queries to the correct DSN server and there is no need to change the local computer's DNS settings. This can be used with the GPRS settings (**Network/GPRS**) parameter *DNS servers: From GPRS network*.

DNS Proxy/Forwarder enables the use of the device as a DNS server for local computers.

SNMP Agent enables the use of the SNMP Agent. The device supports the MIB-II SNMP Agent.

SNMP agent (SNMP Set/Get) enables or disables the SNMP agent.

Read only SNMP community determines that the community string is read-only.

Read and write SNMP community determines that both read and write properties are enabled for the community string.

Server port (standard=161) determines the SNMP Agent listening port (UDP).

Bind to interface determines that the interface is used as a source address.

5.7 Application menu

The Application menu contains the serial device server application. With this application, serial devices can be connected to the gateway and used over the TCP/ IP network.

Section 5 REC601/603 Configurator

Enabled	No 💌
erating Mode	
Operating Mode	Server 🗸
twork Settings	
Network Protocol	
Local Server Port	2404
Remote IP address or host	0.0.0.0
Remote Port	2404
Socket idle timeout (secs)	600
Enable TCP keepalive	No 💌
Keepalive probe time	200
New connection priority	Yes 💌
Minimum connection-slot (secs)	0
rial Settings	
Speed	9600 💌
Data Bits	8 🕶
Parity	None 💌
Stop Bits	1 💌
Handshaking	None 🗸
aming settings	
Request-Reply communication	No 💌
Flush buffers on connection	Yes 💌
Serial reply timeout (ms)	1000
Max packet from serial (bytes)	1000
Serial frame spacing (ms)	100
Network reply timeout (ms)	5000
Max packet from network (bytes)	1000
Network frame spacing (ms)	50

Figure 33: Serial Gateway settings

The serial gateway can be enabled from the Serial GW menu. When enabled with the *Server* operating mode, TCP/IP or UDP connections can be made to the device's local server port. In the *Client* operation mode, the gateway sends the received serial data via TCP/IP to the host (remote IP address or host) or to the remote host (remote port).

The IEC 60870-5-104 serial device can be connected to the RS1 or RS2 port. The RS2 serial port can be used either as an RS-232 or an RS-485 type port (IEC 60870-5-104). To enable the serial gateway on the console RS1 port, the console switch has to be set to "0".

For example, in the *Server* operating mode a device connected to a gateway application serial port can be accessed with Telnet using telnet<device IP address>2404.

5.8 Tools menu

The Tools menu gives access to Web-based tools used for troubleshooting the device. It is possible to execute simple shell commands through the WHMI.

ABB						REC60	1/603 Co	nfigurator
	System	Network	Firewall	Services	Applications	<u>Tools</u>		
Console				S	end SMS mes	sage		
System Log	Phone	e number						
Recent events Modem info	Mess	age						
Send SMS					Send			
Default settings								
Commit Reboot								

Figure 34: Tools menu

Console

The console settings can be used for running commands over the WHMI.

Example commands

ping -c 10 172.30.30.1

firmware

System Log and Recent events

The device's system log can be viewed as a system log and a recent events log. When support for the device is needed, for example in a fault situation, the log files can be copy-pasted from the system log.

Modem info

Displays information about the GPRS and GSM status. Also the signal strength is shown here. This can be used to solve GPRS connection problems on site.

REC601/603 Configurator

Send SMS

The device can be used for sending test SMS messages. This is useful, for example, for checking the phone number of the current SIM card.

Default settings

The device can be reset to the factory default settings. When resetting to the factory settings, the network settings are excluded.

5.9

IEC-104 application settings

The IEC 60870-5-104 and IEC 60870-5-101 protocols share the same ASDU level messaging but differ on the link level. IEC 60870-5-104 is intended for packetswitched TCP/IP communication and IEC 60870-5-101 for serial communication. By using the device's IEC 60870-5-104 gateway, the IEC 60870-5-101 slaves, for example, RTUs, can be connected to an IEC 60870-5-104 master (for example, SCADA). The device requests events from the IEC 60870-5-101 slave locally and sends them to the IEC 60870-5-104 master. This eliminates the need to continuously poll the data remotely and also reduces the communication costs on a pay-per-use GPRS network. This approach also eliminates the IEC 60870-5-101 parameter problems caused by variable round-trip delays on the GPRS network and makes the information exchange faster and more reliable.

			0
	System Network Firewall S	Services <u>Applications</u>	Tools
IEC-104 (RS2)		IEC-104 Gateway (RS2)	Settings
EC-104 (RS1)	IEC-104 gateway enabled		Yes 💌
Serial GW (RS1)	Serial settings		
Serial GW (RS2)	Speed (bps)		9600 💌
	Data bits		8 💌
	Parity		Even 💌
	Stop bits		1 💌
	Use HW flow control		No 💌
	Network settings		
	Network protocol		TCP 💌
	Network port to listen		2404
	Network idle timeout		1800
	New connection priority		Yes 🐱
	IEC-104 settings		
	TX window size (k)		12
	RX window size (w)		8
	l frames TX timeout (t1)		60
	l frames RX timeout (t2)		20
	Link test interval (t3)		200
	Test link on suspended state		No 💌
	Suspended timeout		300

Figure 35: IEC-104 Application Settings

ABB

5.9.1

General settings

IEC-104 gateway enabled enables or disables the IEC 60870-5-104 to IEC 60870-5-101 gateway.

Table 23:IEC-104 gateway enabled

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	-

5.9.2 Serial settings

The serial settings define the physical serial communication properties between the device and an IEC 60870-5-101 slave. The selection between RS-232, RS-422 and RS-485 is done with physical DIP switches located below the RS2 serial port.

Serial settings	
Speed (bps)	9600 💌
Data bits	8 💌
Parity	Even 💌
Stop bits	1 💌
Use HW flow control	No 💌

Figure 36: Serial settings

Speed (bps) defines the IEC 60870-5-101 serial communication speed (bps).

Table 24:IEC 60870-5-101 serial communication speed (bps)

Description	Value
Туре	Serial speed
Units	Bits per second
Value range	1200, 2400, 4800, 9600, 19200, 38400, 57600
Note	-

Data bits defines the number of data bits used in the IEC-101 serial communication.

Table 25: Number of data bits used in the IEC 60870-5-101 serial communication

Description	Value
Туре	Serial data bits
Units	Bits
Value range	5, 6, 7, 8
Note	-

Parity defines the parity method used in the IEC 60870-5-101 serial communication.

Table 26: Parity method used in the IEC 60870-5-101 serial communication

Description	Value
Туре	Serial data parity
Units	Bits
Value range	None, Even, Odd
Note	-

Stop bits defines the number of stop bits used in the IEC 60870-5-101 serial communication.

 Table 27:
 Number of stop bits used on IEC 60870-5-101 serial communication

Description	Value
Туре	Serial data stop bits
Units	Bits
Value range	1, 2
Note	-

Use HW flow control defines if the HW flow control mechanism is used.

Table 28: HW flow control mechanism (RTS/CTS) on IEC 60870-5-101 serial communication

Description	Value
Туре	Boolean
Units	N/A
Value range	Yes, No
Note	The HW handshaking is available only in the RS-232 mode

5.9.3 Network settings

The Network settings define the general TCP/IP networking properties between the device and the IEC 60870-5-104 master.

Network settings	
Network protocol	TCP 💌
Network port to listen	2404
Network idle timeout	1800
New connection priority	Yes 💌

Figure 37: Network settings

Network protocol defines the network transmission layer protocol (either TCP or UDP) used with IEC 60870-5-104 network communication. The IEC 60870-5-104 standard protocol uses TCP, but for reliable slow-speed packet-switched networks the UDP protocol can be used to minimize the packets transmitted over network.

Table 29: Network protocol in IEC 60870-5-104 communication

Description	Value
Туре	Network transmission layer protocol
Units	N/A
Value range	UDP, TCP
Note	The IEC 60870-5-104 standard specifies only the TCP protocol

Network port to listen defines the network port to listen for incoming IEC 60870-5-104 connections.

Table 30:	TCP or UDP port to listen for incoming IEC 60870-5-104 connections

Description	Value
Туре	Network port
Units	Port number
Value range	065000
Note	The IEC 60870-5-104 standard specifies TCP port 2404

Network idle timeout defines the idle time-out of the network connection in seconds. If there is no network data received during the specified interval, the device closes the connection. This parameter is required to detect partially closed connections and to release the resources for new connections, especially if the New connection priority parameter is disabled. The value "0" disables the network idle time-out detection.

Table 31: Network idle time-out for IEC 60870-5-104 connections

Description	Value
Туре	Time-out
Units	Seconds
Value range	065000
Note	The network idle time-out must be longer than the IEC 60870-5-104 link test interval (t3)

New connection priority defines the action when a new connection request arrives while a connection is already active. If the set value is "No", the new connection is rejected. If the set value is "Yes", the present connection is terminated and the new connection is accepted.

Table 32: New connection priority for IEC 60870-5-104 connections		
Description		Value
Туре		Boolean
Units		N/A
Value range		No, Yes
Note		This value must be set to "Yes" in normal configurations with only one IEC 60870-5-104 master

ia ity for IEO 60070 E 404 Table 20

IEC-104 settings 5.9.4

The IEC-104 settings define the properties of the IEC 60870-5-104 link layer and application layer parameters as described in the IEC 60870-5-104 standard. The IEC 60870-5-104 communication is carried out between the device and the IEC 60870-5-104 master over the TCP/IP network.

IEC-104 settings	
TX window size (k)	12
RX window size (w)	8
I frames TX timeout (t1)	60
l frames RX timeout (t2)	20
Link test interval (t3)	200
Test link on suspended state	No 💌
Suspended timeout	300
Max sequence number (0=def)	0
Flush buffered events on connection	No 💌
Cause of transmission length	2 💌
Common address length	2 💌
Info object address length	3 💌

Figure 38: IEC-104 Settings

TX window size (k) defines the maximum number of I format APDUs the device may send before requiring the IEC 60870-5-104 master to acknowledge them. If there are unacknowledged "k" size frames sent, the device stops polling the IEC 60870-5-101 slave for events until acknowledgement is received.

Description	Value
Туре	Window size
Units	Packets
Value range	120
Note	The value "k" must always be less than the maximum sequence number defined below. The IEC 60870-5-104 standard suggests k = 12.

RX window size (w) defines the maximum number of I format APDUs the device may receive before sending an acknowledgement to the IEC 60870-5-104 master.

Table 34: IEC 60870-5-104 RX window size (w)

Description	Value
Туре	Window size
Units	Packets
Valule range	120
Note	The value "w" should not exceed two-thirds of the TX window size "k". The IEC 60870-5-104 standard suggests w = 8.

I frames TX timeout (t1) defines the time-out in seconds the device waits for an acknowledgement from the IEC 60870-5-104 master after sending the last I format APDU or a control frame, such as a link test. If no acknowledgement is received during the defined time, the device closes the network connection and the IEC 60870-5-101 link.

Table 35: IEC 60870-5-104 I frames TX time-out (t1)

Description	Value
Туре	Timeout
Units	Seconds
Value range	1255
Note	The value "t1" must be longer than the network round-trip time. The IEC 60870-5-104 standard suggests t1 = 15 seconds.

I frames RX timeout (t2) defines the time-out in seconds from the last received I format APDU before sending an acknowledgement.

Table 36: IEC 60870-5-104 I frames RX time-out (t2)

Description	Value
Туре	Timeout
Units	Seconds
Value range	1255
Note	The value "t2" must be smaller than "t1". The IEC 60870-5-104 standard suggests t2 = 10 seconds.

Link test interval (t3) defines the interval in seconds how often the IEC 60870-5-104 link is tested if there is no other activity.

Table 37: IEC 60870-5-104 link test interval (t3)		
Description		Value
Туре		Timeout
Units		Seconds
Value range		165000
Note		This parameter must be adjusted according to the criticality of the link. The IEC 60870-5-104 standard suggests 20 seconds but the practical value may be substantially longer for pay-per- use GPRS connections.

Suspended timeout defines the time in seconds how long a connected IEC 60870-5-104 link can be in the suspended state (STOPD) before the device closes the connection.

Table 38:	IEC 60870-5-104 suspended time-out
1 4010 001	

Description	Value
Туре	Timeout
Units	Seconds
Value range	165000
Note	Using this parameter makes it easier to detect partially closed network connections, especially in the UDP mode

Max sequence number defines the maximum sequence number used in IEC 60870-5-104 communication. The value "0" selects the standard value "32767".

	Table 39:	Max sequence number
--	-----------	---------------------

Description	Value
Туре	Sequence number
Units	Packets
Value range	132767
Note	0 = 32767 as suggested by the IEC 60870-5-104 standard

Cause of transmission length defines the length of the IEC 60870-5-104 Cause of transmission ASDU header field in bytes.

Table 40:IEC 60870-5-104 ASDU cause of transmission length

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-104 standard defines the value "2"

Common address length defines the length of the IEC 60870-5-104 Common address ASDU header field in bytes.

Table 41:	IEC 60870-5-104 ASDU common address length
-----------	--

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-104 standard defines the value "2"

Info object address length defines the length of the IEC 60870-5-104 Information object address ASDU header field in bytes.

Table 42: IEC 60870-5-104 ASDU information object address length

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-104 standard defines the value "3"

5.9.5 IEC-101 settings

The IEC-101 settings define the properties of the IEC 60870-5-101 link layer and application layer parameters as described in the IEC 60870-5-101 standard. The communication is carried out between the device and the IEC 60870-5-101 slave.

IEC-101 settings	
Slave link address	10
Link address field length	2 💌
Event poll interval (x0.1 s)	1
Link test interval (x0.1 s)	200
Keep link open	Yes 💌
Reply header timeout (msecs)	1000
Reply end timeout (secs)	2
Retry limit	3
Cause of transmission length	1 💌
Common address length	2 💌
Info object address length	2 💌

Figure 39: IEC-101 settings

Slave link address defines the link-level address of the IEC 60870-5-101 slave.

Description	Value
Туре	Link address
Units	N/A
Value range	165000
Note	The link-level address of the IEC 60870-5-101 slave

Table 43: IEC 60870-5-101 slave link address

Link address field length defines the length of the IEC 60870-5-101 link-level address field in bytes.

Table 44:IEC 60870-5-101 slave link address field length

Description	Value
Туре	Field length
Units	Bytes
Value range	1, 2
Note	The link-level address of the IEC 60870-5-101 slave

Event poll interval defines the IEC 60870-5-101 event polling interval in 0.1 second increments (class 1 or 2 poll).

Table 45: IEC 60870-5-101 event poll interval

Description	Value
Туре	Interval
Units	0.1 seconds
Value range	165000
Note	The events are polled only when the IEC 60870-5-104 connection is active

Link test interval defines the IEC 60870-5-101 link test interval in 0.1 second increments. The link test is performed if there is no other activity.

Table 46: IEC 60870-5-101 link test interval

Description	Value
Туре	Interval
Units	0.1 seconds
Value range	165000
Note	The link test is performed if there is no other activity during the defined interval

Keep link open defines that the IEC 60870-5-101 link is kept always open even when there is no active IEC 60870-5-104 connection. If this parameter is enabled, the device sends link test frames and restarts the IEC 60870-5-101 link if the test fails. The events are still not polled before the IEC 60870-5-104 connection is active.

Table 47: IEC 60870-5-101 keep link open

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	Some IEC 60870-5-101 slaves require the link to be continuously open to operate

Reply header timeout defines the time-out the device waits for the reply to start from the IEC 60870-5-101 slave after a command or request.

Table 48:	IEC 60870-5-101	reply start time-out
10010 10.	120 000/ 0 0 101	Topiy olari anno oac

Description	Value
Туре	Timeout
Units	Milliseconds
Value range	165000
Note	-

Reply end timeout defines the maximum duration of the IEC 60870-5-101 slave response.

Table 49:	IEC 60870-5-101 reply end time-out
-----------	------------------------------------

Description	Value
Туре	Timeout
Units	Seconds
Value range	165000
Note	-

Retry limit defines the number of retries sent to an IEC 60870-5-101 slave in case of no reply. If no reply is received after this limit, the device closes the IEC 60870-5-101 and IEC 60870-5-104 connections.

Table 50: IEC 60870-5-101 retry limit

Description	Value
Туре	Retry limit
Units	Retries
Value range	065000
Note	-

Cause of transmission length defines the length of the IEC 60870-5-101 Cause of transmission ASDU header field in bytes.

Table 51:IEC 60870-5-101 ASDU cause of transmission length

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-101 standard defines the value "1"

Common address length defines the length of the IEC 60870-5-101 Common address ASDU header field in bytes.

Table 52: IEC 60870-5-101 ASDU common address length

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-101 standard defines the value "2"

Info object address length defines the length of the IEC 60870-5-101 Information object address ASDU header field in bytes.

Table 53: IEC 60870-5-101 ASDU information object address length

Description	Value
Туре	Field length
Units	Bytes
Value range	13
Note	The IEC 60870-5-101 standard defines the value "2"

5.9.6 ASDU converter

The ASDU converter can be used to convert the ASDU header field lengths between the IEC 60870-5-101 and IEC 60870-5-104 protocols.

ASDU Converter	
Use ASDU converter	Yes 🐱
Use ASDU type replacer	Yes 🐱
IEC-101 ASDU type	128
IEC-104 ASDU type	30
Convert short IEC-101 time stamps	No 💌

Figure 40: ASDU Converter

Use ASDU converter defines if the ASDU header field length conversion is in use. This parameter must be enabled if the ASDU header field lengths differ between IEC 60870-5-101 and IEC 60870-5-104.

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	The information in the field must fit in the shorter one of the two. It is not possible to convert, for example, the value "12000" to a one byte field.

Use ASDU type replacer can be used to convert an ASDU type (original type) to another type (applied type), for example, in cases when the IEC implementation differs between the master and the slaves.

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	-

Original type defines the original ASDU type searched by the ASDU type replacer.

Applied type defines the new ASDU that replaces the original type.

5.9.7 Packet collector

The packet collector can be used to collect a number of IEC 60870-5-101 messages or events to a single network packet instead of sending every message separately. This is useful in a slow packet-switched communication network for speeding up the general interrogation response.

Packet collector	
Use packet collector	No 💌
Max bytes	500
Max time (x0.1 s)	20
Max packets	5

Figure 41: Packet collector

Use packet collector defines if the packet collector is in use.

Table 56: Use packet collector

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	-

Max bytes defines the number of maximum bytes for the packet collector. Before a new packet is inserted into the packet collector buffer, the amount of bytes is checked. If the number of bytes in the new packet exceeds the value defined by this parameter, the old content is sent to the network before inserting the new one.

Table 57: Maximum collected bytes

Description	Value
Туре	Packet size
Units	Bytes
Value range	11500
Note	The value should be smaller than the MTU/MRU of the network used

Max time defines the maximum time collected for the packet collector in 0.1 second increments. If there has been data in the packet collector for longer than the value defined by this parameter, the data is sent to the network.

Table 58:Maximum collected time

Description	Value
Туре	Timeout
Units	0.1 seconds
Value range	1255
Note	The value must be smaller than t1

Max packets defines the maximum amount of IEC 60870-5-101 packets stored into the packet collector before sending the data to the network.

Table 59:	Maximum collected packets	
Description		Value
Туре		Packet count
Units		Packets
Value range		1255
Note		-

5.9.8 Other settings

Write syslog defines if error messages are stored to the system log file.

Table 60:Write system log

Description	Value
Туре	Boolean
Units	N/A
Value range	No, Yes
Note	The system log is available by using the WHMI

Section 6 Technical data

Table 61: Dimensions		Dimensions	
Description			Value
	Width x Height x	Depth	150 x 177 x 135 mm (without antenna)

Table 62:

Power supply

Description	Value	
Auxiliary voltage supply / battery charger	85200 VDC/ 90264 VAC	
Power consumption	10 W (when not charging the battery)	
Temperature compensated battery charger	For 24 V sealed lead acid batteries	
Monitoring and protection	Voltage, load testing and deep discharge protection	

Table 63: Hardware

Description	Value	
Processor Environment	Processor	32 bit RISC
	Memory	8 MB FLASH
		32 MB SDRAM
Other	Sensor	Temperature
	Internal clock	Real time
Approvals		CE
Environmental conditions	Temperature ranges	-40+70 °C (operation)
		-40+85 °C (transport and storage)
	Relative Humidity	5 to 85 % RH

Table 64: Software

Description		Value
Communication protocols	Via GPRS to and from SCADA	IEC 60870-5-104
	Via serial ports downward	IEC 60870-5-101 or transparent mode
	Downward	Ethernet port
Network protocols		PPP, IP, ICMP, UDP, TCP, ARP, DNS, DHCP, FTP, TFTP, HTTP, POP3, SMTP

Description	Value		
Tunneling (VPN)	SSH-VPN client (requires M2M Gateway)		
	L2TP-VPN client (requires M2M Gateway)		
	SSH client		
Management	WWW, SSH, Telnet and console FTP, TFTP and HTTP software update		
Routing and firewall	Static routing, proxy ARP, port forwarding, IP masquerading/NAT, firewall		
Serial device connectivity	Device server application (IEC 60870-5-104 GW)		
	Simultaneous GPRS, CSD and SMS		
	SMS configuration and status reporting		
IEC 60870-5-104 and IEC 60870-5-101	IEC 60870-5-104 over TCP or UDP		
	IEC 60870-5-101 FT 1.2 framing		
	Local IEC 60870-5-101 polling		
	ASDU replacer		
	Packet compressor		

Table 65: Physical interfaces

Description	REC601		REC603					
	Biı	nary	An	alog	Bir	nary	An	alog
Inputs/Outputs	I	0	I	0	I	0	I	0
Disconnector control	6	3	-	-	16	7	-	-
Battery control	-	2	2 ¹⁾	-	-	2	2 ¹⁾	-
Motor control	-	1 ²⁾	1 ³⁾	-	-	1 ²⁾	1 ³⁾	-
Transducer input	-	-	1 ⁴⁾	-	-	-	1 ⁴⁾	-
Heater control output	-	1	-	-	-	1	-	-

ranges 0...30 V, 0...10 A
 Overcurrent
 0...15 A
 0...5 A

	Table (66:
--	---------	-----

Network interfaces

Description	Value
Ethernet	10/100 Base-T. Shielded RJ-45
	1.5 kV isolation transformer
	Ethernet IEEE 802-3, 802-2
Table continues on next page	

Description	Value				
CSD (GSM data)	Up to 14.4 kbps	Up to 14.4 kbps			
	V.110				
	Non-transparent mode	Non-transparent mode			
	USSD support	USSD support			
	FME external antenna conr	nector (50Ω) (Stub antenna included)			
GPRS	Bandwidth	Quad band (850/900/1800/1900 MHz)			
	Module	Internal module and SIM card socket			
	Class	Multi-slot class 20			
		Mobile station class B			
CSD (GSM data) Up to V.110 Non- USSI FME GPRS Band Modu Class Down Uplin Codii Anter Secu Serial Ports Seria	Downlink speed	Max. 85.6 kbps			
	Uplink speed	Max. 85.6 kbps			
	Coding schemes	CS14			
	Antenna connector	FME (50 Ω)			
	Security	Via encrypted VPN			
Serial Ports	Serial 1 / Console	RS-232			
		IEC 60870-5-101 protocol support			
	Serial 2	RS-232/422/485 (selectable)			
		IEC 60870-5-101 protocol support			

Table 67:

Communication protocols

Description	Value	
Protocols	Via GPRS to and from SCADA	IEC 60870-5-104
	Via serial ports	IEC 60870-5-101
	Via IP network	Ethernet port

Table 68: Electromagnetic compatibility tests

Description	Type test value	Reference		
Electrostatic discharge test:		EN 61000-4-2		
Contact discharge:	4 kV			
Indirect contact discharge:	4 kV			
Conducted RF Immunity test:		EN 61000-4-6		
• 150 kHz80 MHz	3 V (rms)			
Table continues on next page				

Description	Type test value	Reference
Radiated RF Immunity test:		EN 61000-4-3
• 802700 MHz	3 V/m (rms)	
Fast transient disturbance tests:		EN 61000-4-4
All ports	1 kV	
Surge immunity test:		EN 61000-4-5
AC power input ports	2 kV, line-to-earth	
	1 kV, line-to-line	
Voltage dips and short	0 % / 1 cycle	EN 61000-4-11
interruptions	40 % / 10 cycles	
	70 % / 25 cycles	
Emission tests:		CISPR 22 (EN 55022),
Conducted		Class B
0.150.50 MHz	< 66 dB(µV) quasi peak	
	< 56 dB(µV) average	
0.55 MHz	< 56 dB(µV) quasi peak	
	< 46 dB(µV) average	
530 MHz	< 60 dB(µV) quasi peak	
	< 50 dB(µV) average	
Radiated		
30230 Mhz	< 35 dB(µV/m) quasi peak,	
	measured at 3 m distance	
2301000 MHz	< 42 dB(µV/m) quasi peak,	
	measured at 3 m distance	
10003000 MHz	< 70 dB(µV/m) quasi peak,	
	< 50 dB(µV/m) average,	
	measured at 3 m distance	
30006000 MHz	< 74 dB(µV/m) quasi peak,	
	< 54 dB(µV/m) average,	
	measured at 3 m distance	

Table 69:

EMC compliance

Description	Reference
Standard	ETSI EN 301489-1 (V1.8.1 2008-04)
	IEC 61000-6-1 (Second edition 2005–01)
	IEC 61000-6-3 (2006–07)

Table 70:	RoHS and REACH compliance
Description	
Complies wi	th RoHS directive 2002/95/EC
Complies wi	th REACH directive 2006/1907/EC

Section 7 Ordering data

Product label is found on the top of the device and it contains the basic information about the product (for example product name) as well as unique data regarding the unit such as serial number and Ethernet MAC address.

The order number consists of a string of codes generated from the device's hardware and software modules. Use the ordering key information to generate the order number when ordering complete devices.

As an example of how the ordering code is generated the following schematics are shown.

				<u>R</u>]	ĘQ	<u> </u>	<u>6 q</u>	1	Ą	14	Ī	4	Ą
_													
	DESCRIPTION												
6	Product prefix												
	Wireless Controller REC601	REC601	 				-						
	Version												
	1.0	Α	 										
	Power Supply												
	85-200 VDC, 90-264 VAC with battery charger (24 VDC)	1	 										
	Inputs and Outputs												
	5 BI + 6 BO, 3CT (0-10 A/0-15 A/4-20mA) + 1 VT (0-30 VAC)	А											
)	Communication Interface												
	Ethernet 10/100BaseT (RJ45) + RS232 + selectable RS232/422/485	A	 								-		
L	Communication Protocols												
	IEC 60870-5-101 + IEC 60870-5-104	Α	 								-	_	
2	Wireless Communication Standards												
	GPRS (+ CSD (GSM Data))	G	 										
3	Configuration Software Language												
	English	1	 								_	_	
1	Additional components												
	Stub antenna + NTC sensor cable + DIN rail mounting kit	Α									_		

Example code: R E C 6 0 1 A 1 A A A G 1 A

Your ordering code:

Digit (#)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Code														

			<u>R</u> I	E C	60) <u>3</u> T	A	4	A
#	DESCRIPTION								
1-6	Product prefix								
	Wireless Controller REC603	REC603							
7	Version								
	1.0	А	 						
8	Power Supply								
	85-200 VDC, 90-264 VAC with battery charger (24 VDC)	1	 						
9	Inputs and Outputs								
	15 BI + 10 BO, 3CT (0-10 A/0-15 A/4-20mA) + 1 VT (0-30 VAC)	А							
10	Communication Interface								
	Ethernet 10/100BaseT (RJ45) + RS232 + selectable RS232/422/485	А							
11	Communication Protocols								
	IEC 60870-5-101 + IEC 60870-5-104	А	 						
12	Wireless Communication Standards								
	GPRS (+ CSD (GSM Data))	G	 						
13	Configuration Software Language								
	English	1							
14	Additional components								
	Stub antenna + NTC sensor cable + DIN rail mounting kit	А							

Example code: R E C 6 0 3 A 1 A A A G 1 A

Your ordering code:

Digit (#)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Code														

Section 8 Appendix 1 Installation and mounting instructions

8.1 Unpacking the device

The device is delivered in a package containing the device itself, a short antenna, an NTC thermistor sensor cable and four connectors. Accessories such as null-modem cables, hall-effect current transducers, test load resistors and roof antennas can be ordered separately.

1. Remove the transport packing carefully without force.

All packaging materials are recyclable. Follow the environmental regulations regarding the disposal of materials.

2. Examine the delivered products to ensure that they were not damaged during the transport. If any of the items is missing or damaged, inform the nearest ABB office or representative. ABB should be notified immediately if there are any discrepancies in relation to the delivery documents.

Handle the device carefully before installation on site.

8.2 Installing the device

- Install the device horizontally on a flat surface on a desk or on a rack.
- As the device has the GPRS option, consider the high-frequency radio waves it uses for data transmission and choose the installation site accordingly.
 - If the device with antenna is mounted directly to the antenna connector, avoid placing the device where nearby obstacles might disturb the radio signal.
 - In case of metal racks or surfaces, use an external antenna with an appropriate cable.

Walls with metallic structures, such as cabling or concrete iron, may degrade the antenna performance.

• Use mounting tools to mount the device on a wall. Select the optimum mounting direction using the rails on the device's aluminium casing.

8.3 Installing the SIM card

Standard 3 V SIM cards can be used with the device's IEC 60870-5-104 gateway. A SIM card holder is located on the back panel near the GPRS antenna connector.

If the PIN code query is enabled, check that the correct PIN code is entered in the REC601/603 configurator GPRS submenu.

- 1. Switch off power from the device.
- 2. Ensure that the GSM module is in the shutdown mode.

The SIM card holder has a card detection circuit that allows hot insertion and removal of the card. This is not recommended, as the SIM card content may become corrupted if the card is removed while the GSM module is writing data to it.

- 3. Eject the SIM card holder by pushing the **Eject** button.
- 4. Remove the tray from the holder and place the SIM card onto the tray.
- 5. Insert the tray carefully back to the holder and press the tray until it is locked.

8.4 Setting the IP address via a Web browser

1. Connect to the device using the Web browser. The default IP address is "10.10.10.10" (netmask "255.0.0.0"). A computer connected to the device may use, for example, the IP address "10.10.10.11".

Internet Protocol Version 4 (TCP/IPv	4) Properties	? X
General		
You can get IP settings assigned autom this capability. Otherwise, you need to for the appropriate IP settings.		
O Obtain an IP address automatical	ly	
○ Use the following IP address: —		
IP address:	10 . 10 . 10 . 11	
Subnet mask:	255.0.0.0	
Default gateway:	10 . 10 . 10 . 10	
C Obtain DNS server address autor	natically	
Use the following DNS server add	resses:	
Preferred DNS server:	10 . 10 . 10 . 10	
<u>A</u> lternate DNS server:		
Validate settings upon exit	Ad <u>v</u> anced	
	OK Ca	ncel

Figure 44: IP Properties

- 2. On the start page, click the **Start Configurator** link.
- 3. Enter the login information.
 - 3.1. Type the user name as "root".
 - 3.2. Leave the password box empty.
- 4. Select Network/Ethernet.

	System <u>Network</u> Firewall Services Applica	tions Tools
Summary	Ethernet	Settings
Ethernet GPRS	Override Ethernet configuration by DHCP?	 Enabled Disabled
Dial-in SSH-VPN	Host name	ABB
L2TP-VPN	Domain name	(none)
GRE tunnel	Ethernet IP address	10.10.10.10
Monitor	Network mask	255.0.0.0
Routing	Use Ethernet as default route (usually No)	Yes 💌
S-NAT	Default router IP address	10.10.10.1
D-NAT	MTU	1500
DNS Update		
DynDNS client NTP client	DNS servers (optional)	
SMS Config	MAC address	00:06:70:02:09:C9
Commit Reboo	Apply	00:06:70:02:09:09

Figure 45: Ethernet Settings

- 5. Type the Ethernet IP address and the required network settings in the boxes. Click **Apply** and **Commit** at the bottom of the page to save the settings.
- 6. Restart the device for the settings to take effect.

The default password is empty. Set the password before connecting the device to a public network.

Configuring the GPRS settings

8.5

ABB

REC601/603 Configurator

	System <u>Network</u> Firewall Se	rvices Applications Tools
Summary		GPRS Settings
Ethernet	GPRS enabled	Yes 🗸
GPRS	Access Point Name (GPRS)	INTERNET
Dial-in	PIN code	NoPin
SSH-VPN	Operator Code (empty=auto)	
L2TP-VPN	DNS servers	User defined 💌
GRE tunnel Monitor	LED indication	Data only 🔜
Routing	GPRS username	username
S-NAT	GPRS password	passwd
D-NAT	PPP idle timeout (sec)	1800
DNS Update	Maximum MTU value	1500
DynDNS client	Use GPRS as default route	 Enabled
NTP client		O Disabled
SMS Config	IMPORTANT:Define also Network-3	Monitor to detect connection failures
		Apply Reset
Commit Reboot		
Commu		
Logout		

Figure 46: GPRS settings

See Tools/Modem info for GSM/GPRS information.

Figure 47: GSM modem information

- 1. If the SIM card has the PIN code querying enabled, configure the PIN code before inserting the card in the card holder.
- 2. Connect to the device and log in to the REC601/603 configurator.
- 3. Navigate to Network/GPRS.

- 4. Type the access point name in the Access Point Name (GPRS) box. Usually, the access point name is "INTERNET"
- 5. Set the GPRS network user name and password if the GPRS service requires authentication.
- 6. Set the default route to "Enabled".
- 7. The parameters *PIN code* and *PPP idle timeout (sec)* are optional.
 - If the SIM card has the PIN code set, type the code in the **PIN code** box.

Set the correct PIN code with the REC601/603 configurator before plugging in the SIM card. If an incorrect PIN code is set and the PIN code is required by the SIM card, the device does not retry with the wrong PIN code, thus avoiding a SIM card lock-up. In such a case, insert the SIM card to a mobile phone and enter the correct PIN code before continuing.

- **PPP idle timeout (sec)** defines the interval in seconds when the device resets the GPRS connection if the connection is idle.
- ICMP Echo is used to monitor the GPRS connection between the device and the remote host. If the host cannot be reached, the GPRS connection is reset. This feature should always be enabled from Network/Monitor.
- 8. Click **Apply**. After confirmation, click **Commit** to save the settings.
- 9. Restart the device for the settings to take effect. Check the GPRS status from Network/Summary.

Section 9 Appendix 2 Controller configuration reference

9.1 Introduction

This document describes the structure of the configuration file used to setup the operational and communication parameters of the internal RTU application.

This guide defines configuration of the RTU application itself. For general networking configuration and IEC 60870-5-101 gateway or IEC 60870-5-101 converter application configuration refer to separate guides.

9.2 Physical pins

The physical pins are referred frequently on setup chapters. The same physical pins are used by G-P and for disconnector-specific functionality.

9.2.1 Digital inputs

Each digital input has two pins. One pin is used for common potential and the other pin for signal. The common potential may be shared between multiple signal pins. The pins are bi-directional meaning the current can flow either from signal pin to common potential or vice-versa. The digital inputs table the signal pin is mentioned before the common pin.

Table 71: Digital inputs

Index	Physical	Single point (G-P)	Double point (G-P)	Disconnector	Note
DI1	X2.3 1-2	[DIGITAL_INPUT_SPI_1]	[DIGITAL_INPUT_DPI_1] (open status input)	[DISCONNECTOR_STATUS_1] (open status input)	Controls the Open LED of Disconnector 1
DI2	X2.3 2-3	[DIGITAL_INPUT_SPI_2]	[DIGITAL_INPUT_DPI_1] (closed status input)	[DISCONNECTOR_STATUS_1] (closed status input)	Controls the Close LED of Disconnector 1
DI3	X2.3 4-5	[DIGITAL_INPUT_SPI_3]	[DIGITAL_INPUT_DPI_2] (open status input)	[DISCONNECTOR_STATUS_2] (open status input)	Controls the Open LED of Disconnector 2
DI4	X2.3 5-6	[DIGITAL_INPUT_SPI_4]	[DIGITAL_INPUT_DPI_2] (closed status input)	[DISCONNECTOR_STATUS_2] (closed status input)	Controls the Close LED of Disconnector 2

REC601/603 Technical Manual

Section 9 Appendix 2 Controller configuration reference

Index	Physical	Single point (G-P)	Double point (G-P)	Disconnector	Note
DI5	X2.3 7-8	[DIGITAL_INPUT_SPI_5]		[DISCONNECTOR_LOCREM_ 1]	Controls the Local/Remote LED of Disconnector 1
DI6	X2.3 9-10	[DIGITAL_INPUT_SPI_6]		[DISCONNECTOR_LOCREM_ 2]	Controls the Local/Remote LED of Disconnector 2
DI7	X3 1-2	[DIGITAL_INPUT_SPI_7]	[DIGITAL_INPUT_DPI_3] (open status input)	[DISCONNECTOR_STATUS_3] (open status input)	Controls the Open LED of Disconnector 3
DI8	X3 2-3	[DIGITAL_INPUT_SPI_8]	[DIGITAL_INPUT_DPI_3] (closed status input)	[DISCONNECTOR_STATUS_3] (closed status input)	Controls the Close LED of Disconnector 3
D19	X3 4-5	[DIGITAL_INPUT_SPI_9]		[DISCONNECTOR_LOCREM_ 3]	Controls the Local/Remote LED of Disconnector 3
DI10	X3 11-10	[DIGITAL_INPUT_SPI_10]	[DIGITAL_INPUT_DPI_4] (open status input)		Controls the Open LED of Grounding 1
DI11	X3 12-10	[DIGITAL_INPUT_SPI_11]	[DIGITAL_INPUT_DPI_4] (closed status input)		Controls the Close LED of Grounding 1
DI12	X3 13-10	[DIGITAL_INPUT_SPI_12]	[DIGITAL_INPUT_DPI_5] (open status input)		Controls the Open LED of Grounding 2
DI13	X3 14-10	[DIGITAL_INPUT_SPI_13]	[DIGITAL_INPUT_DPI_5] (closed status input)		Controls the Close LED of Grounding 2
DI14	X3 15-10	[DIGITAL_INPUT_SPI_14]	[DIGITAL_INPUT_DPI_6] (open status input)		Controls the Open LED of Grounding 3
DI15	X3 16-10	[DIGITAL_INPUT_SPI_15]	[DIGITAL_INPUT_DPI_6] (closed status input)		Controls the Close LED of Grounding 3
DI16	X4 12-11	[DIGITAL_INPUT_SPI_16]	[DIGITAL_INPUT_DPI_7] (open status input)		Extra DI
DI17	X4 13-11	[DIGITAL_INPUT_SPI_17]	[DIGITAL_INPUT_DPI_7] (closed status input)		Extra DI

9.2.2 Analog inputs

Each analog input has two pins. One pin is used for positive potential (+/A) and the other pin for negative potential (-/B). The inputs are bi-directional meaning the value can be positive or negative. If the positive pin has higher potential than the negative pin, the result is positive. If the positive pin has smaller potential than the negative pin, the result is negative. The inputs can be configured to be either on voltage mode $(0...+/-5 \text{ V}, \text{ input impedance } 2000 \Omega)$ or current mode $(0...+/-20 \text{ mA}, \text{ input impedance } 500 \Omega)$. The measuring circuit (voltage/current) is selected by internal DIP-switches. The mode needs to be entered in the configuration file

for the application to use correct calibration and scaling data. In the Analog input table the positive pin is mentioned before the negative pin.

Table 72: Analog input

Index	Physical	General-Purpose	Shared Function	Note
AI1	X4 3-4	[ANALOG_INPUT_FPI_1]	Load current measurement for load- limiter and battery testing	Usually connected to Hall-sensor measuring motor current having output of 0-5 V
Al2	X4 9-10	[ANALOG_INPUT_FPI_2]		

9.2.3 Digital outputs

Digital outputs are implemented with relays. Each digital output has two pins connected to the relay contacts. Outputs are bi-directional due to the galvanic contact.

Table 73:	Digital outputs
Tadle 73:	Digital outputs

Index	Physical	Single point (G-P)	Double point (G-P)	Disconnector	Other	Note
DO1	X2.3 11-12	[DIGITAL_OUTPUT_SC_1]	DIGITAL_OUTPUT_DC_1] (drive to close)	[DISCONNECTOR_CONTROL_ 1] (drive to close)		
DO2	X2.3 13-14	[DIGITAL_OUTPUT_SC_2]	DIGITAL_OUTPUT_DC_1] (drive to open)	[DISCONNECTOR_CONTROL_ 1] (drive to open)		
DO3	X2.3 15-16	[DIGITAL_OUTPUT_SC_3]	DIGITAL_OUTPUT_DC_2] (drive to close)	[DISCONNECTOR_CONTROL_ 2] (drive to close)	Heater ACO1	
DO4	X2.3 17-18	[DIGITAL_OUTPUT_SC_4]	DIGITAL_OUTPUT_DC_2] (drive to open)	[DISCONNECTOR_CONTROL_ 2] (drive to open)		
DO5	X3 6-7	[DIGITAL_OUTPUT_SC_5]	DIGITAL_OUTPUT_DC_3] (drive to close)	[DISCONNECTOR_CONTROL_ 3] (drive to close)		
DO6	X3 8-9	[DIGITAL_OUTPUT_SC_6]	DIGITAL_OUTPUT_DC_3] (drive to open)	[DISCONNECTOR_CONTROL_ 3] (drive to open)		
DO7	X4 1-2	[DIGITAL_OUTPUT_SC_7]			Load limiter load cut	Normally closed
DO8	X4 5-6	[DIGITAL_OUTPUT_SC_8]			Battery test load	
DO9	X4 7-8	[DIGITAL_OUTPUT_SC_9]			Heater ACO3	
DO10	X4 14-15	[DIGITAL_OUTPUT_SC_10]				Extra DO

9.3 Configuration file syntax

The configuration file follows common INI-file format, see <u>http://en.wikipedia.org/wiki/INI_file</u> where sections are used to group parameters.

9.3.1 Sections

Parameters are grouped into logically-named sections. A section starts from section declaration and ends to a blank line or another section declaration. The section name appears on a line by itself, in square brackets ([and]). All parameters after the section declaration are associated with that section. Sections may not be nested. Section names are case-sensitive and must be entered on uppercase letters.

Example

[MY_SECTION] my_parameter_a = my_value_a my_parameter_b = my_value_b

9.3.2 Parameters

The basic element contained in a configuration file is the parameter. Every parameter has a name and a value, delimited by an equals sign (=). The name appears to the left of the equals sign. Parameter names and values are case-sensitive and must be entered on small letters. There may be whitespaces before and after the delimiter (=).

Example

name=value name = value

9.3.3 Comments

Semicolons (;) or number signs (#) indicate the start of a comment. The comments continue to the end of the line. Everything between the semicolon or number sign and the End of Line is ignored. The comment character must be the first character on the line (no white spaces).

Example

;comment text #comment text

9.3.4 Duplicate section names

Duplicate section names are used to define multiple instances of the same object. For example, duplicate section names can be used to define multiple cyclic transmission groups with different intervals. If the object does not support multiple instances, the first section is used and the other sections are ignored.

Example

```
[IEC_CYCLIC_GROUP]
onoff = on
group_index = 1
name = cyclic_fast
cause_of_transmission = 1
```

interval_sec = 120 sense_linkstatus = yes

[IEC_CYCLIC_GROUP] onoff = on group_index = 2 name = cyclic_slow cause_of_transmission = 1 interval_sec = 7200 sense_linkstatus = yes

9.3.5 Duplicate parameter values

Some parameters accept multiple values. Typically the values are supplied to a single parameter as a comma-separated list. Certain parameters (where comma-separation is not practically possible) require that multiple instances are defined.

Example

name=value1,value2,value3 name = value1 name = value2

9.4 [GLOBAL]

Settings for global parameters

The [GLOBAL] section parameters affect the whole application.

Setting	Units	Range	Description	Parameter name
Enable RTU application	binary	on,off	Should the RTU application run	onoff
Syslog enable	binary	on,off	Should the application write system log	syslog_onoff
Syslog identifier	text		System log identifier string	syslog_id

Example

[GLOBAL] onoff = on syslog_onoff = yes syslog_id = rtu

9.5 Low-level I/O settings

The low-level I/O settings define communication bus properties between the application processor and I/O processor. The default values are normally correct.

Table 74:

9.5.1 [PHYSICAL_DI]

Table 75: Settings for physical digital inputs

Setting	Units	Range	Description	Parameter name
Query interval	ms	15000 (int)	How often to query I/O processor for digital input values	query_interval_ms
Invalid timeout	ms	160000 (int)	If no successful update during time-out mark the values invalid	invalid_timeout_ms
Reply timeout	ms	15000 (int)	How long to wait for I/O processor response	reply_timeout_ms
Retry limit	times	010 (int)	How many times to retry within query	reply_retries
Debounce filter	ms	05000 (int)	Tell I/O processor to use this glitch/ debounce filtering window	debounce_filter_ms

Example

[PHYSICAL_DI] query_interval_ms = 200 invalid_timeout_ms = 2000 reply_timeout_ms = 500 reply_retries = 2 debounce_filter_ms = 100

9.5.2 [PHYSICAL_AI]

Table 76:Settings for physical analog inputs

Setting	Units	Range	Description	Parameter name
Query interval	ms	15000 (int)	How often to query I/O processor for analog input values	query_interval_ms
Invalid timeout	ms	160000 (int)	If no successful update during time-out mark the values invalid	invalid_timeout_ms
Reply timeout	ms	15000 (int)	How long to wait for I/O processor response	reply_timeout_ms
Retry limit	times	010 (int)	How many times to retry within query	reply_retries
Averaging	times	050 (int)	How many samples to average	averaging

Example

[PHYSICAL_AI] query_interval_ms = 500 invalid_timeout_ms = 5000 reply_timeout_ms = 5000 reply_retries = 2 averaging = 8

9.5.3 [PHYSICAL_TEMP]

Setting	Units	Range	Description	Parameter Name
Query interval	ms	15000 (int)	How often to query I/O processor for temperature values	query_interval_ms
Invalid timeout	ms	160000 (int)	If no successful update during time-out mark the values invalid	invalid_timeout_ms
Reply timeout	ms	15000 (int)	How long to wait for I/O processor response	reply_timeout_ms
Retry limit	times	010 (int)	How many times to retry within query	reply_retries

Table 77: Settings for physical temperature measurements

Example

[PHYSICAL_TEMP] query_interval_ms = 2000 invalid_timeout_ms = 10000 reply_timeout_ms = 500 reply_retries = 2

9.5.4 [PHYSICAL_DO]

Table 78: Settings for physical digital outputs

Setting	Units	Range	Description	Parameter Name
Query interval	ms	15000 (int)	How often to refresh digital output values (after first write)	query_interval_ms
Reply timeout	ms	15000 (int)	How long to wait for I/O processor response	reply_timeout_ms
Retry limit	times	010 (int)	How many times to retry within query	reply_retries

Example

[PHYSICAL_DO] query_interval_ms = 200 reply_timeout_ms = 500 reply_retries = 2

9.6 Analog scaling settings

The analog inputs (X4 3-4 and X4 9-10) can be used on voltage (0...+/-5 V) or current (0...+/-20 mA) mode. These modes have different scaling and calibration properties and therefore the application should know the required mode. The physical measurement circuit itself needs to be configured to required mode by using internal DIP switches (selection per channel).

9.6.1 [PHYSICAL_EXTAIMODE_1]

Defines the measurement mode of the analog input 1 (X4 pins 3-4). Usually this channel is used for a Hall-sensor having 0...5 V voltage output.

Table 79:	Measurement mode for physical_extaimode_1
-----------	---

Setting	Units	Range	Description	Parameter name
Measurement mode		volt, cur	Use voltage or current mode scaling and calibration.	mode

Example

[PHYSICAL_EXTAIMODE_1] mode = volt

9.6.2 [PHYSICAL_EXTAIMODE_2]

Defines the measurement mode of analog input 1 (X4 pins 9-10).

Table 80: Measurement mode for physical_extaimode_2

Setting	Units	Range	Description	Parameter name
Measurement mode		volt,cur	Use voltage or current mode scaling and calibration.	mode

Example

[PHYSICAL_EXTAIMODE_2] mode = cur

9.6.3 [CURRENT_SENSOR]

The motor load current is usually measured by using a Hall-sensor connected to the analog input 1 (X4 3-4). The typical Hall-sensor output voltage is 0...5 V, being directly related to the measured current. For example, if the measurement range is 0...10 A and output voltage is 0...5 V, the transfer ratio is 2 A/V.

7	Table 81: Settings for current_sensor							
	Setting	Units	Range	Description	Configuration parameter			
	Offsett	V	05 (float)	Add offsett amount to value	scaling_add			
	Gain	A/V	010 (float)	Multiply value with gain (after offsetting)	scaling_multiple			

Example

[CURRENT_SENSOR] scaling_add = 0 scaling_multiple = 2

9.7 Protocol communication settings

The protocol communication settings define the properties of remote monitoring and control. The device acts as a protocol slave whereas the controlling system, such as SCADA or NFE acts as a protocol master.

9.7.1 [IEC_104_SLAVE_LINK]

Table 82: Link level settings of IEC 60870-5-104 pl	rotocol communication
---	-----------------------

Setting	Units	Range	Description	Parameter name
Use IEC 60870-5-104 link layer	binary	off,on		onoff
Listening port	TCP port	165535 (int)	TCP port to listen for incoming connections.	tcp_port
Listening IP	IP address	IP address, none	Listen only on given IP address.	bind_ip
Allowed clients	IP address	IP address, any	Accept connections only from this IP address (max 10 configuration parameters, each on own line)	remote_ip
Connection backlog		120 (int)	Allow operating system to have this many unfinished connection attempts	con_backlog
Idle timeout	S		Close connection if no IEC 60870-5-104 communication during the time-out (0=never)	idle_timeout
Tx window	packets	132767 (int)	IEC 60870-5-104 transmit window (k)	k
Rx window	packets	132767 (int)	IEC 60870-5-104 receive window (w)	w
Tx timeout	s	1255 (int)	IEC 60870-5-104 transmit time-out (t1)	t1
RX timeout	s	1255 (int)	IEC 60870-5-104 receive time-out (t2)	t2
Test interval	s	165535 (int)	IEC 60870-5-104 link test interval (t3)	t3
Maximum sequence number		132767 (int)	IEC 60870-5-104 maximum sequence number (0=max)	max_seqno
ASDU max length	bytes	20249 (int)	IEC 60870-5-104 ASDU maximum length	max_framelen
Test stopped connections	binary	off,on	Link-test connected but stopped IEC 60870-5-104 connections	test_closed
ASDU packing	binary	off,on	Pack multiple ASDUs of same type to IEC 60870-5-104 link frame	pack_asdus
Low-priority interval	packets	1100 (int)	Even if high-priority data (events) is available send lower priority data (cyclic, responses) after every this many higher-priority packets	fifo_lowpri_int
Low-priority amount	packets	1100 (int)	Number of lower-priority packets to add between higher-priority data	fifo_lowpri_amount
FIFO full watermark	packets	(int)	When FIFO has less than this amount of free spaces generate internal notification	fifo_hi_watermark

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
FIFO full hysteresis	packets	(int)	When FIFO has watermark plus hysteresis amount of free spaces generate internal notification	fifo_watermark_hysteresis
FIFO size	packets	1200 (int)	Size of each FIFO (commands, events, cyclic, responses, pulse counters)	fifo_size
Event FIFO policy		new,old	Policy to take when event FIFO is full. Setting "new" overwrites oldest packet with new one. Setting "old" keeps the oldest and rejects the new one.	fifo_event_policy
Synhroneous FIFO Policy	new,old		Policy to take when synch FIFO is full. Setting "new" overwrites oldest packet with new one. Setting "old" keeps the oldest and rejects the new one.	fifo_synch_policy
Pulsecounter FIFO policy		new,old	Policy to take when pulsecount FIFO is full. Setting "new" overwrites oldest packet with new one. Setting "old" keeps the oldest and rejects the new one.	fifo_pulsec_policy
Status file name			Full path and name of IEC 60870-5-104 link status file	statusfile_name
Status file interval	s	(int)	How often to write status file	statusfile_interval_sec

Example

[IEC_104_SLAVE_LINK]
onoff = on
tcp_port = 2404
bind_ip = none
remote_ip = any
con_backlog = 5
idle_timeout = 1800
k = 12
w = 8
t1 = 60
t2 = 20
t3 = 250
max_seqno = 0
max_framelen = 249
test_closed = yes
pack_asdus = yes
fifo_lowpri_int = 10
fifo_lowpri_amount = 2
fifo_hi_watermark = 10
fifo_event_policy = new
fifo_synch_policy = new
fifo_pulsec_policy = old
statusfile_name = /var/run/iec104_sl.status
statusfile_interval_sec = 20

9.7.2 [IEC_104_SLAVE_APP]

Setting	Units	Range	Description	Parameter name
Common address length	bytes	13 (int)	Length of IEC 60870-5-104 common Address field	common_address_length
Cause of transmission length	bytes	13 (int)	Length of IEC 60870-5-104 cause of transmission field	cause_of_transmission_length
Information object address length	bytes	13 (int)	Length of IEC 60870-5-104 information object address field	information_object_address_lengt h
Common address		(int)	IEC 60870-5-104 common address of the station (structured/unstructured)	common_address
Reply broadcasts	binary	off,on	Reply to broadcast common address	reply_broadcast
Atomic control	binary	off,on	Allow only one selection or unfinished execution per station simultaneously	atomic_control
Status file name			Full path and name of IEC 60870-5-104 station status file	statusfile_name
Status file interval	s		How often to write status file	statusfile_interval_sec

Table 83: Application level settings of IEC 60870-5-104 protocol communication

Example

[IEC_104_SLAVE_APP] common_address_length = 2 cause_of_transmission_length = 2 information_object_address_length = 3 common_address = 1 reply_broadcast = 1 atomic_control = yes statusfile_name = /var/run/iec104_ss.status statusfile_interval_sec = 20

9.7.3 [IEC_TIME]

Table 84:

Time synchronization settings of IEC 60870-5-104 protocol communication

Setting	Units	Range	Description	Parameter name
Use IEC 60870-5-104 time synch	binary	off,on		onoff
Time source		none,ntp,iec	Method to use for synchronizing station time	update_source
Time storage		system,internal	Change system clock according to IC time or keep internal difference information	storage
Transmission delay	ms	(int)	Estimation of transmission delay from source to station. Used for compensation.	transmission_delay_ms
Time adjust direction		none,plus,minu s	Add or remove given amount of seconds to/ from time synchronization	time_adjust_dir
Time adjust amount	s	(int)	Amount to adjust the time	time_adjust_amount
NTP Server	IP	(int)	IP address or FQDN of ntp server. Maximum two servers can be specified, each on it's own line	ntp_server
NTP Query interval	s	(int)	How often to send NTP query	ntp_interval_sec
Table continues on next p	age	·		

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
NTP Response timeout	s	(int)	How long to wait response from NTP	ntp_response_timeout_sec
NTP Retries	s	(int)	How many times to retry NTP if no response	ntp_retries
NTP Retry interval	s	(int)	How long pause between NTP retries	ntp_retry_interval_sec
Minimum adjusted difference	s	(int)	If timesynch differs from known time less than that amount do not perform adjustment	adjust_mindiff_sec
Maximum adjusted difference	S	(int)	If timesynch differs from known time more than that amount do not perform adjustment. (0=no limit)	adjust_maxdiff_sec
Invalid timeout	s	(int)	Mark time invalid if no succesfull synchronization received during this time	invalid_timeout_sec

Example

[IEC_TIME] onoff = on update_source = iec storage = internal transmission_delay_ms = 800 time_adjust_dir = none time_adjust_amount = 0 ntp_interval_sec = 600 ntp_response_timeout_sec = 30 ntp_retries = 2 ntp_retry_interval_sec = 5 adjust_mindiff_sec = 1 adjust_maxdiff_sec = 0 invalid_timeout_sec = 1800

9.7.4 [IEC_CYCLIC_GROUP]

Up to 50 cyclic group sections are available, each defining an independent instance. Typical use of the multiple cyclic groups is to transmit important information more frequently than the lower priority information.

Table 85:	Settings for IEC_cyclic_group
-----------	-------------------------------

Setting	Units	Range	Description	Parameter name
Use this cyclic group	binary	off,on		onoff
Name			Descriptive name for the group (logging)	name
Group index		150 (int)	Group index where information objects can bind to. Must be unique for each group.	group_index
Cause of transmission		1127 (int)	Cause of transmission generated by this group	cause_of_transmission
Cyclic interval	s	165535 (int)	How often to cause cyclic transmission	interval_sec
Sense link status	binary	off,on	Generate cyclic transmission only when IEC 60870-5-104link is up	sense_linkstatus

Example

[IEC_CYCLIC_GROUP] onoff = on group_index = 1 name = cyclic_fast cause_of_transmission = 1 interval_sec = 120 sense_linkstatus = yes [IEC_CYCLIC_GROUP] onoff = on group_index = 2 name = cyclic_slow cause_of_transmission = 1 interval_sec = 7200 sense_linkstatus = yes

9.8 Common objects

Most of the remote communication is implemented with the object data types.

- Single-point information (SPI)
- Double-point information (DPI)
- Measured value, short floating-point information (FPI)
- Single command (SC)
- Double command (DC)

9.8.1 Single-point information settings

The single-point information data value is single bit and contains either 0 or 1.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off, on		onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name	text	20 chars	Descriptive name for this data point (logging)	name
Generate events	binary	off, on	Should this data point generate events	event_generation
Send event when invalid	binary	off, on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none, short, long	Timestamp format of asynchroneous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global	gi_group
GI timestamp format		none, short, long	Timestamp format of GI responses for this data point	gi_timestamp

Table 86: Single-point information settings

Setting	Units	Range	Description	Parameter name
Cyclic group		1100 (int)	Which Cyclic groups this data point belongs (maximum 10 groups on comma- separated list)	cyclic_group
Cyclic timestamp format		none, short, long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Invert value	binary	off, on	Invert value for transmission (bit-level inversion)	invert_value

9.8.2 Double-point information settings

The double-point information data field is two bits and contains values 0...3. Typically, it is used for reporting the disconnector status having two level switches (open, closed).

Table 87:Double-point information settings

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on		onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name	text	20 chars	Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchroneous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which Cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value
Map value	index	023	Map the transmitted value to a different value	value_map_index

9.8.2.1 Double-point information value mapping

The transmitted value of a double-point information object can be mapped to a different value in order to enable flexible value integration with a SCADA screens. The original values mapped to different values are shown in the table.

Map Index	Original Value 0 (00)	Original Value 1 (01)	Original Value 2 (10)	Original Value 3 (11)
0 (default)	0	1	2	3
1	0	1	3	2
2	0	2	1	3
3	0	2	3	1
4	0	3	1	2
5	0	3	2	1
6	1	0	2	3
7	1	0	3	2
8	1	2	0	3
9	1	2	3	0
10	1	3	0	2
11	1	3	2	0
12	2	0	1	3
13	2	0	3	1
14	2	1	0	3
15	2	1	3	0
16	2	3	0	1
17	2	3	1	0
18	3	0	1	3
19	3	0	2	1
20	3	1	0	2
21	3	1	2	0
22	3	2	0	1
23	3	2	1	0

9.8.3

Measured value, short floating-point information

The measured value is used for reporting analog values, that is measurements in IEEE 754 floating-point format.

Section 9 Appendix 2 Controller configuration reference

Table 89: Settin

Settings for floating point

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on		onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name	text	20 chars	Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchronous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Event high treshold		analog (float)	Send (refresh) event when value above threshold	event_hilimit
Event low treshold		analog (float)	Send (refresh) event when value below threshold	event_lolimit
Event hysteresis		analog (float)	Send (refresh) event when value returns hysteresis amount from high or low threshold	event_limit_hyst
Event window treshold		analog (float)	Send (refresh) event when value differs threshold amount of last sent value	event_window
Overflow hilimit		analog (float)	Set overflow flag when value above limit	overflow_hilimit
Overflow lolimit		analog (float)	Set overflow flag when value below limit	overflow_lolomit
Scaling offset		analog (float)	Add offset amount to value	scaling_add
Scaling gain		analog (float)	Multiply value with gain (after offsetting)	scaling_multiple
Noisegate threshold		analog (float)	When absolute value smaller than threshold, detect as zero	noisegate

9.8.4 Single-command settings

The single command can control a value to be on or off.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on		onoff
Information object address	address		Structured or unstructured IOA of this data point	object_address
Name	text	20 chars	Descriptive name for this data point (logging)	name
Intial state	binary	off,on	Initial state of this data point. Off sets all bit to 0, On sets all bits to 1	initial_state
Select pluse execute	binary	off,on	Allow only two-phase commands	require_select
Selection time-out	binary	(int)	Release selection if no further command after select during this time-out	select_timeout_sec
Timestamped commands	s	off,on	Require commands to contain timestamps	require_timestamp
Timestamp allowed difference	S	(int)	Maximum difference between command time and internal time	timestamp_maxage_sec
Short pulse duration	ms	(int)		short_pulse_ms
Long pulse duration	ms	(int)		long_pulse_ms
Termination timeout	ms	(int)	Force pulse termination after this time-out if lower layer does not return termination	termination_timeout_ms
Disable persistent commands	binary	off,on	Allow only pulse commands	disable_persistent
Application-level I/O	binary	off,on	Handle I/O timings on application level rather than on physical/lower layer	application_io
Default output function		short,long,persi stent	I/O function to execute when command does not contain additional specification	default_operation
Disable select and execute state match	binary	off,on	Allow value field to differ between select and execute commands	disable_se_match
Allow unusual states	binary	off,on	Allow commands to contain "00" and "11" states	enable_notpermit_cmd
Refresh interval	ms	(int)	How often to refresh lower layer for value	refresh_interval_ms
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value

9.8.5 Double-command settings

The double-command value field is two bits and can contain values 0...3. Usually it is used to drive disconnector open and close relays.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on		onoff
Information object address	address		Structured or unstructured IOA of this data point	object_address
Name	text	20 chars	Descriptive name for this data point (logging)	name
Intial state	binary	off,on	Initial state of this data point. Off sets all bit to 0, On sets all bits to 1	initial_state

Table 91: Single-command settings

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
Select pluse execute	binary	off,on	Allow only two-phase commands	require_select
Selection time-out	s	(int)	Release selection if no further command after select during this time-out	select_timeout_sec
Timestamped commands		off,on	Require commands to contain timestamps	require_timestamp
Timestamp allowed difference	s	(int)	Maximum difference between command time and internal time	timestamp_maxage_sec
Short pulse duration	ms	(int)		short_pulse_ms
Long pulse duration	ms	(int)		long_pulse_ms
Termination timeout	ms	(int)	Force pulse termination after this time-out if lower layer does not return termination	termination_timeout_ms
Disable persistent commands	binary	off,on	Allow only pulse commands	disable_persistent
Application-level I/O	binary	off,on	Handle I/O timings on application level rather than on physical/lower layer	application_io
Default output function		short,long,pers istent	I/O function to execute when command does not contain additional specification	default_operation
Disable select and execute state match	binary	off,on	Allow value field to differ between select and execute commands	disable_se_match
Allow unusual states	binary	off,on	Allow commands to contain "00" and "11" states	enable_notpermit_cmd
Refresh interval	ms	(int)	How often to refresh lower layer for value	refresh_interval_ms
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value

9.9 Disconnector settings

REC601 can control and monitor one disconnector. REC603 is able to control and monitor up to three disconnectors. One disconnector interface forms a disconnector object group which consists of three parts.

- Disconnector status input (double point, open and close level switches)
- Local or remote control switch input (single point)
- Disconnector control output (double point, drive open, drive close)

When the local or remote switch is on "Local" position, the remote control of the disconnector is denied. For the condition monitoring, each disconnector control block has the internal measurements and calculations available.

- Travel-time measurement (the time the disconnector state change takes from closed-to-open or vice-versa)
- Minimum battery voltage during the disconnector state change
- Charge consumed during the disconnector state change.

9.9.1

[DISCONNECTOR_CONTROL_N] (where N=1, 2, 3)

These settings define the remote control properties of the disconnector control outputs. The settings follow the structure of general double-point output but contain an additional *disable_blocking* parameter which defines whether the internal functions (particularly battery testing) can block disconnector remote control.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on	Enable disconnector control by double commands	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Intial state	binary	off,on	Intial state of this data point. Off sets all bit to 0, On sets all bits to 1	initial_state
Select pluse execute	binary	off,on	Allow only two-phase commands	require_select
Selection time-out	S	(int)	Release selection if no further command after select during this time-out	select_timeout_sec
Timestamp commands		off,on	Require commands to contain timestamps	require_timestamp
Timestamp allowed difference	S	(int)	Maximum difference between command time and internal time	timestamp_maxage_sec
Short pulse duration	ms	(int)	Pulse duration when short pulse command executed	short_pulse_ms
Long pulse duration	ms	(int)	Pulse duration when long pulse command executed	long_pulse_ms
Termination timeout	ms	(int)	Force pulse termination after this time-out if lower layer does not return termination	termination_timeout_ms
Disable persistent commands	binary	off,on	Allow only pulse commands	disable_persistent
Application-level I/O	binary	off,on	Handle I/O timings on application level rather than on physical/lower (I/O processor) layer	application_io
Default output function		short,long, persistent	I/O function to execute when command does not contain additional specification. Short or long pulse or persistent.	default_operation
Disable select and execute state match	binary	off,on	Allow value field to differ between select and execute commands	disable_se_match
Allow unusual states	binary	off,on	Allow commands to contain "00" and "11" states	enable_notpermit_cmd
Refresh interval	ms	(int)	How often to rewrite lower layer for value	refresh_interval_ms
Disable blocking	binary	off,on	Disable blocking caused by local functions (for example battery test)	disable_blocking
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value

Table 92: Settings for disconnector control

Example

[DISCONNECTOR_CONTROL_1] onoff = on name = disc1 control $object_address = 1.144.1$ disable blocking = no initial state = offrequire_select = no select $\overline{timeout}$ sec = 60 require_timestamp = yes timestamp_maxage_sec = 30short_pulse_ms = 800 long_pulse_ms = 2000 termination timeout ms = 5000disable_persistent = no application io = no default_operation = short_pulse disable_se_match = no enable notpermit cmd = no application_io = no refresh_interval_ms = 2000

9.9.2

[DISCONNECTOR_STATUS_N] (where N=1, 2, 3)

These settings define how the disconnector status inputs are reported and treated internally. The settings follow the structure of general double-point inputs.

Setting	Units	Range	Description	Configuration parameter
Enable data point	binary	off,on	Enable object data ganeration from disconnector status	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchroneous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value

Table 93: Settings for disconnector status

Example

```
[DISCONNECTOR_STATUS_1]
onoff = on
name = disc1_status
object_address = 1.16.1
event_generation = yes
event_invalid = yes
event_interval_sec = 1
event_filter_ms = 500
event_timestamp = long
gi_group = 20
gi_timestamp = none
cyclic_group = 1
cyclic timestamp = none
```

9.9.3 [DISCONNECTOR_LOCREM_N] (where N=1, 2, 3)

These settings define how the status of the local or remote switch is reported. Regardless of these settings the physical status of the switch always defines whether the disconnector can be controlled remotely or not. Each disconnector has its own local or remote input. The settings follow the structure of general singlepoint or double-point inputs.

The selection between single-point or double-point information is done via the *report_blocking_dpi* parameter. When enabled, the reporting is double point where the most significant bit indicates if the disconnector is locally blocked, for example during battery testing, and the least significant bit indicates the actual local or remote switch status.

Table 94:	Settings for disconnector local or remote
-----------	---

Setting	Units	Range	Description	Configuration parameter
Enable data point	binary	off,on	Enable object data ganeration from local or remote status	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchroneous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Configuration parameter
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Invert value	binary	off,on	Invert value for transmission (bit-level inversion)	invert_value
Report blocking	binary	off,on	Send local or remote status as DPI and use msb for indicating blocking status. Blocking means the being locally disabled, for example due to battery testing.	report_blocking_dpi

Example

[DISCONNECTOR_LOCREM_1] onoff = on name = disc1_locrem object_address = 1.16.2 report_blocking_dpi = yes event_generation = yes event_invalid = yes event_interval_sec = 1 event_filter_ms = 100 event_timestamp = long gi_group = 20 gi_timestamp = none cyclic_group = 1 cyclic_timestamp = none

9.9.4

[DISCONNECTOR_TRAVELTIME_N] (where N=1, 2, 3)

These settings define how the disconnector travel time duration (state change from open to close or vice versa) is reported. The settings follow the structure of general floating-point inputs. Additional *travel_** parameters detect and report state transaction time-out, for example, a jammed disconnector preventing the state change to complete. Transaction time is reported in seconds. If no disconnector state change has happened, the reported value is zero and has a non-topical NT flag set.

Table 95:	Settings for disconnector travel time
-----------	---------------------------------------

Units	Range	Description	Parameter name
binary	off,on	Enable object data generation from disconnector state change duration	onoff
address	(int)	Structured or unstructured IOA of this data point	object_address
		Descriptive name for this data point (logging)	name
binary	off,on	Should this data point generate events	event_generation
binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
s	(int)	Minimum delay between events generated by this data point	event_interval_sec
	binary address binary binary	binary off,on address (int) binary off,on binary off,on	binaryoff,onEnable object data generation from disconnector state change durationaddress(int)Structured or unstructured IOA of this data pointbinaryoff,onDescriptive name for this data point (logging)binaryoff,onShould this data point generate eventsbinaryoff,onShould event be generated when this data point becomes invalids(int)Minimum delay between events generated

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchronous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which Cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Event high treshold		analog (float)	Send (refresh) event when value above threshold	event_hilimit
Event low treshold		analog (float)	Send (refresh) event when value below threshold	event_lolimit
Event hysteresis		analog (float)	Send (refresh) event when value returns hysteresis amount from high or low threshold	event_limit_hyst
Event window treshold		analog (float)	Send (refresh) event when value differs threshold amount of last sent value	event_window
Overflow hilimit		analog (float)	Set overflow flag when value above limit	overflow_hilimit
Overflow lolimit		analog (float)	Set overflow flag when value below limit	overflow_lolomit
Scaling offset		analog (float)	Add offset amount to value	scaling_add
Scaling gain		analog (float)	Multiply value with gain (after offsetting)	scaling_multiple
Noisegate threshold		analog (float)	When absolute value smaller than threshold, detect as zero	noisegate
Detect travel timeout	binary	off, on	Detect disconnector state change time-out	travel_report_timeout
Travel timeout	ms	(int)	Travel (state change) time-out	travel_timeout_ms
Use OV flag	binary	off, on	Use overflow flag to indicate time-out	travel_use_ovflag
Report travel start	binary	off, on	Send zero value when travel triggered	travel_report_start

Example

[DISCONNECTOR_TRAVELTIME_1] onoff = on name = disc1_time object_address = 1.68.1 event_generation = yes event_invalid = yes event_interval_sec = 1 event_filter_ms = 2000 event_timestamp = long gi_group = 20 gi_timestamp = none travel_timeout_ms = 10000 travel_report_timeout = yes travel_report_start = no travel_use_ovflag = yes

9.9.5

[DISCONNECTOR_TRAVELVOLT_N] (where N=1, 2, 3)

These settings define how the minimum battery voltage during the disconnector state change (from open to close or vice versa) is reported. This information may be used for estimating the battery or switchgear condition. The settings follow the structure of general floating-point inputs. The voltage is reported in volts. If no disconnector state change has happened, the reported value is zero and has non-topical NT flag set.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on	Enable object data generation from minimum voltage during state change	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchronous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Event high treshold		analog (float)	Send (refresh) event when value above threshold	event_hilimit
Event low treshold		analog (float)	Send (refresh) event when value below threshold	event_lolimit
Event hysteresis		analog (float)	Send (refresh) event when value returns hysteresis amount from high or low threshold	event_limit_hyst
Event window treshold		analog (float)	Send (refresh) event when value differs threshold amount of last sent value	event_window
Overflow hilimit		analog (float)	Set overflow flag when value above limit	overflow_hilimit
Overflow lolimit		analog (float)	Set overflow flag when value below limit	overflow_lolomit
Scaling offset		analog (float)	Add offset amount to value	scaling_add
Scaling gain		analog (float)	Multiply value with gain (after offsetting)	scaling_multiple
Noisegate threshold		analog (float)	When absolute value smaller than threshold, detect as zero	noisegate

Table 96: Settings for disconnector travel volt

Example

```
[DISCONNECTOR_TRAVELVOLT_1]
onoff = on
name = disc1_volt
object_address = 1.68.3
event_generation = yes
event_invalid = yes
event_interval_sec = 1
event_filter_ms = 2000
event_timestamp = long
gi_group = 20
```

9.9.6

[DISCONNECTOR_TRAVELCURRENT_N] (where N=1, 2, 3)

These settings define how the maximum motor current during the disconnector state change (from open to close or vice versa) is reported. This information may be used for estimating the battery or switchgear condition. The settings follow the structure of general floating-point inputs. The current is reported in amperes. If no disconnector state change has happened, the reported value is zero and has a non-topical NT flag set.

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on	Enable object data generation from minimum voltage during state change	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchronous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Event high treshold		analog (float)	Send (refresh) event when value above threshold	event_hilimit

Table 97: Settings for disconnector travel current

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
Event low treshold		analog (float)	Send (refresh) event when value below threshold	event_lolimit
Event hysteresis		analog (float)	Send (refresh) event when value returns hysteresis amount from high or low threshold	event_limit_hyst
Event window treshold		analog (float)	Send (refresh) event when value differs threshold amount of last sent value	event_window
Overflow hilimit		analog (float)	Set overflow flag when value above limit	overflow_hilimit
Overflow Iolimit		analog (float)	Set overflow flag when value below limit	overflow_lolomit
Scaling offset		analog (float)	Add offset amount to value	scaling_add
Scaling gain		analog (float)	Multiply value with gain (after offsetting)	scaling_multiple
Noisegate threshold		analog (float)	When absolute value smaller than threshold, detect as zero	noisegate

Example

[DISCONNECTOR_TRAVELCURRENT_1] onoff = on name = disc1_cur object_address = 1.68.4 event_generation = yes event_invalid = yes event_interval_sec = 1 event_filter_ms = 2000 event_timestamp = long gi_group = 20

9.9.7

[DISCONNECTOR_TRAVELCHARGE_N] (where N=1, 2, 3)

These settings define how the charge required for disconnector state change (from open to close or vice versa) is reported. This information may be used for estimating the battery or switchgear condition. The settings follow the structure of general floating-point inputs. The charge is reported in ampere-seconds. If no disconnector state change has happened, the reported value is zero and has a non-topical NT flag set.

Table 98: Settings for disconnector travel charge

Setting	Units	Range	Description	Parameter name
Enable data point	binary	off,on	Enable object data generation from minimum voltage during state change	onoff
Information object address	address	(int)	Structured or unstructured IOA of this data point	object_address
Name			Descriptive name for this data point (logging)	name
Generate events	binary	off,on	Should this data point generate events	event_generation
Send event when invalid	binary	off,on	Should event be generated when this data point becomes invalid	event_invalid
Event interval	s	(int)	Minimum delay between events generated by this data point	event_interval_sec

Table continues on next page

Section 9 Appendix 2 Controller configuration reference

Setting	Units	Range	Description	Parameter name
Event filtering delay	ms	(int)	How long the value must be changed before sending event	event_filter_ms
Event timestamp format		none,short,long	Timestamp format of asynchronous events for this data point	event_timestamp
GI group		120 (int)	Which GI group this data point belongs (maximum 10 groups on comma-separated list). 20=Global.	gi_group
GI timestamp format		none,short,long	Timestamp format of GI responses for this data point	gi_timestamp
Cyclic group		1100 (int)	Which cyclic groups this data point belongs (maximum 10 groups on comma-separated list)	cyclic_group
Cyclic timestamp format		none,short,long	Timestamp format of cyclic transmissions for this data point	cyclic_timestamp
Event high treshold		analog (float)	Send (refresh) event when value above threshold	event_hilimit
Event low treshold		analog (float)	Send (refresh) event when value below threshold	event_lolimit
Event hysteresis		analog (float)	Send (refresh) event when value returns hysteresis amount from high or low threshold	event_limit_hyst
Event window treshold		analog (float)	Send (refresh) event when value differs threshold amount of last sent value	event_window
Overflow hilimit		analog (float)	Set overflow flag when value above limit	overflow_hilimit
Overflow Iolimit		analog (float)	Set overflow flag when value below limit	overflow_lolomit
Scaling offset		analog (float)	Add offset amount to value	scaling_add
Scaling gain		analog (float)	Multiply value with gain (after offsetting)	scaling_multiple
Noisegate threshold		analog (float)	When absolute value smaller than threshold, detect as zero	noisegate

Example

```
[DISCONNECTOR_TRAVELCHARGE_1]
onoff = on
name = disc1_charge
object_address = 1.68.2
event_generation = yes
event_invalid = yes
event_interval_sec = 1
event_filter_ms = 2000
event_timestamp = long
gi_group = 20
```

9.9.8

Default sections

Each of the three disconnectors often share the same common settings and only the unique settings, such as *onoff*, *name*, *object address* vary. It is possible to define default settings and copy them to each of the disconnector. Every default parameter can still be overridden in disconnector-specific sections. The *onoff*, *name* and *object_address* parameters are not copied and must be defined per disconnector. The [DISCONNECTOR_N] section defining whether the individual disconnector

is enabled at all must be defined separately for each disconnector. There are seven default sections.

- [DISCONNECTOR_CONTROL_DEFAULT]
- [DISCONNECTOR_LOCREM_DEFAULT]
- [DISCONNECTOR STATUS DEFAULT]
- [DISCONNECTOR TRAVELTIME DEFAULT]
- [DISCONNECTOR TRAVELVOLT DEFAULT]
- [DISCONNECTOR_TRAVELCURRENT_DEFAULT]
- [DISCONNECTOR_TRAVELCHARGE_DEFAULT]

Example

[DISCONNECTOR_TRAVELCHARGE_DEFAULT] event_generation = yes event_invalid = yes event interval $\sec = 1$ event filter ms = 2000event timestamp = long gi group = 20[DISCONNECTOR_TRAVELCHARGE_1] onoff = onname = disc1 charge object address = 1.68.2[DISCONNECTOR TRAVELCHARGE 2] onoff = onname = disc2 charge $object_address = 2.68.2$ [DISCONNECTOR TRAVELCHARGE 3]

onoff = on name = disc3_charge object_address = 3.68.2

9.10 Internal inputs

The device has various internal data sources like temperature measurement and voltage alarms which can be reported. Internal data sources are not available on external I/O connectors.

9.10.1 [POWER_SUPPLY_STATUS_SPI]

Defines how the AC supply status is reported.

- 0 = AC power not available, running on batteries or external DC supply
- 1 = AC power available

9.10.2 [MODEM_RELAY_STATUS_SPI]

The device has a 24 V DC power output on the X2.1 pin 6. Usually, the power output is used for external modems and other external components like a Hall current sensor. An internal relay controls whether power is supplied out from this pin or not. Due to the internal connection, DC power can always be fed to the device through this pin regardless of the relay status. The settings define how the modem relay status is reported.

- 0 =Relay contacts open (power output disabled)
- 1 = Relay contacts closed (power output available)

9.10.3 [BATTERY_RELAY_STATUS_SPI]

The device has a built-in 24 V DC battery charger. The charging is available on the X2.1 pin 10. The battery is disconnected from the device in case of deep-discharge protection. The settings define how the battery connection status is reported

- 0 = Battery relay contacts open (battery disconnected from the device)
- 1 = Battery relay contacts closed (battery connected to the device)

9.10.4 [CHARGER_RELAY_STATUS_SPI]

The device has a built-in 24 V DC battery charger. Charging is available on the X2.1 pin 10. The charger is disconnected from the battery in case of battery testing. The settings define how the charger connection status is reported

- 0 = Charger relay contacts open (charger disconnected from the battery and the device)
- 1 = Charger relay contacts closed (charger connected to the battery and the device)

9.10.5 [BATTERY_LOW_SPI]

The device can detect low battery voltage and send alarm of the situation. The settings define how the low battery voltage status is reported.

- 0 = Battery voltage above the low voltage limit (alarm inactive)
- 1 = Battery voltage below the low voltage limit (alarm active)

9.10.6 [BATTERY_PROTECT_SPI]

The device can detect if the battery voltage is below the deep-discharge limit and send an alarm of the situation. Additionally all the load, including the device itself,

is disconnected from the battery to prevent battery failure due deep discharge. The settings define how the battery deep-discharge protection status is reported.
0 = Normal operation

1 = Protection active (battery is disconnected)

9.10.7 [TEMPERATURE_LOW_SPI]

The device can detect low temperature and send an alarm of the situation. The settings define how the low temperature status is reported.

- 0 = Temperature above the low limit (alarm inactive)
- 1 = Temperature below the low limit (alarm active)

9.10.8 [TEMPERATURE_HI_SPI]

The device can detect low temperature and send an alarm of the situation. The settings define how the low temperature status is reported.

- 0 = Temperature below the high limit (alarm inactive)
- 1 = Temperature above the high limit (alarm active)

9.10.9 [HEATER_RELAY_STATUS_SPI]

The device contains an internal thermostat for controlling the external heater. The settings define how the heating status is reported.

- 0 = Heating off
- 1 = Heating on

9.10.10 [BATTERY_CHARGEVOLTAGE_FPI]

The device measures the voltage used to charge the external battery. This voltage can be reported as short a floating-point value. The reporting unit is volts.

9.10.11 [BATTERY_CHARGECURRENT_FPI]

The device measures the current used to charge the external battery. This current can be reported as a short floating-point value. The reporting unit is amperes. The negative current indicates that the device is consuming the battery instead of charging.

9.10.12 [TEMPERATURE_FPI]

The device measures the internal case temperature. This temperature can be reported as a short floating-point value. The reporting unit is degrees Celsius.

9.10.13 [LOAD_LIMITER_STATUS_DPI]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before the actual physical overcurrent fuse trips. The settings define how the load limiter status is reported.

- 0 = Load limiter idle (monitoring load)
- 1 = Load limiter disabled (does not monitor load)
- 2 = Loading detected, accumulating
- 3 = Overload, load disconnected

9.10.14 [LOAD_LIMITER_REASON_DPI]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before the actual physical overcurrent fuse trips. The overload decision is based on both consumed charge and duration of the loading. Once the overload situation is detected, the reason can be reported as a double-point input. The settings define how the load limiter reason is reported.

- 0 = None, overload situation never detected
- 1 = Overload caused by consumed charge
- 2 = Overload caused by duration of loading
- 3 = Overload detected by manual command.

9.10.15 [LOAD_LIMITER_CHARGE_FPI]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before the actual physical overcurrent fuse trips. The overload decision is based on both consumed charge and duration of the loading. Once the overload situation is detected, the accumulated charge can be reported as a short floating-point value. The reporting unit is ampere-seconds. If no overload situation is detected, the reported value is zero and has a non-topical NT flag set.

9.10.16 [LOAD_LIMITER_TIME_FPI]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before the actual physical overcurrent fuse trips. The overload decision is based on both consumed

charge and duration of the loading. Once the overload situation is detected the loading duration can be reported as a short floating-point value. The reporting unit is seconds. If no overload situation is detected, the reported value is zero and has non-topical NT flag set.

9.10.17 [BATTERY_TEST_STATUS_DPI]

The device can test the real capacity of the battery by disconnecting the charger and draining the battery to a certain voltage level by using an external loading resistor.

The settings define how the battery test status is reported.

- 0 =Idle (not testing the battery)
- 1 = Testing (discharging the battery by using external load)
- 2 = Test complete
- 3 = Test aborted

9.10.18 [BATTERY_TEST_CHARGE_FPI]

The device can test the real capacity of the battery by disconnecting the charger and draining the battery to a certain voltage level by using an external loading resistor. The measured battery capacity can be reported as a short floating-point value. The reporting unit is ampere-hours. The measured capacity is always reported after the test is completed regardless of the *event_window* or *event_filter* settings that control the reporting frequency during the testing phase.

9.11 Physical general-purpose inputs

Most of the physical inputs are shared between the general-purpose usage and the device functionality. For example, when disconnector 1 is enabled, DI1, DI2 and DI5 cannot be used as general purpose inputs. If both disconnector and general-purpose inputs are configured to the same pins, the device application refuses to start.

9.11.1 [DIGITAL_INPUT_SPI_N] (where N=1 ... 17)

When the pin is configured as a general purpose single-point input, its value can be reported as a single-point input object.

- 0 = Off (no current flows through the input)
- 1 = On (current flows through the input)

The internal circuits of inputs are bi-directional and current can flow to either direction.

9.11.2 [DIGITAL_INPUT_DPI_N] (where N=1 ... 6)

When the pin is configured as a general purpose double-point input, then its value can be reported as a double-point input object.

- 0 = Intermediate state (no current flows through either input)
- 1 = Open state (current flows between "open" pin and common)
- 2 = Closed state (current flows between "closed" pin and common)
- 3 = Fail state (current flows between both "open" and "closed" pins and common)

The internal circuits of inputs are bi-directional and current can flow to either direction. One double-point input consumes two physical inputs.

9.11.3 [ANALOG_INPUT_FPI_N] (where N=1, 2)

The analog inputs can operate on either voltage mode (measurement range 0...+/-5 V, input impedance $2 k\Omega$) or current mode (measurement range 0...+/-20 mA, input impedance 500Ω). The measurement result can be reported as a short floating-point value. The reporting unit is volts or milliamperes depending on the mode selection. The mode selection is done by internal DIP switches and *[PHYSICAL_EXTAIMODE_N]* section. The internal DIP switches changes the measurement circuit and *[PHYSICAL_EXTAIMODE_N]* section changes the internal calibration and scaling.

9.11.4 Default sections

The general-purpose inputs often share the same common settings and only the unique settings such as *onoff*, *name*, *object address* vary. It is possible to define default settings and copy them to each general-purpose input of the same type. Every default parameter can still be overridden in the input-specific sections. The *onoff*, *name* and *object_address* parameters are not copied and must be defined per input. There are three default sections.

- [DIGITAL_INPUT_SPI_DEFAULT]
- [DIGITAL_INPUT_DPI_DEFAULT]
- [ANALOG_INPUT_FPI_DEFAULT]

Example

[DIGITAL_INPUT_SPI_DEFAULT] event_generation = yes event_invalid = yes event_interval_sec = 3 event_filter_ms = 100 event_timestamp = long gi_group = 20 gi_timestamp = none cyclic_group = none cyclic_timestamp = long

#extradi1 (X4-12)
[DIGITAL_INPUT_SPI_16]
onoff = on
object_address = 1116
name = extradi_1

9.12 Internal outputs

The device has internal data points which can be controlled remotely. Internal data points are not available on external I/O connectors.

9.12.1 [LOAD_LIMITER_CONTROL_SC]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before the actual physical overcurrent fuse trips. This overloading detection can be enabled or disabled remotely by using a single-command value.

- 0 = Disable load limiter
- 1 = Enable load limiter (if enabled on configuration file)

9.12.2 [BATTERY_TEST_CONTROL_SC]

The device can test the real capacity of the battery by disconnecting the charger and draining the battery to a certain voltage level by using an external loading resistor. This testing can be started or stopped remotely by using a single-command value

- 0 = Manually stop the battery test
- 1 = Start the battery test (if enabled on configuration file)

9.13 General-purpose outputs

Most of the physical outputs are shared between the general-purpose usage and the device functionality. For example, when the disconnector 1 is enabled, DO1 and DO2 cannot be used as general purpose outputs. If both the disconnector and general-purpose outputs are configured to the same pins, the device application refuses to start.

9.13.1 [DIGITAL_OUTPUT_SC_N] (where N=1 ... 10)

When the pin is configured as a general-purpose single-point output, its value can be remotely controlled with a single command

- 0 = Off (output relay de-energized)
- 1 = On (output relay energized)

Most relays are normally open type, meaning that the contacts are open (nonconducting) when the relay is de-energized. However, the load-cut relay (DO7, X4 pins 1-2) however is normally closed.

9.13.2 [DIGITAL_OUTPUT_DC_N] (where N=1, 2, 3)

When the pin is configured as a general purpose double-point output, its value can be remotely controlled with a double command.

- 0 = Off (both output relays de-energized)
- 1 = Open (output relay "open" energized)
- 2 = Close (output relay "close" energized)
- 3 = Fail (both output relays energized)

Relays are normally open type, meaning that the contacts are open (nonconducting) when the relay is de-energized. One double output consumes two physical outputs.

9.13.3 Default sections

The general-purpose outputs often share the same common settings and only the unique settings (such as *onoff, name, object address*) vary. It is possible to define default settings and copy them to each general-purpose output of same type. Every default parameter can still be overridden in the output-specific sections. The *onoff, name* and *object_address* parameters are not copied and must be defined per output. There are two default sections.

- [DIGITAL_OUTPUT_SC_DEFAULT]
- [DIGITAL_OUTPUT_DC_DEFAULT]

Example

```
[DIGITAL_OUTPUT_SC_DEFAULT]
initial_state = off
require_select = yes
select_timeout_sec = 30
require_timestamp = yes
timestamp_maxage_sec = 120
short_pulse_ms = 500
long_pulse_ms = 2000
termination_timeout_ms = 5000
disable_persistent = no
application_io = no
default operation = short_pulse
```

disable_se_match = no enable_notpermit_cmd = no application_io = no refresh_interval_ms = 2000 #extrado (X4 14-15) [DIGITAL_OUTPUT_SC_10]

onoff = on object_address = 2110 name = extrado

9.14 Functions

The device contains internal function blocks implementing common tasks required at the disconnector station. These functions include, for example, heaterthermostat, temperature alarms, battery deep-discharge protection and overload limiter. The settings above configured show how the status of these functions can be remotely monitored and controlled. The settings control the operational parameters of these functions.

9.14.1 [POWER_MONITOR]

The power monitor settings define how the device monitors the internal inputs and controls the internal relays related to the power supply.

Setting	Units	Range	Description	Parameter name
Control internal power- related outputs/inputs	binary	off,on	Control internal power-related outputs/inputs	onoff
Monitor AC supply status	binary	off,on	Monitor internal input telling whether AC supply is available or not.	monitor_ac
Control battery relay	binary	off,on	Connect battery to charger on normal situation, disconnect battery on deep- discharge situation	control_battery
Control modem supply	binary	off,on	Power up modem supply (X2.1 pin 6) on normal situation	control_modem
Control charger	binary	off,on	Connect charger output to Arctic internal power on normal situation	control_charger
Update interval	ms	(int)	How often to check input status or rewrite output status	update_interval_ms

Table 99:Settings for power monitor

Example

[POWER_MONITOR] onoff = on monitor_ac = yes control_battery = yes control_modem = yes control_charger = yes update_interval_ms = 200

9.14.2 [BATTERY_MONITOR]

The battery voltage monitor generates an alarm when the battery voltage falls below a defined limit. The reporting of this situation can be delayed on [BATTERY_LOW_SPI] by *event_filter_ms* parameter.

Table 100: Settings for battery monitor

Setting	Units	Range	Description	Parameter name
Monitor battery low voltage	binary	off,on	Detect battery low voltage situation	onoff
Battery low voltage alarm threshold	V	(float)	When voltage below threshold, alarm is generated	loalarm_limit
Battery low voltage alarm hysteresis	V	(float)	When voltage above threshold+hysteresis, alarm is cleared	alarm_hyst

Example

[BATTERY_MONITOR] onoff = yes loalarm_limit = 22 alarm_hyst = 1

9.14.3

[BATTERY_DISCHARGE_PROTECTION]

When the battery voltage falls below a certain value, the battery is almost empty. To prevent battery damage, the battery should not be further discharged. The battery deep-discharge protection function disconnects the battery from the device in two cases.

- AC supply is not available to charge the battery
- Battery voltage is long enough below the defined limit

Usually the deep-discharge protection causes the device to shut down due lack of power. The device recovers from the situation once the AC supply comes available again or it is powered up with the DC on modem-supply pin. All the external loads such as a Hall sensor or an additional DC powered device should not be connected directly to the battery but to the modem supply pin (X2.1 pin 6) of the master device. In this way all the load can be removed at once when deep-discharge protection is required.

Section 9 Appendix 2 Controller configuration reference

1MRS757104 A	
--------------	--

Table 101:Settings for battery discharge protection

Setting	Units	Range	Description	Parameter name
Enable deep discharge protection	binary	off,on	Disconnect all load from battery to prevent deep discharge	onoff
Battery deep discharge protection threshold	v	(float)	When voltage below threshold, time accumulation is started	trigger_limit
Battery deep discharge porotection hysteresis	V	(float)	When voltage above threshold plus hysteresis, accumulation is stopped	trigger_hyst
Battery deep discharge protection filtering delay	s	(int)	When accumulation duration exceeds delay, disconnect battery	trigger_filter_sec

Example

[BATTERY_DISCHARGE_PROTECTION] onoff = on trigger_limit = 20 trigger_hyst = 2 trigger_filter_sec = 100

9.14.4 [LOTEMP_MONITOR]

The low temperature monitor generates an alarm when the temperature falls below a defined limit. The reporting of this situation can be delayed on [TEMPERATURE_LOW_SPI] by *event_filter_ms* parameter.

Table 102: Settings for low temperature m

Setting	Units	Range	Description	Parameter name
Monitor low temperature	binary	off,on	Detect low temperature situation	onoff
Temperature low alarm threshold	С	(float)	When temperature below threshold, alarm is generated	loalarm_limit
Temperature low alarm hysteresis	С	(float)	When temperature above threshold plus hysteresis, alarm is cleared	alarm_hyst

Example

[LOTEMP_MONITOR] onoff = yes loalarm_limit = -5 alarm hyst = 2

9.14.5 [HITEMP_MONITOR]

The high temperature monitor generates an alarm when the temperature rises above a defined limit. The reporting of this situation can be delayed on [TEMPERATURE_HI_SPI] by *event_filter_ms* parameter.

Table 103:	Settings for high temperature monitor
------------	---------------------------------------

Setting	Units	Range	Description	Parameter name
Monitor High Temperature	binary	off,on	Detect high temperature situation	onoff
Temperature High Alarm Threshold	С	(float)	When temperature above treshold, alarm is generated	hialarm_limit
Temperature High Alarm Hysteresis	С	(float)	When temperature below treshold minus hysteresis, alarm is cleared	alarm_hyst

Example

[HITEMP_MONITOR] onoff = yes hialarm_limit = 80 alarm_hyst = 2

9.14.6 [LOAD_LIMITER]

The device can detect excessive loading of the battery, for example resulting from a jammed disconnector switchgear, and disconnect the load before actual physical overcurrent fuse trips. The overload decision is based on both consumed charge and duration of the loading. The current is measured usually by an external Hall-sensor which is connected to an analog input 1 (X4 3-4). The device uses a normally-closed relay (X4 1-2) to break down the loading circuit by opening the relay contacts for a moment. Usually this cuts the holding circuit of the motor contactors and not the motor current directly.

Setting	Units	Range	Description	Parameter name
Enable load limiter	binary	off,on	Detect and cut excessive load (jammed disconnector)	onoff
Query interval	ms	15000	How often to query I/O processor for load limiter status	query_interval_ms
Reply timeout	ms	15000	How long to wait for I/O processor response	reply_timeout_ms
Retry limit		010	How many times to retry	reply_retries
Offset	raw_ad	010000	Internal a/d offset (automatic)	offsett
Load limiter activation threshold	A	(float)	When current above threshold, accumulation is started	activation_current
Load limiter activation filtering delay	ms	(int)	How long current must be above threshold before starting to accumulate	activation_time_ms
Load limiter deactivation threshold	A	(float)	When current below threshold, accumulation is stopped	deactivation_current
Load limiter deactivation filtering delay	ms	(int)	How long current must be below threshold before accumulation is stopped	deactivation_time_ms
Load limiter charge threshold	As	(float)	When accumulated charge exceeds threshold, trip action is performed	trip_charge
Load limiter time threshold	S	(int)	When accumulated time exceeds threshold, trip action is performed	trip_time_sec
Load limiter trip duration	s	(int)	Duration of trip operation (auto-reset)	trip_duration_sec

Table 104:Settings for load limiter

Example

```
[LOAD_LIMITER]
onoff = on
activation_current = 5
activation_time_ms = 200
deactivation_current = 0.5
deactivation_time_ms = 500
trip_charge = 40
trip_time_sec = 10
trip_duration_sec = 5
```

9.14.7 [HEATER]

The device contains an internal thermostat for controlling an external heater.

```
Table 105: Settings for heater
```

Setting	Units	Range	Description	Parameter name
Enable heater	binary	off,on	Control heater	onoff
Heater output	pin	17	Which DO pin to use as heater output	heater_output
Heater mode	binary	off,on,auto	Heater always off, always on or thermostat controlled	heater_mode
Heater thermostat treshold	С		When temperature below threshold, start heating	trigger_limit
Heater thermostat hysteresis	С		When temperature above threshold plus hysteresis, heating is stopped	trigger_hyst
Heater thermostat AC detect	binary	no, yes	When enabled the AC must be available for heating	detect_ac

Example

```
[HEATER]
onoff = on
heater_output = 9
heater_mode = auto
trigger_limit = 5
trigger_hyst = 4
detect_ac = yes
```

9.14.8 [BATTERY_TEST]

The device can test the real capacity of the battery by disconnecting the charger and draining the battery to a certain voltage level by using an external loading resistor.

Setting Units Range Description Description Enable battery test off, on Allow battery test functionality onoff binary Disable disconnector binary off, on Locally block disconnectors when battery block disconnectors control during battery test is active test off, on Include own current Add product's own current consumption to binary add_own_consumption consumption the actual test current drained out from the batterv Abort test if no AC binary off, on Abort the battery test if AC supply not available abort_no_ac available Abort if temperature off, on Abort the battery test if the internal binarv abort_hitemp too high temperature is too high Abort if temperature binary off, on Abort the battery test if the internal abort_lotemp temperature is too low too low Abort if test takes too binary off, on Abort the battery test if the target voltage abort_duration level is not reached during certain time long Abort if test current too binary off, on Abort the battery test if the measured abort_lowcur discharge current is too low low Abort if test current too off, on abort_hicur binary Abort the battery test if the measured hiah discharge current is too high Hi-Temperature limit С hitemp_limit (float) Limit for hi-temperature abortion С Lo-Temperature limit (float) Limit for low-temperature abortion lotemp_limit Duration limit seconds (int) Limit for test duration abortion duration_limit_sec **Hi-Current limit** Α (float) Limit for hi-current abortion hicur_limit Lo-Current limit А (float) Limit for low-current abortion locur limit Sampling interval seconds (int) How often to sample the discharge current sample_interval_sec Abortion tolerance filter samples (int) How many samples the abortion condition abort_filter_samples must exist before actually aborting the test Abortion tolerance filter seconds (int) How long to integrate samples for averaging averaging_interval_sec the discharge current Target voltage V (float) Target battery voltage for test completion target_voltage Target voltage filter samples How many samples the battery voltage must target_filter_samples (int) be below the target limit before completion Cabling loss mV (float) Add cabling loss to the measured battery cabling loss mv voltage charge_multiplier Charge multiplier (float) Scaling constant for multiplying consumed charge (e.g. if battery will be 90% discharged the multiplier would be 1.1) Generate off, on Write test results to a file binarv write_measurement_fille measurement file

Table 106: Settings for battery test

Usually the disconnectors are internally blocked during the battery test and the test should be remotely stopped before the disconnectors can be operated. The blocked state can be indicated by configuring the local or remote status to double-point indication.

Where to write the measurement file

Measurement file name

filename

measurement_file

The load-limiter functionality and the heater are disabled during the test.

The measurement file is written in intervals defined by the *averaging_interval_sec* parameter and each line contains a timestamp, status, battery voltage, discharge current and the charge consumed so far. The file header contains the unloaded battery voltage before the load is applied. The last line of the file contains information on whether the test was completed successfully or aborted by a specific reason.

Example

[BATTERY TEST] onoff = onblock_disconnectors = yes add own consumption = yes abort no ac = yesabort hitemp = yes abort lotemp = yes abort duration = yes abort lowcur = yes abort_hicur = yes hitemp_limit = 80 lotemp limit = -20 duration limit sec = 36000lowcur $\overline{\text{limit}} = 0.5$ hicur $\overline{\text{limit}} = 3.5$ sample interval sec = 10abort filter samples = 10 $averaging_interval_sec = 60$ target voltage = 21 $cabling_loss_mv = 0$ charge multiplier = 1.1target filter_samples = 10write_measurement_file = yes measurement file =/var/batterytest.meas

9.14.9 [PWM_CHARGER]

The device normally float-charges the battery and has an internal method for limiting the charging current by adjusting the charging voltage. For charging larger than 25 Ah batteries, the internal (secondary protection) PTC fuses can activate. The pulse-mode charging can be used in these situations to reduce the average current and prevent the charger overloading. In this mode the charger relay is used to periodically connect and disconnect the charger from the battery. With the batteries less than 25 Ah the pulse-mode charging is not required.

Setting	Units	Range	Description	Parameter name
Enable pulse-mode charging	binary	off,on	Use pulse-mode charging mode	onoff
Activation current	A	(float)	Activate pulse-mode when the charging current exceeds this limit	activation_current
De-Activation current	A	(float)	Stop using pulse-mode charging (and start using constant charging) when the charging current is below this limit	deactivation_current

Table 107: Settings for PWM charger

Catting	1 Inite	Danga	Description	Deservator nome
Setting	Units	Range	Description	Parameter name
Activation filter	seconds	(int)	How many seconds the charging current must exceed the limit before activating the pulse-mode	activation_time_sec
De-Activation filter	seconds	(int)	How many seconds the charging current must be below the limit before falling back to constant mode	deactivation_time_sec
On-cycle duration	seconds	(int)	The duration when the charger is connected	on_duty_sec
Off-cycle duration	seconds	(int)	The duration when the charger is disconnected	off_duty_sec
Minimum cycle count	cycles	(int)	Once pulse-mode is activated perform at least this many cycles even if the charging current is below the deactivation current	min_cycles
Background testing interval	seconds	(int)	Periodically disconnect the charger for certain time to cool down the PTC fuses and after that test the charging current	test_interval_sec
Cooling-down time	seconds	(int)	How many seconds to keep the charger connected from battery before performing the background testing	test_off_sec

When the pulse-mode charging is active, the charging current and charging voltage vary between on-cycle and off-cycle. Similarly the charger relay status changes on the every cycle. If the events are not required on each cycle the *event_filter_ms* of the affected input objects should be set little longer than the *off_duty_sec* but still shorter than the *on_duty_sec*.

Example

[PWM_CHARGER] onoff = on activation_current = 1.8 deactivation_current = 1.3 activation_time_sec = 30 deactivation_time_sec = 10 on_duty_sec = 30 off_duty_sec = 20 min_cycles = 5 test_off_sec = 240 test_interval_sec = 86400

9.15 Updating the configuration file on command prompt

The device web user interface (applications RTU) contains the configuration file which can be modified and saved. It is also possible to download the configuration file directly to the device from a configuration server. The server serving the configuration files must support HTTP or FTP protocol.

The configuration file is located at /home/rtu/rtu.conf.

Commands can be given through a serial console or a telnet console but not through the WEB-UI command-line tool.

- 1. Type **#cd/home/rtu** to go to the correct directory.
- 2. Type **#pwd** to see the directory is correct.
- 3. Type **#cp rtu.conf rtu.old** to make a copy of the old configuration. The old configuration file becomes **rtu.old**
- 4. Type #wget http://ip_of_the_server/my_rtu_filename to download a new configuration file by using HTTP. Here ip_of_the_server is the IP address of the configuration server and the
- my_rtu_filename is the file name of the new configuration to be downloaded.
 Type #mv my_rtu_filename rtu.conf to overwrite the existing configuration file with the new one.

This step is possible when the download is 100% complete.

6. Type **#killall rtu** to restart the rtu application.

To switch back to the old configuration type (on the correct directory) **#mv rtu.old rtu.conf**

10.1

Section 10 Appendix 3 IEC 60870-5-104 interoperability

Interoperability

This interoperability document does not specify the behavior of IEC 60870-5-101 to IEC 60870-5-104 gateway (protocol converter) application available on the device, but the RTU application itself.

This companion standard presents a set of parameters and alternatives from which subsets must be selected to implement particular telecontrol systems. Certain parameter values, such as the "structured" or the "unstructured" fields of the INFORMATION OBJECT ADDRESS of ASDUs represents mutually exclusive alternatives. This means that only one value of the defined parameters is admitted per system. Other parameters, such as the listed set of different process information in command and in monitor direction, allow the specification of the complete set or subset, as appropriate for given applications. This clause summarizes the parameter of the previous clause to facilitate a suitable selection for a specific application. If a system is composed of equipment stemming from different manufacturers, it is necessary that all the partners agree on the selected parameters.

The interoperability list is defined as in IEC 60870-5-101 and extended with parameters used in this standard. The text descriptions of parameters which are not applicable to this companion standard are strike through (corresponding check box is marked black).

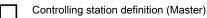
The full specification of a system may require individual selection of certain parameters for certain parts of the system, such as the individual selection of scaling factors for individually addressable measured values.

The selected parameters should be marked in the white boxes.

в

\Box	Function or ASDU is not used
Χ	Function or ASDU is used as standardized (default)
R	Function or ASDU is used in reverse mode

Function or ASDU is used in standard and reverse mode


The possible selection (blank, X, R, or B) is specified for each specific clause or parameter.

A black check box indicates that the option cannot be selected in this companion standard.

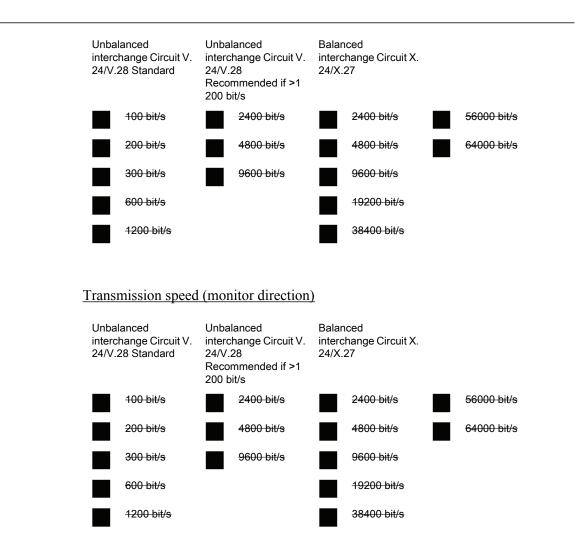
10.1.1 System or device

(System-specific parameter, select one definition of a system or a device by marking it with "X".)

System definition

X Controlled station definition (Slave)

10.1.2 Network configuration


(Network-specific parameter, mark all used configurations with an "X".)

10.1.3 Physical layer

(Network-specific parameter, mark all used interfaces and data rates with an "X".)

Transmission speed (control direction)

10.1.4 Link layer

(Network-specific parameter, mark all used options with an "X". Specify the maximum frame length. If a non-standard assignment of class 2 messages is implemented for unbalanced transmission, indicate the Type ID and COT all messages assigned to class 2.)

Frame format FT 1.2, single character 1 and the fixed time-out interval are used exclusively in this companion standard.

Address field of the link

One octet

not present (balanced

transmission only)

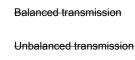
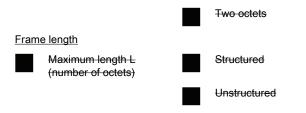



Table continues on next page

When using an unbalanced link layer, the following ASDU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

The standard assignment of ASDUs to class 2 messages is used as follows:

Type identification	Cause of transmission
9, 11, 13, 21	<1>

A special assignment of ASDUs to class 2 messages is used as follows:

Cause of transmission

(In response to a class 2 poll, a controlled station may respond with class 1 data when there is no class 2 data available)

10.1.5 Application layer

Transmission mode for application data

Mode 1 (Least significant octet first), as defined in 4.10 of IEC 60870-5-4, is used exclusively in this companion standard.

Common address of ASDU

(System-specific parameter, mark all used configurations with an "X".)

X Two octets

Information object address

(System-specific parameter, mark all used configurations with an "X".)

	One octet	X	Structured
	Two octets	X	Unstructured
X	Three octets		

Cause of transmission

(System-specific parameter, mark all used configurations with an "X".)

Х

Two octets (with originator address). Originator address is set to zero if not used

Length of APDU

(System-specific parameter, specify the maximum length of the APDU per system.)

The maximum length of APDU for both directions is 253. It is a fixed system parameter.

I

Maximum length of APDU per system in control direction

Maximum length of APDU per system in monitor direction

Selection of standard ASDUs

Process information in monitor direction

(Station-specific parameter, mark each Type ID with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

<1>:= Single-point information	M_SP_NA_1
<2>:= Single-point information with time tag	M_SP_TA_1
<3>:= Double-point information	M_DP_NA_1
<4>:= Double-point information with time tag	M_DP_TA_1
<5>:= Step position information	M_ST_NA_1
<6>:= Step position information with time tag	M_ST_TA_1
<7>Bitstring of 32 bit	M_BO_NA_1
	<2>:= Single-point information with time tag <3>:= Double-point information <4>:= Double-point information with time tag <5>:= Step position information <6>:= Step position information with time tag

Table continues on next page

Section 10 Appendix 3 IEC 60870-5-104 interoperability

	<8>:= Bitstring of 32 bit with time tag	M_BO_TA_1
	<9>:= Measured value, normalized value	M_ME_NA_1
	<10>:= Measured value, normalized value with time tag	M_ME_TA_1
	<11>:= Measured value, scaled value	M_ME_NB_1
	<12>:= Measured value, scaled value with time tag	M_ME_TB_1
	<13>:= Measured value, short floating point value	M_ME_NC_1
	<14> := Measured value, short floating point value with time tag	M_ME_TC_1
	<15>:= Integrated totals	M_IT_NA_1
	<16>:= Integrated totals with time tag	M_IT_TA_1
	<17>:= Event of protection equipment with time tag	M_EP_TA_1
	<18>:= Packed start events of protection equipment with time tag	M_EP_TB_1
	<19>:= Packed output circuit information of protection equipment with time tag	M_EP_TC_1
	<20>:= Packed single-point information with status change detection	M_SP_NA_1
	<21>:= Measured value, normalized value without quality descriptor	M_ME_ND_1
Χ	<30>:= Single-point information with time tag CP56Time2a	M_SP_TB_1
X	<31>:= Double-point information with time tag CP56Time2a	M_DP_TB_1
	<32>:= Step position information with time tag CP56Time2a	M_ST_TB_1
	<33>:= Bitstring of 32 bit with time tag CP56Time2a	M_BO_TB_1
	<34>:= Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
	<35>:= Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
X	<36>:= Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
	<37>:= Integrated totals with time tag CP56Time2a	M_IT_TB_1
	<38>:= Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
	<39>:= Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
	<40>:= Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

In this companion standard only the use of the set <30> - <40> for ASDUs with time tag is permitted.

Process information in control direction

(Station-specific parameter, mark each Type ID with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Χ	<45>:= Single command	C_SC_NA_1
Χ	<46>:= Double command	C_DC_NA_1
	<47>:= Regulating step command	C_RC_NA_1
	<48>:= Set point command, normalized value	C_SE_NA_1
	<49>:= Set point command, scaled value	C_SE_NB_1
	<50>:= Set point command, short floating point value	C_SE_NC_1
	<51> := Bitstring of 32 bit	C_BO_NA_1
Χ	<58> := Single command with time tag CP56Time2a	C_SC_TA_1
Χ	<59>:= Double command with time tag CP56Time2a	C_DC_TA_1
	<60>:= Regulating step command with time tag CP56Time2a	C_RC_TA_1
	<61>:= Set point command, normalized value with time tag CP56Time2a	C_SE_TA_1
	<62>:= Set point command, scaled value with time tag CP56Time2a	C_SE_TB_1
	<63> := Set point command, short floating point value with time tag CP56Time2a	C_SE_TC_1
	<64> := Bitstring of 32 bit with time tag CP56Time2a	C_BO_TA_1

Either the ASDUs of the set <45> - <51> or of the set <58> - <64> are used.

System information in monitor direction

(Station-specific parameter, mark with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

<70> := End of initialization M_EI_NA_1

System information in control direction

(Station-specific parameter, mark each Type ID with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Section 10 Appendix 3 IEC 60870-5-104 interoperability

X	<100>:= Interrogation command	C_IC_NA_1
	<101>:= Counter interrogation command	C_CI_NA_1
	<102>:= Read command	C_RD_NA_1
X	<103>:= Clock synchronization command (option see 7.6)	C_CS_NA_1
	<104>:= Test command	C_TS_NA_1
X	<105>:= Reset process command	C_RP_NA_1
	<106>:= Delay acquisition command	C_CD_NA_1
X	<107>:= Test command with time tag CP56Time2a	C_TS_TA_1

Parameter in control direction

(Station-specific parameter, mark each Type ID with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

<110>:= Parameter of measured value, normalized value	P_ME_NA_1
<111>:= Parameter of measured value, scaled value	P_ME_NB_1
<112>:= Parameter of measured value, short floating point value	P_ME_NC_1
<113>:= Parameter activation	P_AC_NA_1

File transfer

(Station-specific parameter, mark each Type ID with an "X" if it is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

<120>:= File ready	F_FR_NA_1
<121>:= Section ready	F_SR_NA_1
<122>:= Call directory, select file, call file, call section	F_SC_NA_1
<123>:= Last section, last segment	F_LS_NA_1
<124>:= Ack file, ack section	F_AF_NA_1
<125>:= Segment	F_SG_NA_1
<126>:= Directory {blank or X, only available in monitor (standard) direction}	F_DR_TA_1
<127>:= Query Log – Request archive file	F_SC_NB_1

Type identifier and cause of transmission assignments

(Station-specific parameters)

Shaded boxes: option not required.

Black boxes: option not permitted in this companion standard

Blank: functions or ASDU not used.

Mark the Type Identification/Cause of transmission combinations.

"X" if only used in the standard direction

"R" if only used in the reverse direction

"B" if used in both directions

Type identi	ification	Cau	se of	trans	miss	ion			1							i				
		1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<1>	M_SP_NA_1	X		X																
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1	X		x											x					
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1																			
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1																			
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	X		x											x					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1																			
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1	X		X											x					
<31>	M_DP_TB_1	X		X											X					
<32>	M_ST_TB_1																			
Table conti	nues on next page																			

REC601/603

Section 10 Appendix 3 IEC 60870-5-104 interoperability

Type iden	tification	Cau	use of	trans	miss	ion				1		1			1 -	1	1		1	
		1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<33>	M_BO_TB_1																			
<34>	M_ME_TD_1																			
<35>	M_ME_TE_1																			
<36>	M_ME_TF_1	x		X											x					
<37>	M_IT_TB_1																			
<38>	M_EP_TD_1																			
<39>	M_EP_TE_1																			
<40>	M_EP_TF_1																			
<45>	C_SC_NA_1						x	X	x	X	X									
<46>	C_DC_NA_1						x	X	x	X	X									
<47>	C_RC_NA_1																			
<48>	C_SE_NA_1																			
<49>	C_SE_NB_1																			
<50>	C_SE_NC_1																			
<51>	C_BO_NA_1																			
<58>	C_SC_TA_1						x	x	x	x	x									
<59>	C_DC_TA_1						x	x	x	x	x									
<60>	C_RC_TA_1																			
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_EI_NA_1*																			
<100>	C_IC_NA_1						x	x			x									
<101>	C_CI_NA_1																			
<102>	C_RD_NA_1																			
<103>	C_CS_NA_1						x	X												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						x	x												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1						x	x												
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1																			
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
Table cont	inues on next page																			

Type iden	tification	Cau	ise of	trans	missi	on										_	_	_		
		1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*																			
<127>	F_SC_NB_1*																			
* Blank o	r X only																			

10.1.6 **Basic application functions**

Station initialization

(Station-specific parameter, mark with an "X" if the function is used.)

Remote initialization

Cyclic data transmission

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Cyclic data transmission

Read procedure

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Read procedure

Spontaneous transmission

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous

(Station-specific parameter, mark each information type with an "X" where both a Type ID without time and a corresponding Type ID with time are issued in response to a single spontaneous change of a monitored object.)

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

Χ	Single-point information M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 and M_PS_NA_1
Χ	Double-point information M_DP_NA_1, M_DP_TA_1 and M_DP_TB_1
	Step position information M_ST_NA_1, M_ST_TA_1 and M_ST_TB_1
	Bitstring of 32 bit M_BO_NA_1, M_BO_TA_1 and M_BO_TB_1 (if defined for a specific project)
	Measured value, normalized value M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 and M_ME_TD_1
	Measured value, scaled value M_ME_NB_1, M_ME_TB_1 and M_ME_TE_1
Х	Measured value, short floating point number M_ME_NC_1, M_ME_TC_1 and M_ME_TF_1

Station interrogation

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Χ	global				
Χ	group 1	X	group 7	X	group 13
	group 2	Χ	group 8	Χ	group 14
Χ	group 3	Χ	group 9	Χ	group 15
Χ	group 4	Χ	group 10	Χ	group 16
Χ	group 5	X	group 11		nation object addresses assigned to each group must be n in a separate table.
X	group 6	X	group 12		

Clock synchronization

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Х	Clock synchronization
	Day of week used
	RES1, GEN (time tag substituted/ not substituted) used
	SU-bit (summertime) used

Command transmission

(Object-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

X	Direct command transmission
	Direct set point command transmission
X	Select and execute command
	Select and execute set point command
	C_SE ACTTERM used
X	No additional definition
X	Short-pulse duration (duration determined by a system parameter in the outstation)
X	Long-pulse duration (duration determined by a system parameter in the outstation)
X	Persistent output
X	Supervision of maximum delay in command direction of commands and set point commands
0 -	600 sec Maximum allowable delay of commands and set point commands

Transmission of integrated totals

(Station- or object-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Mode A: Local freeze with spontaneous transmission

Mode B: Local freeze with counter interrogation

Mode C: Freeze and transmit by counter-interrogation commands

Mode D: Freeze by counter-interrogation command, frozen values reported

Table continues on next page

	Counter read
	Counter freeze without reset
	Counter freeze with reset
	Counter reset
—	General request
	General request
	Request counter group 1
	Request counter group
	Request counter group 3
	Request counter group 4

Parameter loading

(Object-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

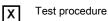
Threshold value

Smoothing factor

Low limit for transmission of measured values

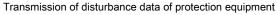
High limit for transmission of measured values

Parameter activation


(Object-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Act/deact of persistent cyclic or periodic transmission of the addressed object $% \left({{{\rm{D}}_{{\rm{c}}}}_{{\rm{c}}}} \right)$

Test procedure


(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

File transfer

(Station-specific parameter, mark with an "X" if the function is used.)

Compare with "File transfer in control direction".

Transmission of sequences of events

Transmission of sequences of recorded analogue values

File transfer in control direction

Background scan

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Background scan

Acquisition of transmission delay

(Station-specific parameter, mark with an "X" if the function is only used in the standard direction, "R" if only used in the reverse direction, and "B" if used in both directions.)

Acquisition of transmission delay

Definition of time-outs

Section 10 Appendix 3 IEC 60870-5-104 interoperability

Parameter	Default value	Remarks	Selected value
to	30 s	Time-out of connection establishment	
t ₁	15 s	Time-out of send or test APDUs	Adjustable, GPRSdefault 60
t ₂	10 s	Time-out for acknowledges in case of no data messages $t_2 \le t_1$	Adjustable, GPRS default 20
t ₃	20 s	Time-out for sending test frames in case of a long idle state	Adjustable, allows up to 65535

Maximum range for time-outs t_0 to t_2 : 1 s to 255 s, accuracy 1 s.

Recommended range for time-out t_3 : 1 s to 48 h, resolution 1 s.

Long time-outs for t_3 may be needed in special cases where satellite links or dialup connections are used for instance to establish connection and collect values only once per day or week.

Maximum number of outstanding I format APDUs k and latest acknowledge APDUs (w)

Parameter	Default value	Remarks	Selected value
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 (Adjustable)
W	8 APDUs	Latest acknowledge after receiving w I format APDUs	8 (Adjustable)

Maximum range of values k: 1 to 32767 $(2^{15}-1)$ APDUs, accuracy 1 APDU

Maximum range of values *w*: 1 to 32767 APDUs, accuracy 1 APDU (Recommendation: w should not exceed two-thirds of *k*).

Portnumber

Parameter	Value	Remarks
Portnumber	2404	Adjustable 165535

Redundant connections

Number N of redundancy 1 group connections used

RFC 2200 suite

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Χ	Ethernet 802.3
П	Serial X.21 interface

Other selection from RFC 2200:

List of valid documents from RFC 2200

1.	
2.	
3.	
4	
5	
5. 6	
0.	etc.
1.	etc.

Section 11 Glossary

AC	Alternating current
APDU	Application protocol data unit
APN	Access Point Name
ARP	Address Resolution Protocol
ASDU	Application-layer service data unit
BIND	Berkeley Internet Name Domain
СОТ	Cause of transmission
CTS	Clear to send
D-NAT	Destination network address translation
DC	Direct current; Double command
DCD	Data carrier detect
DHCP	Dynamic Host Configuration Protocol
DI	Digital input
DIN rail	A standardized 35 mm wide metal rail with a hat-shaped cross section
DIP	Dual in-line package
DIP switch	A set of on-off switches arranged in a standard dual in- line package
DNS	Domain Name System
DPI	Double-point information
DSR	Data set ready
DTE	Data Terminal Equipment
DTR	Data terminal ready
EMC	Electromagnetic compatibility
Ethernet	A standard for connecting a family of frame-based computer networking technologies into a LAN
FIFO	First in, first out
FME	For Mobile Equipment
FPI	Measured value, short floating point information
FQDN	Fully qualified domain name
FTP	File transfer protocol

G-P	General-purpose
GI	General interrogation
GND	Ground/earth
GPRS	General Packet Radio Service
GRE	Generic Routing Encapsulation. Network tunneling protocol.
GSM	Global system for mobile communications
HMI	Human-machine interface
HTML	Hypertext markup language
HW	Hardware
I/O	Input/output
IAB	Internet Architecture Board
IC	Integrated circuit
ICMP	Internet Control Message Protocol
IEC	International Electrotechnical Commission
IEC 60870-5-101	Companion standard for basic telecontrol tasks
IEC 60870-5-104	Network access for IEC 60870-5-101
IEEE	Institute of Electrical and Electronics Engineers, Inc.
IP	Internet protocol
IP address	A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol.
LAN	Local area network
LED	Light-emitting diode
MAC	Media access control
МСВ	Miniature circuit breaker
MRU	Maximum Receive Unit
MTU	Maximum Transfer Unit
NT	Non-topical
NTC	Negative Temperature Coefficient
NTP	Network time protocol
PC	Personal computer; Polycarbonate
PIN	Personal Identification Number
PPP	Point-to-point protocol

REC601	Wireless controller
REC603	Wireless controller
RI	Ring Indicator
RJ-45	Galvanic connector type
RoHS	Restriction of the use of certain hazardous substances in electrical and electronic equipment
RS-232	Serial interface standard
RS-422	Serial communication standard (EIA–422)
RS-485	Serial link according to EIA standard RS485
RTS	Ready to send
RTU	Remote terminal unit
Rx	Receive/Received
RXD	Received exchange data
S-NAT	Source network address translation
SC	Single command
SCADA	Supervision, control and data acquisition
SIM	Subscriber Identity Module
SMS	Station monitoring system; Short Message Service
SNMP	Simple Network Management Protocol
SPI	Single-point information
SSH	Secure shell
ТСР	Transmission Control Protocol
TCP/IP	Transmission Control Protocol/Internet Protocol
Telnet	An Internet protocol that allows logging on to a remote computer using a user name and password
TSIG	Transaction signature
Тх	Transmit/Transmitted
TXD	Transmit exchange data
UDP	User datagram protocol
UI	User interface
URL	Uniform Resource Locator
VPN	Virtual Private Network
WHMI	Web human-machine interface
www	World Wide Web

Contact us

ABB Oy **Distribution Automation** P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11 +358 10 22 41094 Fax

www.abb.com/substationautomation

