

Compact 800 Engineering
Compact Control Builder AC 800M 5.1

Configuration

Compact 800 Engineering
Compact Control Builder AC 800M 5.1

Configuration

NOTICE
The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license.

This product meets the requirements specified in EMC Directive 89/336/EEC and in Low
Voltage Directive 72/23/EEC.

Copyright © 2003-2010 by ABB.
All rights reserved. Release: June 2010
Document number: 3BSE040935-510

TRADEMARKS
All rights to copyrights and trademarks reside with their respective owners.

TABLE OF CONTENTS

About This Book
General ..13

Document Conventions ...14

Warning, Caution, Information, and Tip Icons..14

Terminology...15

Section 1 - Basic Functions and Components
Introduction ...17

Control Project Templates ...19

Program Organization Units, POU..19

System Firmware Functions ..20

Hardware ...22

Standard System Libraries with Hardware...23

Customized Hardware Types..25

Configuring the Controller ...25

Basic Hardware ..28

Basic Library for Applications ..28

Application Types and Instances ...30

Types and Instances - Concept ...31

Define a Type in the Editor ..32

Control Modules and Function Blocks ..38

Types in Applications...40

Types in User defined Library..41

Modify Complex Types..42

Decisions When Creating Types ..43

Create and Connect instances...44
3BSE040935-510 5

Table of Contents

Function Block Execution... 49

Control Module Execution... 51

FD Port .. 52

Single Control Modules ... 53

Variables and Parameters .. 54

Variable and Parameter Concept .. 55

Variables .. 57

Variable Entry .. 58

External Variables .. 65

Access Variables .. 65

Communication between Applications Using Access Variables 68

Communication in an Application Using Global Variables................................. 69

Communication Variables.. 69

Control the Execution of Individual Objects ... 75

Project Constants ... 78

I/O Addressing Guidelines... 82

Connecting Variables to I/O Channels... 83

Extensible Parameters in Function Blocks .. 88

Keywords for Parameter Descriptions ... 89

Library Management ... 90

Connect Libraries... 91

Create Libraries.. 95

Library States ... 95

Library Password Protection.. 96

Add Types to Libraries Used in Applications.. 97

Add Customized Hardware Types to Library .. 100

Device Import Wizard.. 101

Additional Files for Libraries with Hardware.. 102

Delete Hardware Types.. 106

Type Usage for Hardware Types.. 106

Hide and Protect Control Module Types, Function Block Types and Data Types........ 107

Protect a Self-Defined Type... 108
6 3BSE040935-510

Table of Contents

Task Control ..110

Task Connections ...110

Task Execution ...114

Task Priority ...115

Interval Time ..117

Offset ...118

Execution Time ..123

Overrun and Latency ...123

Overrun Supervision ..123

Latency Supervision...125

Task Abortion...127

Load Balancing ..128

Non-Cyclic Execution in Debug Mode..130

Task Analysis...131

Exploring the Interface...132

Modifying Task Execution Time..136

Error and Warning Categories..136

Search and Navigation...138

Search and Navigation Dialog..139

Search Settings ...140

Symbol and Definition ...142

References ..144

Navigation to Editors ...148

Search and Navigation Settings..148

Search Data ..152

Reports ...152

Input and Output Signal Handling...153

Backup Media..156

Compact Flash..156

Secure Digital...157

Adding CF Card or SD Card to Hardware ...158

Saving Cold Retain Values on Files ...159
3BSE040935-510 73BSE040935-510 7

Table of Contents

Downloading the Application to Removable Media.. 161

Configuration Load.. 161

Upgrading Controller Firmware using Backup Media 162

Restoring Formatted CF Cards to Original Size .. 166

Compiler Switches .. 167

Settings .. 167

Reports .. 169

Difference Report... 169

Source Code Report ... 172

Reports Generated at Download .. 174

Portability Verification... 176

Performance Management... 176

Project Documentation.. 179

Objects and Types .. 180

Editor Items.. 181

Used Types... 182

Section 2 - Alarm and Event Handling
Introduction ... 183

Alarms and Events ... 184

Alarm and Event Library ... 185

Process Alarm and Event Generation.. 185

Process Alarms and Events .. 186

Detection of Simple Events ... 194

Built-in Alarm and Event Handling in Other Libraries 195

External Time Stamps (S800 I/O).. 197

External Time Stamps (PROFINET IO) .. 198

External Time Stamps (INSUM) ... 199

Choose Alarm Handling Method for INSUM Alarms....................................... 204

System Alarm and Event Generation .. 205

Controller Generated System Alarms and System Simple Events 206

User Generated System Alarms... 207

Handling Alarms and Events... 207
8 3BSE040935-510

Table of Contents

Simple Events...208

System Alarms and Events...208

Time Stamps...209

Alarm and Event Communication ...212

Subscriptions ..212

Configuration of OPC AE Communication – Overview....................................212

Buffer Configuration ..214

Local Printers ...215

Print Format..215

Sending an Alarm to the Application...217

Condition State Example..218

Inhibit Example..219

Simple Event Examples ...222

Alarm and Event Functions ...226

System Diagnostics ..226

Acknowledgement Rules – State Diagrams ...227

Section 3 - Communication
Introduction ...233

Communication Libraries ..234

COMLI Communication Library ...234

INSUM Communication Library ...234

MB300 Communication Library..239

MMS Communication Library...240

MODBUS RTU Communication Library ..241

MODBUS TCP Communication Library...241

Modem Communication Library..241

Siemens S3964 Communication Library ...241

SattBus Communication Library..242

MTM Communication Library ..242

Serial Communication Library...243

Supported Protocols...246

Control Network ..247
3BSE040935-510 93BSE040935-510 9

Table of Contents

Network Redundancy... 247

Statistics and Information on Communication .. 248

Variable Communication... 249

StartAddr .. 250

Reading/Sending Data... 253

Connection Methods .. 254

Communication Concepts.. 256

Fieldbus Communication .. 259

MMS Communication... 262

How to Choose Function Block/Control Modules in MMSCommLib.............. 262

Section 4 - Online Functions
Introduction ... 263

Online Editors ... 264

Dynamic Display of I/O Channels and Forcing .. 265

Scaling Analog Signals ... 267

Supervising Unit Status... 267

Find Out What is Wrong by Using HWStatus... 268

AllUnitStatus ... 269

Binary Channels... 270

Supervising Communication Variable Status.. 271

Status Indications .. 272

Acknowledge Errors and Warnings ... 274

Tasks ... 274

Interaction Windows ... 275

Status and Error Messages .. 277

Search and Navigation in Online and Test Mode.. 278

Project Documentation.. 282

Section 5 - Maintenance and Trouble-Shooting
Introduction ... 285

Backup and Restore... 285

Introduction.. 285
10 3BSE040935-510

Table of Contents

Backup ...286

Restore ...287

Files for Separate Backup ..287

Controller Configuration ...288

Controller Settings in Controllers ..289

Error Handler Log Entries..293

Trouble-Shooting...294

General ...294

Log Files ...295

Crash Dumps for Analysis and Fault-Localization ..309

Remote Systems Information ...310

Diagnostics for Communication Variables...313

Analysis Tools ..319

System Diagnostics ..321

Trouble-Shooting Error Symptoms..326

Connection to Aspect Server..328

Error Reports ...329

Appendix A - Array, Queue and Conversion Examples
Arrays ..331

SearchStructComponent...333

InsertArray ...337

SearchArray..338

Queues ...342

Conversion Functions ..346

DIntToBCD ..346

BCDToDInt ..347

ASCII ...348

ASCII Conversion ..350

Appendix B - System Alarms and Events
General ..357

OPC Server – Software..358
3BSE040935-510 113BSE040935-510 11

Table of Contents

OPC Server – Subscription ... 360

Controller – Software .. 362

Controller – Hardware... 394

Alarms and Events Common for all Units ... 396

Unit Specific Alarms and Events ... 401

Controller Units and Communication Interfaces ... 401

Adapters .. 453

S800 I/O .. 460

S900 I/O .. 506

S100 I/O .. 543

INSUM Devices... 544

FF Devices ... 547

MB300 Nodes .. 547

ABB Standard Drive .. 548

Process Panel ... 550

ITS .. 551

NAIO ff .. 552

PPO .. 558

Special IO Template... 562

INDEX
12 3BSE040935-510

About This Book

General
This manual describes how to use the basic programming and configuration
functions that can be accessed via the Project Explorer interface.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules, which are not supported by this
standard.

• Section 1, Basic Functions and Components, describes all the basic functions
that are available via system functions, Basic library, and commands in the
Control Builder interface. This section also describes the type and object
concept, and how variables and parameters are used.

• Section 2, Alarm and Event Handling, describes the types in the Alarm and
Event library and how to use them to add alarm and event functions to objects
that do not have alarm functionality built into them.

• Section 3, Communication, describes the types in the Communication libraries
and how to use them to establish communication between controllers.

• Section 4, Online Functions, describes Control Builder functions in online
mode.

• Section 5, Maintenance and Trouble-Shooting, describes Control Builder
maintenance functions. It also describes how to write an error report, the
location of various log files, how to read these log files, and how to fix some
common problems.

• Appendix A, Array, Queue and Conversion Examples contains some examples
on how to use queues and arrays, and how to convert numbers from one format
to another.

• Appendix B, System Alarms and Events describes system alarms and system
simple events from a controller perspective.
3BSE040935-510 13

Document Conventions About This Book

Document Conventions
Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons
This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design the project or how to use
a certain function
14 3BSE040935-510

 About This Book Terminology

Terminology
The following is a list of terms associated with Compact Control Builder. The user
must be familiar with these terms before reading this manual. The list contains
terms and abbreviations that are unique to ABB or have a usage or definition that is
different from standard industry usage.

Term/Acronym Description

Application Applications contain program code to be compiled and
downloaded for execution in a controller.

Control Builder A programming tool with a compiler for control software.
Control Builder is accessed through the Project Explorer
interface.

Control Module (Type) A program unit that supports object-oriented data flow
programming. Control modules offer free-layout
graphical programming, code sorting and static
parameter connections. Control module instances are
created from control module types.

Firmware The system software in the PLC.

Hardware Description The tree structure in the Project Explorer, that defines
the hardware’s physical layout.

IndustrialIT ABB’s vision for enterprise automation.

IndustrialIT 800xA
System

A computer system that implements the IndustrialIT

vision.

Interaction Window A graphical interface used by the programmer to interact
with an object. Available for many library types.

MMS Manufacturing Message Specification, a standard for
messages used in industrial communication.
3BSE040935-510 15

Terminology About This Book

OPC/DA An application programming interface defined by the
standardization group OPC Foundation. The standard
defines how to access large amounts of real-time data
between applications. The OPC standard interface is
used between automation/control applications, field
systems/devices and business/office application.

Process Object A process concept/equipment such as valve, motor,
conveyor or tank.

Project Explorer The Control Builder interface. Used to create, navigate
and configure libraries, applications and hardware.

Type A type solution that is defined in a library or locally, in an
application. A type is used to create instances, which
inherit the properties of the type.

Term/Acronym Description
16 3BSE040935-510

Section 1 Basic Functions and Components

Introduction
Control Builder is a programming tool that contains:

• Compiler.

• Programming editors.

• Standard libraries for developing controller applications.

• Standard hardware types (units) in libraries for configuring the controller.

The Control Builder tool also includes system firmware and common functions such
as control system templates and task supervision. Most of the application
development can be accomplished using the basic functions and components
presented in this section.

This section is organized in the following manner:

• Control Project Templates on page 19 describes the different templates that can
be used to create a project.

• Program Organization Units, POU on page 19 introduces the Program
Organization Unit (POU) concept.

• System Firmware Functions on page 20 describes firmware functions included
in the system, which can be used in any application.

• Hardware on page 22 describes the standard libraries for hardware types.

• Basic Library for Applications on page 28 describes the objects of the Basic
library, which can be included in any project.

• Application Types and Instances on page 30 introduces the very important,
object-oriented, types and objects concept. This subsection also describes how
to add user defined types and how to create objects (instances) from types.
3BSE040935-510 17

Introduction Section 1 Basic Functions and Components

• Variables and Parameters on page 54 describes how to use parameters and
variables to store and transfer values in the control system.

• Library Management on page 90 describes how to work with libraries.

• Hide and Protect Control Module Types, Function Block Types and Data Types
on page 107 describes how to hide and protect objects and types, using the
Hidden and Protected attributes.

• Task Control on page 110 describes how to set up tasks to control the execution
of the applications.

• Overrun and Latency on page 123 describes how to configure latency control
for the tasks.

• Task Analysis on page 131 describes the Task Analysis tool that detects the
possible task overrun/latency problems in an application before its download to
the controller.

• Search and Navigation on page 138 describes how to use the search and
navigation function to find all instances of a type or to find out where a certain
variable is used.

• Input and Output Signal Handling on page 153 describes how to enable over
and under range for input and output objects.

• Backup Media on page 156 describes how to use the Backup Media as a
removable storage.

• Compiler Switches on page 167 describes how to use Compiler Switches to
control the behavior of compiler.

• Reports on page 169 describes the function of the Difference Report and
Source Code Report.

• Performance Management on page 176 describes how to gather information of
the applications using the Compiler Statistics tool.

• Project Documentation on page 179 describes how to use the Project
Documentation function to document standard libraries, user defined libraries,
and applications in MS Word format.
18 3BSE040935-510

Section 1 Basic Functions and Components Control Project Templates

Control Project Templates
A control project template sets up the necessary features required to build a project.
The project consists of system firmware functions, basic library functions,
application functions and a pre-set of hardware functions.

The Compact Control Builder provides the following project templates:

• AC800M
Template for normal use, and for running applications.

• EmptyProject
Template that requires a minimum configuration, with only the System folder
inserted. This template is rarely used.

• SoftController
Template for developing software for simulating applications without a
controller.

Program Organization Units, POU
The IEC 61131-3 standard describes programs, function blocks, and functions as
Program Organization Units (POUs). The Control Builder also considers control
modules as POUs. All these units are helpful in organizing the control project into
code blocks, minimizing code writing, and optimizing the code structure and code
maintenance.

A POU is an object type that contains an editor to write code and declare parameters
and variables.

All POUs can be repeatedly used in a hierarchical structure, except for programs
that can only be a 'top-level' POU, inside an application.

1. Right-click the project name, and select Refresh Project.
3BSE040935-510 19

System Firmware Functions Section 1 Basic Functions and Components

System Firmware Functions
All system firmware functions are stored in the System folder, which is located at
the top of the library branch (in Project Explorer).

The System folder contains fundamental IEC 61131-3 data types and functions,
along with other firmware functions, which can be used in firmware in the
controller. They are all protected and automatically inserted via the selected control
system templates.

The System folder cannot be changed, version handled or deleted from a control
project.

The system firmware functions that can be used in the application depends on the
Firmware version. To upgrade the Firmware, replace the BasicHWLib with the
latest version.

Table 1 contains the System firmware data types and functions. Refer the Control
Builder online help for more information and description.

The System folder is not a library, even though it is always shown in the library
branch, together with the libraries (Basic library, Icon library, etc.)
20 3BSE040935-510

Section 1 Basic Functions and Components System Firmware Functions

To access the detailed online help and how-to-do instructions for a system
firmware function, select the data type or function, and press the F1 key.

Table 1. System Function Overview

System Functions Examples

Simple Data Types bool, dint, int, uint, dword, word, real, etc.

Structured Data Types time, Timer, date_and_time, etc.

Common Library Data
Types

Open structured data types like, BoolIO, DintIO,
DwordIO, RealIO, HWStatus, SignalPar, etc.

Bit String Operations and, or, xor, etc.

Relational and Equality
Functions

Equal to, Greater than, etc.

Mathematical Functions Trigonometric, Logarithmic, Exponential and
Arithmetic Functions.

Data Type Conversion Conversion of bool, dint, etc.

String Functions Handles strings like, inserts string into string, deletes
part of a string, etc.

Exception Handling Functions for handling zero division detection
integer and real values.

Task Functions SetPriority, GetPriority, etc,. Handles the priority of
the current task.

System Time Functions Exchanging time information between different
systems.

Timer Functions Functions to Start, Stop and Hold Timers.

Random Generation
Functions

Functions for generating random numbers or values.

Variable Handling
Functions

Reads and writes variable values.
3BSE040935-510 21

Hardware Section 1 Basic Functions and Components

Hardware
All hardware is defined as hardware types (units) in Control Builder. The hardware
types reflect the physical hardware in the system.

Hardware types are organized and installed as libraries. This makes it possible to
handle hardware types independently, with the following advantages:

• Since the libraries are version handled, different versions of the same hardware
type exist in different versions of the library. This makes it easy to upgrade to
newer system versions and also allows coexistence of new and old hardware
units.

• The new versions of a library (along with the hardware types) can be easily
delivered and inserted to the system.

A number of standard libraries with hardware types are delivered with the
system. A standard library is write protected and cannot be changed

• Only used hardware types allocate memory in the controller.

Array Functions Handles arrays.

Queue Functions Handles queues.

Table 1. System Function Overview (Continued)

System Functions Examples
22 3BSE040935-510

Section 1 Basic Functions and Components Standard System Libraries with Hardware

Standard System Libraries with Hardware

The standard system libraries with hardware are delivered by the system. Table 2
describes the standard libraries with hardware.

Table 2. Standard system libraries with hardware

Library Description

ABBDrvNpbaCI851HwLib
ABBDrvNpbaCI854HwLib

ABB Drive NPBA and subunits for PROFIBUS

ABBDrvRpbaCI851HwLib
ABBDrvRpbaCI854HwLib

ABB Drive RPBA and subunits for PROFIBUS

ABBProcPnlCI851HwLib
ABBProcPnlCI854HwLib

ABB Process Panel for PROFIBUS

ABBPnl800CI851HwLib
ABBPnl800CI854HwLib

ABB Panel 800 for PROFIBUS

ABBDRVRETACI871HWLIB Optional device for ABB drives, which enables the
connection of the drive to a PROFINET IO
network.

ABBMNSiSCI871HWLIB Motor control center solution that can be used in
PROFINET IO network.

BasicHWLib Basic controller hardware types for AC 800M and
SoftController

CI851PROFIBUSHwLib Communication interface PROFIBUS DP

CI854PROFIBUSHwLib Communication interface PROFIBUS DP-V1

CI855Mb300HwLib Communication interface MasterBus 300

CI857InsumHwLib Communication interface INSUM

CI858DriveBusHwLib Communication interface DriveBus

CI856S100HwLib Communication interface S100 I/O system and
S100 I/O units

CI865SattIOHwLib Communication interface for remote I/O
connected via ControlNet
3BSE040935-510 23

Standard System Libraries with Hardware Section 1 Basic Functions and Components

CI853SerialComHwLib RS-232C serial communication interface

CI867ModbusTcpHwLib Communication interface MODBUS TCP

CI868IEC61850HwLib Communication interface IEC 61850

CI869AF100HwLib Communication interface for AF 100

CI871PROFINETHwLib Communication interface CI871

CI872MTMHwLib Communication interface for MOD5-to-MOD5

CI873EthernetIPHWLib Communication interface EtherNet/IP

CI852FFh1HwLib Communication interface FOUNDATION Fieldbus
H1

S200IoCI851HwLib
S200IoCI854HwLib

S200 adapter and S200 I/O units for PROFIBUS

S800IoModulebusHwLib S800 I/O units for ModuleBus

S800CI830CI851HwLib
S800CI830CI854HwLib
S800CI840CI854HwLib
S800CI801CI854HwLib

S800 adapters and S800 I/O units for PPOFIBUS

S900IoCI854HwLib S900 adapter and S900 I/O units for PROFIBUS

PrinterHwLib Printer unit

ModemHwLib Modem unit

SerialHwLib
COMLIHWLib
ModBusHWLib
S3964HWLib

Communication protocols

For a complete list of the hardware types in the standard libraries, see Control
Builder online help.

Table 2. Standard system libraries with hardware

Library Description
24 3BSE040935-510

Section 1 Basic Functions and Components Customized Hardware Types

Customized Hardware Types

Customized hardware types can be created in user-defined libraries, using the
Device Import Wizard. This is useful when the hardware types found in the standard
system libraries or the Device Integration Library are not sufficient.

The Device Import Wizard imports a device capability description file (for example,
a *.gsd file), converts the file to a hardware type, and inserts the type into the user-
defined library (See Create Libraries on page 95. Also see Device Import Wizard on
page 101 and Supported Device Capability Description Files on page 101).

In exceptional cases, it may be relevant to insert individual external customized
hardware types to a user-defined library (for example, to use a specific hardware
type, which have been converted and used in an earlier version of Control Builder).

The Source Code Report can be used to view the hardware types loaded in the
project. See Source Code Report on page 172.

Configuring the Controller

Before configuring the controller:

1. Insert the libraries, which contain the hardware types (units) to be used in the
controller configuration, into the control project.

2. Connect the libraries to the controller.

See Connect Libraries on page 91 for information on how to insert and connect
libraries.

Add Unit to Hardware in Controller Configuration

Perform the following steps to add a new hardware unit into the controller
configuration in Project Explorer:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click the unit to which a new hardware unit is to be added, and select
Insert Unit to open the Insert Unit dialog.
3BSE040935-510 25

Configuring the Controller Section 1 Basic Functions and Components

.

3. Expand the relevant library folder under Connected Libraries, and select the
hardware type to be included.

4. From the Position drop-down list, select a position for the hardware unit.

By default, the first available position is chosen. If no more positions are
available, the Position drop-down list is empty and the Insert button is
disabled.

Figure 1. Insert Unit dialog for inserting hardware in a controller configuration

It is not possible to select Insert Unit if the unit cannot contain any sub-units or if
no more positions are available.

The Libraries in Project contains libraries that are added to the project but not
yet connected to the controller. If a unit is selected under Libraries in Project,
the option to connect the library to the controller appears.
26 3BSE040935-510

Section 1 Basic Functions and Components Configuring the Controller

5. For units supporting redundancy, check the Enable redundant mode check
box, and select a position for the backup unit.

6. In the Name field, enter a name for the unit. After the unit is inserted in the
hardware tree, this name appears along with the name of the selected type.

7. Click Insert to apply the changes made.

8. Click Close to close the dialog.

Replace Hardware in a Controller Configuration

Perform the following steps to replace a hardware unit in a controller configuration:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click on the unit to be replaced, and select Replace Unit to open the
Replace Unit dialog.

Some redundant units have a fixed position offset. For these units, the backup
position is automatically calculated, and the user cannot change this position.

Click Previous or Next to navigate to another unit in the Project Explorer
hardware tree.

To rename the unit after it is inserted, right-click the unit, and select
Rename Unit.

Figure 2. Example of a hardware tree with a name for the AI820 unit

The Replace Unit dialog works in the same way as the Insert Unit dialog, except
that it is not possible to change the position of the unit in the Replace Unit dialog.
3BSE040935-510 27

Basic Hardware Section 1 Basic Functions and Components

While the hardware unit is being replaced in a controller configuration, the system
retains the settings and connections, and also retains the units in the existing
subtrees. For example, replacing a CPU with a similar one can be done without any
connection loss or data loss.

Basic Hardware

The BasicHwLib contains standard system hardware types that are used when
configuring the AC 800M controller and SoftController. The standard system
hardware types are installed along with the Control Builder.

The BasicHwLib contains the following basic controller hardware:

• Controllers (AC 800M and SoftController)
• Compact Flash (CF) units
• Secure Digital (SD) units
• CPU units (PM8xx and CPU)
• Ethernet links, serial Com ports, and PPP ports
• ModuleBus
• IP
• IAC MMS

Basic Library for Applications
The Basic library contains basic building blocks for AC 800M control software. It
contains data types, function block types and control module types with extended
functionality, designed by ABB.

The contents inside the Basic library can be categorized as follows:

• IEC 61131-3 Function Block Types.

• Other Function Block Types.

• Control Module Types.

Only one version of BasicHwLib can be connected to a controller.
28 3BSE040935-510

Section 1 Basic Functions and Components Basic Library for Applications

For a complete list of data types, function block types, and control module types
in the Control Builder standard libraries, refer to the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE040935*)

Table 3. Basic Library Overview

Basic Functions Examples

IEC 61131-3 Function Block
Types

Standard bistable function block types (SR, RS).

Standard edge detection function block types
(R_TRIG, F_TRIG).

Standard counter function block types (CTU, CTD,
etc.)

Standard timer function blocks type (TP, TOn, etc.)

Other Function Block Types ACOF (Automatic Check Of Feedback) functions,
converters, pulse generators, detectors, system
diagnostics, timers, compares, etc.

Control Module Type Connection module for group start sequences
(GroupStartObjectConn).
3BSE040935-510 29

Application Types and Instances Section 1 Basic Functions and Components

Application Types and Instances
Types and instances form the basis of the application structure. This subsection
contains an overview of the following:

• The type and instances concept, see Types and Instances - Concept on page 31.

• The editors that are used to create and configure the types, see Define a Type in
the Editor on page 32.

• Important differences between control module and function block types, see
Control Modules and Function Blocks on page 38.

• How to create types directly in an application, and how to create types in the
library for re-use in applications. See Types in Applications on page 40 and
Types in User defined Library on page 41.

• How to create complex types so that they are flexible enough for future
upgrades, see Modify Complex Types on page 42.

• What to consider and what to set up before creating types and using them, see
Decisions When Creating Types on page 43.

• How to create objects from types and connect the object to the surrounding
application or type, see Create and Connect instances on page 44.

• How different objects are executed, see Function Block Execution on page 49
and Control Module Execution on page 51.

• How to use single control modules as containers for control modules, see
Single Control Modules on page 53.
30 3BSE040935-510

Section 1 Basic Functions and Components Types and Instances - Concept

Types and Instances - Concept

Types are used to represent motors, valves, tanks, etc. that are located in a plant
area, and then turn them into manageable units in a control project (for example,
motor types, valve types, mixer types, and so on). Instances are created based on
each of these types.

A type is the source (the blue print) for a unit (motor, valve, tank, etc), while an
instance represents the unit(s) in libraries and applications. There is an inherited
mechanism between a type and all its instances, where all instances have the same
performance as the type, and changes performed in the type affect all instances
simultaneously.

A type is a generic solution, which can be used by many instances, and contains
programming code with variables, functions, connection parameters (textual and
graphical), graphical instances, and formal instances1.

Figure 3 shows the relationship between a type located in a library and two
instances created in an application.

Figure 3. Relationship between a type and two instances.

The type contains the code, whereas each instance contains a list of computed
variable values. The instance does not contain any code; it uses the code inside the
type for manipulating its own local variable values.

1. Formal instances are instances of another type located inside a type. These, along with instances based on that
type are executed in applications.

If A = 10then
B:= A+1;

end_if;

A

B

3

7

type

A

B

10

11

Library

Application instance1 instance2
3BSE040935-510 31

Define a Type in the Editor Section 1 Basic Functions and Components

A type is always static and cannot run by itself in applications. To execute the code
inside the type, an instance based on the type (an instance) must be created. The
instance executes the code located inside the type. To create an instance, point to a
type either in a library or in an application.

All instances based on the same type have the same characteristics, which means
they have equal access to everything in the type. An instance does not contain a
programming editor or code blocks; hence the code cannot be written inside an
instance. All logic must be created in the type.

The allocated memory for creating a type solution (for example, a motor type
solution that contains one motor type and 20 motor instances) is distributed mainly
on the programming code inside the type. Therefore, the cost (allocated memory)
for each new instance (motor) is very small, compared to the type itself. The
instance only needs to allocate memory for variables, as the code is located and
executed from the type. However, the number of instances are relevant for
considering the total CPU memory.

It is easier to update the application while working with newer version of types,
since the inherited mechanism takes care of changes that often concern hundreds of
instances. A code change (for example, declaring additional connection parameters)
can be done once for the type, and this change is inherited by all instances
simultaneously.

Control Builder also contains a number of structured data types. For more
information, refer to the Application Programming manual. A type described in this
sub-section is either a function block type or a control module type.

Define a Type in the Editor

Select the type from Project explorer and open the corresponding editor to declare
the necessary parameters for the type.

An editor contains several declaration panes that can be opened from the following
tabs:

• Parameters
• Variables
• Function Blocks.
32 3BSE040935-510

Section 1 Basic Functions and Components Define a Type in the Editor

Apart from the declaration panes, the editor contains:
• Programming editor for programming code (see Figure 8).
• Graphical editor called CMD Editor (see Figure 10).

Declaration Pane for Parameters

To open the declaration pane for parameters, double-click the type (to open the
editor), and then select the Parameters tab.

Figure 4 shows the editor for My_MotorType, with the declaration pane for
parameters selected. These parameters can be used for connecting variables outside
the instance.

Declaration Pane for Local Variables

To open the declaration pane for variables, double-click the type (to open the
editor), then select the Variables tab. If the editor is already open, simply select the
Variables tab.

Figure 5 shows the declaration pane for creating local variables inside the type. The
local variables can be used by the code inside the type.

Figure 4. Declaration pane for creating connection parameters
3BSE040935-510 33

Define a Type in the Editor Section 1 Basic Functions and Components

Declaration Pane for External Variables

External variables are pointers to global variables. An instance can declare an
external variable locally and then use this variable to access the value in a global
variable located in the application. External variables and global variables are
discussed in External Variables on page 65.

Declaration Pane for Communication Variables

Communication variables are declared in Program editor or top level Single Control
Module editor. For details about communication variables, see Communication
Variables on page 69.

Figure 6 shows the declaration pane for communication variables in a Program
editor.

Figure 5. The declaration pane for creating local variables

Figure 6. Declaration pane for communication variables
34 3BSE040935-510

Section 1 Basic Functions and Components Define a Type in the Editor

Declaration Pane for Function Blocks

To open the declaration pane for function blocks, double-click the type (to open the
editor), and select the Function Blocks tab. If the editor is already open, simply
select the Function Blocks tab.

Figure 7 shows the declaration pane for declaring function blocks inside the type.

Enter the name of the function block in the Name column, and select the cell in the
Function Block Type column. Press CTRL+J to open a context menu with all
function block types available.

Programming Editor for IEC 61131 Languages

Use the programming editor to write code in one of the five programming languages
that conforms to the IEC 61131-3 standard. The programming editor is always
active, and can be accessed irrespective of which tab is selected (parameters,
variables, function blocks, etc.).

The programming editor can be expanded using code blocks for structuring the
code. These code blocks are then executed either in a predetermined order as
decided by the compiler (control modules), or from left to right (function blocks).

Figure 7. Declaration pane for creating function blocks inside a type

 Connect all libraries with the required function blocks types to the application.
Only then, the available function block types are listed in the context menu
(CTRL+J)
3BSE040935-510 35

Define a Type in the Editor Section 1 Basic Functions and Components

Figure 8 shows a part of a programming editor, which uses Structured Text (ST) as
the language. This editor also contains two code blocks: Control and Start_Code.

Figure 8. A programming editor with two code blocks.

A brief description of code blocks in general and Start_ code blocks :

• Code blocks are very useful for structuring the code. Dividing the
programming code into a number of code blocks, improves the overall code
structure and readability. Examples of code blocks are Control, Object Error,
Operators, etc.

• There is no limit to the number of code blocks that can be created in a type.
Create only the required number of code blocks, since each code block affects
the memory consumption and the execution time of the type.

• Start_

A code block with the prefix Start_ is always executed first in an application
and only once, at the application startup (after a warm and cold start, but not
after a power failure). This block must be used for initiating alarm strings,
converting project constants to strings, etc.

Code block names cannot contain certain characters. See Online help for
information on characters that cannot be used in code block names.

Code blocks Programming editor
36 3BSE040935-510

Section 1 Basic Functions and Components Define a Type in the Editor

However, there are some limitations while using the Start_ code block:

– It is not suitable to place functions, function blocks, etc, in a Start_ code
block.

– It is valid only for the code blocks in control modules, and not for the code
blocks in SFC (Sequential Function Chart).

– The FirstScanAfterApplicationStart function must not be used in the
block.

– Function blocks for communication must not be used in the block.

Code Block Context Menu

Right-click a code block tab to access the code block context menu.

Graphical Editor

The graphical editor, Control Module Diagram Editor (CMD Editor) is a combined
editor for drawing and programming. The term ‘diagram’ refers to the graphical
view of control modules and connections.

Use this editor to create and edit control modules, code, and graphics, and to
connect variables and parameters.

If the application contains a very large chunk of code that has to be run in the first
scan (for example, alarms in the Start_ code block), the execution time can be so
high that overrun occurs. This leads to the eventual shut-down of the controller.

Figure 9. Code block context menu
3BSE040935-510 37

Control Modules and Function Blocks Section 1 Basic Functions and Components

To open the CMD Editor, right-click the control module type and select CMD
Editor. Figure 10 shows part of the graphical editor (CMD Editor).

The drawing functions in the CMD editor include basic auto shapes (lines,
rectangles, etc.), ready-to-use interaction instances (option buttons, check boxes,
etc.), and composite instances (trend graphs, string selectors, etc.). The graphical
instances are dynamic, that is, with changing variable values, the points move,
colors change, and numerical values are presented.

Control Modules and Function Blocks

A type can be a control module type or a function block type. The types and the
instances can be mixed. For example, a control module can be created inside a
function block type (to add graphics), or a function block can be created inside a
control module type (to execute a list of basic functions).

The following list describes some differences between control module types and
function block types.

Figure 10. Graphical objects created in the CMD Editor.
38 3BSE040935-510

Section 1 Basic Functions and Components Control Modules and Function Blocks

• Control modules types may have graphical connections (see Graphical
Connections on page 45).

• Control modules types use code sorting (see Control Module Execution on
page 51).

• Control modules are executed by the system and once per scan, whereas
function blocks are executed from code. Therefore, a function block is
executed once or several times per scan, or it is not executed at all. This is the
main difference between control module execution and function block
execution.

• Parameter values on function blocks are copied (except In_Out parameters and
parameters having by_ref attribute, see Function Block Execution on page 49).

• Function block types are required when using extensible parameters (see
Extensible Parameters in Function Blocks on page 88).

The choice between control module types and function block types depends on the
context and environment. For guidelines about the use of control modules and
function blocks, refer to the Application Programming manual.
3BSE040935-510 39

Types in Applications Section 1 Basic Functions and Components

Types in Applications

Creating a type in an application is the quickest and easiest way to get started.
Before creating types, no new libraries need to be created; use the available methods
like connect libraries, create user defined data types, and select the object type to
use (see Decisions When Creating Types on page 43). However, if a type is created
directly in an application, it can only be used inside that application.

To gain access to standard libraries (or user defined libraries), insert them into the
control project (see Library Management on page 90), and connect them to the
application. This allows the types in the application to use the instances from
existing types in the connected libraries.

Figure 11. Two examples of a type created especially for Application_1. (Left) A
control module type (My_MotorType), (Right) a function blocks type
(PumpMotor_type)
40 3BSE040935-510

Section 1 Basic Functions and Components Types in User defined Library

Types in User defined Library

The advantage of creating types inside a library, instead of creating them directly in
an application, is the possibility to re-use them in other applications. If the types are
created in a library, all the necessary functions and programs can be stored in this
library. The library can then be connected to any application.

If a new library is created, user defined types can be created in that library (Compact
Control Builder does not allow creation of types in a standard library).

Figure 12. A Type (MyControlLoop) created in MyTypeLib library. This example
shows a control loop created as a control module type, while the components are
ready-made instances from the standard libraries

Functionality from the
Control libraries

Type
3BSE040935-510 41

Modify Complex Types Section 1 Basic Functions and Components

Modify Complex Types

This subsection describes a use case where it is preferable to copy two types, instead
of keeping a single and very large type in a library.

Refuse Incinerator Type - Problem

In this example, assume that a plant area has two identical refuse incinerators.

A type solution like this is manageable if a Refuse Incinerator type is created in a
library with several underlying types. This type can then be re-used twice (as two
objects), in two separate applications, by connecting the library to each application.

The following are the examples of underlying types inside the Refuse Incinerator
type:

• A Feeder type containing 10 conveyors.

• A Combustion type.

• An Ash Handling type.

• A Flue Gas type.

After building the Refuse Incinerator type in the library, connect the library to both
Application_1 and Application_2. This helps in creating an Incinerator1 instance in
Application_1 and an Incinerator2 instance in Application_2.

If the Incinerator2 instance running in Application_2 suddenly needs an individual
change (for example, 20 conveyors instead of 10 conveyors), edit the library and
change the Feeder type inside the Refuse Incinerator type. But, changing anything
inside the Refuse Incinerator type affects both incinerators due to the type and
instance inherit mechanism.

By changing the Feeder type to include 20 conveyors, both the Incinerator instances
are changed suddenly to contain 20 conveyors, which is not the intended use.
42 3BSE040935-510

Section 1 Basic Functions and Components Decisions When Creating Types

Refuse Incinerator Type - Solution

To avoid the problem, once the type is ready, consider the possible individual
(instance) changes in the future. If an individual instance needs to be changed, copy
the type on the highest type level (in this example, Refuse Incinerator Type1 and
Refuse Incinerator Type2).

Create an Incinerator10 instance in Application_1, based on Refuse Incinerator
Type1, and then create an Incinerator20 instance in Application_2, based on the
new type copy, Refuse Incinerator Type2. This increases the memory consumption
in the controller, but allows individual changes. For example, the number of
conveyors in the feeder for one of the applications can be changed, without
affecting the other.

Decisions When Creating Types

This subsection describes the decisions to be made about the types before
programming the code, and declaring parameters and variables. Many functions and
type solutions have been developed already, and the Control Builder helps to set up
and access these options before programming. Read more about design analysis in
the Application Programming manual.

The following decisions must be made before creating the types:

• Whether there is a need to create instances in user defined type(s).

These types are based on other types located in external libraries. In that case,
those external libraries must be connected to the library or application.

• Whether there is a need to create self-defined structured data types for passing
parameters through several layers of instances.

The data types are automatically connected to the library or application.
Structured data types are often useful in more complex type solutions, with a
deep hierarchical structure.

• Whether a function block type or a control module type should be used.

If the code is programmed in one of the POUs1, select function block types. If a
graphical editor is used to program the code, and automatic code sorting is
preferred, select control module types.

1. See Program Organization Units, POU on page 19.
3BSE040935-510 43

Create and Connect instances Section 1 Basic Functions and Components
 Create and Connect instances

An instance is a function block or control module based on a type.

Each time a new instance is created, the Control Builder prompts for a type. The
type can be located in an inserted library (inserted into the control project), user
defined library, or directly in an application. In any case, a type and its location
must always be selected.

Once the type is selected, connect the connection parameters.

Figure 13. Available settings for setting up an instance type, whether it is in
libraries, or applications

For information on how to access these methods, refer to the Control Builder
online help. Select one of the folders in Project Explorer and press F1.
44 3BSE040935-510

Section 1 Basic Functions and Components Create and Connect instances

Connections

Control modules can be connected to each other either through graphics or through
text. Graphical connections are implemented directly in the Control Module
Diagram editor and textual connections are implemented in the Connection editor.

Graphical Connections

Graphical nodes and graphical connections connects the control modules
effectively.

Figure 14. Creating an instance (Pump10) based on My_MotorType, which is
located in the application. The instance needs the location (Application_1) and the
type (My_MotorType)
3BSE040935-510 45

Create and Connect instances Section 1 Basic Functions and Components

The control module parameters, which can be graphically connected, contains
NODE in the beginning of the parameter description. This is the standard for all
control modules located inside the standard libraries.

Nodes for graphical connections can also be created for self-designed control
modules. Graphical connections are suitable for obtaining a comprehensive view of
main flows, for example, in a PID controller or for group start of several motors.
Figure 15 shows three graphical connections for group starting motors. The
modules are connected using the Graphical Connection function (located in the
CMD Editor).

Figure 15. Two motor instances that have been graphically connected with a Start
and Next instance located in the Group Start library. The circles symbolize the
connection nodes

1

2

3

46 3BSE040935-510

Section 1 Basic Functions and Components Create and Connect instances

Textual Connection

To open the Connections editor via the Connections entry, right-click the module
and select Connections.

Parameters can be connected to the actual variables presented in the Connections
editor. Textual connection is the only way to connect parameters when the control
module is subordinate to a function block, since there are no surrounding graphics.

Connect an instance

The Connections editor is a parameter/variable interface between the instance and
its closest surrounding. The Connections editor displays the parameters that are
declared in the type, with reference to the control module instance, and connects the
surrounding parameters/variables to the instance.

If a control module instance is created in an application (see Figure 16), then the
application can be seen as the closest surrounding, and the variables in the
application must be connected to the instance.

If a control module instance is created in a type (located in a library), then the type
can be seen as the closest entity, and parameters/variables in the type must be
connected to the instance.

It is not possible to connect the same parameter both graphically and textually.

To connect the parameters to instances located several hierarchical layers away
(not the closest), use structured data types that simplifies the connections (instead
of passing corresponding parameters). For more information on structured data
types, refer to the Compact 800 Engineering Compact Control Builder AC 800M
Planning (3BSE044222*)
3BSE040935-510 47

Create and Connect instances Section 1 Basic Functions and Components
 Figure 16. A control module instance connected to variables in an application. The
application is the ‘surrounding area’ with the variables appfb1, Name (initial value
‘PumpMotor’) and appout1 connected to the instance.

In Figure 16, the connection parameters for the motor instance connect the
parameters (FB1, Name and OUT1) to the variables (appfb1, appout1, Name; Name
has the initial value PumpMotor) that have been declared in the application.
Once the variables are connected to the instance, it is ready to run in the application
(see Figure 17).

Figure 17. The object ‘Motor_object’ has been created in the application.

A Motor Type

Code

FB1

motor object

Application

appfb1

surrounding area

OUT1

FB1

OUT1

appout1

Name

Name‘PumpMotor’
48 3BSE040935-510

Section 1 Basic Functions and Components Function Block Execution

The instance ‘Motor_object’ has been created in the application.

Function Block Execution
There are three types of function block parameters: In, Out, and In_out.

The input and output parameters are passed by value, which means that the function
block creates copies of each variable value, before and after the function block is
executed. The In_Out parameters are passed by reference, which means only a
reference to the actual variable outside the function block is passed to and from the
function block.

Input parameters create a copy of each variable before the function block executes,
and the output parameters create a new copy after the function block is executed and
pass the new values to the surrounding variables outside the function block.

For complex data types and strings, a reference to the data instance can be passed in
the function block call. This is achieved by setting the attribute of the parameter to
by_ref.

Figure 18. In and Out parameters for a function block. This example illustrates how
In and Out parameters copies the variable (var).

Using by_ref on parameters enhances the performance. It takes a lot of execution
time to copy parameters in each scan.

There are some limitations when using by_ref:

• It is not possible to connect expressions or literals to a reference parameter.

Function block

var In

var’

var’’ Out

code

var

before execution after execution

surrounding area (Program or in a type)
3BSE040935-510 49

Function Block Execution Section 1 Basic Functions and Components

• If a reference parameter is not connected in one invocation, it cannot be
connected in other invocation (if the instance has multiple invocations).

• It is not possible to read or write the parameter from outside the function block
(except in the invocation). The example expressions like fb.par_in := 2; or k :=
fb.par_out; are not allowed for reference parameters.

By using by_ref, it is still possible to use init values, in which case the init value is
the default value. If the parameter is not connected, the default value is used.

The code generated for connecting by_ref parameter is identical to an in_out
parameter; but they differ in what is allowed inside the function block.

For example, it is not allowed to write onto an in parameter regardless of whether it
is a reference or value parameter. The ownership analysis detects that a variable is
read only if an in parameter by reference is used instead of in_out. It is therefore
preferable to use direction=in and attribute=by_ref (instead of in_out), if the
parameter is actually an in parameter.

If In_Out parameters are passed by reference, only a reference to the actual variable
outside the function block is passed to and from the function block. The local
representation of the parameter does not exist inside the function block. Performing
operations on an In_Out parameter inside a function block means performing
operations directly on the actual variable connected to the function block. See also
Connecting Variables to I/O Channels on page 83.

Figure 19. In_Out parameter for a function block. This example illustrates how the
In_Out parameter points as reference to the value in the variable varRef.

Function block

In_Out

code

varRefvarRef
50 3BSE040935-510

Section 1 Basic Functions and Components Control Module Execution

Control Module Execution

Control modules provide data flow-driven execution, which makes the code design
much easier for solutions where several types and formal instances are needed. All
control modules communicate with each other, and can therefore determine when
each individual instance can send and receive information. A data flow-driven
design prevents possible mistakes, when trying to foresee the correct execution
order, since the compiler rearrange or sort all the code behind the scenes. This is
called code sorting.

Direction for Control Modules

In control module types, a parameter can have any of the following direction:

• In
• Out
• In_out
• Unspecified.

These control module parameters follow different access rules from the code inside
the control module and offer limitations to the methods used to connect them.

All of them are passed by reference, which means only a reference to the actual
variable outside the control module is passed to and from the Control module.

The rules governing their functioning are as follows:

• Input parameters are read only.

• Out, In_Out and Unspecified are read and edit.

• Control modules on the same level can connect only In to Out.

• A sub control module inside could only connect its In parameters to In
parameters in the surrounding control module and so on.

• In_out must be connected to a variable (on any level)

• Several In could be connected to one Out (if not a structured type containing a
reverse attribute)

These rules apply to connecting parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.
3BSE040935-510 51

FD Port Section 1 Basic Functions and Components

Unspecified parameters can be used without limitations for compatibility reasons.

FD Port

The FD Port column appears in the editor for function block types and control
module types. This column only significant for the types that are instantiated in a
Function Diagram (FD) code block.

The normal choice is Yes or No. The value specifies if the parameter shall be visible
when the function block type or control module type is instantiated in an FD code
block. The default value is Yes.

There are extra choices (Left or Right) for control module parameters with direction
Unspecified and function block parameters with direction In_Out. These choices are
related to the placement of the parameter port in the FD code block.

There are some types with structured parameters that are mostly output, but also
contain some input components. Such a parameter must be either an Unspecified
parameter (control module types only) or an In_Out parameter. Both Unspecified
and In_Out parameters are placed on the left side, by default. Therefore Left is
default value for this extra choice.

The following list summarizes the use of the values in the FD Port column for
control module parameters with direction Unspecified and function block
parameters with direction In_Out:

• No - Not visible as a port.

• No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

• No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on.

• Yes - Visible as a port on the left side of the object.

• Yes Left - Visible as a port on the left side of the object.

• Yes Right - Visible as a port on the right side of the object.

For more information on Code Sorting, see the Compact 800 Engineering
Compact Control Builder AC 800M Planning (3BSE044222*) manual.
52 3BSE040935-510

Section 1 Basic Functions and Components Single Control Modules

Single Control Modules

A special kind of control module type, the single control module, provides a way of
grouping graphical instances, variables, parameters, and control modules into a
single unit.

Compared to the previous discussions about types and instances, a single control
module can be considered as a hybrid of them both (see Figure 20). First of all,
create a single control module as an instance under the control module folder (not
the control module type folder) in an application.

Once a single control module is created, it starts acting as both a type and an
instance. It contains code, editors for declaring parameters, function blocks,
instance information, etc. just like a regular type or instance. A single control
module can never be reusable as a type that can be used to create many instances.
However, it can be copied to a new single control module, and then be modified.

Figure 20. A single control module. This module is not reusable, hence intended to
be used only once for grouping instances into a single unit.

Single control modules can be used as a framework and attach control module
instances inside, like an application does with instances. Figure 21 illustrates this,

IfA = 10then
B:=A+1;

end_if;

A

B

3

7

type

object1

Single Control Module
Application

Control Module Types

Control Modules
3BSE040935-510 53

Variables and Parameters Section 1 Basic Functions and Components

where three single control modules (Transport, Heating, and Crushing) form the
framework for the control modules (Motor_1, etc.).

Figure 21. Single control modules form the framework for the control modules.

Variables and Parameters
Variables and parameters are the carriers of data throughout the system. This
section describes how to use parameters and variables in the best way possible:

• Variable and Parameter Concept on page 55 gives an overview of variables and
parameters and how they are used.

• Variables on page 57 gives an overview of the different variable types.

• Variable Entry on page 58 describes how to declare variables.

• External Variables on page 65 describes how to define external variables.

• Access Variables on page 65 describes how to define and use access variables.

• Communication between Applications Using Access Variables on page 68 and
Communication in an Application Using Global Variables on page 69 describe
how communicate between applications.
54 3BSE040935-510

Section 1 Basic Functions and Components Variable and Parameter Concept

• Communication Variables on page 69 describes how to define communication
variables.

• Control the Execution of Individual Objects on page 75 describes how to use
variables and parameters to control the execution of objects.

• Project Constants on page 78 describes the use of project constants and how to
update them.

• I/O Addressing Guidelines on page 82 describes the rules for addressing I/O
channels.

• Connecting Variables to I/O Channels on page 83 describes how to connect I/O
variables to I/O channels.

• Extensible Parameters in Function Blocks on page 88 describes extensible
parameters (these can only be used in function blocks).

• Keywords for Parameter Descriptions on page 89 describes keywords used in
description in editors to identify the function of a parameter.

Variable and Parameter Concept

Variables

There are different kinds of variables in the Control Builder for storing and
computing values. A way of understanding the use of these variables presented
throughout this section is perhaps to consider them as carriers on object, application
and network levels.

Local variables are mainly used inside objects as carriers of local values. Global
variables are declared in the application and holds values that can be reached by any
object in the application. Access variables and Communication variables are used as
carriers for communication between several applications and controllers in a
network.

• Local variables is the most common variable type. They belong to the code and
can only be accessed within the same function block, control module or
program.

• Global variables on the other hand, are always declared in an application and
can be accessed by any function block, control module or program. However,
in order to reach a global variable, each object that intends to use a global
3BSE040935-510 55

Variable and Parameter Concept Section 1 Basic Functions and Components

variable must have declared a corresponding External variable, see also
External Variables on page 65).

• Access variables allow data exchange between controllers, that is, access
variables can be accessed by other controllers. See Communication between
Applications Using Access Variables on page 68.

• Communication variables are used for cyclic communication between
programs and top level single control modules. Communication variables
support both inter application communication and inter controller
communication in a system network. For more information, see
Communication Variables on page 69.

In spite of the different variables purposes, they all have one thing in common – a
variable holds or carries a value (except an external variable). They are defined by
their name and data type, which defines the characteristics of the variable (dint,
bool, real, string, etc.).

Parameters

Parameters on the other hand, cannot store any values. Instead, the user can assign
variables to parameters of function blocks, control modules and functions. Variables
store the value of the corresponding (connection) parameters.

Use parameters for connecting objects and to point to variable values that need to be
read into code blocks and written from code blocks.

When function blocks read from a variable and write to a variable, they use input
and output parameters that temporarily copy the variable value, before and after
execution. In this case, one may claim that parameters can temporarily hold a
value. See Function Block Execution on page 49 for more details.
56 3BSE040935-510

Section 1 Basic Functions and Components Variables

Variables

Table 4 lists available variables in Control Builder.

Table 4. Variable types in Control Builder.

Variable type Scope Where to declare

Local variable Object level. Can only be
accessed within the function
block, control module or
program in which it is
declared.

Application editor (for passing
parameters between control
modules) or,

Programs editor (for access in
the program).

Function block editor (for
access inside the function
block).

Control module editor (for
access inside the control
module).

Global variable Application level. Can be
accessed from anywhere in
the code within an
application. An object that
intends to use a global
variable must declare an
external variable locally that
will point at the corresponding
global variable.

In the application editor. See
also Communication in an
Application Using Global
Variables on page 69.
3BSE040935-510 57

Variable Entry Section 1 Basic Functions and Components
 Variable Entry

Control Builder helps the user to declare variables in applications, programs,
function block types and control module types. This section covers the entries:
Name, Data Type, Attributes, Initial Value and Description.

Name

It is recommended that variables are given simple and explanatory names, and that
they begin with a capital letter. Names consisting of more than one word should
have capital letters at the beginning of each new word. Examples of recommended
variable names are DoorsOpen, PhotoCell.

Certain names, however, are reserved by the system and cannot be used for other
purposes, for example true. An error message appears if such a word is used. For
naming guidelines and information on relevant tools, refer to the Compact 800
Engineering Compact Control Builder AC 800M Planning (3BSE044222*) manual.

Access variable Network level. Variable that
can be accessed by remote
systems for communication
between controllers. See also
Access Variables on page 65
and Communication between
Applications Using Access
Variables on page 68.

Access Variable editor of a
controller.

Communication
Variable

Project Level. Variable that
can be accessed by remote
systems for communication
between applications and
controllers. See
Communication Variables on
page 69

Editor for Program or top level
Single Control Module.

Table 4. Variable types in Control Builder. (Continued)

Variable type Scope Where to declare
58 3BSE040935-510

Section 1 Basic Functions and Components Variable Entry

Data Types

A data type defines the characteristics of a variable type. There are both simple and
structured data types in Control Builder. A variable of simple data type contains a
single value, while a structured data type contains a number of components of
simple or structured data types.

Table 5 presents the most common simple data types and the initial value when the
variable is declared.

Table 5. Simple data types

Data type Description
Bytes allocated

by variable
Initial value

(default)

bool Boolean 4 False, 0

dint Double integer 4 0

int Integer 4 0

uint Unsigned integer 4 0

string Character string(1)

(1) String length is 40 characters by default, but can be changed by entering string[n] as the data
type, where n is the string length. The number of bytes allocated for string[40] will be (40 +10)
50. The maximum string length is 140.

10 bytes + string
length [n]

‘‘

word Bit string 4 0

dword Bit string 4 0

time Duration 8 T#0s

date_and_time Date and time of
day

8 1979-12-31-
00:00:00

real Real number 4 0.0

Comparison of variables of unsigned data types (uint, word, and dword) will not
work properly if the most significant bit is set. Internally, they are handled as
signed, where the most significant bit is used as the sign. This means that a word
variable with a value above 32767 will be considered to be smaller than a word
variable with a value below 32768.
3BSE040935-510 59

Variable Entry Section 1 Basic Functions and Components

When declaring variables or parameters of the data type string, always define the
required length within square brackets (for example, string[20]), to minimize
allocated memory. If the string length is not defined, then Control Builder
automatically allocates memory for a 40 character string length.

A structured data type contains a number of components of simple or structured data
type. For bidirectional communication using structured data types, a reverse
attribute must be set to indicate which components communicate in the opposite
direction (see also Bidirectional Communication Variable on page 73).

There are a number of predefined data types in Control Builder (for example
BoolIO and RealIO) that are structured data types. User-defined structured data
types can also be created, see Decisions When Creating Types on page 43.

Attributes

Attributes are used to define how variable values should be handled at certain
events, such as after cold restart, warm restart, etc. Variables that are supposed to
hold values over several downloads must for example, have a retain attribute in
order to keep their values after a warm start. Any of the attributes in Table 6, can be
given to a variable. For parameter attributes see Table 7.

Use variables of data type string with care. Strings occupy a great deal of
memory, and require much execution time to be copied or concatenated.

In a control module, the word “default” can be used as an initial value for a
parameter. This works for both simple and structured data types. For a structured
data type, the initial value “default” gives the default value of the data types for
all components.

This is useful when creating types; for input parameters of a structured data type
that do not have to be connected, and for output data types that do not have to be
connected.

More information is given in Control Builder online help. Search the index for
“structured data type”.
60 3BSE040935-510

Section 1 Basic Functions and Components Variable Entry

Table 6. Variable attributes

Name Description

no attribute The variable value is not maintained after a restart, or a download of
changes. Instead, it is set to the initial variable value. If the variable
has no initial value assigned, it will be assigned the default data type
value, see Table 5 on page 59.

retain The variable value is maintained after a warm restart, but not after a
cold restart. Control Builder sets retain on all variables by default. To
override this, the attribute field must be left empty in declaration pane.

coldretain The variable value is saved on disk, and retained after warm or cold
restart.(1)

Coldretain overrides the retain attributes in a structured data type.

(1) When an application is downloaded the very first time, variables will get their initial data type
values, even though they have been declared with the attribute coldretain, and, that the controller
has done a cold restart. Hence, no variables can receive their coldretain values before they have
been stored on disk. Correspondingly, will variables that have been declared later on, contain their
initial values until they have been saved on disk.

constant The user cannot change the value online once assigned.

This attribute overrides the coldretain and retain attributes in a
structured data type.

hidden The variable will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

nosort This attribute suppresses the code sorting feature for control module
types. It is advisable not to use the nosort attribute if the user do not
know the data flow characteristics in detail.

state This attribute will let the variable retain its old value between two
scans for control module types. The old and new value can be read by
adding :old and :new to the variable name.
3BSE040935-510 61

Variable Entry Section 1 Basic Functions and Components

Table 7. Parameter attributes

Name Description

no attribute The parameter value is not maintained after a restart, or a download
of changes. Instead, it is set to the initial parameter value. If the
parameter has no initial value assigned, it will be assigned the default
data type value, see Table 5 on page 59.(1)

(1) These attributes are valid if the parameter is not connected, if connected it is the attributes of
connected variables.

retain The parameter value is maintained after a warm restart, but not after a
cold restart.(1)

coldretain The parameter value is saved on disk, and retained after warm or cold
restart.(1)

Coldretain overrides the retain attributes in a structured data type.

hidden The parameter will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

by_ref This attribute is used for controlling the passed value. For in and out
parameters the value is usually copied into the called instance at the
invocation. But for non simple data types and strings it is time
consuming. In that case, a reference to the data instance is passed in
the function block call. This is achieved by setting the attribute of the
parameter to by_ref.

It is possible to assign several attributes to a variable for example, retain, nosort,
and hidden can be assigned as (retain nosort hidden) attribute.

An intermediate variable (a variable which is automatically generated when
making a graphical connection between function blocks) in FBD or LD is always
assigned the attribute retain (even if the parameters on both sides of the graphical
connection have the attributes coldretain).
62 3BSE040935-510

Section 1 Basic Functions and Components Variable Entry

Attribute Example

The following example tries to illustrate how a variable will be handled, depending
on different attribute settings. Suppose the variable valveC has the attribute
coldretain, valveR has the attribute retain and valve has no attribute. Also, suppose
that these three variables have the initial value = True (see Figure 22 for the variable
declaration).

Figure 22. Three variables with different attributes settings
3BSE040935-510 63

Variable Entry Section 1 Basic Functions and Components

According to the attribute settings in Figure 22, the variables will be read or written
on different occasions in the given code example below, (read the comments under
each IF statement):

IF valveC THEN
(*Code in this position is only executed once after the very
first cold restart*)

valveC := false;
END_IF

IF valveR THEN
(*Code in this position is only executed once after a cold
restart*)

valveR := false;
END_IF

IF valve THEN
(*Code in this position is only executed once after a cold restart
and once after a warm restart*)

valve := false;
END_IF

Note that execution does not have to take place during the first scan after restart, for
example, when IF valve is embedded in another IF statement.

Variables and parameters should have the attribute retain, unless they are written at
each scan. When a change has been made to the application, the entire application
will be (warm) restarted and in doing so, variables without the attribute retain will
be set to their initial values, and there is a chance that the change will not be totally
bumpless. It is recommended that In and Out parameters to function blocks always
have the attribute retain.

Initial Values

It is possible to give the variable an initial value, which will be assigned to the
variable the first time the application is executed. This setting overrides the default
data type value. Table 5 shows default initial values for the most common data
types.

More information is given in Control Builder online help. Search the index for
“attribute”.
64 3BSE040935-510

Section 1 Basic Functions and Components External Variables

Descriptions

The description field describes and provides information about the variable. A short
descriptive text may include an explanation of the cause of a condition or a simple
event, for example “Pump 1 is running”. Since the description is not downloaded to
the controller, the size of the description is irrelevant.

External Variables

External variables are not really variables, in the sense that they carry a value.
Instead, external variables work like parameters, that is, they point to a variable
value (in this case a global variable). In order for an object to reach a global variable
(located at the top of the application) it must use a pointer, or more specifically, an
external variable. By declaring an external variable inside an object, it is possible to
access global variables efficiently from a deep code design, without having to pass
variable values through parameters.

Figure 23. The variable z can be accessed deep down in the structure, using several
parameters. (Bottom): Using external (and global) variables, the variable z is
accessed directly, without having to use parameters.

Access Variables

Access variables are needed when the system works as a server. Allowed protocols
are MMS, COMLI, MODBUS TCP and SattBus. MMS and SattBus variables are
declared in the Access Variable Editor under the corresponding tab, COMLI and

variable z [global]

value of z

variable z

parameter z

parameter z

parameter z

value of z

[external]
3BSE040935-510 65

Access Variables Section 1 Basic Functions and Components

MODBUS TCP variables under the Address tab. The variable name must be unique
within the physical control system.

Open the Access Variable Editor by right-clicking the ‘Access Variables’ icon
under the respective Controller and select Editor.

To limit the access to a variable, set the attribute to ReadOnly. If the attribute is
left blank, it is possible to both read and write.
66 3BSE040935-510

Section 1 Basic Functions and Components Access Variables

MMS

MMS variables can only be accessed by name.

An MMS access variable name can be up to 32 characters long and contain letters,
digits and the characters dollar($) and underscore(_). However, an access variable
name cannot begin with a digit or the dollar ($) character.

All data types for single and structured variables are allowed, with the exception of
ArrayObject and QueueObject.

To limit the access to an MMS variable, set the Attribute to ReadOnly. If the
attribute is left blank, both read and write is possible.

SattBus

SattBus variables can be accessed in three ways:

• Standard SattBus name such as Valve:

– the name must consist of exactly five ASCII characters, but may not begin
with a percentage sign (%).

• COMLI direct addressing (see Address),

• IEC 61131-3 standard representation for variables.

– IEC61131-3 address must be entered under the COMLI tab

Allowed data types for a single variable are, bool, dint, int, uint, real or string.
Whereas a structured variable does not allow string data type.

Address

Address variables can be accessed in two ways only, either direct addressing with
capital X and the number for boolean, or capital R and the number for registers (R0-
R65535 for PA controller and 65000 for HI controller) beginning with a percentage
sign or not, or according to IEC 61131-3 standard representation for variables.

Allowed data types for a single variable are bool, dint, int, or uint, whereas
structured variables must all be of same data type. A structured variable is allowed
to contain more than 512 booleans and contain more than 32 components of integer
data type. Overlapping areas are not allowed.
3BSE040935-510 67

Communication between Applications Using Access Variables Section 1 Basic Functions and

Example

An access variable name "X0" is defined and connected to a variable which contains
544 Boolean components at octal address 0-1037. The next available address is then
1040 to ensure that areas do not overlap.

At least one of the variables in the access variable table has to be defined. For
missing variables, requested data of boolean data type will be returned with the
value False and requested data of integer data type will be returned with the value
"0". Writing to undefined variables is ignored.

Communication between Applications Using Access Variables

The communication variables are used for cyclic communication between programs
and top level single control modules in the project that uses MMS communication
protocol.

Two applications may communicate with each other via variables, but these
variables must be declared as access variables (see, Access Variables on page 65).
This also applies when two applications are downloaded to the same controller (see
Figure 24).

Figure 24. Variables for communication between applications must always be
declared as access variables.

When transferring access variables, it is important to use the same data type range
for the client (dint), as for the server (dint).

It is, however, possible to connect variables with different ranges, such as a dint
variable on the server and an integer variable on the client.

Application 2

Controller

Application 1
Application

Controller 1

Application

Controller 2
68 3BSE040935-510

Section 1 Basic Functions and Components Communication in an Application Using Global

As long as the variable values are within the range of an integer, this will work, but
once the value goes outside the integer range, it will not.

Communication in an Application Using Global Variables

In Programs

Global variables are declared at application level, in the Global Variables tab of the
application editor. They can be accessed directly, without any declaration in the
program editor. Variables that are not declared in the declaration pane in the
program editor are assumed to be global variables. A global variable can be used in
any program, without having external variables declared in a program.

In Function Blocks or Control Modules

In order to reach a global variable from either a function block type or a control
module type, each type must have either an external variable declared or a
parameter. Thus, the types access the global variable value by using an external
variable or a parameter to point at the global variable located in the application.

Communication Variables

The communication variables are used for cyclic communication between programs
and top level single control modules in the project that uses MMS communication
protocol.

If an access variable is the only user of a variable that is connected to an I/O
channel, this variable is by default updated every second. To update this variable
with another interval, create a statement that involves the variable, but is never
executed.

A statement that is never executed, but still updates the variable x could look like
this:

if false then
x:=x;

end_if;

Connect this program to a task that executes with the desired interval. The
variable is updated every time the task is executed.
3BSE040935-510 69

Communication Variables Section 1 Basic Functions and Components

Communication variables are declared in the Program editor or top level Single
Control Module editor.

Communication variables support both inter application communication and inter
controller communication in a project.

A communication variable can be either a communication input variable or a
communication output variable.

If the direction of a communication variable is in in a POU, the POU can read the
variable, but cannot write to the variable. If the direction of a communication
variable is out in a POU, the POU can write to the variable and read the variable.

A communication variable can be either an elementary type or a structured data
type. It cannot be a generic or built-in type.

Communication variables use a name based resolution to connect a communication

output variable to one or several communication input variables.

In a system network, all communication output variables must be declared with
unique names.

Communication variables cannot be connected to the channels of an I/O unit.

Declaration pane for communication variable

The declaration pane for communication variables consists of:

• Name

Communication variables are not supported in distributed applications. If an
application that contains communication variables is running in a controller, it is
not possible to download the same application to another controller.

If a communication variable is of structured data type, it must not contain
components that are declared with the CONSTANT type qualifier and it must not
contain CONSTANT components at any sub-level of the variable.

In a project, all communication output variables must be declared with unique
names.
70 3BSE040935-510

Section 1 Basic Functions and Components Communication Variables

The name of the communication variable. For communication output variables
(direction - out), the name must be unique on the project to resolve the
IP-address during compilation.

• Data Type

The supported simple data types are Bool, Dint, Uint, Int, Dword, Word, Real,
String, Time, and Date_and_time. Structured data types with these simple data
types are also supported with maximum size of 1000 components.

If the type contains strings, the maximum size is calculated according to the
formula (5 * NumberOfComponents + TotalStringLength) < 1400.

The data types Time and Date_and_time are considered as a data structure with
two components. Nested structured variables are allowed.

• Attributes

Possible attributes to specify are:
– retain
– coldretain
– hidden
– hidden retain
– hidden coldretain

If no attribute is specified when the communication variable is declared,
retain is filled in automatically by the editor.

• Direction

The possible values are in or out. If no direction is specified when the
communication variable is declared, in is automatically filled in by the editor.

• ISP value

Applicable only to communication input variables. This field defines the ISP
(Input Set as Predetermined) value to be set for the in variable. This value can
only be set for simple data types. If no ISP value is specified, the default value
is the last good value, or if no last good value exists (because of no
communication), the init value is applied.

For structured data types, the ISP values can only be set in the data type for
each individual component (in the Data Type editor). Hence, it is not possible
to configure instance specific ISP values for structured data types.
3BSE040935-510 71

Communication Variables Section 1 Basic Functions and Components

ISP could be used in a structured variable to detect communication failure or
bad quality, by using a Boolean Valid component with ISP set to false.

• Interval Time

Communication cycle time for peer-to-peer communication. The possible
values are fast, normal, slow, very fast, and very slow. The default value is
normal.

The time interval (in milliseconds) for each of these cycle times is defined in
the hardware editor for IAC MMS in the Control Builder. The IAC MMS
object is located at position 5.1 under the controller object in the hardware tree
in Control Builder.

• IP Address

Applicable only to communication input variables. This field defines the
IP address of the controller that contains the corresponding communication
output variable (with the same name) in any of its applications. When no value
for the IP address is entered, the editor automatically fills in the default value
'auto'. This means that the IP address is resolved during compilation.

Source and Sink for Communication Variables

The term ‘source’ is used for the POU that declares a communication output
variable. The term ‘sink’ is used for the POU that declares a communication input
variable.

If a sink is located in one application, a source can be located in any of the
following:

• In the same application as the sink.

• In another application but in the same controller as the sink.

• In another application and in another controller.

Multiple sinks can be linked to the same source.

For example, for every communication output variable with a unique name, there
can be multiple communication input variables with the same name as the
communication output variable. The communication input variables can reside in a
different POU, in a different application, or in a different controller.
72 3BSE040935-510

Section 1 Basic Functions and Components Communication Variables

There is no need to declare the location of the source (communication output
variable) while configuring the sink (communication input variable). This is
because the binding between them is based on the name of the communication
variable. The source can be moved with in the same controller (same IP address)
without the need to modify the sinks.

The availability of the data from a communication output variable to a
communication input variable depends on the task that is connected to the different
POUs corresponding to the variables.

The Control Builder checks whether the name of a communication output variable
is unique in the networkproject, only during the download of the application. The
download is aborted if the variable name is not unique.

Unresolved Communication Variable

A communication input variable is unresolved if there is no communication output
variable (source) with the same name, during compilation.

A resolved communication variable can also become unresolved if the source is
removed at a reconfiguration.

Bidirectional Communication Variable

Bidirectional communication variables have communication in both directions and
can be configured for one-to-one connections only. These variables can be created
for structured data types only.

The configuration parameters that are used for the in variables can also be specified
for the out variables, if bidirectional. This allows the configuration of a
communication variable with a different communication setup in either directions
(for example, different interval times).

Reverse attribute

The Control Builder allows the execution of an application that contains
unresolved communication variable. When a reconfiguration of the system is
done (for example, at a warm restart), the source can be created and the
unresolved communication variable becomes resolved.
3BSE040935-510 73

Communication Variables Section 1 Basic Functions and Components

For bidirectional communication using structured data types, a reverse attribute
must be set to indicate which components communicate in the opposite direction to
the in/out declaration of the communication variable.

The reverse attribute can only be set such that all in variables are located
consecutively and also all out variables are located consecutively in memory.
Hence, it is not possible to configure reverse for every other component in a data
type.

The reverse attribute can be set in both top level and sublevel of of a structured data
type but can not be nested. For example, for a ControlConnection data type, which
consists of one forward structure and one backward structure, the reverse attribute is
set on the whole backward structure. All components in the backward structure
inherits the reverse attribute automatically.

Interval Time

Out of the five different cyclic categories (VerySlow, Slow, Normal, Fast,
VeryFast), the default interval time for a communication variable is Normal.

The interval time for a communication variable can be changed only when the
Control Builder is offline. The changes takes effect during the download.

The time interval (in milliseconds) for each cyclic category is defined using the
hardware editor for IAC MMS. The IAC MMS object is available at position 0.5.1
under the controller object. Position 5 contains the IP object.

Hardware Simulation with Communication Variables

It is possible to use hardware simulation for IAC.

When using hardware simulation, the communication variables use real
communication and real copying of input variables.

This is also the case when downloading a simulated AC 800M to a Soft Controller.

The reverse attribute is configured in the data type editor.
74 3BSE040935-510

Section 1 Basic Functions and Components Control the Execution of Individual Objects

Control the Execution of Individual Objects

Sometimes there is a need to execute specific sub function blocks and/or sub control
modules, with a time interval and priority different from the task connected to the
application. Depending on the requirement, this can be done in two ways:

1. To create a new task and connect this task to all the following objects, read the
sub-section 'Using a Global Variable Connected to an External Variable on
page 75.

2. To choose a new task for each individual object (and for that object only), read
the sub-section 'Using a Global Variable Connected to a Parameter on page 76.

Using a Global Variable Connected to an External Variable

Assume that the user has added a new task, for example SuperFast, to the other
tasks in the Project Explorer.

Steps to use global variable:

1. Declare a global variable (for example Speed) of data type string, with the
attribute constant and the initial value 'SuperFast'.

2. To reach objects that have been created in the application, start by declaring an
external variable in the type (open the type editor and select the external
variable tab).

3. Declare an external variable with the same name, data type and attribute as the
global variable. In this example, an external variable called Speed of data type
string and with the attribute constant is used.

Finally, connect the new task SuperFast to the object by right-clicking the object
and selecting Task connection. Type the variable name Speed in the task field. All
the following objects that are created will have this task connection, that is,
SuperFast.

The advantages with this method of using a global variable connected to an external
variable (declared in the type) is that every following object will be connected to the
same task (SuperFast). If the user later on need to change the task connection for all
the objects (perhaps hundreds of objects), change only the initial value for the
global variable in the application (see Figure 25). The present task connection for all
3BSE040935-510 75

Control the Execution of Individual Objects Section 1 Basic Functions and Components

objects will point, via the external variable to the task declared by the global
variable.

Figure 25. All objects will have the same task connected (SuperFast), once the first
object has connected Speed.

Using a Global Variable Connected to a Parameter

Assume that the user has added a new task, for example SuperSlow, to the other
tasks in the Project Explorer.

The main advantage of this method, compared to the previous method with external
variables, is that the user can change the task connection on each following formal
instance, by simply connecting a parameter to a different global variable. (See
Figure 26).

This method is based on declaring two global variables (for example, Slowly and
Learning) of the data type string, with the attribute constant, and the initial values
'SuperSlow' and ‘Slow’, respectively.

For more information on formal instances, see Types and Instances - Concept on
page 31.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variable
Speed initial value = ‘SuperFast’

type

External
variable = Speed

objects
Task connection = Speed
on the first created object.

Current task is SuperFast
for all following objects.
76 3BSE040935-510

Section 1 Basic Functions and Components Control the Execution of Individual Objects

In order to reach the following objects that have been created in the application,
start by declaring a parameter in the type (open the type editor and select the
parameter tab). Declare a parameter, for example Sleepy, of data type string. Select
the formal instance (object) inside the type:

1. Right-click the object and select Property > Task connection.

2. Type Sleepy in the task field.

Every created object that is based on the type (containing the formal instance) can
be connected via the connection parameter Sleepy and one of the global variables
Slowly or Learning, located in the application.

Figure 26. Each object can be connected to a different task via the parameter Sleepy
declared in the type and task connected in the formal instance.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variables
Slowly with initial value = ‘SuperSlow’

type

Parameter = Sleepy

object1

Task connection = Sleepy
on the formal instance.

Current task is SuperSlow

Current task is Slow

Learning with initial value = ‘Slow’

formal instance

Sleepy connects = Slowly

Sleepy connects = Learningobject2
3BSE040935-510 77

Project Constants Section 1 Basic Functions and Components

The advantage of this method is that the objects of the formal instance, located
inside the type can be connected to different tasks (global variables with a different
task name as init value).

Project Constants

Project constants are declared at the top level of libraries and projects. They are
globally visible, and can be used wherever a constant value is permitted, for
example, in program code and for variable initialization. With project constants, it is
possible to create settings for an individual project, without having to modify any
source code, or having to introduce parameters which have to be passed on to all
concerned types.

Project constants are suitable to use for library items that the user wants to change.
Examples are, date and time formats, logical colors and logical names. Do not use
project constants to change the functionality of an object, for example, initial values
and comparisons in code.

Typically, project constants are declared in a library and given default values. They
are then used, for example, in code located inside types.

Project constants are allowed to have the same names as variables and parameters.
Control Builder will, however, choose the variable or parameter name if a name
conflict exists. This must be considered when adding, renaming or deleting
variables or parameters in an already running application.

Project constants declared at library level (user-defined libraries) can only be edited
and deleted from the library, that is, they cannot be deleted from the Project constant

Follow the naming convention, which says that project constants should begin
with the letter “c” (for example “cColors”). Use structured project constants, if
possible.

Note that project constants cannot be used to control the execution of function
blocks or control modules. Use a global variable or a parameter instead. For more
information see, Control the Execution of Individual Objects on page 75.

If a project constant connected to a retain parameter (or variable) is changed
online, then the change does not effect on existing instances until a cold restart is
performed.
78 3BSE040935-510

Section 1 Basic Functions and Components Project Constants

dialog that is reach by right-click the control project folder (root object). To edit or
delete a library-declared project constant, right-click the library in Project Explorer
and select Project Constants.

Structured Project Constants

It is advisable to create one single structured project constant for an entire project or
library, where the project constant name is a concatenation of “c” and the project
name (or library name).

An example:
If the project name is “ACMEToothpaste”, the structured project constant should be
named “cACMEToothpaste”. Using a structured project constant makes sure that
there is little chance of conflict with variable and parameter names. Using a
structured project constant (“cACMEToothpaste”) enables the user to, for example,
use “Max” without causing problems due to a variable or parameter called “Max”,
since the full path to the project constant “Max” would be
“cACMEToothpaste.Max”.

Define only one project constant per library. This project constant can, and should,
be a structured project constant the concatenation of “c” and the library name in
which it is contained. For example, if the library name is “ACMEValveLib” the
(structured) project constant should be “cACMEValveLib”.

Typical Use

There are two typical use cases for project constants:

1. To satisfy the need for constant values in all project applications.

Some values might have to be constant throughout the entire project. To
change such a “constant” value, change it once. There is no need to change it at

Naming conflicts between project constants appears when the same project
constant name exists in more than one library at the same time.

The only way to avoid a naming conflict is either to delete one of the constants or
not using the constant at all. A type conflict can never be overridden.

All project constants defined in libraries and projects must have been given
unique names.
3BSE040935-510 79

Project Constants Section 1 Basic Functions and Components

every occurrence. For such cases, use a project constant. The project constant
is defined in one place only, and can be used throughout the project. Changes
to the project constant will be reflected throughout the project.

An example:
To be able to change the severity for all “High level alarms” in the entire
project, set up a project constant that defines the severity and use the project
constant in all alarm blocks in all applications. To change the severity, just
change the value of the project constant.

In this case, project constants should be defined on control project level, not in
a library.

2. To be able to change library type solutions without having to make changes in
the library itself.

A method commonly used in control application engineering/programming is
to construct libraries, in which re-usable code is placed. It is good practice to
make the library as general as possible, to maximize its usefulness. The use of
project constants is an excellent solution for such situations.

Example 1: Easy Translation

Assume that the user has created a library that makes extensive use of text strings.
Instead of including strings (in the user’s native language) statically in the library,
use project constants. This allows another engineer to change the values of these
project constants and to translate the strings to another language.

For example, a project constant that was originally set to “Stop” can easily be
translated by a German engineer to “Halt”, simply by changing the value of the
project constant. This would not be the case if the user had typed “Stop” in the
library. Such string constants that are to be translated are best stored as a structured
project constant under the component .Settings.

The string “Stop” would, for example, be defined as the structured project constant
“cACMEValveLib.Settings.StopLabel” or, even more levels;
“cACMEValveLib.Settings.Labels.Stop”.
80 3BSE040935-510

Section 1 Basic Functions and Components Project Constants

Example 2: Combination of Dynamic and Static String Constants

Consider the following function block, in Figure 27, that controls high alarms.
Signal is of RealIO type, Alarmlevel is of real type, and Message is of string type.

Figure 27. The function block AlarmCond located in the Alarm library.

Now, we want a “customized” message to be passed to Message, such as

High Level (> 75 ºC)

The message consists of five important elements that make up the message.

1. “High Level”

2. “(> “(note the spaces)

3. 75 (a value set by Alarm level)

4. ºC (a value set by Signal.parameters.unit)

5. “)”

All in all, three strings (1, 2, and 5) and two values (3 and 4).

Defining these 3 strings locally would be poor design, since the strings would be
defined for every object that is created from the type. To create a dynamic
environment, use project constants, or, more specifically, structured project
constants.

In the example above, we actually have different string categories – “High Level”,
“(> “, and, “)”.

The first one is a (dynamic) string that a user may want to translate, depending on
target customer nationality, whereas the other two are static and independent of
language. This calls for two different views of project constant.

Signal

Alarm level

Message

AlarmCond
3BSE040935-510 81

I/O Addressing Guidelines Section 1 Basic Functions and Components

Using structured project constants, and the naming convention mentioned earlier in
this section, a defined structured project constant for “High Level” could be:
cACMEValveLib.Settings.HighLevelLabel.

As described in the first example (Example 1 above), we make use of the
component “Settings” in the structure. Underneath this component, we define the
constants that are to be translated, or changed, depending on circumstances.

Next, we define the structured project constant cACMEValveLib.Internal.Str1 and
cACMEValveLib.Internal.Str2 to contain “(> “and “)”. Note the component
“Internal”, which implies that components (constants) under this level are not to be
changed by the user. Of course, the user can use the structure
cACMEValveLib.Settings.Labels.HighLevel, as described earlier, if the user
prefers more levels.

I/O Addressing Guidelines

A good I/O variable structure is the key to being able to debug and change an
application. A good structure also makes the connection of the application to system
I/O easier to read and understand.

Below are some hints and tips to ensure that the I/O connections have a good
structure.

• A good I/O connection structure requires a good application program structure,
and also a realistic translation of the process to be controlled, into the
application program.

• Try to collect I/O of the same process object in the same controller, and even in
the same object in the application program.

• Try to divide the application program into process cells, with contents similar
to the real process.

These hints are basic rules for object-based programming for real processes, and
once the application has a good structure, it is easier to divide I/O signals into
groups or cells of the process.
82 3BSE040935-510

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

Connecting Variables to I/O Channels

Only one variable can be connected to each I/O signal, and vice versa. This is not a
problem for output signals, but for input signals it may be necessary to read the
same input signal from different programs, or even from different places in the same
program. This can be done by placing the connected IO variables in a common area,
for example, in the application. Then the variables can be read by the program(s).

Note that the result of an IO copying is different depending on whether the
parameter is IN or IN_OUT. An IN parameter will result in a copy of the value,
whereas an IN_OUT parameter will result in a reference to the current value. While
different tasks can copy the same I/O signal, a task with a higher priority may
update the signal value in the middle of a scan. See also Function Block Execution
on page 49.
3BSE040935-510 83

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

If the same I/O signal must be read by different applications, the I/O copying must
be done from one of the applications. The copied value can then be moved to other
applications through ordinary communication services. See also Communication
between Applications Using Access Variables on page 68.

The address for a hardware unit is composed of the hardware tree position numbers
of the unit and its parent units, described from left to right and separated by dots.
For example, channel 1 on the I/O unit DO814 in Figure 28 has the address
Controller_1.0.11.1.1.

Figure 28 illustrates an example of a controller hardware position.

Figure 28. An example of how IO channel addresses are created in a control project.

All I/O access is done via variables connected to I/O channels and these variables
are connected in the hardware configuration editor. The Connections tab displays all
channels that can be connected.

Controller_1

Position 11

Unit 11.1

Channel 1
= Controller_1.0.11.1.1

Hardware pos. 0
84 3BSE040935-510

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

I/O Data Types

Variables connected to I/O can be of any of the simple data types, bool, dint, dword
or real, or any of the system-defined I/O data types. For example, an IO unit input
can be connected to a variable of bool data type or a variable of BoolIO data type.
For applications that only require a simple channel value, it is enough to connect a
variable of simple data type. But for applications that need comprehensive
information like forcing IO channels, reading status, or validate analog channel
values, must connect variables that is of system defined (structured) IO data type.

The user can always choose a variable that is of the simple data type bool, dint,
dword, or real, and connect it directly to the I/O channel, as long as the user is
content with a simple value in return. However, such a connection does not take
advantage of certain auxiliary signals which come with structured data types. A
predefined structured data type includes signals for I/O forcing, analog signal status,
maximum and minimum values, etc.

Figure 29 presents as an example the available components inside the structured
data type BoolIO.

A structured data type (for example, the BoolIO data type) contains four
components. Declare a local variable MyIOVar as a BoolIO data type, and then

It is possible to force I/O values, and display forced and non-forced values from
an engineering station, regardless of whether the channel is of a simple data type
or an I/O data type.

Always use In_Out parameters when writing to output I/O variables from a
function block. This will prevent unintentional overwriting of I/O variable
component values, such as scaling. Do not use Out parameters for this purpose.

Figure 29. Components inside the structured data type BoolIO
3BSE040935-510 85

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

connect MyIOVar to an IO channel to automatically access these four component
values at the same time.

Declaring MyIOVar as a simple data type, Bool, provides access to the channel
value. In other words, the user cannot read or write other values from the code.

Table 8 shows the (hardware editor) entries to different IO channels. The Type
column presents the IO channel data type in the hardware editor, whereas the
Variable column presents possible data type connections (simple, structured).

See Figure 30 and the corresponding structured data types in Table 8.

By declaring a structured data type, more information can be accessed from the
IO channel, which can be read/written in code.

When connecting a structured data type to an I/O channel, always connect the
data type (like MyIOVar). Do not try to connect one of the components inside
(like Value, I/O Value, Forced etc.) directly on the I/O channel.

Table 8. Possible variable (data types) connections to IO channels.

Channel Name Type Variable

IX, QX Boolean. input (IX) and
output (QX)

BoolIO bool, BoolIO

IW, QW Non-boolean. input (IW) and
output (QW)

RealIO real, RealIO

IW, QW Non-boolean. input (IW) and
output (QW)

DintIO dint, DintIO

IW, QW Non-boolean. input (IW) and
output (QW)

DwordIO dword, DwordIO

IW0, QW0 (1)All Inputs, All Outputs

(1) ISP and OSP values are not set for variables connected to All Inputs/All Outputs!
For more information see also Access All Inputs and All Outputs on page 270.

DwordIO dword, DwordIO

IW0 Channel status DwordIO dword, DwordIO

IW0 UnitStatus HWStatus dint, HWStatus
86 3BSE040935-510

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

Figure 30. A correct way of connecting IO variables. The structured data type
MyIOVar connected to an IO channel.

Example of I/O Channel Representation

The IO channel in Figure 30, IX0.11.1.1, interpreted from Table 8, gives the
following: IX is a Boolean input, whereas 0.11.1 represents the hardware address
and .1 represents the I/O channel.

Monitoring the Status for Hardware and I/O

UnitStatus is a hardware connection to individual hardware and I/O units in the
Project Explorer. The user can connect a variable to Unit Status by selecting the
Unit Status tab in the hardware editor.

If the user chooses to connect a variable to Unit Status this must be either of a dint
data type or of an HWStatus structured data type. The simple data type dint will
return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information. See the
contents inside the Unit Status tab in Figure 31.

IO channel of type boolIO. MyIOVar of BoolIO (correct connection).
3BSE040935-510 87

Extensible Parameters in Function Blocks Section 1 Basic Functions and Components

Figure 31. The components available inside the HWStatus.

In addition to the Unit Status there is a 'collective' hardware connection,
AllUnitStatus, which contains errors and warnings regarding all hardware units
connected to the controller.

Similar to Unit Status, the user can choose to connect a variable of simple data type
dint or a variable of the structured data type HWStatus. The simple data type dint
will return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information.

Figure 32. The AllUnitStatus connection gives access to the status of all units.
.

Extensible Parameters in Function Blocks

Some function block types have extensible parameters, such as MMSRead,
COMLIRead, etc. This means that the number of input/output parameters is
changeable, and must be specified while declaring the function block in the function
block tab.

For information about supervising IO channels and unit status in online mode, see
Supervising Unit Status on page 267.
88 3BSE040935-510

Section 1 Basic Functions and Components Keywords for Parameter Descriptions

The editor automatically inserts [1] when the user specifies a function block type
with extensible parameters. Change the number within the brackets to the required
number of parameters.

To see which function block types can have extensible parameters and the
maximum number of parameters for each type, see the Control Builder online help.

Keywords for Parameter Descriptions

Types that are located in standard libraries contain keywords in the description
column for parameters. These keywords help the user to organize the parameters
and document the purpose of parameters.

In the Function Block Diagram (FBD) and Ladder Diagram (LD) languages, a
maximum of 32 extensible parameters per function block can be shown.

There is no support for online values on Extensible Parameters. No such values
will be presented in online editors or in the project documentation and
consequently it is not recommended to trust these values.

Table 9. Type description keywords.

Keywor
d

Description

IN The parameter direction is IN (read).

OUT The parameter direction is OUT (write).

IN(OUT) The parameter direction is both IN and OUT, but mainly IN (read).

OUT(IN) The parameter direction is both IN and OUT, but mainly OUT (write).

NODE Applies only to control modules. Used to indicate that the parameter has
a graphical connection.

EDIT Applies only to IN parameters. The parameter, which must have a value,
is only read following changes to the application, warm restart or cold
restart.

Be careful not to connect a variable to a parameter with the keyword
EDIT. Use a literal instead.
3BSE040935-510 89

Library Management Section 1 Basic Functions and Components

Library Management
From the user point of view, there are two main types of library:

• Standard libraries, that are installed with the product. These are protected and
cannot be changed.

• User-defined libraries, in which users can add their own types. Copies of
template types (data types, function block types and control module types),
from the standard libraries can be modified and also added into the
user-defined libraries.

The following operations are relevant to both library types:

• Libraries must be inserted into the control project in which they are used, see
Insert Libraries into Control Projects on page 92.

• A library that contains types for applications must be connected to all libraries
and applications that use types from the library. Libraries containing the
hardware types (units) used in the controller configuration have to be
connected to the controller. See Connect Library to Application, Library or
Controller on page 92.

• A library can be disconnected from, an application, library or controller, see
Disconnect Libraries on page 94.

The following operations are relevant to non-standard libraries only, since standard
libraries are protected and cannot be changed:

• A new library can be created, see Create Libraries on page 95.

• The state of a library can be changed, see Library States on page 95.

• The version of a library with hardware types can be changed, see Library
Password Protection on page 96.

• Types can be added to a library with hardware types, as long as its state is
Open, see Add Types to Libraries Used in Applications on page 97 and Add
Customized Hardware Types to Library on page 100.

• A library with hardware types can only be deleted if it is not connected to any
application, library or controller.

• A library can be password-protected, see Library Password Protection on page
96.
90 3BSE040935-510

Section 1 Basic Functions and Components Connect Libraries

Connect Libraries

In Project Explorer, libraries connected to a control project are stored in the
Libraries folder, while libraries connected to applications and libraries are stored in
the Connected Libraries folder, see Figure 33.

Figure 33. Libraries in Project Explorer.
3BSE040935-510 91

Connect Libraries Section 1 Basic Functions and Components

Insert Libraries into Control Projects

A library always has to be inserted into the control project before it can be
connected to an application or a controller. To connect a library to a control project:

1. In Project Explorer, expand the Project folder.

2. Select the Libraries/Hardware folder, right-click it and select Insert Library.

Connect Library to Application, Library or Controller

To connect a library to an application, a library or a controller:

1. In Project Explorer, expand the corresponding Library, Application or
Controller folder.

2. Select the corresponding Connected Libraries folder, right-click and select
Connect Library.

Replace Connected Library

A connected library can be replaced, for example, when the user wants to update to
a newer library version. Replacing to a newer version, results in that all instances of
a type in the new library will be used instead of the type in the old version.

To replace a connected library:

1. In the corresponding Connected folder, right-click the library and select
Replace Library.

2. Press the Yes button and select a library from the drop-down list in dialog.

3. Click the Replace button to confirm.

Library Usage

The Library Usage function displays the list of places where a library is used, and
where it is connected. For ordinary libraries the Library Usage function searches
applications and other libraries. For libraries with hardware, it searches controllers.

It is also possible to connect a library using drag-and-drop operation. Select the
library to be connected, and drag it to the required application, library, or
controller folder.
92 3BSE040935-510

Section 1 Basic Functions and Components Connect Libraries

1. Right-click the library and select Library Usage as in Figure 34. The Library
Usage dialog is displayed with list of applications where the library is
connectedas in Figure 35.

Figure 34. Library Usage
3BSE040935-510 93

Connect Libraries Section 1 Basic Functions and Components
 Disconnect Libraries

A library can only be removed if the library and its types are not used within the
project.

To remove a library from a control project:

• In the Libraries/Hardware folder, right-click the library and select Remove.
The library is removed from the control project.

• If the Library is in use the following dialog displays.

• Click Yes to see the Library Usage dialog.

Libraries can be disconnected from both applications, libraries and controllers:

Figure 35. Library Usage dialog showing connected Libraries
94 3BSE040935-510

Section 1 Basic Functions and Components Create Libraries

• In the corresponding Connected folder, right-click the library and select
Disconnect (Library). The library is disconnected, but it can be re-connected
at any time, since it is still inserted to the control project.

Create Libraries

To create a new library:

1. In Project Explorer, right click Libraries or Hardware and select New
Library... The New Library dialog is displayed.

Figure 36. New Library dialog.

2. Enter the name of the new library and click OK. The new library is created and
inserted into the control project.

Library States

A library is always in one out of three possible states:

• Open
The contents of the library can be changed. This is the normal state for a library
when it is under development.

• Closed
The contents of the library cannot be changed. However, the state can still be
changed back to Open.

Released
The contents of the library cannot be changed after it is set to released state.

New library versions cannot be made in Compact Control Builder. A library set
to released state cannot be changed again.
3BSE040935-510 95

Library Password Protection Section 1 Basic Functions and Components

To change the library state:

1. In Project Explorer, right-click the library and select Properties>State. The
State dialog is displayed.

Figure 37. State dialog.

2. Select the desired state and click OK. The library state is changed.

The library state can only change:

• From Open to Closed or Released.

• From Closed to Open or Released.

Library Password Protection

To password protect the libraries:

1. Right-click the library and select Properties>Protection. The Password dialog
is displayed.

Figure 38. Password dialog.
96 3BSE040935-510

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

2. Enter the new password and confirm it in the Verify new password field.

3. Click OK. The library can now not be changed without entering the password.

Add Types to Libraries Used in Applications

Types can only be added if the library state is Open.

Follow the steps below to add the following functions in a library:

1.
Figure 39. Library with sub folders.

If the library is already password protected, you have to enter the old password
before entering a new one. A password may consist of both letters and digits. It
must be at least 6 characters long.
3BSE040935-510 97

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

2. To the library (see Figure 39), add the following:

a. To connect another library to library, right-click the Connected Libraries
folder and select Connect Library.

b. To add project constants to library, right-click the library folder and select
Project Constants.

Figure 40. Adding a Connect Library

Figure 41. Adding Project Constants
98 3BSE040935-510

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

c. To add a type to the library, right-click the folder corresponding to the
type you want to add and select the command for creating a new type

Figure 42. Adding a type
3BSE040935-510 99

Add Customized Hardware Types to Library Section 1 Basic Functions and Components

Add Customized Hardware Types to Library

Customized hardware types can only be added to the library if the library state is
Open. To add a customized hardware type to a library:

1. In Project Explorer, expand Libraries > Hardware.

Figure 43. Hardware with its libraries.

2. Right-click Hardware types folder under your chosen library, and select
Insert/Replace Hardware Type(s).

3. Browse and select the device capability description file (for example a *.gsd
file) you want to add as hardware and click Open. (See also Supported Device
Capability Description Files on page 101).

4. The Device Import Wizard starts. Follow the instructions in the wizard.

In exceptional cases, it is possible to insert individual external customized hardware
types to a user-defined library, for example, a hardware type of a *.gsd file that have
been converted and used in an earlier version of Control Builder.

In this case, right-click the Hardware types folder under your chosen library and
select Insert/Replace Hardware Type(s) and browse to the hardware type (*.hwd

For more information on working with types and project constants, see
Application Types and Instances on page 30.
100 3BSE040935-510

Section 1 Basic Functions and Components Device Import Wizard

file) to be inserted. With Insert/Replace Hardware Type(s) it is also possible to
replace same hardware type.

Device Import Wizard

You use this wizard to import a device capability description file. The wizard will
convert this file to a hardware type and insert the type into a user-defined library.
The appearance of some wizard dialog boxes will be different depending on the file
type to import.

• You can import a new device capability description file, as described above
(Add Customized Hardware Types to Library on page 100).

• You can change conversion settings for a previous import, as described in
Wizard on page 104.

• When you receive an updated device capability description file, you may want
to replace the previous import. Import the new file the same way as the old one,
as described above.

Supported Device Capability Description Files

You can only import supported device capability description files. The following
files are supported:

• PROFIBUS GSD files

• PROFINET IO GSD files

• DeviceNet EDS files

For PROFIBUS GSD-files, *.gs? is the standard file extension. However, a file can
also have a different extension that specifies its language, for example, *.gse
(English) or *.gsg (German).

Always complete the wizard, even if you are not finished. Then, you can re-
import the file and continue where you left off.

When a wizard dialog box is displayed, relevant information is read from the
device capability description file. If it is large this may take a while, and a
progress bar will be shown.

For more information on the Device Import Wizard, refer to the online help.
3BSE040935-510 101

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

For PROFINET IO GSD files, *.xml is the standard file extension. PNIO uses
GSDML, an XML based markup language to describe the characteristics of the
PNIO devices.

For DeviceNet, *.eds is the standard file extension. DIW will convert the EDS file
to a hardware definition file (HWD File) and insert it as a hardware type into the
user-defined library.

Additional Files for Libraries with Hardware

There are a number of files associated with libraries for hardware and hardware
types. For standard system libraries, it is not possible to perform any operation on
these type of files. For a user-defined library there are some files that can be
managed.

The file types, described below, are associated with the hardware definition and
cannot be changed or replaced.

File Types Associated with Hardware Types

To display the Additional Files dialog for a hardware type:

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Files.

You can only import PROFIBUS GSD-files with hardware types for CI854, and
not for CI851. (However, when you upgrade a previous system offering, any
included hardware types for CI851 will be upgraded as well.)

For more information on using DIW for importing gsd, xml and eds files into the
Control Builder, refer to:

• AC 800M, PROFIBUS DP, Configuration (3BDS009030*).

• AC 800M, ProfiNet I/O, Configuration (3BDS021515*).

• AC 800M, EtherNet/IP DeviceNet, Configuration
(9ARD000014*)
102 3BSE040935-510

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

The only file type (in a user-defined library) that the user can perform any
operations on is the Help File. See Help File on page 105.

The file types, listed in Table 10, are associated with the hardware type and cannot
be modified by the user.

File Types Associated with Libraries

To display the Additional Files dialog for a library with hardware types:

1. In Project Explorer, browse Libraries > Hardware.

2. Right-click the library and select Properties > Files.

Table 10. File Types Associated with Hardware Types

File Type Description

Firmware File Firmware file for CPU or communication interface unit.

Update File Update file for firmware; a download support file.

Firmware Idx File Idx file for firmware, used when analyzing a crash dump.

Protocol Handler Control
Builder File

Protocol handler used by Control Builder.

Protocol Handler Control
Builder File

Protocol handler used by Control Builder.

Protocol Handler Controller
File

Protocol handler used by controller

Protocol Handler Idx File Idx file for controller protocol handler, used when analyzing a
crash dump.

It is only possible to manage Additional files for a user-defined library.
3BSE040935-510 103

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

The file types, lsited in Table 11, are associated with the library.

Wizard

Settings for a previously added device capability description file can be changed.

1. In Additional Files for a library, select the row with the device capability
description file (Import File) and press the Wizard button.

2. In the displayed Device Import Wizard, define the new conversion settings.

Table 11. File Types Associated with Libraries

File Type Description

Help File A help file (of *.chm or *.hlp type) can be added, replaced, deleted
or extracted, See Help File on page 105

Import File Import file is a device capability description file (for example a
*.gsd file) that has been added with the Device Import Wizard.
This type of file can be deleted (Delete button), or extracted
(Extract button) to a file on disk. By pressing the Wizard button it is
also possible to change the previous done settings. See Wizard .
104 3BSE040935-510

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

Help File

A help file (of *.chm type) can be added, replaced, deleted or extracted for a
customized hardware type, as well as for a user-defined library.

Adding a help file to a customized hardware type or a user-defined library provides
access to the associated help file when you press F1on the user-defined library or on
the customized hardware type, in Project Explorer. For further information about
requirements on customized online help, see the Compact 800 Engineering
Compact Control Builder AC 800M Binary and Analog Handling (3BSE041488*)
manual.

To add a help file to a user-defined library or to a customized hardware type:

1. In Additional Files dialog, select the Help File row and press the Add button.

Browse to the help file (of *.chm type) and click Open.

Replace and Delete

A help file that has been added can be replaced and deleted by selecting the row
with the help file and pressing Replace and Delete button respectively. It is also
possible to delete a device capability file (Import File) for a user-defined library.

Extract and Save a Copy of a File

A help file can be extracted and saved on disk by selecting the row with the help file
and press the Extract button (to the right of the grid). Browse to a place on disk and
save a copy of the file by pressing Save button.

In some exceptional cases there is a need to extract an individual customized
hardware type to a hardware definition file (*.hwd file). In this case, press the
Extract button under Hwd File.

Properties on Hardware Types

In Additional Files for a customized hardware type, it is possible to set a version
information text of maximum 18 character to the help file, by pressing the
Properties button.
3BSE040935-510 105

Delete Hardware Types Section 1 Basic Functions and Components

Delete Hardware Types

A hardware type in a library can be removed.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Remove.

Type Usage for Hardware Types

It is possible to display a list of which controller(s) that use(s) the hardware type
together with hardware tree position numbers.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Type Usage.

Figure 44. Type Usage for a selected hardware type.

It is not possible to remove a hardware type from a library, if it is used in any
hardware configuration.
106 3BSE040935-510

Section 1 Basic Functions and ComponentsHide and Protect Control Module Types, Function Block

Hide and Protect Control Module Types, Function Block
Types and Data Types

When you create libraries with self-defined control module types, function block
types and data types, Control Builder provides you with two protection features
(attributes). These two attributes are called Hidden and Protected, and can be set
from Project Explorer.

Hidden

Setting the Hidden attribute will completely hide your code from other users. To
hide the code makes it easier to improve your type as often as you like. This is a
common situation when developing types that will be re-used over and over again in
different library solutions.

Protected

Setting your type to Protected will protect the internal type structure from being
seen. This means that only the type itself will be visible, and thus your type
definition will be protected from external exposure, as well as any attempt to
duplicate it. This is extra valuable when you create a type solution for re-use
engineering. When you set the protected attribute, the type interface will be
read-only to other users, meaning that only parameter connection is possible. The
complete type structure will still be protected from external exposure.

Override

After you have protected your types, you can always override the hidden and
protected attribute temporarily, while you work on improvements. The override
protection property can be set in Project Explorer.

The Hidden and Protected attribute can also be used for structured data types.
3BSE040935-510 107

Protect a Self-Defined Type Section 1 Basic Functions and Components

For self-made libraries with password protection, you must enter the password
before you make an override, see Library Password Protection on page 96

Protect a Self-Defined Type

To protect a self-defined type:

1. In Project Explorer, right-click the type and select Properties > Protection
and Scope. A Protection and Scope window opens.

2. Check the desired protection radio button(s) and click OK.

Override Protection Attributes

To override protection for a library or application:

The protection cannot be overridden for Control Builder standard libraries. They
cannot be updated or changed by the user.

Figure 45. Protection and scope
108 3BSE040935-510

Section 1 Basic Functions and Components Protect a Self-Defined Type

1. In Project Explorer, right-click the library (or application) and select
Properties > Protection. A Protection Properties window opens.

2. Check the Override check box (see figure above) and click OK. The Override
feature will have impact in Project Explorer only.

Figure 46. Protection properties
3BSE040935-510 109

Task Control Section 1 Basic Functions and Components

Task Control
A task is defined as an execution control element that is capable of starting, on a
periodic basis, the execution of a set of POUs (Programs, Function blocks, functions
etc.).

The Control Builder setup three tasks (Fast, Normal and Slow) by default, provided
that an AC 800M Control Project template has been selected. The tasks are
connected to their respective programs (one task per program). The tasks serve as
'work schedulers' for the programs and contain settings for interval time and
priority. However, setting interval time and priority is not enough; you must also
tune your tasks.

If a program does not have a task connected, it will run by the task connected to the
corresponding Application.

You may create and connect several tasks to a controller, but experience show that
more than five tasks in each controller makes it difficult to overview.

The Control Builder provides a Task Analysis tool that predicts the execution of an
application by the controller before loading it onto the controller. See Task Analysis
on page 131 for more information.

Task Connections

A task can be connected to a program, a function block, a control module or a single
control module, and several tasks may execute in the same controller. An
application can also be connected to a task, and all POUs in an application execute
in this task, unless otherwise specified. A task can only execute POUs in one
application. Hence, POUs from different applications can not be connected to the
same task.

To learn how to tune tasks, see Compact 800 Engineering Compact Control
Builder AC 800M Planning (3BSE044222*) manual.

Do not re-connect tasks to applications unless it is necessary, as this might
disrupt the task execution during reconfiguration. Else change the parameters of
the connected task (to fit the needs).
110 3BSE040935-510

Section 1 Basic Functions and Components Task Connections

Create a New Task

To create and configure a new task:

1. Expand the Hardware tree, until you find Tasks.

2. Right-click Tasks and select New Task. A ‘New Task’ window opens.

3. Name the task.

4. Click OK.
3BSE040935-510 111

Task Connections Section 1 Basic Functions and Components

Figure 47. A new task has been created.

After the task has been created, it is time to configure the task with new properties.

5. Right-click the new task (Superfast) and select Properties. A ‘Task Properties’
window opens.

Figure 48. A Task Properties window for configuring a task.

6. Change the interval time to 40 ms and Priority to 1-Highest. Click Apply
followed by Close.

7. Right-click Tasks and select Editor to view the new task. A ‘Task Overview’
window opens.
112 3BSE040935-510

Section 1 Basic Functions and Components Task Connections

The Task Overview window lists all the tasks with each property settings. To
change the settings for a certain task:

8. Select a task in the Task Overview window and open Tools > Task
Properties.

Connect a Task to a Program

To connect the task SuperFast to Program1:

1. Right-click Program1 and select Properties > Task Connection. A ‘Task
Connection’ dialog opens.

2. Select a task from the drop-down menu (here SuperFast) and click OK.

Right-click a task directly in the hardware tree and select Properties to open the
Task Properties window directly.

Select Tools > Reset Max, to reset all tasks that appear in the editor.
3BSE040935-510 113

Task Execution Section 1 Basic Functions and Components

Figure 49. Program1 has changed task to Superfast.

Function Blocks with Different Task Connections

You can connect function blocks inside a program to a task different from the one
connected to the program, (right-click on the function block and select ‘Task
Connection’).

However, variables inside the function block that pass values to and from the
function block are controlled by the program task. The code in the function block
will run according to its task, but the parameters will be updated according to the
program task. This means, in practice, that the function block in a program can only
run at a slower, or a least at the same, speed as the program. However, if you use
external variables or connect I/O directly to the function block, there will be a direct
reference, independent of the task cyclicity of the function block.

To set-up specific time intervals and task priority different from the task connected
to the application whilst for example, designing libraries, can be done by declaring
and using global variables, or by using parameters.

Task Execution

There are four important task parameters that can be set to optimize program
execution:

• Priority, which sets the execution order for tasks, see sub section Priority
below.

• Interval time, sets the task intervals during the program is executed, see sub
section Interval Time on page 117.

For more information, see Control the Execution of Individual Objects on page
75.
114 3BSE040935-510

Section 1 Basic Functions and Components Task Priority

• Offset, a parameter that helps you to avoid unexpected delays in execution
when tasks are scheduled to execute at the same time. See sub section Offset on
page 118.

• Execution time, for best real time behavior and communication performance,
avoid extensive continuous execution. See Execution Time on page 123 and
also Communication Considerations on page 121.

All POUs connected to a task execute with the same priority, interval time, offset,
and execution time.

Task Priority

There are six levels of priority: Time Critical, Highest, High, Normal, Low, and
Lowest, numbered from 0 to 5. The tasks are executed according to their priority,
where the time-critical task has the highest priority. A task with higher priority may
interrupt any task with lower priority, but a task cannot interrupt another task with
the same priority. There can only be one time-critical task. Such a task may interrupt
the execution at any point, while other tasks may only interrupt execution at defined
points.

An ordinary (non-time-critical) task can be interrupted:

• at the start of any code block,

• at backward jumps, for example for, while, repeat statements.

A time-critical task has special properties.

• The task is not driven by the same scheduler as the rest of the tasks. Instead, the
task is driven from the system’s real-time clock (hence the high precision).

• The tasks have high precision in execution time. The resolution is 1 ms.

• A change to/from time-critical priority in Online mode is not possible.

• A change to/from time-critical priority in Offline mode requires re-compilation
of the application.

Consider the following points, when using the time-critical priority.

• Only one time-critical task per controller is allowed.
3BSE040935-510 115

Task Priority Section 1 Basic Functions and Components

• The execution time for a time-critical task (priority 0) must not exceed 100ms.
This restraint prevents the task from blocking other functions, for example
communication.

• All functions cannot be called from the program connected to the task. You
cannot set time-critical priority if the code contains invalid instructions (this is
checked during compilation). The time-critical task interrupts execution at any
time, which means that execution might be interrupted mid-statement.

• If a power failure occurs while the time-critical task is running, the execution
of the current code block is completed (assuming that it can be completed
within 1 ms). For a warm start to be possible, no code block in the time-critical
task may take more than 1 ms to execute.

Task priorities 1–5 can be set by using the firmware function SetPriority. This
function is located in the System folder.
116 3BSE040935-510

Section 1 Basic Functions and Components Interval Time

Interval Time
The interval time, during which the program is executed, is set in the Task
Properties dialog. Default values are 50 ms (Fast), 250 ms (Normal) and 1000 ms
(Slow). You can change these values at any time. For a time-critical task, the
interval time can be as short as 1 ms. The interval time of tasks of priority 1–5
cannot be less than 10 ms. The resolution is 1 ms.

Execution Example

Figure 50 shows two tasks executing in the same system. Task 1 and task 2 have
interval times of 30 and 200 ms, and execution times of 10 and 50 ms, respectively.

When the tasks have been assigned the same priority, the execution start time of
task 1 is very much delayed. It also drops one execution.

Figure 50. Execution of two tasks with the same priority.

In Figure 51, task 1 has higher priority than task 2, and interrupts the execution of
task 2. Hence task 1 is not delayed much by task 2.

If two tasks have the same priority, and they both wait for execution, the task
with the shortest interval time will be executed first.

All task intervals must be multiples of each other. The shortest interval is the
"time base".
3BSE040935-510 117

Offset Section 1 Basic Functions and Components

Figure 51. Execution of two tasks with different priorities.

Offset

If your tasks are scheduled to execute at the same time you will receive a warning
during download. However, this compiler function is merely calculating theoretical
periodic executions, which means that it will not warn you for task collision caused
by, for example a too close offset time. Therefore, consider the compiler warning as
a first preliminary check provided to you and not as a guarantee that will prevent
task collisions.

Two tasks will be scheduled to start execution at the same time if the greatest
common divisor of the tasks interval times divides the difference in the tasks
offsets.

Turning off Task Collision warnings

You can turn off the task collision warning from the Project Explorer.

1. Right-click the Project item and select Settings > Compilation Warnings
from the context menu. A Compilation warnings dialog will open.

2. Click to clear Task Collisions check box and then OK.

The compiler will detect inappropriate offset settings.

The offset of each task must be equal or greater than the sum of the execution
times of all higher-priority tasks.
118 3BSE040935-510

Section 1 Basic Functions and Components Offset

When tasks are scheduled to execute at the same time, the task with the highest
priority will be executed first. If tasks have the same priority the task with the
shortest interval time will be executed first. Offset is a mechanism that can be used
to avoid unexpected delays in execution when tasks are scheduled to execute at the
same time.

In Figure 52 and Figure 53, the execution of two tasks with the same priority with
interval times of 50 ms and 100 ms is shown. When both tasks have a 0 ms offset
(Figure 52), the execution start time of task 2 is delayed, and the actual interval time
for task 2 is influenced by variations in the execution time of task 1.

Figure 52. No offset. The two tasks have the same priority, but different interval
times (50 and 100 ms).

If task 2 is assigned an offset, as in Figure 53, neither task is delayed, and the actual
interval time for task 2 will not be affected by task 1.

Do not change task offset for a controller with a running application. This may
result in that the task executes one more time than expected.
3BSE040935-510 119

Offset Section 1 Basic Functions and Components

Figure 53. Offset is set on task 2. The two tasks have the same priority, but different
interval times (50 and 100 ms) and are thus executed at the requested times.

An application starts to execute by scheduling all tasks in the application to execute
at the same time. The task with highest priority is executed first, and if tasks have
the same priority, the task with the shortest interval time will be executed first.

Execution Synchronization

When a task has finished execution of the first scan after application start at time t,
the start of its next execution is synchronized to time 0 (the time the controller
started to execute).

t = n * (interval time) + d, 0 ≤ d < interval time

d is the time from the start of the current interval time, to when the task finished
execution in the current interval. The synchronization to time zero (0) implies that
the start of the next execution will be at the first start point after the current time.

If offset = 0, the task will be scheduled to execute at time (n + 1) * (interval time).
However, if the time to the start of the next execution, (interval time) - d, is less than
10 ms, the task will be scheduled to execute a time (n + 2) * (interval time).

If offset > 0, then if offset > d, the start of the next execution will be at a time
n * (interval time) + offset. If offset < d, the start of the next execution will be at a
time (n + 1) * (interval time) + offset. If the time to the start of the next execution is
less than 10 ms, the interval time will be added to the start time of the next
execution.
120 3BSE040935-510

Section 1 Basic Functions and Components Offset

The same synchronization of execution time will be performed after a change in
interval time or offset.

Time critical task is not synchronized to time zero (0).

Communication Considerations

POU execution has higher priority than other functions, such as communication.
These functions are performed in the gaps between the execution of different tasks.
If several tasks with long execution times are executed immediately, one after the
other, the time gaps are few but long (see Figure 54).

Figure 54. The result of having no offset for three tasks with long execution times.
The gap (Ta+Tb) is the time available for the execution of other functions, for
example communication.
3BSE040935-510 121

Offset Section 1 Basic Functions and Components

The offset mechanism can be used to make the time gaps more frequent (see
Figure 55).

Figure 55. The result of assigning offset to tasks 2 and 3, is that the time available
for the execution of other functions occurs more often (Ta).

The same processor handles communication and IEC 61131-3 code. This means
that you have to consider how much code you include in each task, when you tune
the tasks.

Assume that we have a task running code with an execution time of 500 ms and an
interval time of 1000 ms. This means a cyclic load of 50%
(load = execution time / interval time). But, this also means that no communication
can be performed during the 500 ms execution (since communication has lower
priority than the task).

Now, assume that we have divided the code into 4 tasks such that each one
corresponds to 125 ms of the execution time. The interval time is still 1000 ms,
hence the load is still 50%. But, if we set the offset for the 4 tasks to 0, 250, 500, and
750 ms, the result will be completely different. Now, code will be executed for
125 ms, after which there will be a pause when communication can be performed.
Following this, code will be executed for another 125 ms followed by another pause
when further communication can be performed. Hence, we still have the same
cyclic load, but the possibility for communication has increased considerably.

To conclude, try to tune your tasks using offsets before you change the priority.
Actually, the only time you have to change the priority, is when two tasks have so
much code that their execution cannot be “contained” within the same time slot, that
is, the total execution time exceeds the length of the time slot. It is then necessary to
specify which of the two tasks is most important to the system.
122 3BSE040935-510

Section 1 Basic Functions and Components Execution Time

Execution Time

The maximum allowed execution time for time-critical tasks must not exceed
100ms. This is also recommended for the other tasks in the controller. The
execution time for each individual task should be kept feasible to 100 - 200ms.

It is preferred to split the execution of a program or application into different tasks,
if the execution time is high and good real time behavior is needed. See
Communication Considerations on page 121.

Overrun and Latency
Overrun and Latency are two functions for supervising a task. Overrun checks if
each task finishes before it is supposed to start the next time, and detects if the task
runs for too long. Latency on the other hand, checks that a task starts on time (on
each cyclic start), and detects if the task starts too late.

The Overrun function is configured per controller via the Controller Settings dialog,
while the Latency function is configured per task via the Task Properties dialog.
Both Overrun and the Latency function uses the Error Handler to report any errors.

Overrun Supervision
Overrun occurs when the execution of a task takes too long, that is, the task is still
executing when the next execution of the task is scheduled to start.

By setting the maximum number of consecutive overruns allowed (missed scans),
you can control when a fatal overrun error is considered to have occurred, and
consequently configure a controller reaction.

These reaction settings are:

• Nothing,
• Stop Application,
• Reset Controller.

More information about task tuning can be found in the Compact 800
Engineering Compact Control Builder AC 800M Planning (3BSE044222*).

The maximum allowed execution time does not include the first scan execution
time.
3BSE040935-510 123

Overrun Supervision Section 1 Basic Functions and Components

In an AC 800M controller, load balancing and overrun supervision functions are
mutually exclusive, whereas the Load Balancing function is default. Hence, the
overrun supervision is turned off. For more information about load balancing and
cyclic load, see Load Balancing on page 128.

Configuring Overrun Supervision

Overrun supervision is set for each controller in the Controller Settings dialog. To
select Overrun Supervision for a controller, follow these steps:

1. Expand the Hardware tree until the controller (for example, Controller_1).

2. Right-click the controller and select Properties > Controller Settings from
the pop-up menu. A ‘Controller Settings’ dialog opens.

Figure 56. Controller Settings dialog for a AC 800M controller.

3. Uncheck Load Balancing, (Enable overload compensation check box).

4. Select a reaction for Fatal Overrun from the Reaction drop-down menu, (Reset
Controller or Stop Application will activate the Limit field).
124 3BSE040935-510

Section 1 Basic Functions and Components Latency Supervision

5. Enter the number of consecutive overruns allowed in the Limit field, (number
of consecutive overruns before a fatal overrun is considered to have occurred).

6. Use the tabs under Error Reaction to set-up actions for different error types and
severity. (For information on Error Reaction settings, see Controller Settings in
Controllers on page 289).

7. Click OK.

Latency Supervision

Latency occurs when the execution of a task is delayed, that is, the task starts to
execute later than scheduled. The latency function will supervise your tasks (start on
time on each cyclic load), and detect if a task starts sooner or later than scheduled.

Latency is activated in the Task Properties dialog, where you set the acceptable
latency in percent (accepted latency in percentage of the interval time). The lowest
accepted value for Latency Time is always 10 ms.

Configuring Latency Supervision

Latency supervision is set for each task in the Task Properties dialog. To select
Latency Supervision for a task, follow these steps:

1. Expand the Hardware tree, until you find Tasks.

If overrun errors occur, re-program the faulty task to decrease load.
3BSE040935-510 125

Latency Supervision Section 1 Basic Functions and Components

2. Right-click a task and select Properties from the pop-up menu. A ‘Task
Properties’ dialog opens.

3. Select Latency, (check Enable latency supervision check box).

4. Enter latency percentage into the Accepted latency entry field. The actual used
latency time is shown to the right of the entry field (here 25 ms). The lowest
accepted latency time is 10 ms.

5. Click Apply. Note how the actual latency time changes if the accepted latency
percentage exceeds 10 %.

6. Click OK.

If latency error occurs, tune the tasks. Information about task tuning can be found
in the Compact 800 Engineering Compact Control Builder AC 800M Planning
(3BSE044222*).

Enable
Latency supervision
check box
126 3BSE040935-510

Section 1 Basic Functions and Components Task Abortion

Latency Alarm Limit

A latency warning is issued if latency is above 70% of accepted latency. A system
alarm, actual latency in ms is generated, and added to the system log. A yellow
warning is written to the Actual column of Latency alarm limit and “Latency
high alarm limit exceeded” is written in the Remark field of the task properties
dialog.

Latency is measured on a periodic basic, the time from the start of one execution to
the start of next execution is measured. The latency is then calculated as the
difference between this value and the interval time. Latency can then be both
positive and negative. The maximum latency time is the absolute value of actual
latency.

Example

Task A: Interval Time=150 ms, Offset=0 ms, Priority=4 - Low and
Execution Time=1 ms.

Task B: Interval Time=150 ms, Offset=0, Priority=3 - Normal and
Execution Time=17 ms.

In this case the actual offset of Task A is about 18 ms and actual latency vary from
-1 to +1 ms.

The execution of task A is delayed about 18 ms for each interval, which results in an
actual offset of 18 ms. This delay is repeated for each period which result in a small
actual latency, -1 to +1 ms.

If the interval time of Task A is changed to 50 ms the actual latency of Task A will
assume the values -18 ms, 0 ms, +18ms. Actual offset will assume the values 0 ms
and 18 ms.

Task Abortion

If a task is aborted, the corresponding application will be stopped. The following
criteria apply to a task abortion.

If requested offset is 0 it is possible that actual offset is large, compared to actual
latency.
3BSE040935-510 127

Load Balancing Section 1 Basic Functions and Components

Time-critical Tasks

Time-critical tasks (priority 0) are aborted when the execution time exceeds 300 ms.

Non Time-critical Tasks

Non-time-critical tasks (priority 1-5) are aborted when:

• The execution time exceeds 10 seconds.

• The execution time exceeds (100 * IntervalTime).

This means that if IntervalTime is set to 100 ms or higher (100 * 100 ms = 10
seconds), tasks will be aborted if they have not been executed within 10 seconds.

If IntervalTime has been set to <100 ms, tasks will be aborted if they are not
executed within (100 * IntervalTime).

Load Balancing

The cyclic load is the percentage of controller CPU power used for program
execution of application code. If the cyclic load exceeds 70% in the controller,
so-called load balancing is initiated automatically. The interval time for all tasks,
except the time-critical task, is then generally increased, to limit the cyclic load to
70%.

If the cyclic load then falls below 70% again, the interval time will normally be
decreased in all tasks, except for the time-critical task. However, the interval time
never falls below the original defined interval time.
128 3BSE040935-510

Section 1 Basic Functions and Components Load Balancing

Whenever the interval time is changed due to load balancing, a SystemSimpleEvent,
expressed in percent (%) of the actual interval time, is generated, and added to the
system log.

Load balancing for the time-critical task is handled as follows (this differs from
non-time-critical tasks). The interval time for the time-critical task is increased,
whenever its execution time exceeds 50% of its interval time.

For example, if a time-critical task has an interval time of 100 ms, and the
execution time becomes 54 ms in an interval, then the new interval time becomes
108 ms. However, the interval time must be reset manually, after it has been
increased. The interval time of the time-critical task is never decreased
automatically, as for the other tasks.

Change the Requested Interval Time to its original value, or another suitable
value, in the Task Properties dialog (in Online mode). Press Apply or OK to
bring the reset into effect.

Whenever the interval time is increased for the time-critical task, due to load
balancing, a SystemSimpleEvent, expressed as the actual interval time in ms, is
generated and added to the system log.
3BSE040935-510 129

Non-Cyclic Execution in Debug Mode Section 1 Basic Functions and Components

Non-Cyclic Execution in Debug Mode

A task can be set up for non-cyclic execution. Use non-cyclic execution to simplify
the debugging of a program.

Debug Mode

Debug mode allows you to debug an application by halting the application running
in the controller, and executing the code one execution at the time.

Debug mode is enabled from the Task Properties dialog (right-click the task in
Project Explorer, and select Properties).

When you have selected Enable debug mode, you can halt the cyclic execution of a
task by clicking Halt. When the task is halted, you can execute the task once by
clicking One Execution. (This is referred to as “non-cyclic execution”.)

Other tasks will not be affected if one task is set up for Debug mode, they will run in
normal cyclic execution mode.

To return to normal cyclic execution of the task, click Run.

A task in Debug mode is indicated in Project Explorer with a warning icon (a
yellow circle with a black exclamation point).

Functions based on the real-time clock (PID controllers, timers, etc.) cannot be
properly debugged in Debug mode.

Timer functions will take into account the actual time elapsed since started,
regardless if, for example, the task is halted in Debug mode.
130 3BSE040935-510

Section 1 Basic Functions and Components Task Analysis

Task Analysis
The Control Builder provides a Task Analysis tool to predict the execution of tasks
in controllers before downloading the application to a controller.

The Task Analysis tool provides the following functions before the download of the
application:

• Analyzes the task scheduling in the application.

• Presents a graphical representation of how the tasks will execute with the
application.

• Detects possible overload situations before the download of the application.
The tool detects problems such as task latency, task overrun and overload of
task execution.

• Allows remedial actions by providing the option to change the execution time
of the tasks and view the updated analysis.

The Task Analysis tool can be used before normal download. For initial download,
the execution time of the tasks is assumed to be 1ms for the analysis.

If the task configuration in the Control Builder project is changed before a normal
download, the Task Analysis dialog box automatically appears during the normal
download.

To open the Task Analysis dialog box in Control Builder in Offline mode or Online
mode, go to Tools > Task Analysis.

The update of the task execution time using the Task Analysis tool updates the
task for analysis only. The actual execution time of the task need to be changed
by updating the Task Values in the Task Properties dialog in Control Builder.
3BSE040935-510 131

Exploring the Interface Section 1 Basic Functions and Components

Exploring the Interface

The Task Analysis dialog box displays a summary view, a detailed view, and the
status of the summary as shown in Figure 57.

Summary view

This view lists the controllers to which the applications are downloaded. A circular
icon (for example,) appears beside each controller indicating the various states.

The indications are:
• Red icon: Error
• Yellow icon: Warning
• Green icon: Ok

Figure 57. Task analysis tool opened from Tools > Task Analysis
132 3BSE040935-510

Section 1 Basic Functions and Components Exploring the Interface

If the task execution contains errors or warnings, the description of the error or
warning is also displayed.

Detailed view

This view displays each controller (listed in Summary view) in a separate tab, as
shown in Figure 57.

Click each tab to open the graph showing the task execution of that controller. The
tasks are plotted on the graph with the Priority on the Y-axis and the Time
(task execution time) on the X-axis. Moving the cursor over each task name opens a
tooltip displaying its execution time, interval time, and offset.

Status

This is found at the bottom of the tool interface as shown in Figure 57. It displays
the total number of errors and warnings, and the icon (in red, yellow or green). This
helps to decide if it is safe to download the new application.

The significance of the indications are described below:

• Red — the new application cannot be downloaded as there is a risk of
overloading the controller.

• Yellow — the download of the new application may cause overloading of
controller. The user must, based on analysis, decide if it is feasible to go ahead
with the new application download.

• Green — the new application is safe to be downloaded to the controller.
3BSE040935-510 133

Exploring the Interface Section 1 Basic Functions and Components

Task Analysis During Normal Download

If the task configuration in the Control Builder project is changed before the
download, the Task Analysis dialog box automatically appears during normal
download, with the additional options to accept or cancel the download (and
icons). See Figure 59.

Figure 58. Task Analysis tool with error and warning indications

If the Task Analysis dialog box shows errors, the icon is not activated.
134 3BSE040935-510

Section 1 Basic Functions and Components Exploring the Interface

The execution time is fetched from the controller.

Figure 59. Task Analysis with additional options to accept or cancel the download

If a task is not running in the controller when the execution time is requested, the
tool uses 1ms as the execution time, and the icon appears beside the
task name. See Figure 59. The icon also appears if the task execution time is
modified for analysis.

Accept
Reject

Execution Time = 1 ms
3BSE040935-510 135

Modifying Task Execution Time Section 1 Basic Functions and Components

Modifying Task Execution Time

The Execution Time of each task can be modified for analysis.

To modify the execution time of a task for analysis:

1. On the detailed view in Task Analysis dialog box, open the tab screen of the
controller for which the task need to be changed.

2. Click the icon, or from the toolbar, select Tools > Settings.

The Task Settings ControllerName dialog box appears as shown in Figure 60.

3. Modify the execution times under New Execution Time column
corresponding to the task name, and click OK.

The graph is updated as per the new execution time, and the icon appears
beside the task name of the modified task.

Error and Warning Categories

The errors and warnings that are displayed by the Task Analysis tool are generated
based on the following categories of analysis:

• Accepted latency
• Task latency
• Task overrun

Figure 60. Task settings
136 3BSE040935-510

Section 1 Basic Functions and Components Error and Warning Categories

• Interrupted execution
• Cyclic load overload
• Total load overload
• First scan execution limit

Table 12 describes these categories and the corresponding reasons for errors and
warnings.
In the Task Analysis dialog box, these errors and warnings are displayed with
relevant messages that describe the problem.

Table 12. Categories of errors and warnings in Task Analysis tool

Category Reason for Warning Reason for Error

Accepted latency An Accepted Latency value that is
set below 10% (default value) of the
Interval Time.

-

Task latency Any of the following:

• The latency is detected and it is
is not within the Accepted
Latency, but the latency
supervision is disabled.

• The time for which the task
scheduler does not execute
any task is too small (less than
10% of the execution time of
the task last executed).

The latency is detected and it is
not within the Accepted Latency,
and the latency supervision is
enabled.

Task overrun - The overrun is detected, that is,
the task has not finished executing
one scan before the next cycle is
supposed to start.

Interrupted execution The task is interrupted by a higher
prioritized task, and the task scan is
delayed.

-

Cyclic load overload The task uses more than 50% of the
total cyclic load in the controller.

The task uses more than 70% of
the total cyclic load in the
controller.
3BSE040935-510 137

Search and Navigation Section 1 Basic Functions and Components

Search and Navigation

The Search and Navigation function makes it possible for the user to search for
symbols (see Symbol and Definition on page 142) in a project, by using advanced
queries, for example, to find out where a certain variable is used in an application.

All symbols matching the search criteria are shown, together with definitions where
the symbols are declared. If a symbol is selected, all references where the selected
symbol is used in the project are also shown. By double-clicking on a definition, it is
possible to navigate to the editor where the symbol is declared. A double-click on a
reference shows the editor where the symbol is used.

Total load overload The total load in the controller is
above 70%.

The total load in the controller is
above 98%.

Note: This check is relevant for
download using Load Evaluate Go
as well as for the download with
modified execution times.

First scan execution
limit

The load dependent first scan
execution time (LFST) is 90% of the
maximum Interval Time+Accepted
Latency.

Tip: The duration of the first scan
execution time depends on the
cyclic load of the remaining tasks.
If the remaining tasks use L% CPU
load, the LFST = (FST*100)/(100-L).

The load dependent first scan
execution time (LFST) is more
than the maximum Interval
Time+Accepted Latency.

If a global variable and a data type in the application have the same name the
search data base will become faulty. This may results in that a symbol cannot be
found.

Table 12. Categories of errors and warnings in Task Analysis tool

Category Reason for Warning Reason for Error
138 3BSE040935-510

Section 1 Basic Functions and Components Search and Navigation Dialog

A report that contains the last search result shown in the Search and Navigation
dialog can also be generated (see Reports on page 152).

Search and Navigation Dialog

The Search and Navigation dialog mainly consists of Search settings, Symbol,
Definition and References. All Search settings are remembered and will be applied
next time the dialog is used (until Control Builder is shut down).

The Search and Navigation dialog can be accessed from Project Explorer, context
menus and editors:

• In the Project Explorer, select Edit > Search.

• Right-click a Project Explorer object (not Tasks) and select Search or
Alt+F12.

• Select Edit > Search or right click and select Search (or Alt+F12) in a POU
editor, a connection editor, a hardware editor or an access variable editor.
These editors also have a search tool bar button that has the same
function.

The Search and Navigation function is available in offline, online and test mode.
For information on search and navigation in online mode, see Search and
Navigation in Online and Test Mode on page 278.
3BSE040935-510 139

Search Settings Section 1 Basic Functions and Components
 Figure 61. The Search and Navigation dialog

Search Settings

The Search part of the dialog consists of the Search For: drop-down list, the Search
In: drop-down list, the Search Options radio buttons, the Max no of Hits edit field
and the Search button. Filter Result belongs to References (see Filter Result on
page 148) and the Rebuild button rebuild the Search data base (see Search Data on
page 152).

Search For:

In the Search For text field you enter the symbols to search for (see Symbol and
Definition on page 142). Search Options can be selected for the symbol text entered
in the Search For: text field. An empty text or an asterisk (*) character in the Search
For: text field search for all symbols. All symbols are case-insensitive, that is, a
search for the texts “my”, “My”, “mY” and “MY” gives the same search results.

References

Search

Symbol

Definition

settings
140 3BSE040935-510

Section 1 Basic Functions and Components Search Settings

Search Options

The default setting of Search Options is Match whole word. The Match substring
option searches for all symbols containing the entered text as a substring and the
Match prefix option searches for all symbols containing the entered text in the
beginning of the symbol names.

Max no of Hits:

The entered value in the Max no of Hits: field maximizes the number of symbols
that can be found at a search. The default value is 100.

Search In:

The selection in the Search In: drop-down list specifies where, in the project, you
want to search for the entered text symbol. An empty text field gives a search
through the whole project. Applications, Controllers or Libraries are selected if a
search after the Symbol is performed in all applications, all controllers or all
libraries respectively.

The text in the Search and Navigation Dialog on page 140,
Applications.Application_1.Program1 performs a search in Program1 of
Application_1. This search also finds symbols from libraries, because the HWStatus
data type is used in Program1.

Select Search “In: Applications” (not Controllers) if you want to know in which I/O
unit a certain variable is connected.

Example

In the example below, see Figure 62, a search for the variable “start” is performed to
find out which I/O channel it is connected to. “start” is connected to channel 1 in
hardware on position 0.11.3. By double-clicking on I/O channel (1), in References
pane, you navigate to the I/O unit editor there “start” is connected.

In Controllers it is only possible to search for access variables and I/O channels
as symbols, since the search symbol has to be defined (declared) under
Controllers, in Project Explorer, to match the search criteria.
3BSE040935-510 141

Symbol and Definition Section 1 Basic Functions and Components
 Figure 62. (Part of Search and Navigation dialog at top) A search for “start”
variable in “Applications” to find out which I/O channel “start” is connected to.
(Part of Hardware Editor at bottom).

Search Button

A click on the Search button performs the search according to the settings. The
search result will be shown.

Always on Top

If Always on Top is checked, the Search and Navigation dialog is placed in front of
all other Windows dialogs.

Symbol and Definition

The Symbol objects or the Definitions can be sorted in ascending or descending
order, by clicking on the corresponding title. A new click will toggle the sorting
order. The selected sorting order is remembered and will be used next time.
142 3BSE040935-510

Section 1 Basic Functions and Components Symbol and Definition

Figure 63. The Symbol and Definition part of the Search and Navigation dialog.

Symbol

A symbol is an object, which can be search for in a project, by using the Search and
Navigation dialog.

Examples of symbols are:

• hardware channels, access variables, project constants, variables, global
variables, external variables, parameters, extensible parameters, programs,
function blocks, function block types, control modules, control module types,
single control modules, data types, functions, Sequential Function Chart steps,
Sequential Function Chart transitions, Sequential Function Chart sequences,
applications, controllers and libraries.

Examples of objects that are not symbols:

• hardware types, tasks, task connections, comments, descriptions and language
statements in the code, labels in Instruction List code, code block names,
connected libraries.

A symbol can be selected by clicking on it, clicking on the definition of the symbol
or by using the arrow up/down keys on the keyboard.

Definition

The definition of a symbol is where the symbol is declared. The definition of a
variable is where in the project the variable is declared, for example in a program.
3BSE040935-510 143

References Section 1 Basic Functions and Components

It is possible to navigate to the definition by double-click on it or by using the
context menu. The enter key on the keyboard can also be used. The editor where the
symbol is declared is shown with the symbol highlighted.

Definition Context Menu

Right-click a Definition to get the context menu selections.

• Go To Definition in Editor navigates to the editor where the symbol is
declared.

• Go To Definition in Project Explorer navigates to the location of the symbol
in Project Explorer.

• Report... See Reports on page 152.

References

The References of a symbol is where in the project the symbol is used.

For example, a variable can be used/accessed by several code lines in several code
blocks, and as an actual parameter to a function call or function block call, or as a
parameter to a control module/single control module. The variable can also be used
(connected to) an I/O channel or an access variable.

Figure 64. The References part of the Search and Navigation dialog.

In the example in Figure 64, the AC 800M symbol is used at two locations:

• at line 3, position 47, in Code code block of Program1.
• in channel 0 of unit at position 0 in Controller_1.
144 3BSE040935-510

Section 1 Basic Functions and Components References

It is possible to navigate to a reference by double-clicking it, or by using the context
menu. The enter key of the keyboard can also be used. The present editor is shown
with the symbol highlighted.

References Context Menu

Right-click on a Reference to get the context menu selections.

• Go To Reference in Editor navigates to the editor of the selected reference.

• Go To Reference in Project Explorer navigates to the referenced object in the
Project Explorer.

• The Search menu selection gives the user a possibility to initiate new searches
from the references pane. This is useful when a variable/parameter is connected
to a parameter of a control module, single control module or a function block.

Figure 65. A search for Variable “AppVar1” in Applications.

In the example in Figure 65, Appvar1 is connected to a parameter SM1P1 of a
Single Control Module named SM1.

1. In References, select SM1.SM1P1(1).
3BSE040935-510 145

References Section 1 Basic Functions and Components

2. Right-click and select Search.
The Search For: and Search In: text fields will be automatically updated
according to Figure 66. A new search is performed.

Figure 66. A search for SM1P1 in SM1.

A new search can be done to follow parameter Par1 in single control module SM2.

3. In References, select SM2.Par1(1).

4. Right-click and select Search.

The Execute Search Instantly check box (see Execute Search Instantly on page
149) has to be checked. If it is not checked, the user must click the Search button.
146 3BSE040935-510

Section 1 Basic Functions and Components References

Figure 67. A search for parameter Par1 in SM1.

This example shows an easy way for the user to follow a parameter through a
control module hierarchy. The users only have to use the Search context menu to
follow the parameter downwards the control module hierarchy. It is also possible to
follow a parameter upwards a module/function block hierarchy.

Icons in References

The references are marked in blue and preceded by an icon.The icon can be any of
the following:

Icon Description

The symbol is written.

The symbol is read.

The symbol is a function block/function block call.

The symbol is accessed by reference.

The symbol is a reference to a graphical connection.
3BSE040935-510 147

Navigation to Editors Section 1 Basic Functions and Components

Filter Result

The Filter Result option makes it possible to show references with write access only,
or to show references with read access only.

The possible selections are read, write, I/O Channel Out and I/O Channel In. I/O
Channel Out shows references to output channels only, and Channel In shows
references to input channels only.

Navigation to Editors

It is possible to navigate to the following editors and dialogs:
– The POU editor
– The Connection editor (offline only)
– The Control Module Diagram editor
– The Hardware configuration editor
– The Access Variables editor
– The Project Constant dialog (offline only)

l

It is possible to navigate from a control module parameter or a single control
module parameter connection in the References to a Connection editor. However, if
the parameter connection is a graphical connection, Control Builder navigates to the
Control Module Diagram editor.

Search and Navigation Settings

The Search and Navigation settings dialog has settings for executing the search and
editing of the search fields.

Select Tools > Setup > Station > Search and Navigation Settings to view the
Search and Navigation settings dialog.

When navigating to an editor or a dialog the window already can be active, but
minimized, as well as hidden behind other windows.
148 3BSE040935-510

Section 1 Basic Functions and Components Search and Navigation Settings

Rebuild the Search Data when Opening Project

When this option is checked, Control Builder will rebuild search data when a new
project is loaded in the Control Builder. This check box is, by default, unchecked.

Rebuild the Search Data when Going to Online/Test Mode

When this option is checked, search data is rebuilt when Control Builder is entering
online mode or test mode. This setting ensures that the search data is consistent in
online and test mode compared to offline mode. This check box is, by default,
unchecked.

Execute Search Instantly

When this option is checked, the Search and Navigation dialog will instantly
perform a search when the dialog is accessed with the Search command, from a
menu or tool bar button, that is, the user do not have to press the Search button in
the dialog. The search is only performed if it is obvious what symbol to search for,
that is, both the Search For: and Search In: boxes in the Search and Navigation
dialog have to be filled in automatically. This check box is, by default, checked.

Figure 68. The Search and Navigation settings dialog with default settings

It is recommended to normally have this check box unchecked
3BSE040935-510 149

Search and Navigation Settings Section 1 Basic Functions and Components

Example:

Figure 69. Selection of the AC800MStatus in Program1.

1. Click on the AC800MStatus variable in code block Code in Program1.
2. Select Edit > Search (or Alt-F12).

Figure 70. The search result after performing above steps.
150 3BSE040935-510

Section 1 Basic Functions and Components Search and Navigation Settings

Allow editing of the Search Fields in Online/Test Mode

When this option is checked, it enables free editing in the Search field. It is
introduced since the strings in the search fields are very sensitive in this mode. A
single misplaced character ruins the search and the “search in” field is also case
sensitive. This check box is, by default, unchecked.

Iterative searches in Online/Test Mode

When this option is checked, the searches made in Online/Test mode are iterative,
and the search hits are presented in one pane. For details, see Search and Navigation
in Online and Test Mode on page 278.
This checkbox is, by default, checked.
3BSE040935-510 151

Search Data Section 1 Basic Functions and Components

Search Data

The Search data base contains search data, that is, information about all symbols,
information about the definition of each symbol and information about all
references of each symbol.

It is possible to perform a manual rebuild of the Search data base. The Search data
base can be rebuilt in the following ways:

• selecting Rebuild Search Data from the context menus of application,
controller and library.

• selecting Tools > Rebuild all Search Data

• clicking the Rebuild button in the Search and Navigation dialog

Reports

The search result can be transformed into a report by using Basic HTML Report.xslt,
that is by default installed together with Control Builder. The report contains the last
search result shown in the Search and Navigation dialog. All symbols, definitions
and references are included in the report. The symbols in the report are shown in the
same order as in the Search and Navigation dialog.

1. Right-click on a Definition and select Report....

Figure 71. The Create Search and Navigation report dialog.

2. Click Create Report button.
If the Open report with registered application is checked, the report will be
opened in a registered application. The Basic HTMLReport produces reports in
HTML format, that is, the report is opened in the registered Web browser.
152 3BSE040935-510

Section 1 Basic Functions and Components Input and Output Signal Handling

3. Specify a directory to save the report in and enter a suitable file name.

4. Click Save button to store the report file on disk.

It is possible to export the report to Microsoft Excel by using Export to Microsoft
Excel in the Internet Explorer context menu.

Input and Output Signal Handling
Signals start and end in I/O units with I/O channels of the RealIO data type.
Between input and output I/O units, signals are handled in I/O function blocks of the
RealIO data type, or directly in various function blocks, or in control modules of the
ControlConnection data type.

Over and under range measurement

Signal objects of real type are equipped with an option to increase the signal range
with a fixed pre-selected factor of +-15% of the specified range. You can select
individual Signal Objects connected to variables of data type RealIO on the
controller and set the input parameter EnableOverUnderRange to true. The Signal
Object enabled with over and under range feature, displays the output parameter
OverUnderRangeEnabled as true to inform the surrounding code about the extended
range.

The default value on EnableOverUnderRange depends on a global project constant
from BasicLib. The default value for this project constant is false and Over and
Under range feature is disabled.

Input objects connected to I/O.

To enable signal range extensions on input signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp
Analog in values as false. See Figure 72.
3BSE040935-510 153

Input and Output Signal Handling Section 1 Basic Functions and Components
 Figure 72. Enabling over and under range for input objects.
154 3BSE040935-510

Section 1 Basic Functions and Components Input and Output Signal Handling

Output objects connected to I/O.

To enable signal range extensions on output signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp
Analog out values as false. See Figure 73.

Figure 73. Enabling over and under range for input objects
3BSE040935-510 155

Backup Media Section 1 Basic Functions and Components

Backup Media
The AC 800M controllers contain a card slot located at the front of the controller.
This card slot allows the restore of the saved configuration data and firmware data
from the backup media.

The supported backup media for AC 800M controllers are:

• Compact Flash card (supported in all AC 800M controllers except PM891)

• Secure Digital card (supported only in PM891)

The backup media cards are useful to save data in case of unpredictable power
supply and for transferring new or updated applications to other controllers.

The card will be activated and read after a long controller reset (or power failure)
and your application(s) can be loaded into the new controller host without
performing a monitored application download from a Control Builder station.

Compact Flash

Compact Flash (CF) is a portable memory card that can be easily inserted to the card
slot located at the front of AC 800M controllers (except PM891).

For more information about the AC 800M controller, see the subsection ‘Product
Overview’ in the AC 800M Controller Hardware.

The backup media does not support distributed applications; hence you cannot
use the memory card in a controller that run distributed applications.

An AC 800M configured as time master (CNCP order number 1) does not
transmit any clock synchronization messages if it starts from a backup media
image, and the time quality in the AC 800M is bad due to a discharged battery.
The time in the AC 800M has to be manually set using the function block SetDT
in order to have the clock synchronization in place.

The "Daylight saving" and "Time zone" settings are not retained when starting an
AC 800M from backup media. If correct local time is needed, then the 1131
application must use the TimeZoneInfo function block to define the correct
settings.
156 3BSE040935-510

Section 1 Basic Functions and Components Secure Digital

Specifications for Compact Flash Card

The following are the specifications for the CF card used in AC 800M controllers
(PM8xx, except PM891):

• Formatted according to FAT16 or FAT32.

• Minimum read speed – 8MB/second.

• Minimum write speed – 6MB/second.

• Same (or better) ambient temperature operative range compared to the PM8xx
that uses the card.

Recommended Compact Flash Cards

Only industrial type Compact Flash cards must be used with the AC 800M
controller.

The recommended industrial type CF cards are:

• SanDisk Industrial Grade

• SiliconSystems SiliconDrive

Secure Digital

Secure Digital (SD) is a portable memory card that can be easily inserted to the card
slot located at the front of the PM891 controller.
3BSE040935-510 157

Adding CF Card or SD Card to Hardware Section 1 Basic Functions and Components

Specifications for Secure Digital Card

The specifications for the SD card used in AC 800M controller (PM891):

• Formatted according to FAT32.

• Minimum read speed – 8MB/second.

• Minimum write speed – 6MB/second.

• Same (or better) ambient temperature operative range compared to the PM891
that uses the card.

Adding CF Card or SD Card to Hardware

Ensure that BasicHwLib is inserted under Hardware and that it is connected to the
controller.

From the Project Explorer:

1. Expand the Controllers item until you reach the CF Reader (or SD Reader)
item (see Figure 74).

2. Right-click the CF Reader (or SD Reader) and select Insert Unit from the
context menu. A dialog opens.

3. Select CF Card (or SD Card) in the dialog, and click Insert.

4. Click Close.

Figure 74. The Controllers item expanded and the CF Card connected to the CF
Reader item.
158 3BSE040935-510

Section 1 Basic Functions and Components Saving Cold Retain Values on Files

Saving Cold Retain Values on Files

The cold retain values used by the backup media can either be saved cyclically via
the settings in the hardware editor, or from the code via the function block
(SaveColdRetain).

Either way, these values are only saved on files located on the backup media. Thus,
not be confused with the cold retain values saved by Control Builder or OPC Server
during a download.

An OPC Server will not be able to give any data at all in case the AC 800M before a
power fail executes an application downloaded from Control Builder, but starts to
execute a different version found at the backup media after the power is resumed.
All OPC quality will in this case be BAD, because the OPC Server has no way if
finding the correct description files.

Also note that cold retain values will not be saved on the backup media in case there
is an application version mismatch.

Setting Up Cyclic Save of Cold Retain Values

As mentioned earlier, saving cold retain values cyclic are one of two methods for a
single CPU configuration. The other method is saving cold retain values based on
process events, accomplished by calling the function block (SaveColdRetain) from
the code. You should typically decide one of these two methods. However, if you
run with a redundant CPU configuration, then you must read Cold Retain Values for
Redundant CPU Configuration on page 160.

This subsection will describe how to save cold retain values cyclic. Provided that
you have added the CF Card (or SD Card) to your Hardware tree, do the following:

1. Double-click the CF Card (or SD Card) and select Settings tab in the
hardware editor.

2. Set the cyclic interval time for saving cold retain values to file. The default
value is (60 min.). See Figure 75.

Read more about the SaveColdretain function block type in Control Builder
online help.
3BSE040935-510 159

Saving Cold Retain Values on Files Section 1 Basic Functions and Components

Figure 75. Settings for Save cold retain values (default 60 min.).

3. Close the hardware editor.

Cold Retain Values for Redundant CPU Configuration

If you have a redundant CPU configuration; you cannot save cold retain values
cyclic or by the function block.

However, you can always save cold retain values via the Tool menu in Control
Builder so that your cold retain values will be part of the application, thus be loaded
to the backup media.

To save cold retain values for a redundant CPU configuration in Control Builder,
first make sure your project is Online:

1. In the Project Explorer menu bar select Tools > Save “ColdRetain” Values. A
‘Save “ColdRetain” Values’ dialog will open.

2. Click Save. The cold retain values are saved with your application and you are
now ready to download to the CF card or SD card. These values will be
included when you download the next time to the CF or SD card.

To prevent CF card or SD card from saving additional cold retain values, you
must set the parameter Value to zero (0). Otherwise it will keep saving new
values to file. Setting the value to 0 would normally be the case before shipping
the backup media to a host control system.

If an AC 800M contains redundant communication interfaces on the CEX-bus,
then perform a download to the controller before creating the Compact Flash
image. Make sure that the project is not closed while creating the image and
before it goes offline, else the image is not completed.
160 3BSE040935-510

Section 1 Basic Functions and Components Downloading the Application to Removable Media

Downloading the Application to Removable Media
Before you can download your application to the backup media, you must connect
an external Compact Flash Writer or Secure Digital Writer to your Control Builder
PC. The writer is normally connected to the PCs USB port.

From the Project Explorer, make sure your project is in offline mode:

1. Insert a Compact Flash card or a Secure Digital card in the Writer slot.

2. Right-click controller and select Download to Removable Media from the
context-menu. A Backup Media dialog window will open.

3. Select Writer and click OK. The Control Builder will write the application to
the backup media.

Configuration Load
Configuration Load means to load a controller configuration, all applications and
their corresponding cold retain values from the backup media. After a configuration
load, the application can read all the critical process (cold retain) values that was
stored on the backup media (CF card or SD card).

If or when a control system is shuts down due to power failure, and no battery
backup in the controller is available, the backup media can re-boot the control
system with the latest and the most efficient cold retain values.

In case the Control Builder source code files is to be placed on the CF/SD card, it
is recommended to zip these files into one single file before placing it on the
card.

For a redundant CPU configuration, you need to write the same application twice
(two CF/SD cards, one in each CPU). Copy (in Windows Explorer) the
downloaded application (two folders) from the CF/SD card and paste them
temporarily on your local disk. Insert the next memory card into the Writer and
drag your two folders from the hard disk and drop them on the new CF memory
card.

In case of a redundant processor unit configuration, it is recommended to insert a
CF card or SD card in both CPUs.
3BSE040935-510 161

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

Application Version Check

If the application version in the controller is not identical with the version in the
backup media or vice verse; a warning message will alert and no more cold retain
values can be saved.

Upgrading Controller Firmware using Backup Media

When a controller is started, or when a long reset is done, the execution starts in the
Boot Loader. While starting, the controller checks for any inserted CF card or SD
card. If a card is present, then the controller checks for valid firmware in it. If valid
firmware is found, it will be used for upgrading the current firmware.

Upgrading a controller’s firmware using a removable backup media, involves the
following steps:

1. Loading a copy of the firmware (that is, a firmware image) onto the backup
media using Control Builder (refer Loading the Firmware Image to Removable
Media on page 162).

2. Upgrading the controller firmware using the image on the backup media (refer
Upgrading Controller Firmware from a CF/SD card on page 166).

Loading the Firmware Image to Removable Media

Follow the steps given below for loading a firmware image from the Control Builder
to a removable backup media:

1. Mount the backup media card (SD or CF card) on the card reader-writer of the
Control Builder PC. Make sure that no other program uses or accesses the card.

2. Right-click on the controller object of the same type as the contoller to be
upgraded.

3. From the context-menu, select Load Firmware to Removable Media. The
Load Firmware to Removable Media window appears.

4. The Load Firmware to Removable Media window displays details of the card
being used and the action that will be taken. The displayed details differ
depending on whether the media card is SD or CF. Click Yes to proceed or No
to cancel the operation.
162 3BSE040935-510

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media

5. On clicking Yes, a list of identified removable media appears. If the card is not
present in the list of removable media, then try the following:

– Unmount and then remount the media again.

– Make sure that the card is formatted in a file system. If not, use the
Windows format tool or Diskpart to format it in FAT or FAT32 file system.

Figure 76. Card details for PM865 PA/TP830

Figure 77. Card details for PM891
3BSE040935-510 163

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

6. Click the required removable media to select it, and then click Yes to proceed.
Either of the following cases will happen:

– If the media used is CF, the Diskpart tool then formats the CF card to
FAT 16 with a maximum size of 2 GB (even if the size of the card is
greater). The progress of the Diskpart tool will be displayed in a command
prompt window. Upon completion the window closes automatically and
the firmware image is copied to the card

– If the media is an SD card, then no formatting is required at this point. The
firmware image is copied to the card.

If the above operations are a success, then:

• There will be four files on the card (see Figure 78 for CF card and Figure 79 for
SD card). If the media card is CF, then it has been formatted as FAT.

• The file content.txt has been rewritten and the first row describes the selected
controller. Other rows remain either untouched or partly rewritten.

Figure 78. Firmware image files on CF card
164 3BSE040935-510

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media
 If the operation is a failure, a message is displayed conveying the same. Further
information about the failure can be found in the Control Builder session log.

Figure 79. Firmware image files on SD card

While Diskpart is formatting the CF card, it is possible that Windows may
discover the card as an unformatted disk. In such a case, the following dialogue
will be dislayed. Here, select Cancel. If not, there will be two program instances
trying to format the card at the same time.

Figure 80. Windows dialog for formatting unformatted disks
3BSE040935-510 165

Restoring Formatted CF Cards to Original Size Section 1 Basic Functions and Components

Upgrading Controller Firmware from a CF/SD card

1. Insert the CF card or SD card in the card reader slot of the CPU and Power-On.

2. Perform a Controller Reset, by pressing and holding the INIT button till the
green Run LED starts flashing.

3. Release the INIT button to start the loading firmware . The process to load the
Firmware starts, and the Run and the Battery LEDs indicate the progress.

At the end of the operation, the hardware reset starts the newly programmed system.

Restoring Formatted CF Cards to Original Size

In some cases the CF card used for copying the firmware from Control Builder, may
have a size of more than 2GB. During copying of the firmware, Diskpart will format
this card to FAT 16, and the size will be limited to 2GB. In such a case, to restore the
card to its full original size, follow the steps given below:

1. Start the Diskpart tool by selecting Start > All Programs > Accessories >
Run and then type diskpart.exe. The Diskpart tool opens in the command
prompt. You can then procced with the commands written in bold in the
following steps.

2. List all volumes to identify the actual media by using the list volume
command.

3. Select the volume by its number or drive letter n by using the command
select volume n.

4. Clean the selected volume using the command clean.

5. Create a partition using create partition primary command.

6. List all partitions to identify the partition by using list partition command.

7. Select the partition by its number n by using the command select partition n.

8. Activate the partition using the active comand.

9. Proceed to format the card with default settings using the format command.

10. When the format is complete, exit.
166 3BSE040935-510

Section 1 Basic Functions and Components Compiler Switches

Compiler Switches
Compiler Switches are used to control the behavior of the compiler by setting
additionally language restrictions.

Global restrictions are valid for all code. Restrictions can be set to generate errors or
warnings at compilation. At compilation, errors and warnings are generated
according to these settings and global restrictions. These restrictions can be used to
stop the use of complex constructions in code, which might cause instabilities or
errors.

Global restrictions are combined as follows:

• A global error always generate an error

• A global warning generate a warning for applications.

It is possible to exclude a library from checking with user-defined compiler
switches. Only warnings can be excluded for a library, not errors.

Settings

Right-click the control project (root object) and select
Settings > Compiler Switches to open the Compiler Switches dialog.

The possible settings of compiler switches are described in Table 13.

You may try the above steps in also cases where the card is shown as unformatted
and/or unreadable.

If a library is excluded from a certain restriction, this restriction will not be
checked for any type belonging to that library.

If restrictions are changed, a re-compilation is required before the next download.

Restrictions are checked both at compilation and when checking the code.
3BSE040935-510 167

Settings Section 1 Basic Functions and Components

Table 13. Compiler Switches

Switch Description Global

Simultaneous Execution in
SFC(1)

Simultaneous sequences in
SFC

A

Loops In ST Loops in Structured Text (FOR,
WHILE, REPEAT and EXIT)

A

Nested IF or CASE Nested IF and CASE
statements in Structured Text

A

Implicit Cast Automatic conversion of data
types (e.g. integer to real)

A

Instruction List language Instruction List A

Ladder Diagram language Ladder Diagram A

Loops in Control Modules Code sorting loops E

SFC Language Sequential Function Chart
Language

A

Force I/O from code The compiler switch for forcing
I/O signals from code. It
restricts changes of the Forced
component in variables of one
of the data types BoolIO,
RealIO, DintIO and DwordIO
and results in either warning or
error when the switch is
activated.

Example: MyBoolIOVar.Forced
:= true; Not allowed since this
assignment directly affects the
“Forced” component.

A

168 3BSE040935-510

Section 1 Basic Functions and Components Reports
 Notes to Table 13
“A”: - Allowed, Gives no error or warning
“W”: - Gives a compiler Warning if the rule is violated, acknowledge required
before download is allowed.
“E”: - Gives an compiler Error if the rule is violated, download is blocked.
The default settings are marked with boldface letters in the table.
“E & M’’ - Error and mandatory, same as "Error" but can not be changed by the
user.

Reports

Difference Report

If the Difference Report function is enabled, the Difference Report Before
Download dialog displays (in the same dialog):

Multiple calls to the same
Function Block

This switch defines if the
compiler should check if a POU
Type contains more than one
call to a specific Function Block
instance

W

None or multiple calls to
ExecuteControlModules

The ExecuteControlModules
function is called once in every
scan from a Function Block
Type that contains
ControlModule instances. This
switch decides if the compiler
checks that the call is made
correctly.

W

(1) This switch does not affect the “sequence selection” functionality of SFC.

See Control Builder online help for more specific information how to configure
compiler switches.

Table 13. Compiler Switches (Continued)

Switch Description Global
3BSE040935-510 169

Difference Report Section 1 Basic Functions and Components

• Difference report,
• Source code report.

Based on the information presented in the reports you can either accept or reject the
changes, if you want the download to be carried out or cancelled.

The function is enabled/disabled by right-click the control project folder (root
object) and select Settings > Difference Report.

Difference report shows the difference between data downloaded to the controller
and the data present in Control Builder, see Figure 81. The tree view to the left
shows the parts of the application that have changed. By clicking an item in the tree,
you can display the present controller code to the left, and the new code to the right.
Differences are also indicated by colors (the color coding is explained on the status
bar at the bottom of the report window).

Figure 81. Difference report before download
170 3BSE040935-510

Section 1 Basic Functions and Components Difference Report

The difference report presents found differences, see Table 14.

History of Difference Report

The accepted Difference Reports could be accessed again after a download is
conducted. Select View Accepted Difference Reports from Tools menu to view the
list of reports with date and time of download.

Printing Difference Report as a PDF File

It is possible to print to a PDF-file instead of a printer if a PDF printer driver (Adobe
PDF or PDF995 or others) and the corresponding converter is installed.

To print the Difference Report as PDF File:

Table 14. Differences presented in difference report.

Data Example

Application data User defined types, start values,
execution order, connected libraries.

Controller configuration data Access variables, hardware units,
HW types, task properties, connected
applications, settings from external
configuration tool (such as Fieldbus
Builder FF), controller settings (error
handler), communication interval
settings.

Project constants

System variable EnableStringTransfer

To reduce the compilation time during download of a project to a controller, it is
possible to exclude the start values from the difference report. The start value
analysis is enabled/disabled via Project > Settings > Difference Report.
3BSE040935-510 171

Source Code Report Section 1 Basic Functions and Components

1. Select File > Print in the Difference Report.

2. Select PDF995/Adobe PDF in the Print Dialog. Click OK.

3. A Save As dialog displays. Enter the file name/folder and click Save.

4. The PDF Viewer application is launched to display the difference report in PDF
format.

Source Code Report

The source code report shows the complete source code for the current project in the
Control Builder, and enables a review of the source code that is independent of
editors and user interfaces of the Control Builder.

You perform the review by comparing the code presented in the report with the code
in the editors of the Control Builder, checking that the source codes correspond with
each other. If you find discrepancies, for example in the controller configuration,
you can try to compile and download again.

The main difference compared with the difference report is that the source code
report shows all source code from the different parts.
172 3BSE040935-510

Section 1 Basic Functions and Components Source Code Report
 Figure 82. Source code report before download

The left part of the dialog displays a tree containing the different parts of the report
(see table below). To view the source code for a specific item, navigate the tree until
you find the item, and then double-click the item (or right-click the item and select
Show Source Code).

The source code report presents information as shown in Table 15.

Table 15. Information presented in source code report .

Data Example

Application data User defined types, execution order,
connected libraries.

Controller configuration data Access variables, hardware units,
HW types, task properties, connected
applications, controller settings (error
handler), communication interval
settings, structural changes, simulation
mark, signature.
3BSE040935-510 173

Reports Generated at Download Section 1 Basic Functions and Components

Information about execution order will be part of the report, provided that a
compilation has been performed.

Source code for protected types will not be displayed in the report. In the report, a
protected type is indicated by a padlock icon . If the protected type is part of a
library, it is possible to override the protection by entering the password.

To print the source code for the whole project, select File > Print. To print the
source code for selected parts of the project, navigate the tree to the item you want
to print, right-click the item and select Print Source Code. Alternatively, you can
select File > Print, and select print range Selection in the Print dialog.

Reports Generated at Download

Difference Report and Source Code Report Generated at Download

For a description of the difference report and source code report generated when you
perform a download of a project from the Control Builder to the controller, see
Difference Report on page 169 and Source Code Report on page 172.

Project constants

System variable EnableStringTransfer

The source code report has a filter function to increase the readability of the
source code for Function Block Diagrams and Control Modules. This filter is by
default turned on (select Tools > Filter).

You can generate a source code report without compilation or download. See
Source Code Report Generated for Project in Control Builder on page 175.

You can also generate a source code report for the project in the controller. See
Source Code Report Generated for Project in Controller on page 175.

Table 15. Information presented in source code report (Continued).

Data Example
174 3BSE040935-510

Section 1 Basic Functions and Components Reports Generated at Download

Source Code Report Generated for Project in Control Builder

To generate a source code report for the project in the Control Builder, without
performing any compilation or download, select Tools > Source Code Report.

Figure 83. Source code report generated without prior compilation

Source Code Report Generated for Project in Controller

A source code report for the project running in the controller can be generated
provided that:

• A successful download to the controller, with difference report enabled, has
been performed.

• The project in the Project Explorer is the same as the project in the controller.

To generate a source code report for the project in the controller, right-click the
controller in the Project Explorer and select Remote System, and then click Show
Downloaded Items. In the Downloaded Items dialog, click Source Code Report.
3BSE040935-510 175

Portability Verification Section 1 Basic Functions and Components

Figure 84. Source code report generated for project in controller.

Portability Verification

This menu is located under the menu option Tools > Verify Portability in the
Project Explorer. This functionality verifies that the source code doesn't contain any
characters with an ASCII value above 127. If a project, containing characters with
ASCII values above 127, is moved between computers with different local system
settings it may result in errors when the Control Builder project is loaded.

Performance Management
The compiler statistics is a separate tool accessible from the tools menu in the
Control Builder as shown in Figure 85. When it is started, the currently opened
project in the Control Builder is compiled, and the collected information is saved in
XML format in the 'Results' subfolder of the working folder, which is presented in a
separate dialog, see Figure 86. Only information about compilable applications can
176 3BSE040935-510

Section 1 Basic Functions and Components Performance Management

be gathered by the tool. If a project contains applications with errors, only statistics
of the correct applications is presented. In this case the statistics presented is taken
from a part of the project. One file is generated per application and it replaces old
ones if it previously exists for that application. The tool can also be started from a
Control Builder with no project loaded. In that case only information gathered from
previously generated files is displayed.

Figure 85. Compiler Statistics Tool
3BSE040935-510 177

Performance Management Section 1 Basic Functions and Components
 The tool presents the following information:

• The number of runtime instances of a type.

• The number of sub-instances of a type and total number of instances caused by
the type.

• The memory cost of one instance of the type, both including sub-instances and
without sub-instances.

• The total memory cost for all instances of the type. Both including sub-
instances and without sub-instances.

• The number of code blocks of the type.

• The number of execution entities (Code calls) for all instances of the type, both
including sub-instances and without sub-instances.

• The number of parameters passed by value of a type and the number of bytes
passed by value.

• As above for all instances of the type, both including sub-instances and without
sub-instances.

Figure 86. Compiler Statistics dialog
178 3BSE040935-510

Section 1 Basic Functions and Components Project Documentation

Project Documentation
The project documentation function provides you with filter options while
documenting your control project. The filter helps you specify parts of the control
project and keeping the document size to a minimum. All documentation is
produced as Microsoft Word documents as default, hence Microsoft Office must be
installed.

A complete overview of a library, an application, a controller, or an object in these
folders can be exported to a file for printout from Project Explorer. However, it is
not possible to select a folder at the root level, for example the Libraries object
folder. As an example, it is possible to filter out all ColdRetain variables and
Parameters in an application.

If the project documentation function is used in Online mode, the cold retain values
can also be obtained.

Printing Project Documentation

To print documentation, in Project Explorer:

1. Right-click any object in the tree view and select Documentation. A
‘Documentation’ dialog will open.

2. Click More to filter information. An ‘Edit Properties’ dialog opens.

All project documentation will be connected to a standard template. But you can
create templates of your own for the documentation.
3BSE040935-510 179

Objects and Types Section 1 Basic Functions and Components

Figure 87. Editor Properties dialog for filter options.

The Editor Properties dialog inside the Documentation function, contains three
main areas, which are represented by tabs in the dialog, see Figure 87.

• Objects and Types,

• Editor Items,

• Used Types.

Objects and Types

This is the start level for filtering the contents of your application or library. As you
can see, all options have been selected by default. You adjust the filter setting by
exclude an option.
180 3BSE040935-510

Section 1 Basic Functions and Components Editor Items

Editor Items

Figure 88. Editor item tab for selecting items inside filtered types and objects.

After adjusting the filter settings for types and objects, another filtering can be done
per item. You can now specify which items to include/exclude for the previous
selected types and objects. The items are grouped under Declaration Pane and
Source code.
3BSE040935-510 181

Used Types Section 1 Basic Functions and Components

Used Types

Figure 89. Used Types dialog for printing used types only.

This filtering option selects types in a library that has an object (instance) in an
application or inside another library. The resulting documentation from this dialog
will only include the information for those types that have been matched as a
reference in the selected application or library (see the drop-down menus in
Figure 89).

In order to select a library or an application/library reference from the drop-down
menus, you must first check the Used Types check box.

Used Types must
be checked.
182 3BSE040935-510

Section 2 Alarm and Event Handling

Introduction
An important part of an automation system is to be able to supervise and interact
with the system. For this to be possible, information about the status of the
supervised processes must be made available to the operator. Both the operator and
the controllers need to be able to interact with the process.

This requires that information is transferred to and from the operator interface, in
the form of commands, alarms, and events.

Alarms and events are generated in three ways:

• by using objects based on library types containing alarm and event functions,

• by using objects especially made for alarm and event handling (based on the
types in the Alarm and Event library),

• by hardware units throughout the system (system alarms).

This section describes how to add alarm and event handling when there are no built-
in functions for this. For information on how to configure alarm and event handling
using objects that already contain alarm and event handling functions, refer to the
Compact 800 Engineering Compact Control Builder AC 800M Binary and Analog
Handling (3BSE041488*) manual, and to online help for the object in question.

This chapter describes the alarm handling functions in the Alarm and Event
library. Signal objects, process objects, and a number of control objects have
built-in alarm functionality that is similar to the functions described in this
section. For a description of built-in alarm functions, see the references above.
3BSE040935-510 183

Alarms and Events Section 2 Alarm and Event Handling

Alarms and Events

Alarms and events inform the operator of the status of processes and systems. An
alarm represents a named state, also called an alarm condition (this is an OPC
standard term). Events give information about changes that is needed to analyze
various error situations. The OPC standard defines three kinds of events:

• Condition-related events, which are created when an alarm state changes.

• Simple events, which are created at occurrences like when a motor starts.

• Tracking-related events, which are created at occurrences like an operator
action.

Alarms are usually presented to the operator in alarm lists, while events are
presented in event lists. Alarms and events can also be handled by various parts of
the system without the involvement of an operator, so that, for example, a process is
stopped when a certain alarm goes on. Alarms and events are collected from
controllers and other parts of the system, and transferred to subscribing OPC clients
(operator interfaces) using an OPC server, see Alarm and Event Communication on
page 212.

Alarms and events are often logged, for use in trouble-shooting and when tracing
the origins of an error, see Section 5, Maintenance and Trouble-Shooting.

There are two main types of alarms and events:

• Process alarms and events are generated by changes in the alarm condition of a
monitored process signal, see Process Alarm and Event Generation on page
185.

• System alarms and events are generated by a change in the status of the system
itself, for example by a hardware failure or by the application via function
block (SystemAlarmCond). See Detection of Simple Events on page 194 and
System Alarm and Event Generation on page 205.

Alarm and event handling also requires clock synchronization, in order for time
stamps to be reliable when trying to analyze a sequence of events. See Time Stamps
on page 209 and Sequence of Events (SOE) on page 198.

All alarms and events follow the OPC Alarm and Event specification.
184 3BSE040935-510

Section 2 Alarm and Event Handling Alarm and Event Library

Alarm and Event Library
The Alarm and Event library contains function blocks and control modules for:

• Creating alarms and events when a monitored signal of type bool changes,

• Creating simple events with user-defined data, for use in, for example, batch
applications,

• Printing alarms and events.

Additional Information

For examples of how to use components from the Alarm and Event library, see
Condition State Example on page 218. For details on how to use alarm and event
functions, see Alarm and Event Functions on page 226. This sub-section also
describes how to set up printers and print queues.

For a complete list of all objects in the Alarm and Event library, see the manual
Compact 800 Engineering Compact Control Builder AC 800M Binary and Analog
Handling (3BSE041488*).

Process Alarm and Event Generation
Process alarms and events can be generated using a number of objects based on
types in the Alarm and Event library.

• The function block types AlarmCond and AlarmCondBasic, as well as the
control module types AlarmCondM and AlarmCondBasicM, can be used to
generate alarms and events each time there is a change in a monitored signal
(of type bool). See Process Alarms and Events on page 186.

• The function block type SimpleEventDetector can be used to generate a simple
event whenever a monitored signal of type bool changes. See Detection of
Simple Events on page 194.

• The function block type DataToSimpleEvent can be used to create a simple
event and add user-defined data to it. Detection of Simple Events on page 194.

The function block type AlarmCondBasic and the control module type
AlarmCondBasicM are versions of AlarmCond and AlarmCondM, which
consume less memory. These types do not allow inverting the monitored signal
and they support internal time stamps only.
3BSE040935-510 185

Process Alarms and Events Section 2 Alarm and Event Handling

There are also system generated alarms and events, see System Alarm and Event
Generation on page 205.

Process Alarms and Events

Alarm condition-driven alarms and events are created when the monitored signal
changes, that is, when an alarm condition is fulfilled. This monitored signal must be
of type bool and is typically taken from another function block or module in the
system, or from an external device. The alarm condition function blocks and control
modules are state machines, which change from one state to another following a set
of configurable rules, whenever the monitored signal changes. This is defined as a
change in the alarm condition. Each time an alarm condition changes, an event is
created as well.

AlarmCond and AlarmCondM

The two basic types for creating alarm conditions are the function block type
AlarmCond and the control module type AlarmCondM. The principle behind the
two is the same. Through parameters, it is possible to connect to the monitored
signal, add information to the alarm, provide other objects with status information,
and to control the behavior of the alarm condition. In Figure 90, the function block
type AlarmCond is used to illustrate the function of the different parameters.

All alarm condition objects can be used in time-critical tasks.
186 3BSE040935-510

Section 2 Alarm and Event Handling Process Alarms and Events

Figure 90. The function block AlarmCond.

In parameters used for
the monitored signal

Signal

SignalID

AlarmCond
function block

Out parameters for the
status of the alarm condition

Error

CondState

Status

Message

SrcName

CondName

Severity

Class

In parameters used
to add information
to the alarm

FilterTime

UseSigToInit

EnDetection

AckRule

EnCond

DisCond

AckCond

Inverted

In parameters used to
control the behavior of
the alarm condition

ExtTimeStamp

TransitionTime
3BSE040935-510 187

Process Alarms and Events Section 2 Alarm and Event Handling

.

The control module type AlarmCondM has similar functions and uses the same
parameters as the AlarmCond function block type.

Alarm Condition Types with Reduced Functionality

In applications where it is necessary to minimize memory consumption, the
function block type AlarmCondBasic and the control module type
AlarmCondBasicM offer an alternative to AlarmCond and AlarmCondM.

Basically, they are the same as their counterparts AlarmCond and AlarmCondM,
with the following differences:

• They consume less memory.

• They always use acknowledgement rule number 1 (AckRule=1).

• It is not possible to invert the in signal, that is, the Inverted parameter cannot be
used.

• External time stamps cannot be used, that is, the parameters ExtTimeStamp and
SignalID are not used.

• Remote time stamps cannot be used, since the parameter TransitionTime
cannot be used.

If you change the value of an Edit parameter, this change will not take effect until
after a warm or cold download.

The following alarm condition parameters are Edit parameters:

• ExtTimeStamp,

• SignalID,

• UseSigToInit,

• SrcName,

• CondName,

• Inverted,

• AckRule.

The Description field in the parameter editor starts with EDIT if the parameter is
an Edit parameter.

For more information on parameters and their possible values, also see online
help and the Description column in the parameter editor.
188 3BSE040935-510

Section 2 Alarm and Event Handling Process Alarms and Events

Select Signal to Monitor

The monitored signal can be internal (that is, reside in the controller), or external
(that is, reside outside the controller).

Which type of signal that is monitored is indicated by the parameter ExtTimeStamp.
If this parameter is True, the external signal indicated by the hardware address in the
parameter SignalID is monitored. If ExtTimeStamp is false, the parameter Signal is
used to connect to the monitored signal.

The parameter Inverted can be used to invert the in signal (True=invert signal).

UseSigToInit is used to indicate from where the initial value of the signal should be
taken (the state machine needs a start value). This parameter is only relevant when
the monitored signal is external. When UseSigToInit is True, Signal is used to get an
initial value.

Control the Behavior of the Alarm Condition

The following parameters can be used to control the behavior of an alarm condition:

• AckRule determines which acknowledgement rule is used. The
acknowledgement rule decides the behavior of the alarm condition when an
alarm has been created. This parameter is an EDIT parameter (that is, it is used
for configuration purposes only, and cannot be changed without a restart) and it
cannot be changed from the code.

• FilterTime determines how long the signal must deviate before a change is
considered to have taken place. The filter time should be set so that glitches do
not cause an alarm.

• TransitionTime determines the time of the event occurrence when the Signal
change. If the value is equal the default value (the time) will be read inside this
FB instead

• EnDetection enables detection when True. When this parameter becomes
False, the alarm condition goes to an inactive state and the signal is no longer
monitored. By setting this parameter to False, you will stop detection of new
alarms and leave existing alarms unacknowledged.
3BSE040935-510 189

Process Alarms and Events Section 2 Alarm and Event Handling

• AckCond is used to acknowledge an alarm (True = acknowledge). It is
normally used to acknowledge alarms from simple devices such as push
buttons.

• DisCond disables the alarm condition when True.

• EnCond enables the alarm condition when True.

How the condition state changes when an alarm is acknowledged depends on the
value of the acknowledgement rule (AckRule) parameter. This parameter is
available in the AlarmCond and AlarmCondBasic function blocks, and in the
AlarmCondM and AlarmCondBasicM control modules.

There are five acknowledgement rules:

• AckRule = 1, “normal handling”, alarms must be acknowledged and inactive
before the “normal” state is resumed,

• AckRule = 2, alarms need no acknowledgement,

• AckRule = 3, alarms return to “normal” state on acknowledgement,

• AckRule = 4, not used (reserved for future use),

• AckRule = 5, alarms return to “normal” state when a sum system alarm is
acknowledged and returns to its normal state.

For more information about the different acknowledgement rules, see
Acknowledgement Rules – State Diagrams on page 227.

Alarm and Event Information

There are a number of parameters for adding information to alarms and events:

• Message can be used to add a textual description of the alarm condition, for
example, “temperature low”.

• SrcName identifies the alarm source, for example, “Motor101”.

• CondName identifies the alarm condition, for example, “Level_High“.

The AckRule parameter is normally set to 1 (normal). It cannot be changed
online.
190 3BSE040935-510

Section 2 Alarm and Event Handling Process Alarms and Events

• Severity indicates the degree of severity, where 1 is the least severe, and 1000
is the most severe level. This parameter is very useful when filtering alarms
and events.

• Class can be used to classify the alarm (1-9999). This parameter is also useful
when filtering events,

This information can be displayed in the operator interface and written to various
logs. It can also be used to sort and filter alarms and events.

Since the source name and the condition name identify the alarm, the combination
of the two must be unique within a controller. Any attempt to define an alarm
condition that results in a non-unique combination of source name and condition
name will result in an error (the Error parameter will become True). Also, a simple
event is generated.

If an OPC server detects a non-unique alarm (that is, two controllers have the same
combination of source name and condition name), a system simple event is
generated.

There are two alternatives for indicating the source of an alarm or event:

• Leave the SrcName parameter empty. The Name parameter of the alarm owner
(see Alarm Owner Concept on page 194) will be used as the source name.

• Set the SrcName parameter to whatever source name you want to use.

The condition name is normally the name of the alarm condition function block or
control module instance, for example Level_High, but could also be set via the
CondName parameter.

The same condition names should be used throughout the whole project, since it is
important that the operator has a limited set of condition names to deal with. Using

For a program or application to have a source name, you need to create a variable
called Name in the program or application. If the SrcName parameter is left
empty and the alarm owner is a program or application, the value of the Name
variable will be used as the source name.

All alarms belonging to the same alarm owner must have the same source name.

Condition names are case sensitive, that is, Level_High is not the same as
LEVEL_HIGH.
3BSE040935-510 191

Process Alarms and Events Section 2 Alarm and Event Handling

condition names in a consistent and structured manner also makes it easier to
understand the process.

The class parameter (Class) can be used to classify all alarms.

Status Information

There are three parameters that can be used to retrieve status information for an
alarm condition:

• CondState indicates the state of the alarm condition (0-6, see below).

• Error indicates an error in the alarm condition.

• Status gives the status code from the latest execution.

Alarm conditions are state machines, which change from one state to another
following fixed rules. The most important reason for an alarm condition to change is
a change in a monitored signal. The alarm condition (indicated by the parameter
CondState) also changes if:

• an alarm is acknowledged,

• an alarm is disabled,

• an alarm is enabled,

• auto-disable occurs.

For detailed information about source name and condition name restrictions and
syntax, see online help for the Alarm and Event library.

The default class is 9950 for all system alarms and system events. All other
numbers can be used as required. Possible values are 1-9999. The default value
can be changed by changing the CPU setting AE System AE class.

If a parameter is outside its defined range, the Status parameter will take a
negative value or the value 703.
192 3BSE040935-510

Section 2 Alarm and Event Handling Process Alarms and Events

The condition state (CondState) parameter indicates the state of an alarm. An alarm
can be in one of seven states:

The CondState parameter can be used to pass the state of an alarm to other parts of
the software.

Autodisable

AC 800M controllers have a CPU parameter called AE Limit auto disable. This
setting controls the number of times an alarm can go on and off, without being
acknowledged. When the limit is reached, the alarm condition is automatically
disabled, and the state AutoDisabled is entered. The default setting is 3, and the
maximum setting is 127. If AE Limit auto disable is set to 0, autodisabling is turned
off and alarms can be activated an unlimited number of times.

Integer value State

0 Alarm condition not defined

1 Disabled

2 Enabled, Inactive, Acked - Idle

3 Enabled, Inactive, Unacked

4 Enabled, Active, Acked

5 Enabled, Active, Unacked

6 Enabled, AutoDisabled, Unacked

To see the state of all alarm conditions for a certain object in Project Explorer,
right-click the object and select Alarm Conditions from the context menu.

An alarm that is in AutoDisabled state does not send any event (even though the
alarm condition changes), until it is acknowledged. See Acknowledgement
Rule 1 on page 227.
3BSE040935-510 193

Detection of Simple Events Section 2 Alarm and Event Handling

Alarm Owner Concept
The alarm owner concept is important, since it is the key to manipulating the source
of an alarm. Not all objects in the Project Explorer tree hierarchy are alarm owners.

For an object (for example, a tank object) to be an alarm owner, it must fulfill two
criterias:

1. It must have the attribute Alarm Owner set to True.
2. It has to be the last link in an unbroken chain of alarm owners, all the way from

the program or application, down to this particular object.

If an object is not an alarm owner, or the alarm owner chain is broken, the system
looks further up in the hierarchy, until it finds an object on a higher level that is
directly above the origin of the alarm or event, and fulfills the above criteria.

This is the point of the alarm owner concept. By not setting the Alarm Owner
attribute for low-level objects, alarms and events can be connected to an object on a
level higher than their true origin. If no alarm owner is found, the program or
application itself becomes the alarm owner. The following objects are always alarm
owners:

• Applications,
• Programs.

Detection of Simple Events
A simple event detector generates a simple event each time there is a change in the
monitored signal. A simple event detector can be implemented by means of the
function block type SimpleEventDetector.

SimpleEventDetector can be used with internal, external or remote time stamps.
This function block type is connected to the monitored signal exactly the same way
as the function block type AlarmCond, that is, using the parameters Signal,
SignalID and UseSigToInit. See Select Signal to Monitor on page 189. It is also
possible to set the filter time (via a FilterTime parameter).

The function block DataToSimpleEvent can be used to add data to a simple event.
See Simple Events on page 208.

For more information on how to configure these function blocks, see alarm and
event online help.

For SimpleEventDetector, the following applies:
If ExtTimeStamp is True, FilterTime is not used.
194 3BSE040935-510

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

Built-in Alarm and Event Handling in Other Libraries

This section deals with alarm and event handling based on the Alarm and Event
library. However, alarm and event functions are built in to a number of other types
in the standard libraries that are delivered with Compact Control Builder.

This sub-section gives a short introduction to signal objects and to the built-in alarm
and event functions of process objects and control loops. It also describes the inhibit
and disable functions for these objects, since they are relevant to the interaction with
the types in the Alarm and Event library.

Alarm and Event Handling Using Signal Objects

The Signal Library contains types that can be used to create representations of
objects with an input or output signal, for example a temperature sensor. By using a
signal object, you can go to manual mode and set the value of the signal, as well as
supervise the signal and generate alarms when the signal deviates.

For more information about the Signal Libraries, see online help and the manual
Compact 800 Engineering Compact Control Builder AC 800M Binary and Analog
Handling (3BSE041488*) manual.

Alarm and Event Handling in Control Loops and Process Objects

Alarm and event handling is built into a number of library types, such as control
loops and process objects. These alarms and events are handled the same way as
other process alarms and events.

Alarms and events can be generated directly by those objects, each time the alarm
condition is fulfilled, or the object can generate a bool signal that can be connected
to an alarm condition object.

Never use types from the Signal Libraries to represent all I/O channels and if
used, types from SignalBasicLib should be taken. This will consume a lot of
memory and will result in poor performance. Use signal objects when there is a
real need to control and monitor an I/O signal. Signal objects normally represent
an object with a single signal.

For a description of how to configure built-in alarm handling for various library
types, see online help for the type in question, and the Compact 800 Engineering
Compact Control Builder AC 800M Binary and Analog Handling
(3BSE041488*) manual.
3BSE040935-510 195

Built-in Alarm and Event Handling in Other Libraries Section 2 Alarm and Event Handling

Inhibit and Disable Alarms and Events

Sometimes there is a need for temporarily suspending alarm and event generation.
This can be done for all objects with built-in alarm handling:

• Disable – the alarm condition is disabled, no alarms and events are generated,
nothing is sent, and no control action is taken (that is, the system does not act
upon the alarm condition).

• Inhibit – the control action itself is inhibited (that is, the system does not act
upon this alarm or event), while alarms and events are still presented to the
operator in the operator interface.

Alarms and events can be disabled from the interaction windows and from OPC AE,
as well as from the application, via interaction parameters.

Inhibit Parameters

The inhibit function is present in the following standard library types.

• Signal library
– SignalInReal
– SignalReal
– SignalInBool
– SignalBool
– SDLevelM
– SignalBoolCalcInM
– SignalInBoolM
– SignalInRealM
– SignalReadCalcInM
– SignalSimpleInRealM

• Standard Control library
– Level6CC
– Level4CC
– Level2CC

Normally, the control action will be a boolean signal that causes a certain
reaction, for example, a signal that stops a motor. However, a control action
could also cause a more complex series of actions.

Inhibit is only available in the types listed under Inhibit Parameters on page 196.
196 3BSE040935-510

Section 2 Alarm and Event Handling External Time Stamps (S800 I/O)

• Supervision Basic library
– SDBool
– SDInBool
– SDInReal
– SDLevel
– SDOutBool
– SDReal
– SDValve
– InfoAlarmSDInReal

In these types, control actions are inhibited by setting a parameter InhXAct, where X
stands for the name of the condition, for example InhGTHAct (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition (event generation)
has been inhibited or not.

Disable/Enable Parameters

The disable function is available in all types that contain built-in alarm handling. An
alarm condition is disabled by setting the EnableY parameter to False, where Y
stands for the name of the condition, for example EnableGTH (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition has been disabled or
not.

External Time Stamps (S800 I/O)

There are additional parameters that affect the behavior of built-in alarm
conditions, for example AEConfigX. For more information on parameters, see
online help for the object in question (select and press F1).

A special form of external time stamp is created by external units with Sequence-
of-Event (SOE) support, such as DI831. A low level event is then time-stamped
by the I/O unit and sent to the controller to be dealt with. This triggers alarms or
simple events in the controller. The change of status is time-stamped with the low
level event time stamp.
3BSE040935-510 197

External Time Stamps (PROFINET IO) Section 2 Alarm and Event Handling

Sequence of Events (SOE)

Some I/O modules add a low-level time stamp to an alarm or event when it detects a
change in a signal. Instead of using the time stamp created by the controller when it
detects a change in the monitored signal (that is, when the task is executed), the
controller simply adds the time stamp created by the I/O module. In this way, the
time stamp shows when the change actually occurred, instead of when it was
detected by the controller.

For this to work, the I/O module will have to support Sequence of Events (SOE).
SOE is currently supported on ModuleBus and PROFINET IO only. For
information on enabling/disabling and configuring SOE, see online help for S800
I/O.

External Time Stamps (PROFINET IO)

Sequence of Events (SOE) for PROFINET IO

Time stamped events are passed by PROFINET IO and CI871 through the controller
and are indicated in the AC 800M OPC Server. The timestamping is done by the
PNIO device. The PROFINET IO SOE is supported by use of the ABB SOE profile.

The following are the definitions and functions of ABB SOE Profile:

1. Alarms from the PNIO device are converted into an External Event. These
External Events transferred through the AC 800M OPC-Server are indicated in
the EventList with their corresponding source address.

2. The external event can be picked up from the IEC-61131 Application by a
Function block like alarm condition and converted to a process alarm.

3. The time synchronization of PNIO device is done externally and not by the
CI871. It is the responsibility of the PNIO devices to get a time
synchronization managed (through access to the central time master in the
system). The PNIO device defines the information to be time stamped.

4. The ABB SOE profile is handled as a process alarm on PROFINET IO with a
vendor specific User Structure Identifier (USI).
198 3BSE040935-510

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

5. Once the SOE alarm is acknowledged (to ensure that it is not lost). The PNIO
device deletes the alarm only after receiving the acknowledgement from the
controller. The controller sends the acknowledgement after storing the alarm in
the non-volatile memory.

External Time Stamps (INSUM)

Creating an Application that Handles INSUM Alarms

All INSUM devices (MCU, Circuit Breaker) have supervision functions that can
report alarms. The different device types supervise and report specific alarm types.
The alarms are reported in specific Network Variables.

MCUs report the alarms in the Network Variable NVAlarmReport.

The user can decide if there should be a summary entry that tells that there are some
alarms (one or more) in the device. It is possible to have a separate summary alarm
for warnings and a separate alarm for trips.

This subsection discusses both methods, receiving INSUM alarms in the application
program, and generating alarm to the alarm lists. The user can decide to use either
methods or just one of them. For more information refer to Compact 800
Engineering Compact Control Builder AC 800M Binary and Analog Handling
(3BSE041488*) manual.

Receiving INSUM Alarms in the Application

To receive alarms in the application program the INSUMReceive function block is
used in the same way as when receiving other input network variables from an
INSUM device, choose the correct NVindex and data type. The data type should in
this case be NVAlarmReport (see also the MCUAlarmTrips/WarningsStructs
regarding how to interpret the bits).

The time stamp set by the INSUM device in the alarm variable is presented in the
two time fields of the NVAlarmReport. This time information is only correct if the
clock in the INSUM device is synchronized. The system software does not fill in

It is recommended to configure Function blocks as Alarm condition for process
signals only where the process values can be used as initial value in case of restart
behavior. Otherwise alarms can get frozen.
3BSE040935-510 199

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

these fields if the time stamp received from the INSUM device is incorrect. (See
below).

Generating Alarms for Alarm Lists

The controller system software generates alarms for the alarm and event lists in the
system, based on the updates of the INSUM alarm information if the parameter
Generate Alarms on the device is set to Enabled or Enabled Trip/Warning or
Enabled Detailed.

If the time stamp received from the INSUM device is correct (a valid time) this time
stamp is used for the generated alarm message. If it is not, the system software tags
the generated alarm message with the current controller time.

In this case, the alarm messages are time stamped in the controller. If this time
accuracy is sufficient, this method is probably to be recommended because it is
easier to configure. No System Clock is needed in the INSUM system. If you let the
system software generate the alarms it can use the time stamp given by the INSUM
devices. If the INSUM System Clock is used this is a much more accurate time
stamp.

Summary Alarms, One Alarm Object Per Device

Generate Alarms = Enabled means that the system software internally (without
needing INSUMReceive) creates a subscription of the alarm variable from the
INSUM device. When this variable is updated from the INSUM system, the system
software evaluates the content.

If a bit (one or more) which is classified as an alarm (e.g. not the bit "Started1") is
set and no such bit previously was set, the system software generates one alarm
message.

If an alarm update is received with the change that no alarm classified bits are set
any more, the system software generates the alarm-off message.

If the parameter Generate Alarms is set to disabled, alarm information can
anyway be sent to the alarm and event lists by the application. This can be done
by creating an AlarmCond function block and to connect information received
from an INSUM device to the parameter Signal and to set
External Time Stamp = FALSE.
200 3BSE040935-510

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

Summary Alarms, One Alarm Object For Warnings and One for Trips

Generate Alarms = Enabled Trip/Warning. The difference compared to the
handling for Enabled is that the system software generates one specific alarm
message when a warning bit is set and another alarm message when a trip bits are
set.
3BSE040935-510 201

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

This means that there will be one alarm message for the first warning and one for
the first trip. To use this setting two AlarmCond blocks should be created for each
INSUM device, one for the warnings and one for the trips. If an alarm update is
received with the change that no warning bits are set there will be an alarm off
message for the warnings. The same applies for the trip bits.

Detailed Alarms

Generate Alarms = Enabled Detailed. The difference compared to the handling for
Enabled (see Summary Alarms, One Alarm Object Per Device on page 200) is that
for each alarm classified bit which is set (and previously was not set) the system
software generates one separate alarm message. If an alarm update is received with
the change that an alarm classified bit that previously was set now is reset, the
system software generates the alarm off message for that bit.

Creating AlarmCond Blocks for Generated Alarms

The function block AlarmCond should be used to get descriptive messages in the
event and alarm list and get an association with an alarm object. AlarmCond is
associated with the alarm messages that the system generates by setting
ExternalTimeStamp=TRUE and to identify the alarm object with the parameter
SignalId.

Alarm Generation = Enabled

The SignalId should be a string that specifies the hardware position for the INSUM
device. This is done with the syntax C.G.D, where:

• C is the position of the CI857,

• G is the position of the INSUM Gateway and,

• D is the position of the INSUM device. The position numbers are separated by
a dot '.'.

Using Enabled Detailed means that one AlarmCond block should be created for
each alarm type that the INSUM device sends. For a large INSUM configuration
where more than just a few alarm types per device should be supervised this
easily leads to a very large number of AlarmCond blocks.
202 3BSE040935-510

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

Example:

• The syntax 2.1.204 means the alarm for device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Trip/Warning

The SignalId should be a string that in addition to the hardware position for the
INSUM device, also specifies a trip or a word.

This is done with the syntaxes C.G.D-T or C.G.D-W, where:

• C, G and D as above,

• T represents Trips and W represents Warnings.

Examples:

• The syntax 2.1.204-W means a warning for device #204 connected via
Gateway #1 on CI857 #2.

• The Syntax 2.1.204-T means a trip in device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Detailed

The SignalId should be a string that, in addition to the hardware position for the
INSUM device, also specifies the alarm word and bit within the word. This is done
with the syntax C.G.D-X/B, where:

• C, G, and D as above, and,

• X is the word within NVAlarmRep (preceded by a dash “-”),

• B is the bit within the word.

There are four words with warnings called W0-W3 and four words with trips called
T0-T3. The bits are numbered from 0 to 15. The word and the bit is separated by a
slash ‘/’.

Example:

The syntax 2.1.204-W1/3 means the alarm bit 3 in word W1 in device #204
connected via Gateway #1 on CI857 #2.
3BSE040935-510 203

Choose Alarm Handling Method for INSUM Alarms Section 2 Alarm and Event Handling

Choose Alarm Handling Method for INSUM Alarms

This section contains some suggestions about choosing and handling INSUM
alarms. Whether to send alarms to alarm list or not:

• If Alarms should be possible to view, but are not necessary to see in the Alarm
lists:

– Set Generate Alarms = Disabled.

– Do not create any AlarmCond blocks.

• If the INSUM Alarms should be sent to the alarm list:

– Use AlarmCond function blocks. See INSUM Alarms in Alarm Lists
below.

INSUM Alarms in Alarm Lists

Time stamping:

• If local (in the INSUM devices) time stamping should be used:

– Use a system clock in the INSUM system.

– Set Generate Alarms = Enabled, Enabled Trip/Warning, Enabled
Detailed

– Use an AlarmCond block with External Time Stamp = TRUE.

• If it is sufficient with time stamping in the application in the controller:

– Set Generate Alarms = Disabled

– Use an AlarmCond block with External Time Stamp = FALSE.

– Connect it to the variable with the INSUM device information to be
supervised. The accuracy of this time stamping cannot be better than the
cycle time of the application where the AlarmCond is executed.

Separation of alarms in the alarm list:

• If the timing between different alarms within a device must be possible to see
in the alarm list than it is required to:

– Set Generate Alarms = Enabled Detailed.
204 3BSE040935-510

Section 2 Alarm and Event Handling System Alarm and Event Generation

– Use one AlarmCond per alarm type.

• If it is sufficient to be able to identify the device than it is possible to:

– Set Generate Alarms = Enabled.

– Use one AlarmCond per INSUM device.

• If it is sufficient to be able to identify the first warning and the first trip in a
device than it is possible to:

– Set Generate Alarms = Enabled Trip/Warning

– Use two AlarmCond blocks per INSUM device.

Number of devices:

• If there are a lot of devices needing external time stamping than required for:

– Use two (or one) AlarmCond per INSUM device.

– Set Generate Alarms = Enabled Trip/Warning (or Enabled)

• If there are a few devices that need external time stamping than it is possible to:

– Use one AlarmCond per alarm type.

– Set Generate Alarms = Enabled Detailed

System Alarm and Event Generation
System alarms and system simple events that are generated in a controller are
distributed to OPC alarm and event clients and locally connected printers, according
to the current system configuration.

All system alarms available in a controller can be located by printing all alarms (use
the PrintAlarms function block type and set the parameters to show the alarms you
want to see). They can also be displayed by and interacted with applications, by
means of the function block AttachSystemAlarm (this function block type retrieves
the alarm condition state and some other information for an alarm condition). When
units that are visible in Project Explorer (hardware units or program tasks) generate
system alarms or system simple events, a warning icon is displayed on the
corresponding unit.
3BSE040935-510 205

Controller Generated System Alarms and System Simple Events Section 2 Alarm and Event

System alarms and system simple events are used to draw attention to deviations
from normal system behavior. All system alarms and system simple events can be
sent to the OPC Alarm and Event Clients and even printed to the system log file,
depending on the current system configuration.

Controller Generated System Alarms and System Simple Events

Controller generated system alarms and system simple events are defined within the
controller. A list of all defined system alarms and system simple events within an
AC 800M controller can be found in Appendix B, System Alarms and Events.

Filter out system alarms from hardware units

The function is used to reduce the number of alarms generated from hardware units,
as important alarms tend to disappear in a crowd of alarms.

A example is when commissioning the system or a new part of an existing system,
there might be transmitters that are connected and disconnected and the system
generates a lot of underflow, overflow and channel error alarms.

The function is configured on the hardware object on the controller. Select
Controller > Hardware AC 800M >Editor > Settings, then select Filter out
system alarms from hardware units as shown in the Figure 91.

Figure 91. Filter out system alarms
206 3BSE040935-510

Section 2 Alarm and Event Handling User Generated System Alarms

The parameter has five possible values:

Off: The filter function is shut off. The hardware status generates system alarms and
systems events for all status changes. This is the default setting.

Underflow: Underflow status changes will not generate any alarms.

Over- and underflow: Neither underflow nor overflow status changes generate
alarms.

Channel error: Channel error and IO warning will not generate system alarms or
events.

All: Alarms and events from all the status changes above are suppressed.

User Generated System Alarms

User generated system alarms can be defined in your applications via the function
block SystemAlarmCond.

Handling Alarms and Events
When implementing alarm and event handling, it is very important to create a good
system for:

• classifying alarms and events,

• setting the severity of different types of alarms,

• indicating the source of an alarm or event,

• naming alarm conditions.

Even if the setting is set to filter out alarms, the errors and warnings will still be
visible in the hardware tree and the Unit Status tab in the hardware online editors.
The change to the filter is performed in offline mode and downloaded to the
controller to activate the change.

If the function is used during commissioning to decrease the number of alarms, it
might be crucial to shut off the filter before entering normal operation.
3BSE040935-510 207

Simple Events Section 2 Alarm and Event Handling

The most obvious reason for this is that you will be able to create an operator
environment in which the operator will quickly be alerted to various things that
require attention. The operator will also be able to quickly obtain additional
information and decide on the best course of action.

However, alarms and events are also logged, in order to be used for trouble-
shooting, and when analyzing things in order to improve performance of the plant.

This subsection describes:

• How to send data in XML format, see Simple Events on page 208. This is
useful when creating batch records.

• How to handle system alarms and events, see System Alarms and Events on
page 208.

• Internal, remote, and external time stamps (Sequence of Events, SOE),
including time synchronization, see Time Stamps on page 209.

Simple Events

The DataToSimpleEvent function block is used to send data in XML format, for
example, to record data for batch processes.

For more information on how to use this function block, see online help. For
examples on how to use the DataToSimpleEvent function block, see Condition State
Example on page 218.

System Alarms and Events

The handling of system alarms and events is to a certain degree configurable. The
function block AttachSystemAlarm can be used to retrieve information on system
alarms and events, such as state, and whether the alarm has been disabled or
acknowledged.

The function block SystemAlarmCond can be used to retrieve system alarms and
events via the application.
208 3BSE040935-510

Section 2 Alarm and Event Handling Time Stamps

Time Stamps

When an alarm or event is created, a time stamp can be added to it, showing the
exact time when the event occurred. There are three types of time stamp:

• Internal Time Stamps, that are created by the controller.

• Remote Time Stamps that are read from external communication partners via
the parameter TransitionTime.

• External Time Stamps that are created by an I/O unit and transferred together
with the event.

The TransitionTime parameter (of type date_and_time) can be used to read a remote
time from a remote partner, via other protocols than MMS. The parameter is read
each time a change is detected in the monitored signal. If it is left unconnected, it
will have no effect.

Internal time stamps simply show when the execution cycle in which the alarm was
created started. External and remote time stamps show the actual time at which the
alarm condition occurred in the external device or partner. All time stamps have a
resolution of 1 ms; however, it is the interval time of the task where the alarm
function block or module runs that determines the accuracy of the internal time
stamps. All alarm function blocks and modules in the same task are given the same
time stamp, if activated concurrently.

This is the point of using external and remote time stamps. Internal time stamps can
never be more accurate than the execution time of the task allows for. With external
or remote time stamps, the accuracy of the time-stamping mechanism in the external
or remote device (for example, an S800 I/O unit) sets the limit, something which
could seriously improve the accuracy of the time given in entries with external or
remote time stamps.

If external time stamps are to be used, the external time stamp parameter
(ExtTimeStamp) has to be set to True. When using external time stamps, there is

When adding remote time stamps, it is possible to add any time. However,
settings in the operator interface might filter out alarms and events with times that
are outside the “normal” range (in the future or far back).
3BSE040935-510 209

Time Stamps Section 2 Alarm and Event Handling

also a SignalId parameter that is used to indicate the source of the external alarm or
event.

All time stamps use UTC (Coordinated Universal Time).

External time stamps can only be created by external units with Sequence-of-
Event (SOE) support.
210 3BSE040935-510

Section 2 Alarm and Event Handling Time Stamps

Clock Synchronization

For time stamps to be useful, the whole system must use the same time, that is, the
time must be synchronized. See also the Compact 800 Engineering Compact
Control Builder AC 800M Getting Started (3BSE041584*).

Depending on the type of controller, clock synchronization is possible by four
different protocols: CNCP, SNTP, MB 300 TS, and MMS Time Service. Clock
synchronization is set up in the controller hardware editor.

It is important to understand the difference between accuracy and resolution when
calculating how much a time stamp may deviate from the true system time:

• Resolution is the number of decimals that are used to write the time. If the time
is given as, for example, 2004-02-19 19:43:22:633, the resolution might
be 1 ms (but could also be, for example, 0.5 ms).

• Accuracy is a measure of how accurate a time stamp is, that is, how much it
may deviate from the true system time. If the accuracy is 1 ms, then
2004-02-19 19:43:22:633 actually means any time between
2004-02-19 19:43:22:632 and 2004-02-19 19:43:22:634.

It is also important to understand that the accuracy deteriorates if a time stamp is
created in a unit that is supplied with the time from a controller, via ModuleBus.

The possible difference between the time stamps of two events that occurred at
exactly the same time, but in two different units in two different controllers, is the
sum of the accuracy of time synchronization in the network and two times the
accuracy of the ModuleBus time synchronization.

This means that the difference between external time stamps can be far greater than
the accuracy of time synchronization between controllers.

The highest accuracy is achieved by using the CNCP protocol, with an AC 800M
controller as master.

For a more detailed, conceptual description of time synchronization, see the AC
800M Communication Protocols (3BSE035982*)
3BSE040935-510 211

Alarm and Event Communication Section 2 Alarm and Event Handling

Alarm and Event Communication
Alarm and event information is communicated throughout the control network via
OPC servers, that is, a number of OPC Server for AC 800M. When the state of an
alarm condition changes, an event notification is sent to all subscribing OPC
servers, which then forward these notifications to their clients. Changes in alarms in
the OPC server are also forwarded to its clients. .

Subscriptions

An OPC server subscribes to event notifications from a control system. Each
controller compiles an internal list of all servers interested in various events.
Condition-related events are generated when alarm conditions change their state.
Simple events can be generated, for example, by the start of a motor. When an event
occurs, the control system sends event notifications to all servers on the subscription
list.

Configuration of OPC AE Communication – Overview

The whole system for transferring alarms and events, that is, controllers, OPC
servers, and OPC clients, must be configured so that there are no disturbances in the
alarm and event traffic.

There are several basic rules regarding system configuration:

• A control system can send data or event notifications to one or two subscribing
OPC servers.

• A maximum of seven OPC clients can subscribe to data or event notifications
from the same OPC server.

• A maximum of four Ethernet links (two redundant) are supported via Ethernet
cards.

• A maximum of four Point-to-Point Protocols (PPP) are supported via serial
cards.

For detailed information on how to configure OPC Server for AC 800M, refer to
the AC 800M OPC Server (3BSE035983*) manual.
212 3BSE040935-510

Section 2 Alarm and Event Handling Configuration of OPC AE Communication – Overview

The OPC server must be configured to recognize the control systems it is to
communicate with. The OPC client must be configured to recognize the OPC
server(s) it is to communicate with. See Figure 92.

Figure 92. Example of a control network configuration.

Information about how to configure individual OPC servers is found in the
AC 800M OPC Server (3BSE035983*) manual, and in the online help, which can be
opened from the OPC server panel.

OPC Client 1 OPC Client 2 OPC Client 3

OPC Server 1
Subscr. list:

OPC client 1

OPC Server 2
Subscr. list:

OPC client 3

Control System 1

Subscr. list:

OPC server 1

Control System 2

Subscr. list:

OPC server 1

Control System 3

Subscr. list:

OPC server 2

Control System 4

Subscr. list:

OPC server 2

Control Systems:

Control System 1
OPC client 2 Control System 2

Control System 3
Control System 4

Control Systems:

Control System 1
Control System 2

OPC server 2 OPC server 2

Panel 800
Control Systems:

Control System 1
Control System 2
3BSE040935-510 213

Buffer Configuration Section 2 Alarm and Event Handling

Buffer Configuration

Alarm and event handling requires a number of buffers. The memory for these
buffers must be allocated in the controllers. These settings have to be made in the
Settings tab for each controller CPU.

Table 16 describes the parameters in the Settings tab that need to be configured for
the buffer. See also System Diagnostics on page 226.

These settings affect the Available memory. For more information regarding
Available memory, refer to the Compact 800 Engineering Compact Control Builder
AC 800M Product Guide (3BSE041586*) manual.

For controller types with limited memory, the settings for the buffer
configuration should be carefully chosen or else the memory becomes full.

Table 16. Memory planning for buffer configuration

Parameter Comment

AE Local printer event queue size Each position allocates approximately 300
bytes of memory. The total memory need
for local printers is:

300 * AE Local printer event queue size *
AE Max number of local printer event
queues

AE Max number of local printer event
queues

The maximum number of event queues in
the controller

AE Event subscription queue size Each position allocates approximately 300
bytes of memory. Total memory need for
subscribing OPC Servers are:

300 * AE Event subscription queue size *
AE Max number of event subscriptions

AE Max number of event subscriptions Number of subscribing OPC Servers
214 3BSE040935-510

Section 2 Alarm and Event Handling Local Printers
 Local Printers

A local printer can be connected to the serial port of a controller, and print out event
lists and/or alarm lists as needed.

Figure 93. Example of a controller and local printer configuration.

There can be only one local alarm/event printer connected to each controller.
Additional printers are invalid. There is limited data flow support for alarm/event
printers connected to controllers. Alarms and events that occur when the printer is
offline may not be printed when the printer goes online again. This applies to all
printers with direct connection to a controller.

Print Format

The print format for alarm conditions and events is governed by a special format
syntax.

The system supports the 8-bit ASCII character set (according to Windows). This
means that the serial and parallel printers must support the 8-bit character set.

AE Buffer size of low level event Each position allocates 72 bytes of
memory. Total memory need for
Sequence of Events are:

72 * AE Buffer size of low level event

Set this setting to 2 if Sequence of Events
is not used

AE Max no of Name Value items The maximum number of XML tagged
events

AE Max percent of log strings The percentage of Name Value items that
are strings. Used to allocate memory for
Name Value item strings.

Table 16. Memory planning for buffer configuration (Continued)

Parameter Comment

Buffer

AC 800M

Printer
3BSE040935-510 215

Print Format Section 2 Alarm and Event Handling

The abbreviations used in these format strings are given in Table 17. The character
length of each field is given within parentheses..

The fields may be in any order.

Ti, Sr, Co, Me, Cs, and Tt have user-defined dynamic lengths. If the length of a
string is defined as longer than a presentation function that is already set, the
presentation is reduced accordingly

The text for the condition state originates from project constants such as
cAlarmCondStatetext.On1, cAlarmCondStatetext.Off1, and so on.

A maximum of 132 characters can be printed for each alarm/event.

Globally Defined Print Formats

Global print formats are defined in the project constants, which are categorized
based on alarm and event conditions or transitions:

• For Alarm Conditions

– cPrintAlarmPres.AlarmCondFormat

– cPrintAlarmPres.TimeFormat

Table 17. Abbreviations in format strings

Abbreviation
Explanation of the identification

parameters

Ti Time stamp (MM-DD-HH:MI:SS)

Sr Source name (maximum 30)

Co Condition name (maximum 15)

Me Message (maximum 70)

Cs Condition state text (maximum 20)

Tt Transition type text (maximum 20)

S Severity (4)

C Class(4)
216 3BSE040935-510

Section 2 Alarm and Event Handling Sending an Alarm to the Application

– cPrintAlarmPres.FooterFormat

• For Events

– cPrintEventPres.CondEventFormat

– cPrintEventPres.SmpEventFormat

– cPrintEventPres.TimeFormat

• For Alarm Condition State Texts

– cAlarmCondStateText.Undefined

– cAlarmCondStateText.On1

– cAlarmCondStateText.Off1

– cAlarmCondStateText.Acked

– cAlarmCondStateText.Disabled

– cAlarmCondStateText.Idle

– cAlarmCondStateText.Autodisabled

• For Event Transition Texts

– cEventTransitionText.Undefined

– cEventTransitionText.On1

– cEventTransitionText.Off1

– cEventTransitionText.Ack

– cEventTransitionText.Disable

– cEventTransitionText.Enable

– cEventTransitionText.Autodisable

Sending an Alarm to the Application

Instead of sending your alarms to a local printer you can choose to only redirect the
alarm to the application. The function block PrintEvents contain two parameters;
the first parameter EventItem catch the values (Source Name, Condition name,
Time stamp, Severity etc.) and the second parameter EventItemText format these
3BSE040935-510 217

Condition State Example Section 2 Alarm and Event Handling

values as if they was send to a printer and bring it to the application as well. Hence,
these values can then be sent and processed by your local code.

However, sending an alarm only to the application requires that you do not connect
the Channel parameter (leaving the Parameter field empty).

Condition State Example

The following example shows how to use the condition state parameter (CondState)
to control a pump.

Figure 94. Manipulating the condition state using I/O.

Figure 94 shows two alternative ways of stopping a pump when the temperature is
too high. The TEMP signal goes high when the temperature is too high.

By sending an alarm to the application you can then redirect this information to
your cell phone. Every time an incoming alarm has a severity higher than 700,
you should be notified with a SMS.

&

Signal

AlarmCond

CondState

2

time
>

TEMP

Blocking

B

Start

Stop

energize

A

218 3BSE040935-510

Section 2 Alarm and Event Handling Inhibit Example

In alternative A, the TEMP signal is simply used to stop the pump (using the
blocking function, note that the TEMP input is inverted). There is no way to disable
this alarm. The pump is blocked as long as TEMP is high.

Alternative B uses an AlarmCond function block, which makes it possible to wait
for an action from the operator, before unblocking the pump. The blocking signal to
the pump does not go high until CondState > 2, that is, the alarm is enabled and not
idle (for a list of possible states, see Status Information on page 192). Once it has
gone high, it does not go low until Condstate => 1, that is, the alarm is disabled or
has returned to its idle state (this means that the alarm must be acknowledged by the
operator and TEMP must go low before the pump is unblocked, as long as
acknowledgement rule 1 is used).

Alternative B also makes it possible to disable the blocking function by simply
disabling the alarm condition.

Inhibit Example

The below example shows how to implement the inhibit function for a motor M103
(see Figure 95):

• An oil pressure sensor, P103, is used to stop the motor M103 if the oil pressure
is too low.

• A SignalInReal object is used to supervise the sensor and a MotorUni is used to
control the motor.

• The LTLLAct output from SignalInReal is connected to the PriorityCmd01 in
MotorUni. This means that the motor will be forced to stop when the oil
pressure is below the LL level. LTLLStat may be connected to a warning lamp
in a panel.

During start up of the equipment it is known that the oil pressure will be below the
limit, but it must be possible to start the motor. Therefore, the application logic will
set the EnableLL parameter in SignalInReal to False during start-up. This means
that LTLLAct will not be set, that is, the motor will not be stopped and no alarm is

This example has been simplified to illustrate a principle. In reality, it would not
be desirable to have a motor start when an alarm is acknowledged. Instead, the
operator would acknowledge the alarm, and then start the motor with a separate
command.
3BSE040935-510 219

Inhibit Example Section 2 Alarm and Event Handling

sent to the alarm list as long as the motor is starting up. LTLLStat will not be set and
the lamp will not be lit.

Suppose the operator, maybe for testing, wants to run the equipment at an oil
pressure below the LL level. He could then inhibit SignalInReal from the faceplate.
The motor will still run during the test, but an alarm will be sent to the alarm list.
LTLLStat will be set and the lamp will be lit.
220 3BSE040935-510

Section 2 Alarm and Event Handling Inhibit Example

Figure 95. Example of how to implement inhibition of an alarm.

P103

M103
3BSE040935-510 221

Simple Event Examples Section 2 Alarm and Event Handling

Simple Event Examples

The below examples show how to use the DataToSimpleEvent function block to
send simple event data, for example for a batch process, where data records should
be generated for the process at a number of points. There are three examples:

• Simple Data on page 222,

• Structured Data – Example 1 on page 224,

• Structured Data – Example 2 on page 224.

Simple Data

Presume that an engineer wants to record three parameters in the process:
a temperature, a pressure and a stirring rate. Consequently, the engineer names
them:

varTEMP = “TEMP”

varPRESS = “PRESS”

varSTRAT = “STRAT”

These are the names the user wants to see on the screen when the recording is done,
but these names are not the same as the variable names. Instead, the names are
coupled to the extensible parameters in the Name field:

Name[1] = varTEMP

Name[2] = varPRESS

Name[3] = varSTRAT

During execution TEMP=300.2, PRESS=23.1, and STRAT=10. Temp and press are
real values (real) and STRAT is an integer, which causes no problem since Values is
of AnyType.
222 3BSE040935-510

Section 2 Alarm and Event Handling Simple Event Examples

NestingLevel “1” is chosen and this is how it could look in Control Builder:

varTEMP = “TEMP”
tempValue := 300.2;
pressValue := 23.1;
My Log(SrcName := SrcName,

Message := Message,
Class := Class,
EventCode := thisNbrEvent
RecipePath := myLongPath,
Status => Status,
Name[1] := varTEMP,
Value[1] := tempValue,
NestingLevel[1] := 1,
Name[2] := varPRESS,
Value[2] := pressValue,
NestingLevel[2] := 1,
Name[3] := varSTRAT,
Value[3] := stratValue,
NestingLevel[3] := 1);

In OPC Server for AC 800M, this will be encoded into an XML string.

<DATA_EV_LOG>
<TEMP Value=”300.2” type=”real”/>
<PRESS Value=”23.1” type=”real”/>
<STRAT Value=”10” type=”int”/>

</DATA_EV_LOG>
3BSE040935-510 223

Simple Event Examples Section 2 Alarm and Event Handling

Structured Data – Example 1

An engineer wants to record data that belong together, that is, he or she wants to
create a structure named PHYS_DATA containing physical properties of an object,
in this case a tank.

The structure (PHYS_DATA) has no value in itself and the NestingLevel=1 when
PHYS_DATA is coupled to the first extensible parameter.

The next step is to give PHYS_DATA properties, and three components are created
in the following three extensible parameters:

height=4.1

length=3.0

depth=1.0

Since the parameters above are physical properties of PHYS_DATA, they are
assigned with NestingLevel=2. They are all floats.

In this case, the XML data in OPC Server for AC 800M will look like:

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
</DATA_EV_LOG>

Structured Data – Example 2

In this example, the engineer is in the same situation as in the previous example, but
now he or she also wants to record the recipe parameters in one of the batch objects.
The same procedure as in Example 1 is performed but a new parameter
“RecipePar” is added and NestingLevel=-1 is set. With NestingLevel=-1 it is
indicated that the recipe parameters to be fetched are placed on NestingLevel=1,
since the height, depth, and length values in the previous example were to be placed
on NestingLevel=2.
224 3BSE040935-510

Section 2 Alarm and Event Handling Simple Event Examples

The recipe parameters are fetched in the controller and are:

heat=3.4

temp=349.4

heating=true

From a Control Builder view, this would look like:

structName := “PHYS_DATA”;
varHeight := “height”;
heightValue := 4.1;

varRecipe := “RecipePar”

LogThis(SrcName := SrcName,
Message := Message,
Severity := Severity,
Class := Class,
EventCode := thisNbrEvent,
RecipePath := myLongPath,
Status => Status,
Name[1] := structName,
Value[1] := EmptyValue,
NestingLevel[1] := 1,
Name[2] := varHeight,
Value[2] := heightValue,
NestingLevel[2] := 2,
Name[3] := varDepth,
Value[3] := depthValue,
NestingLevel[3] := 2,
Name[4] := varLength,
Value[4] := lengthValue,
NestingLevel[4] := 2,
Name[5] := varRecipe,
Value[5] := EmptyValue,
NestingLevel[5] := -1);
3BSE040935-510 225

Alarm and Event Functions Section 2 Alarm and Event Handling

The XML data will look as below. The last three parameters are fetched from a
Batch Object.

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
<RecipePar Value=”” type””/>
<heat Value=”3.4” type=”real”/>
<temp Value=”349.4” type=”real”/>
<heating Value=”true” type=”bool”/>

</DATA_EV_LOG>

Alarm and Event Functions
There are a number of functions that can be used to analyze and supervise alarm and
event handling:

• The function block SystemDiagnostics contains a part that displays alarm and
event related information. See System Diagnostics on page 226.

• For those who need detailed information about the alarm and event state
machine, there is a collection of state diagrams. See Acknowledgement Rules –
State Diagrams on page 227.

System Diagnostics

When in online mode, it is possible to view information regarding memory via the
interaction window of the function block SystemDiagnostics (located in the Basic
library).

The advanced mode of the interaction window displays system memory
information.
226 3BSE040935-510

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

There is also an Alarm and Event button which, if clicked, displays information
regarding:

• Used amount of buffer size,

• The number of:

a. alarms in the controller,

b. different condition names in the controller,

c. local printer queues,

d. subscribing OPC Servers.

• The IP-addresses of the subscribing OPC Servers.

Acknowledgement Rules – State Diagrams

The control system handles four different condition state diagrams according to five
different acknowledgement rules.

Acknowledgement Rule 1

Rule number 1 uses three different state diagrams.

Figure 96. State diagram for enabled alarm conditions with AckRule 1, part 1.

In Figure 96 above, the alarm is in its normal state when it becomes active. It is then
acknowledged, and on becoming inactive it returns to its normal state.

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked
3BSE040935-510 227

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

Figure 97. State diagram for enabled alarm conditions with AckRule 1, part 2.

In Figure 97 above, the alarm is in its normal state when the alarm becomes active.
It then becomes inactive, and on being acknowledged returns to its normal state.

Figure 98. State diagram for enabled alarm conditions with AckRule 1, part 3.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 6
Autodisabled

State 3
Inactive, Unacked
228 3BSE040935-510

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

The third instance occurs when an alarm switches between active and inactive
without being acknowledged. In Figure 98, the alarm starts in its normal state and
becomes active. It then switches twice between active and inactive without being
acknowledged. When the alarm becomes inactive a third time it is automatically
placed in the Auto-disabled state. Whether the alarm is active or inactive in this
state is of no significance. When acknowledged the alarm returns to its normal state.

Acknowledgement Rule 2

Figure 99. State diagram for enabled alarm conditions with AckRule 2.

Alarm conditions with AckRule 2 does not require acknowledgement and therefore
follow a different state diagram. When the alarm becomes active it switches to an
active and acknowledged state. On becoming inactive it returns to its normal state.

The default setting for auto-disable is three times. This can be changed through
the CPU setting AE Limit Auto Disable. If it is set to 0, there will be no auto-
disable function. There is also a system variable called AlarmAutoDisableLimit
which affects all process alarms with acknowledgement rule number 1
(AckRule=1).

State 2
Inactive, Acked

State 4
Active, Acked
3BSE040935-510 229

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

Acknowledgement Rule 3

Figure 100. State diagram for enabled alarm conditions with AckRule 3.

Regardless of the signal being monitored, alarm conditions with AckRule 3 changes
immediately to is normal state on acknowledgement. The alarm is no longer active
and disappears from the alarm list provided by an OPC client.

Acknowledgement Rule 4

Presently, Acknowledgement Rule 4 (AckRule 4) is reserved for future use.

Acknowledgement Rule 5

Figure 101. State diagram for enabled alarm conditions with AckRule 5, part 1.

AckRule 5 is used for so called sum system alarms. System alarms associated with
hardware units are typical examples of sum system alarms. They are used to
indicate several different errors that occur at the same time.

State 2
Inactive, Acked

State 5
Active, Unacked

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked
230 3BSE040935-510

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

There are two procedures for sum system alarms, that is, for AckRule 5. The first of
these is described in Figure 101 above. The sum system alarm is in its normal state
when it becomes active. Sum system alarms are used as a collection of errors and
Acknowledgement means that all errors are acknowledged. On becoming inactive it
returns to its normal state.

Figure 102. State diagram for enabled alarm conditions with AckRule 5, part 2.

The second instance is shown in Figure 102 above. The sum system alarm is in its
normal state when it becomes active. It then becomes inactive, and on being
acknowledged returns to its normal state.

Any alarm can be disabled from any state, and when re-enabled placed in the
Inactive and Acked state. If the alarm state engine receives an incorrect Enable,
Disable or Acknowledgement request, the request is ignored.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked
3BSE040935-510 231

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

232 3BSE040935-510

Section 3 Communication

Introduction
This section describes how to configure communication throughout your control
network. How to design your control network, and which protocol(s) to choose for
this is described in the AC 800M Communication Protocols (3BSE035982*).

This section is split into the following parts:

• Communication Libraries on page 234 gives a brief overview of the
Communication standard libraries.

• Supported Protocols on page 246 gives a brief overview of the protocols
supported by control builder.

• Control Network on page 247 describes Control Network, which is used to
communicate between controllers, engineering stations, and external devices.

• Variable Communication on page 249 describes variable communication
briefly, and contains references to more detailed information.

• Reading/Sending Data on page 253 describes reading and sending data.

• Fieldbus Communication on page 259 describes the supported fieldbus
protocols briefly.
3BSE040935-510 233

Communication Libraries Section 3 Communication

Communication Libraries
The Communication libraries contains a number of libraries, one for each protocol,
with function block types for reading and writing variables from one system to
another. Typical communication function block types are named using the protocol
name and function, for example, COMLIRead or INSUMConnect.

COMLI Communication Library

The COMLI Communication library (COMLICommLib) contains function block
types and data types for COMLI communication.

COMLI function block types follow the IEC 1131 standard, but some divergences
occur. COMLI can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. Only address-oriented COMLI is supported on serial
channels.

INSUM Communication Library

The INSUM Communication library (INSUMCommLib) contains function block
types and data types for INSUM (Integrated System for User-optimized Motor
control) communication.

INSUM is a system for protection and control of motors and switchgear. AC 800M
controllers communicate with the INSUM system via TCP/IP, using the
communication interface CI857.

Usage and Status Information for INSUMConnect Function Block

To establish connection using INSUMConnect, set the value of the En_C parameter
to ‘true’, and specify the remote system with the CIPos and GWPos parameters. A
reference to the connection is inserted into the Id parameter so that this parameter

All supported protocols are described in the AC 800M Communication Protocols
(3BSE035982*), which also contains general information about how to set up
communication in a control network. For detailed information on how to connect
and configure function block types and control module types, see the
corresponding online help (select the type and press F1).
234 3BSE040935-510

Section 3 Communication INSUM Communication Library

can be used by other function blocks communicating via the same connection (for
example, INSUMReceive and INSUMWrite function blocks).

The execution status of INSUMConnect is presented via the following parameters:

• Valid

A "bool" parameter that indicates if the connection is working (true) or not
(false)

• Error

A "bool" parameter that is true during one execution cycle, after the detection
of an error.

• Status

A "dint" parameter that gives a value about the execution status of the function
block. A negative value means an error.

• MsgStatus

A "INSUMGWMsgStatus" structure that contains status information about the
connection. This information is received from the gateway.

• GWStatus

A "INSUMGWStatus" structure that contains status information about the
gateway. This information is collected by other means that just handles the
connection (for example, the supervision of the CI857 module).

Usage and Status Information for INSUMReceive Function Block

To activate cyclic reading of data through INSUMReceive, set the value of EN_R
parameter to ‘true’, and connect the Id parameter of INSUMReceive to the Id
parameter of an INSUMConnect function block.

The execution status of INSUMReceive is presented via the following parameters,
apart from the common paramters like Valid, Error, and Status (which are described
for INSUMConnect):

• Ndr

A "bool" parameter that is set to ‘True’ during one execution cycle, after the
new data is received through the Rd parameter or any of the status parameters.
3BSE040935-510 235

INSUM Communication Library Section 3 Communication

• MsgStatus

An "INSUMDeviceMsgStatus" structure that contains status information about
the Network Variable subscription created by this INSUMReceive block. This
information is received from the gateway.

• DeviceStatus

A "dint" value that contains status information about the INSUM device from
which the INSUMReceive block receives data. This information is received
from the Field Device List in the gateway.

Usage and Status Information for INSUMWrite Function Block

To run the write operation through INSUMWrite, set the value of the Req parameter
to ‘true’, and connect the Id parameter of INSUMWrite to the Id parameter of an
INSUMConnect function block.

The execution status of INSUMReceive is presented via the GWMsgStatus
parameter, apart from the common paramters like Error and Status (which are
described for INSUMConnect). The GWMsgStatus is a "dint" field that contains
status information about how the write operation is executed. This information is
received from the gateway.

The INSUM system consists of devices that are connected via a LonWorks network.
There are different device types for different types of equipment that can be
controlled and supervised. The device type used for motor control is called a Motor
Control Unit (MCU). The MCU is located in the motor starter module.
236 3BSE040935-510

Section 3 Communication INSUM Communication Library

Network Variables in Motor Control Units (MCU)

The table shows Network Variables that are defined in the INSUM Motor Control
Unit.

Function/Object
in MCU

NV name in MCU Dir. Description

Current
Measurement

nvoCurrRep In Current information: A, % and Earth
current

TOL (Thermal
overload)

nvoCalcProcVal In Thermal capacity: % to Thermal
Overload

nvoTimeToTrip In Estimate of time until the motor will trip
due to thermal overload based on the
current load.

Motor Control nvoTimeToReset In Remaining time until it is possible to
reset the MCU after a thermal overload
trip.

nviDesState Out Commands: Start, Stop etc

nvoCumRunT In Cumulated run hours

nvoMotorStateExt In Motor status: Running, Stopped, Alarm
etc

Contactor 1 nvoOpCount1 In Number of switch cycles for contactor 1.

Contactor 2 nvoOpCount2 In Number of switch cycles for contactor 2.

Contactor 3 nvoOpCount3 In Number of switch cycles for contactor 3.

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoActualCA1 In Feedback of Control access commands

Node nvoAlarmReport In Alarmreport with Warning- and Trip
information

Voltage
Measurement

nvoVoltRep In Phase voltages and frequency
3BSE040935-510 237

INSUM Communication Library Section 3 Communication

Network Variables in Circuit Breakers

The table shows Network Variables that are defined in the INSUM Circuit Breakers.

Power
Measurement

nvoPowRep In Motor power: Active power, reactive
power and power factor

General Purpose
I/O

nviGpOut1 Out General Purpose Output 1

nvoGpOut1Fb In Feedback of General Purpose Output 1

nviGpOut2 Out General Purpose Output 2

nvoGpOut2Fb In Feedback of General Purpose Output 2

nvoGpIn1 In General Purpose Input 1

nvoGpIn2 In General Purpose Input 2

Function/Object in
Circuit Breaker

NV name in Circuit
Breaker

Dir. Description

Node nvoNodeAlarmRep In Alarm report with Warning- and Trip
information

nviNodeCommand Out Commands: Open, Close etc

nvoNodeStatusRep In Circuit Breaker Status: Closed, Open,
Alarm etc

RMS Current nvoAmpsCurrRep In Current information: A, % and Earth
current

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoCAOwner In Feedback of Control access commands

Function/Object
in MCU

NV name in MCU Dir. Description
238 3BSE040935-510

Section 3 Communication MB300 Communication Library

MB300 Communication Library
The MB300 Communication library (MB300CommLib) contains function block
types for MB300 communication. The MasterBus 300 (MB 300) protocol can be
used with AC 800M and AC 400. The CI855 communication interface unit for AC
800M is used to connect to AC 400 controllers via MasterBus 300.

Dataset communication between controllers connected to MasterBus 300 is handled
by three function blocks. A dataset consists of an address part and up to 24 elements
(32-bit values). Values can be a 32-bit integer, a 16-bit integer, a real or 32 booleans.

Each CI855 unit behaves as a unique node on the MasterBus 300 network it is
connected to, and has to be configured accordingly in the Control Builder hardware
tree.
3BSE040935-510 239

MMS Communication Library Section 3 Communication

MMS Communication Library
The MMS Communication library (MMSCommLib) contains MMS data types,
function block types and control module types for establishing communication with
systems using the MMS protocol. MMS (Manufacturing Message Specification) is
used as a common application layer protocol. MMS defines communication
messages transferred between units, and has been specifically designed for
industrial applications.

MMS is the base protocol in Control Network. All communication between Control
Builders/OPC Servers and controllers uses MMS, for example, project download,
firmware download and online communication. Alarm and event handling also uses
MMS.

If the MMS Communication library is used, the communication between controllers
can be defined using access variables and function block types and/or control
module types from the MMS Communication library.

For more information on MMS communication, see the AC 800M Communication
Protocols (3BSE035982*).

It is also possible to define the communication between controllers without using
MMSCommLib, by using the IAC feature and communication variables.
240 3BSE040935-510

Section 3 Communication MODBUS RTU Communication Library

MODBUS RTU Communication Library

The MODBUS RTU Communication library (ModBusCommLib) contains data
types and function block types for communication via the MODBUS protocol.

MODBUS can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. MODBUS slave communication is not supported, only
master communication.

MODBUS TCP Communication Library

The MODBUS TCP communication library (ModBusTCPCommLib) contains
function blocks types supporting the MODBUS TCP protocol. The types are used
for MODBUS TCP communication through Ethernet ports on CI867.

MODBUS is a request response protocol and offers services specified by function
codes and supports both master and slave functionality.

The master functionality provides the possibility to access registers and coils in
other MODBUS TCP devices for both write and read operations. It is also possible
for masters to retrieve status/diagnostic information from the slaves.

The slave functionality provides the possibility for other devices to access Access
Variables. Both read and write operations are possible.

Modem Communication Library

The Modem Communication library (ModemCommLib) contains function block
types used for serial communication over a modem. To use a modem connection, the
modem must be configured to a serial (Com) port and the COMLI protocol must be
added and configured (for more information, see Control Builder online help).

For more information about modem communication, see also the AC 800M
Communication Protocols (3BSE035982*).

Siemens S3964 Communication Library

The Siemens S3964 Communication library (S3964CommLib) contains function
block types to establish communication with a system supporting the Siemens
3964R protocol.
3BSE040935-510 241

SattBus Communication Library Section 3 Communication

Siemens 3964R is a point-to-point protocol, which means that only one Siemens
system can be connected to each channel. The Siemens system requires an
Interpreter RK 512 unit.

SattBus Communication Library

The SattBus Communication library (SattBusCommLib) contains function block
types supporting SattBus. The types are used to communicate through Ethernet,
using the SattBus name-oriented model.

SattBus is only available for TCP/IP on Ethernet.

MTM Communication Library

The MOD5-to-MOD5 communication library, MTMCommLib, provides function
blocks to implement variable communication client in MOD5 controller to
AC 800M communication.

The MTMCommLib contains function block types.

The MOD5-to-MOD5 (MTM) protocol consists of request and response messages
that are exchanged each second.

The requests sent to other connected systems are determined by the control
application. The response sent at each second is determined by the requests received
at the previous second from other connected systems. The application programmer
accesses the protocol functions through standard function blocks.

The library uses the functions blocks MTMConnect, MTMReadCyc, MTMDefCyc,
and MTMDefERCyc to translate the request and to answer the MOD5 commands.
242 3BSE040935-510

Section 3 Communication Serial Communication Library

Serial Communication Library

The Serial Communication library (SerialCommLib) contains function block types
for communication with external devices (for example printers, terminals, scanner
pens) via serial channels with user-defined protocols. You can write an application
which controls the characters sent and checks whether the correct answer is
received, using serial channel handling function blocks.

The following use cases help in understanding the libraries used in serial
communication.

Establishing a valid connection for serial communication

The prerequisites to establish a valid serial port connection for reading data from a
physical device or writing data to a physical device are:

• Download the 61131-3 application that contains SerialCommLib and
SerialHWLib.

• Instantiate the SerialConnect function block.

After the connection is established, the protocol is configured with the default
behavior (read and write messages ended by an EOM (End of Message)). The
default behavior is described by the parameters like En_C, Channel, Partner, Valid,
Error, Status, and ID, which are present in the function block.

If a malfunction of the connected CI853 communication module is detected, the
module can be replaced by a new one, and the connection to the serial port is
automatically reestablished.

Adding a CRC calculation to a message in serial communication

The prerequisites to add a CRC calculation to a message are:

• Establish a valid connection to the serial port.

• Instantiate the SerialSetup function block in the 61131-3 application.

After the CRC calculation is added, the settings of CRC remain intact even after a
disconnect operation.
3BSE040935-510 243

Serial Communication Library Section 3 Communication

Enabling basic listening for serial communication

The prerequisites to enable the basic listening of serial communication data from a
device are:

• Establish a valid connection to the serial port.

• Instantiate the SerialListen function block in the 61131-3 application.

The input parameters for basic listening are message length, end of message, and
number of trailing characters.

After the basic listening is enabled, the string message (which is the output seen in
the Rd parameter) is received by the input device.

Enabling basic writing of serial communication data

The prerequisites to enable the basic writing of serial communication data to a
device are:

• Establish a valid connection to the serial port.

• Instantiate the SerialWrite function block in the 61131-3 application.

After the basic writing is enabled, the output is an acknowledgment from the Sd
parameter.

Example (Buffer handling)

A SerialListen function block is set up to read a specified message length of for
example 5 characters (MsgLength = 5).

While the Enable parameter has the value True and the buffer contains characters
the Ndr parameter will be True and 5 characters at a time will be passed to the Rd
parameter.

If an incoming message "012345678901234" has been received with a size of 15
characters (3x5) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (012345678901234), Buffer = 5678901234

Second scan: Rd = 56789 (012345678901234), Buffer = 01234

Third scan: Rd= 01234 (012345678901234), Buffer is empty

There will be no fourth scan since the buffer is empty.
244 3BSE040935-510

Section 3 Communication Serial Communication Library

If the message length is not a multiple of the MsgLength parameter the buffer will
keep the remaining characters until the number of characters in the buffer again is
greater than or equal to the MsgLength parameter value.

If an incoming message "0123456789012" has been received with a size of 13
characters (2x5+3) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (0123456789012), Buffer = 56789012

Second scan: Rd = 56789 (0123456789012), Buffer = 012

There will be no third scan as the buffer does not contain at least 5 characters. The
buffer will retain these values until additional characters are added to the buffer and
it once again equals, or exceeds, 5 characters in length. At that time, the first 5
characters will be passed to the Rd parameter.

By setting the En_C parameter of the SerialConnect function block to value False
(disconnecting), the buffer of the serial channel will be cleared.
3BSE040935-510 245

Supported Protocols Section 3 Communication

Supported Protocols
Table 18 lists all supported protocols.

For more information on supported protocols, see the AC 800M Communication
Protocols (3BSE035982*).

Table 18. Protocols supported by Control Builder

Protocol Port/Interface

MMS on Ethernet CN1, CN2 (TP830)

MMS on RS-232C (PPP) COM3 (TP830), CI853

MasterBus 300 CI855

SattBus on TCP/IP CN1 (TP830)

COMLI(1)

(1) Both master and slave

COM3 (TP830), CI853

Siemens 3964R(2)

(2) Master only

COM3 (TP830), CI853

MODBUS RTU(3)

(3) Master only

COM3 (TP830), CI853

MODBUS TCP on Ethernet(1) Ch1, Ch2, CI867

IEC 61850 Ch1, CI868

PROFIBUS DP CI854

DriveBus CI858

INSUM CI857

MOD5-to-MOD5 CI872

AF 100 CI869

PROFINET IO CI871

EtherNet/IP Ch1, CI873
246 3BSE040935-510

Section 3 Communication Control Network

Control Network
Control Network is a private IP network domain especially designed for industrial
applications. This means that all communication handling will be the same,
regardless of network type or connected devices. Control Network is scalable from a
very small network with a few nodes to a large network containing a number of
network areas with hundreds of addressable nodes (there may be other restrictions
such as controller performance).
Control Network uses the MMS communication protocol on Ethernet and/or
RS-232C to link workstations to controllers. In order to support Control Network on
RS-232C links, the Point-to-Point Protocol (PPP) is used.

Control Network, as well as other protocols and fieldbuses, is configured using
Control Builder (via the Project Explorer interface). Control Network settings are
specified in the parameter lists, accessed by right-clicking CPUs, Ethernet ports
and/or PPP connections.

Network Redundancy

The Redundant Network Routing Protocol (RNRP), developed by ABB, handles
alternative paths between nodes and automatically adapts to topology changes.

For more information on redundancy and RNRP, see the Automation System
Network manual.

For information on time stamps and clock synchronization within Control
Network, see the AC 800M Communication Protocols (3BSE035982*). Time
synchronization is also briefly described in Section 2, Alarm and Event
Handling.

The address of controller Ethernet ports should in some cases be set using the
IPConfig tool. See the Compact 800 Engineering Compact Control Builder
AC 800M Getting Started(3BSE041584*).

For information on communication parameter settings, see Control Builder
online help for the object in question. Select the object in Project Explorer, then
press F1 to display the corresponding online help topic.
3BSE040935-510 247

Statistics and Information on Communication Section 3 Communication

Statistics and Information on Communication
Statistics concerning all MMS communication in a system are displayed in the
Remote System dialog. Information can be viewed at any engineering station that is
connected to the network, by selecting Tools>Maintenance>Remote System,
followed by Show Remote Systems. You can get the following MMS-related
information:

• Tools>Maintenance>Show MMS Variables shows which MMS variables are
present in the selected remote system

• Tools>Maintenance>Show MMS Connections shows all connections,
including information on the type of connection, the destination system, and a
number of statistics.

There is also a function block type System Diagnostics that is stored in the Basic
library. This function block will (among other things) show Communication
variables, IAC, and Ethernet statistics.

For more information on the contents of the Remote System dialog and the
System Diagnostics function block type, see Control Builder online help.
248 3BSE040935-510

Section 3 Communication Variable Communication

Variable Communication
Communication between applications uses access variables and communication
variables.

Access variables are defined in the access variable editor, which is displayed by
double-clicking Access Variables in the Controllers folder. The access variable
editor can also be displayed from the application editor, by double-clicking an
access variable field in the Access Variables column.

Access variables can use the MMS, COMLI, MODBUS TCP and SattBus protocols.
MMS and SattBus variables are declared in the Access Variable Editor under the
corresponding tab, COMLI and MODBUS TCP variables under the Address tab.
Paths to local variables are given using the syntax
ApplicationName.ProgramName.FunctionblockName.VariableName

Communication variables are used for cyclic communication between programs
and top level single control modules. These objects can exist in the same
application, the same controller, or in another controller. The name of the
communication variable must be unique on the project to resolve the IP-address
during compilation.

Communication variables behave differently depending on where the variables are
placed:

• Communication variables in the same application connected to the same
IEC 61131-3 task

– In this case, the in and out variable represents the same physical memory
location, hence no communication is setup.

• Communication variables in the same application but connected to different
IEC 61131-3 tasks or between different applications in the same controller

– In this case, fast data copying is performed at each 61131-3 task scan for
the in variable. This is controlled by the task time, hence no external
communication is setup.

• Communication variables in different applications in different controllers

In this case external communication is setup. The protocol used is IAC_MMS,
which is based on User Datagram Protocol (UDP).
3BSE040935-510 249

StartAddr Section 3 Communication

Five different interval time categories are used and these are configured on the
IAC_MMS hardware unit in Control Builder.

Communication variables are declared in the editor for programs and top level
single control modules in Control Builder.

The variables are not updated in synchronization with IEC-61131 code. This must
be taken into account when designing variable communication.

StartAddr
All read and write function blocks have a StartAddr parameter. The StartAddr
identifies the first requested variable in the remote system.

Set a prefix and a start address via the StartAdr parameter. This sets the access
variable which identifies the memory area in the remote system from which data is
to be read or to which it is to be written.

For further information regarding memory addressing: see IEC 61131-3 Variable
Representation for IEC 61131-3 direct addressing and Access Variable Syntax for
direct addressing.

Example 1

You can read 16 bits from a subsystem, starting from the decimal address 64 (octal
address 100), as follows.

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

The communication using the declared communication variables happens only if
the IP and IAC MMS hardware types are inserted under the controller in the
hardware tree in Control Builder.

For more information about variable communication, see Variables and
Parameters on page 54.
250 3BSE040935-510

Section 3 Communication StartAddr
 Text in bold face indicates the most commonly used values.

Example 2

You can read a Register 45 from a subsystem, starting from the decimal address 45,
as follows:

Table 19. StartAddr parameter setting (16 bits)

Protocol IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

MODBUS RTU/
MODBUS TCP

%IX8#100 (input)
%QX8#100 (output)
%IX10#64 (input)
%QX10#64 (output)
%IX16#40 (input)
%QX16#40 (output)

Not supported

COMLI %MX8#100
%MX10#64
%MX16#40

%X100 or X100

Siemens 3964R %MX8#100
%MX10#64
%MX16#40

%X100 or X100

If you exclude the base from the format it is assumed to be base 10. For example,
%MX64 is interpreted as %MX10#64.
3BSE040935-510 251

StartAddr Section 3 Communication

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

Text in bold face indicates the most commonly used values.

Table 20. StartAddr parameter setting (Register 45)

Protocol IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

MODBUS RTU/
MODBUS TCP

%MW8#55
%IW8#55 (input)
%QW8#55 (output)

%MW10#45
%IW10#45 (input)
%QW10#45 (output)

%MW16#2D
%IW16#2D (input)
%QW16#2D (output)

Not supported

COMLI %MW8#55

%MW10#45

%MW16#2D

%R45 or R45

Siemens 3964R %MW8#55

%MW10#45

%MW16#2D

%R45 or R45

If you exclude the base from the format it is assumed to be base 10. For example,
%MW45 is interpreted as %MW10#45.
252 3BSE040935-510

Section 3 Communication Reading/Sending Data

Reading/Sending Data
The communication libraries contain all types you need to set up communication for
the supported protocols. For most protocols, there are three main types:

• Connect Types
Connect types are used to initiate a communication channel and establish a
connection to a remote system with a unique node address in a network.
Connect types are used to open a communication channel. The identity of the
opened channel is communicated to the Read and Write types via an identity
parameter (the exact name of this parameter varies between protocols). For
example, MMSConnect is used by MMSRead and MMSWrite.

A connection is established when an enable parameter is set to true. This means
that a communication channel can be opened whenever needed. The identity of
the system to which a connection has been established is communicated to the
corresponding read and write types via an Id parameter.

Connect types have a built-in continuous supervisory function, which detects if
communication is interrupted after connection has been established.

g

Due to variations between various protocols, the name of individual types and
parameters may vary slightly between the different communication libraries.
However, the communication principles are still the same.

Communication function blocks should not be called more than once per scan.
Exceptions to this are stated explicitly in the corresponding online help. Do not
call communication function blocks in SFC, in IF statements, in CASE
statements, etc.

The MMSWrite is used for communication between applications.
Communication between applications residing in different controllers is called
external, and is asynchronous. Communication between applications within the
same controller is called internal. The internal copy is synchronous or
asynchronous based on the amount of data copied.
The basic algorithm is based on how much data that can be copied synchronously
without disturbing the execution of 1131 tasks, that is the task latency must be
less than 2 ms. The total amount of data to be copied is about 800 bytes of
variable data. If the total of 800 bytes is exceeded the internal copy may affect the
task latency negatively and therefore the internal copy is executed
asynchronously.
3BSE040935-510 253

Connection Methods Section 3 Communication

• Read Types
Read types read data (often an access variable) from a target system. The
source system (the communication channel) is indicated by the Id parameter,
which is passed from the corresponding connect function block or control
module.

• Write Types
Write types write data to a target system. The target system (the
communication channel) is indicated by the Id parameter, which is passed from
the corresponding connect function block or control module.

For some protocols, there are also additional types, such as types for cyclic reading
of data, data conversion, download of measuring ranges, etc.

Connection Methods

Function blocks from the communication libraries are used to read and write
variables from a remote system:

Figure 103. Function blocks in the communication libraries.

In the application program, a common Connect function block is used in a client
(master) to establish connection to a server (slave). The function blocks Read and
Write can then be used repeatedly. Refer to online help for a description of the
parameters concerned. Variables to be accessed must be declared in the server
Access variable editor.

To display the editor, right-click the Access Variables object and select Editor.
254 3BSE040935-510

Section 3 Communication Connection Methods

Example 1:

Controller 2 (client) connects to Controller 1 (server) by means of a Connect
function block. Refer to online help for a description of how Partner and Channel
are specified for different communication protocols. Read and Write function blocks
with the same identity (ID) as the Connect block can then be used repeatedly.

As an example, Controller 2 has a Read function block in its application program
that sends a Read request to Controller 1 for an access variable named %R100. This
name must exist in the access variable list in Controller 1, which then reads the
value of Program1.A (%R100) and sends it to Controller 2. The value is then written
to the application variable named in Rd.

In the same way, the value of a variable in the Controller 1 access variable list can be
changed by means of a Write function block in Controller 2.

Figure 104. Variable read by controller 2, from controller 1.

The function blocks ReadCyc and WriteCyc perform in a similar manner, but are
used to cyclically read or write to/from a server system with the interval specified by
the SupTime parameter.

Controller 1 (server) Controller 2 (client)

Partner

ID

Access
variable

list

%R100

Program1.A

%R100

IDID

Connect

Read Write
StartAddr

StartAddr
Rd

Sd

Channel
3BSE040935-510 255

Communication Concepts Section 3 Communication

Example 2:

Write and read requests are triggered by the Req parameter being set to True after
having been False for at least one scan. This problem can be avoided if two function
blocks are executed, one after the other. In this way, a request is always outstanding.
Additional requests triggered by the Req parameter will be ignored by the function
block, until the Done (or Ndr) parameter has become True.

Figure 105. Resetting the Req parameter using two function blocks.

Communication Concepts

When setting up communication with external devices and other controllers, it is
also important to be familiar with the following:

• The client/server concept (master/slave), see Client/Server Communication on
page 257,

• The publisher/subscriber (also called subscriber/provider) concept, see
Publisher/Subscriber Communication on page 258.

• There is also the choice between cyclic and asynchronous communication, see
Cyclic vs. Asynchronous Communication on page 259.

Req Done

Done

Write

Write

Req•

StartAddr

StartAddr
256 3BSE040935-510

Section 3 Communication Communication Concepts

Client/Server Communication

The main principle of client/server communication is the following:

• The client is the active party, which requests (reads) data from the server.

• The server is a passive provider of information that simply answers to requests
from the clients.

Figure 106 shows the principle.

Figure 106. Client/server principle. The client reads data from the server. The
server sends data to the client when requested.

Client/server communication could also be described as master/slave
communication. In that case, the client is the master, and the server is the slave.

Read function
block (client)

Client application

Function block
providing data
(server)

Server application

Request for data (cyclic or triggered)

Data (sent on request)

(Communication Channel)
3BSE040935-510 257

Communication Concepts Section 3 Communication

Publisher/Subscriber Communication

The main principle of publisher/subscriber communication is the following:

• The publisher publishes (the publisher is also known as the provider) data
cyclically, in a pre-determined location.

• The subscriber is a consumer of information, which subscribes to published
data.

Figure 107 shows the publisher/subscriber principle.

Figure 107. Publisher/subscriber principle. The publisher publishes data to a pre-
defined location, which is read by the subscriber.

Read function
block (subscriber)

Subscriber application

Function block
providing data
(server)

Publisher application

Request for data (cyclic or triggered)

Data (written cyclically)

(Communication Channel)Data storage

(Communication Channel)

Data (sent on request)
258 3BSE040935-510

Section 3 Communication Fieldbus Communication

Cyclic vs. Asynchronous Communication

An important decision when setting up communication is whether communication
should be cyclic, that is, take place regularly, with a certain time interval, or
asynchronous, that is, take place when triggered by a certain event or condition.

Which method to use depends on things such as:

• How much does the execution of communication code affect performance?

• How often can a value be expected to change?

• How important is it that a change in a certain value is communicated
immediately?

Fieldbus Communication
Fieldbuses offer communication on a dedicated bus, using a special fieldbus
communication protocol. Fieldbus devices often contain distributed code, which
means that they need to be set up not only from Control Builder, but also using a
fieldbus-specific configuration tool.

PROFIBUS DP

PROFIBUS (PROcess FIeld BUS) is a fieldbus standard, especially designed for
communication between systems and process objects. This protocol is open and
vendor independent. It is based on the standard EN 50 170. With PROFIBUS,
devices from different manufacturers can communicate without special interface
adjustments. PROFIBUS can be used for both high speed, time critical transmission
and extensive, complex communication tasks.

For more information about communication, performance and design, see
Application Programming manual.

For information on how to make part of your code execute with a different
interval, see Control the Execution of Individual Objects on page 75.

For detailed information on how to configure the fieldbuses, refer to the
corresponding, fieldbus-specific documentation. For detailed information on how
to configure communication with fieldbus devices, see the corresponding Control
Builder online help.
3BSE040935-510 259

Fieldbus Communication Section 3 Communication

PROFIBUS has defined the three types of protocol: PROFIBUS FMS, DP and PA.
With AC 800M access to PROFIBUS DP and PA is supported.

PROFIBUS DP is connected to the controller via the CI854/CI854A
communication interface unit. The connection to PROFIBUS PA can be established
by use of the Linking Device LD 800P that links between PROFIBUS DP and
PROFIBUS PA.

The original version of PROFIBUS DP, designated PROFIBUS DP-V0, has been
expanded to include version DP-V1 and DP-V2. With CI854/CI854A support for
DP-V1 and the acyclic services (toolrouting) is given. In addition CI854/CI854A
supports line and slave redundancy and CI854A supports master redundancy as
well.

The PROFIBUS DP-V0 configuration and parameter data for slave devices are
engineered in Control Builder and downloaded via CI854/CI854A.

PROFIBUS slave types are usually supplied with a *.gsd file. This file describes the
properties of the slave type. The *.gsd file must be converted with the Device
Import Wizard, in order to be used in the project.

PROFINET IO

PROFINET is a manufacturer-independent Fieldbus standard for applications in
manufacturing and process automation. PROFINET technology is described in
fixed terms in IEC 61158 and IEC 61784 as an international standard.

PROFINET IO uses Ethernet communication to integrate simple distributed I/O and
time-critical applications.

PROFINET IO describes a device model oriented to the PROFIBUS framework,
which consists of places of insertion (slots) and groups of I/O channels (subslots).
The technical characteristics of the field devices are described by the General
Station Description (GSD) on an XML basis. The PROFINET IO engineering is
performed in a way familiar to PROFIBUS. The distributed field devices are
assigned to the controllers during configuration.

The PROFINET IO is interfaced to the IEC 61131 controller AC 800M, using the
PROFINET IO module CI871.
260 3BSE040935-510

Section 3 Communication Fieldbus Communication

PROFINET IO is based on IEEE 802.3. PROFINET IO uses Ethernet, TCP, UDP,
and IP as the basis for communication. It is designed to work with other IP-based
protocols on the same network.

The transmission of time-critical process data within the production facility, occurs
in the Real-Time (RT) channel.

DriveBus

The DriveBus protocol is used to communicate with ABB Drives and ABB
Special I/O units. DriveBus is connected to the controller via a CI858
communication interface unit.

Advant Fieldbus 100

Advant Fieldbus 100 (AF 100) is a high performance fieldbus, which is used for:
• Communication between Advant Controllers.
• Communication between Advant Controllers and S800 I/O Stations, AC 800M

controllers, and so on.

Advant Fieldbus 100 supports three transmission media:
• Twisted pair (Twp)
• Coaxial (RG59 and RG11)
• Optical media.

An AF 100 bus can be built up with all the three media, where a part of one kind of
media is a specific segment.

The CI869 communication interface that is attached to the AC 800M controller
provides connectivity to other AC 800M, AC 160 or connectivity server over
AF 100. An AC 800M controller with the communication interface CI869 behaves
as an AF 100 station, receiving data from other AF 100 stations/devices. The CI869
has integrated Twisted Pair modems.

The Advant Fieldbus 100 supports two different kinds of communication:
• Process data—Dynamic data used to monitor and control a process
• Message transfer—Used for parameters, program loading, and diagnostic

purposes.

The protocols used by the supported fieldbuses are described in detail in the
AC 800M Communication Protocols (3BSE035982*).
3BSE040935-510 261

MMS Communication Section 3 Communication

MMS Communication

How to Choose Function Block/Control Modules in MMSCommLib

MMSCommLib contains of function block types and control modules for different
communication purposes. See Figure 108 which types to be used at communication
between two controllers.

Figure 108. Function block types to be used at
262 3BSE040935-510

Section 4 Online Functions

Introduction
When a controller project is in online mode and test mode, it is possible to inspect
the code while running it, and interact with the code. Furthermore, you can issue
operations to the controller. There are also functions to help the user to find online
errors and to document the control project.

The following functions are available in online mode and test mode:

• Online editors, see Online Editors on page 264.

• Dynamic display of I/O channels and forcing, see Dynamic Display of I/O
Channels and Forcing on page 265.

• Scaling analog signals, see Scaling Analog Signals on page 267.

• Unit status and channel status, see Supervising Unit Status on page 267.

• Hardware and task status indications, see Status Indications on page 272.

• Tasks, see Tasks on page 274.

• Interaction windows, see Interaction Windows on page 275.

• Status and error messages, see Status and Error Messages on page 277.

• Reports and analysis, see Search and Navigation in Online and Test Mode on
page 278.

• Project documentation, see Project Documentation on page 282.
3BSE040935-510 263

Online Editors Section 4 Online Functions

Online Editors
From the Project Explorer in online mode, you have access to editors similar to
those in offline mode, such as the application editor, the program editor, the
hardware configuration editor and the function block editor. By using the online
editors the code currently running in the controller(s) can be inspected. Variable
values and parameters can be changed.

You can open one or several new online editor windows from the Project Explorer
by double-clicking on the Program Organization Unit (POU, see Application Types
and Instances on page 30) you want to view. You can also select the POU, click the
right mouse button and select View.

Figure 109. Part of Program editor in online mode

In online mode there are fewer menu entries in the menu bar than in the offline
editor. Edit and Insert are not available in online mode. The options available in
online menus are also somewhat different from those in offline mode. Columns in
the editor that are dimmed are not accessible.

An online editor window consists of a title row, menu bar, tool bar, and a status bar
at the bottom. The window is split into three panes, as follows.
264 3BSE040935-510

Section 4 Online Functions Dynamic Display of I/O Channels and Forcing

• In the upper declaration pane the variables and parameters of the POU are
displayed in forms that resemble Excel data sheets. Each sheet, with its tab, has
a unique appearance with respect to the number of columns and their names.
Select a tab to see its sheet, available columns and their names. See also Online
Change of Variable Values in the online help.

• The middle code pane displays the various code blocks in the POU, in any of
the 1131 programming languages.

• The lower description pane displays descriptions of the types and POUs.

It is possible for the user to enter editor settings in the Setup Editor dialog, using the
Tools > Setup menu.

From the online editor window you can activate the POU editor window using the
Tools > Edit Type menu or the Edit Type button .

You can activate an online window for the POU parent via the Tools > View Parent
menu or the View Parent button .

To access filter select a column in the grid and select Tools > Filter or Filter button
.

From the 'Filter' dialog one can decide which rows to display or hide by selecting or
deselecting criteria items. The Criteria items can also be text filtered. An icon in the
column header informs shows an active filter on that column.

Alphabetical sorting of the column is possible by selecting Tools > Sort A to Z or
Sort Z to A, or click the Sort A to Z /Sort Z to A button in toolbar .

If column is not selected, the name column will be sorted. In offline Editor, when
sorting the parameter column, a warning is presented which informs that the
parameter order might be changed.

Dynamic Display of I/O Channels and Forcing
In test mode and online mode, you can use the hardware configuration editor for
dynamic online display of I/O channel values and forcing.

See the Control Builder online help for more information about the Setup Editor
dialog, Edit Type and View Parent.
3BSE040935-510 265

Dynamic Display of I/O Channels and Forcing Section 4 Online Functions

Forcing of I/O channels is performed in the hardware configuration editor under the
Status tab, or in the POU editor in online mode. All I/O channels that can be
connected to a variable in an application can also be forced in online mode, except
for channels such as UnitStatus on each I/O unit and AllUnitStatus on the current
controller (see Supervising Unit Status on page 267).

Normally, only channels with variable connections to application programs can be
forced. However, if no variable is connected, you have to change the parameter
Copy unconnected channels under the Settings tab for the current controller to
obtain a status update. The I/O channels you can copy are None, Inputs or Outputs,
or both the Inputs and Outputs.

When selected, the unconnected I/O channels are copied once a second so their
status is available in the Status tab like normally connected I/O channels.

Application programs requiring information about forcing and forced values, can
use the I/O data types when connecting variables to I/O channels. In this way, you
can use the Forced component (which indicates if the I/O channel is forced) and the
IOValue component (contains the value of the I/O channel) of the I/O data type.

When a channel is forced, all copying between the I/O value and the application
value stops. The forced value is different for inputs and outputs. For inputs, forcing
changes the variable value sent to the application. For outputs, forcing changes the
physical I/O channel value. In this way, the application can see both the Variable
(application) value and the Channel (I/O) value.

Forcing can be activated or deactivated using a check box in the Forced column for
the channel. The background of the forced Variable Value changes to yellow to
indicate forcing. To change the channel value, type in a new value for the Variable
Value. This value overrides the values for the channel.

Copy unconnected channels is for test purposes only and should never be selected
for a controller in a running plant, since it will increase CPU load.
266 3BSE040935-510

Section 4 Online Functions Scaling Analog Signals

Figure 110. I/O channel with the variable Photo_Cell forced to true.

Scaling Analog Signals
It is possible to temporarily change the scaling values for analog signals in online
mode.

Supervising Unit Status
Each hardware unit has a UnitStatus channel that describes the current error status
of the unit. Both dynamic and static warnings and errors are collected in this
channel.

The data type, for the variable connected to the UnitStatus channel of the hardware
unit, can be either of dint data type or of HwStatus data type. If a variable of dint
data type is connected to the UnitStatus channel, the possible unit status values are:
0 (OK), 1 (Error), or 2 (Warning).

The HwStatus data type contains the same information as shown under the
Unit Status tab of the hardware configuration editor, that is, unit status information
and status message acknowledgement functions. These components will be
available by using the HwStatus data type as a variable connection to the UnitStatus
channel.

In the example below, see Figure 111, the DO814UnitStatus variable of dint data
type is connected to UnitStatus of DO814 (unit status is 0=OK!). The

More information is given in Control Builder the online help. Search the Index
for “I/O”.

If scaling values for an analog signal are changed in online mode, the change will
be lost if you enter offline mode, make configuration changes and then perform a
download.
3BSE040935-510 267

Find Out What is Wrong by Using HWStatus Section 4 Online Functions

DO810UnitStatus variable of HWStatus type is connected to UnitStatus of DI810
(HWState is 1, that is, unit status is Error).

Figure 111. The UnitStatus connection gives access to the status of individual
hardware units.

Find Out What is Wrong by Using HWStatus

You cannot find out exactly what is wrong by using the simple data type dint, only
that something is wrong. Table 8 on page 86 shows that, in addition to using the dint
type, you can also use the data type HWStatus. By using the structured data type
HWStatus, instead of the simple data type dint, you may also find out what is wrong
with the unit.

Among other things, the structured data type HWStatus contains the component
ErrorsAndWarnings, which contains a bit pattern, representing the different errors
that may occur in the unit. Each bit in the word represents a unique error.

Figure 112 illustrate how the component ErrorsAndWarnings in HWStatus can be
accessed.

For example, the word takes the value of 16#80020000 (hexadecimal notation), if
the CPU battery suffers from low voltage.

For more information on error codes, see Control Builder online help.
268 3BSE040935-510

Section 4 Online Functions AllUnitStatus

By combining AC800MStatus.ErrorsAndWarnings with the bit pattern 800200001
and using the AND operator, it is possible to trigger an error (or warning) from the
hardware unit, together with the specific error code for “low CPU battery voltage”.
The result is assigned to the boolean variable BatteryLow. The ST code for this
condition is as follows:
(*Set the Boolean variable "BatteryLow" when AC 800M has low
battery*)
BatteryLow := (AC800MStatus.ErrorsAndWarnings AND
16#80020000) <>0;

In online mode it will be displayed as below in Figure 112.
I

Figure 112. The variable AC800MStatus (of HWStatus type) has been used to
access the component ErrorsAndWarnings.

AllUnitStatus

Each controller hardware object has one channel called AllUnitStatus, containing
the summarized status of all hardware units added to the controller. The most
serious unit status (dint) is forwarded up to the controller object, that is, the unit
status of the controller is error if one unit has an error, and one has a warning.

AllUnitStatus can be used in the same way as UnitStatus, that is, the variable
connected to AllUnitStatus can be of dint data type or of HWStatus data type.

Figure 113. The AllUnitStatus connection gives access to the status of all units for a
controller.

1. Typed in ST editor in hexadecimal notation as 16#80020000.
3BSE040935-510 269

Binary Channels Section 4 Online Functions

The variable connected to AllUnitStatus can be used in the application program, to
write different conditions depending on status value (see UnitStatus Example
Figure 112).

Binary Channels

Access All Inputs and All Outputs

Some units return a binary value, as a number of inputs divided on 8 or 16 channels.
Typically, this applies to different types of sensors. These values can be collected
via an overall channel, namely “All input”’. This means that, instead of reading all
variable values from each channel, one variable can be connected to the channel
“All inputs” (IW0, see Table 8 on page 86), provided the variable is of dword data
type. This technique can also be used for digital outputs. However, for digital output
units, you must choose either to connect all individual channels or connect one
variable to the channel “All outputs” (QW0, see Table 8 on page 86). You cannot use
both methods simultaneously.

Check Channel Status

There are two ways to check the channel status for an I/O unit. You can either use
the structured data type BoolIO, that is, read the component Status via BoolIO, or
you can connect a variable of type dword to the “Channel status” (IW0, see Table 8
on page 86).

The component Status in BoolIO only gives you the status for that connected
channel, whereas a variable of type dword that is connected to channel “Channel
status” will read the status for all channels, given with bit 0 equivalent to channel 1,
bit 1 equivalent to channel 2, etc. However, a variable of type BoolIO that is
connected to each channel contains more information, since the component Status is
a 32 bit dword, whereas AllChannel is a 16 bit dword. Connecting each channel to
BoolIO gives more information, but also more variables to connect.

ISP and OSP values are not set for variables connected to All Inputs/All Outputs!

ISP/OSP (Input/Output Set as Predetermined) will not work when using the
channel "All Inputs" or "All Outputs". I/O values will be lost in an error situation.
270 3BSE040935-510

Section 4 Online Functions Supervising Communication Variable Status

Connecting a variable to AllChannel will give you less information, but only one
variable to connect.

Supervising Communication Variable Status
The status of a communication variable can be accessed using the :status notation.

For example:
dword1:=CVMain:status;

In this example, the :status notation is used to obtain the status of the
communication variable, CVMain. The status appears as dword.

Table 21 describes the different status values for communication variables.

Do not try to connect the component Status (inside BoolIO) directly to the
channel. You must connect BoolIO. For information about connecting structured
data types to IO channels, see I/O Data Types on page 85 and the variable
example given in Figure 29 on page 85.

Table 21. Status values for communication variables

Value Description

16#C0 The status is OK.

16#10000 The values are not communicated in time, but no timeout
has occurred. This status appears only for communication
between controllers, and not for communication within the
same controller.

16#20000 The values are not communicated in time, and a timeout
has occurred. This status appears only for the
communication between controllers, and not for the
communication within the same controller.

16#30000 The IP address has not been resolved for the
communication variable.

16#40000 The type does not match the type of the corresponding
out variable. This status appears only for communication
within the same controller.
3BSE040935-510 271

Status Indications Section 4 Online Functions

Status Indications

In the Project Explorer, dynamic status indications for the hardware units and tasks
are displayed as shown below.

Figure 114. Status indications of hardware and tasks in Project Explorer.

• OK
No errors or warnings.

16#50000 The corresponding out variable is declared, but not
downloaded yet.

16#60000 The protocol handler is not configured.

16#70000 The task is halted (or task is aborted due to overrun). This
results in ISP handling on the client side.

Status indications are not displayed in Test mode.

Table 21. Status values for communication variables (Continued)

Value Description

Error

Warning

OK
272 3BSE040935-510

Section 4 Online Functions Status Indications

• Error!
Hardware objects are marked with a red triangle icon if an error is detected in
the hardware, for example, if a hardware unit is missing.
The task is marked with a red triangle when a serious error has occurred, for
example, when a task is aborted as a consequence of too long execution time.
The error is described in the Remark field of the Task Properties dialog. See
Task Abortion on page 127 for more information.

• Warning!
Hardware objects are marked with a warning icon if there is an overflow or
underflow at an analog channel, if the forcing of a channel is detected, or if an
unacknowledged fault disappears. The task icon is marked with a warning icon
if the task is not used (“Not in use”), in the case of overload, or when the task is
in debug mode and the task is halted, that is, non-cyclic mode (see Debug
Mode in the Compact 800 Engineering Compact Control Builder AC 800M
Getting Started(3BSE041584*) manual. The warning is described in the
Remark field of the Task Properties dialog. See Task Control on page 110 for
more information about tasks.

An error has higher priority than a warning, for example, an error is indicated if an
error occurs at the same time as channel forcing is detected.

A collapsed object folder shows status indications for all underlying objects, that is,
status indication is always forwarded up to the controller icon. It is not until an
object folder is fully expanded that you can be sure that status indications are shown
next to the unit they actually belong to. If, for example, a single task has a warning,
both its task folder icon and its controller icon are marked with a warning. Status
indications are displayed up to the controller level only.
3BSE040935-510 273

Acknowledge Errors and Warnings Section 4 Online Functions

Acknowledge Errors and Warnings

All hardware unit errors and warnings have to be acknowledged by the user. Use the
status tab in the hardware editor to obtain information about the error or the
warning.

See Control Builder online help for more information about dynamic online display
of I/O channel values and forcing and how to acknowledge errors and warnings.

Tasks
Use the Task Overview dialog to display task information in online mode.

For each task, you can make changes to the Requested Interval Time, Offset,
Priority and Latency using the Task Properties dialog. The maximum encountered
intervals and the maximum encountered execution time can be reset.

Debug mode can be used, but for debugging only. Functions based on the real-time
clock (PID controllers, timers etc.) do not work properly when debug mode is used
(also, see Debug Mode in the Compact 800 Engineering Compact Control Builder
AC 800M Getting Started (3BSE041584*) manual.

You can also select Always update output signals last in next execution, or select
Always update output signal first in next execution.

Warnings concerning tasks do not have to be acknowledged.

There is a possibility to acknowledge errors and warnings for all hardware
subobjects by right click the main hardware object (Hardware AC 800M in
Figure 114) and select Clear Latched Unit Status.

It is not possible to change the task priority to/from 0 (Time-Critical priority) in
online mode.

If debug mode is used in a running plant, task execution will be stopped.

For further basic information about tasks, see Task Control on page 110. For
Latency information, see Latency Supervision on page 125. See also Control
Builder online help for how to carry out task changes.
274 3BSE040935-510

Section 4 Online Functions Interaction Windows

Interaction Windows
An interaction window contains the graphics of a control module and is only
accessible in online mode. An interaction window may contain both supervisory
features, such as signal status, and interactive features, such as push buttons. The
window can be accessed from:

• A control module in the Project Explorer.

• A function block in the Project Explorer. This is, however, only available under
the condition that at least one control module exists and is connected to the
selected function block type. By default, the first control module in the list will
appear in the interaction window (this can be changed in offline-mode by right-
clicking on the type name in the Project Explorer and selecting Properties>
Set Interaction Window Control Module).

• An online program editor containing a control module.
3BSE040935-510 275

Interaction Windows Section 4 Online Functions

• An online program editor containing a function block (compare with item 2
above).

• From interaction window objects in a control module.

Figure 115. The left window is an interaction window activated from an application
window interaction object. The right window (supervision only) appears after
clicking the info interaction window button.
276 3BSE040935-510

Section 4 Online Functions Status and Error Messages

Status and Error Messages
There are function block types, control module types and functions that contain a
parameter named Status. The Status parameter shows, in online mode and in test
mode, a status code that correspond to a status message. The status code changes
depending on the current state of the function block, control module or function.

There are function-specific status codes that are used within its range of application
only, for example, communication-specific status codes. Some status codes are
general and are used for most function blocks and control modules, and for
functions with a Status parameter.

Function block types and control module types with a Status parameter also have an
Error parameter. The Error parameter is set to true if the Status parameter < 0, for
example, if Status is -35 (Maximum size limit has been exceeded). Status codes >1
is used as warnings and do not set the Error parameter.

Figure 116. A function block with Status parameter and Error parameter
(operation successful=1).

The Error and Status parameters can be used in the application program, for
example, a condition can be written in the program for a specific status code.

The different status messages are described in Control Builder online help.
3BSE040935-510 277

Search and Navigation in Online and Test Mode Section 4 Online Functions

Search and Navigation in Online and Test Mode
The Search and Navigation tool can be used to conduct simple searches and iterative
searches when the project is in Online mode or Test mode.

This functionality makes it possible to search for input/output of a certain signal as a
result of a single search, irrespective of name changes at parameter connections.
This means all information concerning reading and writing from the whole
Application/Controller(s) about a signal is found in the search.

The appearance of the Search and Navigation dialog in the Online mode and Test
mode depends on the setting of the option Iterative searches in Online/Test Mode
in the Search and Navigation Settings dialog. By default, this option is set. See
Search and Navigation Settings on page 148.

Iterative Search

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is set (the checkbox is checked) in the Search and Navigation Settings dialog, the
iterative search hits are directly presented in one pane – the References pane.
It is not possible to search for another item in the window. See Figure 117.
278 3BSE040935-510

Section 4 Online Functions Search and Navigation in Online and Test Mode

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is not set (the checkbox is not checked) in the Search and Navigation Settings
dialog, the search hits are presented in two panes—the Symbol and Definition pane,
and the References pane. In this case, right click the symbol and select Iterative
Search to start its iterative search. See Figure 118.
It is also possible to search for another item in the window and obtain the new
results.

Figure 117. Iterative search results for the variable AC800MStatus in Online mode
3BSE040935-510 279

Search and Navigation in Online and Test Mode Section 4 Online Functions

After the Iterative Search option is selected (see Figure 118), the search results for
the selected symbol are replaced by new search results in the References pane,
which shows the header as References (iterative search).

General Considerations for Search in Online/Test Mode

The tree view in the References pane shows where the signal is read or written.

It is possible to navigate from the Search and Navigation dialog to the references of
a found symbol by double clicking a reference. Then a suitable editor is displayed
and the symbol is highlighted in the editor.

Figure 118. Search results for the variable AC800MStatus in Online mode, with the
option for Iterative Search
280 3BSE040935-510

Section 4 Online Functions Search and Navigation in Online and Test Mode

The references are followed both upwards towards its first definition in a parent
node, and downwards to the leaves of the project structure, in order to cover all
usage. Every time a reference is followed, there is a new query to the search
database. By means of those user hidden repetitive queries, all relevant information
is collected from a single search.

There are following differences in online/test mode (compared to offline mode):

• Search In: drop-downs can only contain search paths for objects that you can
see in online/test mode, for example, libraries cannot be searched.

• References only show information concerning where the symbol is used, as can
be seen in online and test mode.The references tree (i.e. the tree presented in
the references pane of the Search and Navigation dialog) presents instance
paths in online mode and test mode.

• It is only possible to navigate to online editors and to the Project Constant
dialog. The online editors that can be navigated to are the following:

– POU editor
– Connection editor
– Control Module Diagram editor
– Hardware configuration editor
– Access variables editor

In online mode, it is also possible to navigate from the Search and Navigation
function to the corresponding object in the Project Explorer.
3BSE040935-510 281

Project Documentation Section 4 Online Functions

Project Documentation
Project Documentation in online mode is used to document (part of) the application
tree in online or test mode. You can select any application object, set the “tree
depth” in relation to the selected object, to document part of the tree only. You can
also use filter conditions for a more specific search. Unlike the offline mode, the
values of variables, parameters, etc. are included. For example, it is possible to filter
out all coldretain variables and parameters in an application. The output is a
Microsoft Word file, hence Microsoft Office must be installed.

1. Enter online or test mode and select an application object in Project Explorer.

2. Select File > Documentation Online... to open the Project Documentation
dialog.

Figure 119. The Documentation Online dialog.

All project documentation will be connected to a standard template.
282 3BSE040935-510

Section 4 Online Functions Project Documentation

3. See Control Builder online help for information about dialog settings and
selections.

See Project Documentation on page 179 for information about Project
Documentation in offline mode.
3BSE040935-510 283

Project Documentation Section 4 Online Functions

284 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting

This section provides important information for maintenance and trouble-shooting
Compact Control Builder products. It mainly advises you on how to maintain your
system, and how to collect information from a malfunctioning control system. The
latter information is particularly valuable if your supplier’s service department is to
be involved.

Introduction
Software maintenance and trouble-shooting includes the following activities:

• Backup and Restore on page 285 gives a short overview of backup and restore.

• Files for Separate Backup on page 288 describes how to configure handling
and logging of system alarms and events, using the Error Handler.

• Trouble-Shooting on page 294 lists a number of error symptoms, and suggest
actions upon these.

• Error Reports on page 329 describes how to write a complete error report, so
that the support engineers get a complete picture of an error situation.

Backup and Restore

Introduction

This function provides a backup of your project, and enables you to move a project
from one Control Builder station to another with the restore function. You can
choose to backup a complete project or select parts of the project.
3BSE040935-510 285

Backup Section 5 Maintenance and Trouble-Shooting

Backup

Compact Control Builder suggest the current project in Project Explorer for backup,
or you can browse via a button to another project on your hard disk. Furthermore,
Control Builder suggests a destination folder, named Project Backup which will be
created next to the Project folder.

To Backup a project, select (in Project Explorer) Tools>Maintenance>Project
Backup. A Project Backup dialog window will open, (Figure 120).

Figure 120. Backup menu in Project Explorer.
286 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Restore

Complete Backup

This option includes all files that are needed to restore the project on another
computer.

Typical Backup

A Typical backup of a project includes all source code files that are needed to
restore the project on another computer. However, Retain, Cold Retain or Domain
files will not be included with this option.

Custom Backup

Advanced users may want to choose explicitly which files to back up. This option
provides a list of all files included in the project.

Restore

The restore function is used to install a backup, for example, after a disk crash, or
when moving a project to another system. You may decide to make a Complete,
Typical or Custom restore.

When you are restoring a complete project, all the project-related files are copied
from the backup folder to the project folder.

Files for Separate Backup

There are some settings files that are stored locally. These need to be backed up
separately:

• OPC Server Configuration and System Setup Files
The OPC Server stores configuration files (*.cfg) and system setup files
(*.sys) on local disc. These files are stored in the OPC server working
directory and need to be manually copied to safe media on a regular basis. See
the AC 800M OPC Server (3BSE035983*) manual for more information.

• Control Builder Settings File
Each Control Builder client saves its settings in the file systemsetup.sys.
This file is saved on local disk, in the Control Builder working directory, and
has to be manually backed up to safe media on a regular basis.
3BSE040935-510 287

Controller Configuration Section 5 Maintenance and Trouble-Shooting

Controller Configuration
The Error Handler is used to configure controller behavior on system alarms and
events of different severities, and how different errors are logged.

Error Handler settings are made for each controller, in the Controller Settings
dialog. There are certain settings that cannot be changed (they are dimmed in the
dialog). You can add additional actions, but you cannot change the original
settings.Error Handler settings are slightly different for High Integrity and non-High
Integrity controllers:

• Controller Settings in Controllers on page 289 describes how to configure the
Error Handler in a controller.

Errors can be reported from the code using the ErrorHandler function block type
or the ErrorHandlerM control module type. Using these types, errors identified by
the code can be handled in the same way as other errors. For more information on
how to configure the ErrorHandler(M) types, see corresponding online help.

The ErrorHandler(M) types should be used with care, since they can be used to
reset the controller.
288 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Controller Settings in Controllers

Controller Settings in Controllers

Figure 121 shows the Controller Settings dialog for a AC 800M controller. It is
displayed by right-clicking the controller in Project Explorer and selecting
Properties > Controller Settings.

Figure 121. Controller Settings dialog for an AC 800M controller.

If load balancing is enabled, overrun and latency supervision is automatically
disabled, see Overrun and Latency on page 123.

The default setting for a controller is that load balancing is enabled and overrun and
latency supervision disabled. If you disable load balancing overrun and latency
supervision is automatically enabled.
3BSE040935-510 289

Controller Settings in Controllers Section 5 Maintenance and Trouble-Shooting

Fatal overrun settings are used only if overrun and latency supervision is enabled
(this part will be dimmed if load balancing is enabled, see Figure 121).
290 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Controller Settings in Controllers

The Fatal Overrun part of the dialog lets you set how many overruns (missed scans)
that are allowed before a fatal error is considered to have occurred. The Reaction
setting is used to select which action the controller should take when a fatal overrun
error occurs. The options are Nothing, Stop Application, and Reset Controller (The
default option is Nothing). The default setting for the Limit is 10 interval cycles.

For a controller, the Error Reaction part lets the user set the following, see Table 22.

The above table shows controller reactions (fixed and configurable) when alarms of
different severities are received by the Error Handler in a controller.

It is important to avoid configuring the error handler in such a way that a fatal
overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Controller Shutdown for the corresponding
severity). Note that severity Fatal and Critical always lead to a controller
shutdown.

If settings are inconsistent, you will receive a warning when trying to save the
new settings.

Table 22. Error Reaction. This part of the dialog is used to set controller actions at system alarms of
different severity.

Severity Log Event Controller Shutdown

1 Low Configurable for all Configurable for all Configurable for all

2 Medium Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all Configurable for all

3 High Always for system
diagnostics and
execution
Configurable for I/O

Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all

4 Critical Always Always Always

5 Fatal Always Always Always
3BSE040935-510 291

Controller Settings in Controllers Section 5 Maintenance and Trouble-Shooting

There are three tabs in the Error Reaction part of the dialog:

• The System Diagnostics tab contains settings for system alarms generated by
the System Diagnostics module, for example, CEX module errors, protocol
handler errors.

• The Execution tab contains settings for system alarms generated during
execution of IEC-61131 code, for example, latency errors, CRC check failures.

• The I/O tab contains settings for I/O module errors.

The following definitions have been used for the severity of system errors when
designing error handling for different modules:

• 1 Low
Minor, of diagnostic or informative sort. Does not affect system integrity or the
functionality of the reporting module.

• 2 Medium
An error, such as I/O channel failure, communication failed, or similar, has
occurred. Does not affect system integrity, but affects functionality in the
reporting module.

• 3 High
Severe error, but not critical, for example I/O module failure. May affect
system integrity. Functionality in the reporting module is affected. Redundancy
may maintain the system integrity

• 4 Critical
A severe error has occurred, for example, a task has stalled, ModuleBus stalled,
I/O cluster down. Will affect system integrity, since the reporting module has
failed. Redundancy may maintain the safety of the system.

• 5 Fatal
Systematic software errors have been found. The whole reporting subsystem
has failed. Redundancy will not maintain the system integrity. This severity is
only used when there is no possibility to safely continue using a backup PM.
292 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Error Handler Log Entries

Error Handler Log Entries

If an error of a certain severity is configured to be logged, it will generate a
Controller System log (see Controller System Log on page 304) entry with the
following general structure.

E yyyy-mm-dd hh:mm:ss:ms ErrorHandler PM: Error descr.(x,y,R)

• Such an entry should be read according to the below table.

Table 23. How to read a log entry generated by the Error Handler.

Part Description Allowed Value(s)

E Error

yyyy-mm-dd Date

hh:mm:ss:ms Time when error was time
stamped

ErrorHandler PM: Error detected by ErrorHandler PM:

=Processor Module

Error descr. A text describing the error

(x,y,ERS)

x=error type 1 (System Diagnostics)
2 (Execution),
3 (I/O)

y=severity 1 (Low)
2 (Medium)
3 (High)
4 (Critical)
5 (Fatal)

ERS=action type E (Event)
R (Reset)
S (System Alarm)
3BSE040935-510 293

Trouble-Shooting Section 5 Maintenance and Trouble-Shooting

Trouble-Shooting

General

When a control system error occurs, it is important to investigate it as soon as
possible. In doing this, the possibility of finding and eliminating the problem will be
substantially increased. The reasons are:

• The personnel involved will not have forgotten what happened.

• The application software involved will not have been changed.

• The systems involved will not have been changed (location, setup etc.).

• You may need a work-around quickly, to be able to continue your work.

• Some errors only occur under very special circumstances and/or in special
hardware/software configurations. The person who reports the problem may
have the only installation/configuration where we know it could occur.

The task of trouble-shooting is usually very difficult, and requires a great deal of
intuition and ability to draw conclusions from known facts. This subsection aims to
provide some guidelines on solving problems.

Here are some basic troubleshooting questions which should first be answered.

• What is the problem?

• Is it a known problem? Check the available information (for example, Release
Notes and Product Bulletins) and discuss it with colleagues.

• Has the system worked previously (with the same hardware)? If so, the
problem may have occurred due to poor installation or due to setup problems.

• Has anything been modified recently? The problem is often to be found in
modifications. If possible, revert to the previous state, and test.

• Can the problem be linked to any special event?

• Is it possible to reproduce the problem?

A well-described error, with all vital information included, will always increase
the probability of correcting the error quickly and effectively. Error Reports on
page 329 provides some hints when writing an error report.
294 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

Log Files

The Industrial IT products described in this subsection have built-in logging
routines that continuously write to log files. Log files will contain important
information whenever a failure occurs during a programming session, or when a
controller is running. These files and the crash files (see section Crash Dumps for
Analysis and Fault-Localization on page 309) are very useful for troubleshooting
and contain crucial information for analyzing malfunctions.

System Log File

The system log is created the first time Control Builder is started (or if there is no
log file), and is used to store general information concerning Control Builder.
Examples of information logged are start/stop of Control Builder and changes in the
setup of Control Builder via the Tools menu. The System log can be read via the
menu entry Tools > Maintenance > Analysis > System Log. Figure 122 shows an
example of the system log.

The path and file name of the System log are given in Table 24.

Figure 122. An example of the system log

Table 24. The System log file path.

Denomination Path/Note

Control Builder
System Log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\

Compact Control Builder AC 800M\LogFiles\System.log

Note

Only one version of this file exists.

(1) The default working directory is shown.
3BSE040935-510 295

Log Files Section 5 Maintenance and Trouble-Shooting

Session Log Files

At start-up, Control Builder, OPC Server for AC 800M, MMS Server for AC 800M,
SoftController, automatically creates a session log file on the hard disk. These files
contain information generated during one session, that is, from the time the product
is started, until it is stopped. New files will be created upon each new start-up.

At start-up, information about hardware and software versions, and later,
information on system events, such as mode changes (Offline to Online, or vice
versa) and error print-outs, will be logged in the session log. Session logs are
continuously updated in a running system, and whenever a problem occurs it is a
good idea to look at the logs to see if there are any printouts. It is possible to read
log files for the current session via the menus.

Ten successive start-ups will generate the following session log files; Session.log
(from last start-up), Session.log _bak1 (next to last), Session.log _bak2, etc to
Session.log _bak9 (the first start-up or oldest saved start-up). This means that when
you start-up the system a eleventh time Session.log _bak9 will be overwritten and
the previous Session.log will be renamed as Session.log _bak1 and a new
Session.log will be created.

• Session.LOG

• Session.LOG_bak1

• Session.LOG_bakn.......

• Session.LOG_bak9

• Session.LOG_bak9

Session logs are saved from the previous nine sessions. It is important to save a
file containing information about a problem, with a new name, before it is
overwritten.

You will lose the oldest saved file because all the files are pushed one step after
each start-up. This means that (_bak8) is pushed to (_bak9), (_bak7) to (_bak8)
etc and Session.log to (_bak1).
296 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

The paths and file names of the session logs are given in Table 25.

Table 25. Session log file paths.

Denomination Path/Note

Control
Builder
session log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\Session.log

Note

Session log files stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

OPC Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\OPC Server for AC 800M\
LogFiles\Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9
3BSE040935-510 297

Log Files Section 5 Maintenance and Trouble-Shooting

MMS Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ MMS Server for AC 800M\
Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

SoftController
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ SoftController \ Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

(1) The default working directory is shown.

Table 25. Session log file paths. (Continued)

Denomination Path/Note
298 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

OPC Server (Session.log) Example

The list example shows an extract from an OPC Server session log file and how to
interpret the given data in four separate error occurrences. Important information
has been highlighted with typeface bold.

E = error, AE = Alarm Event, DA = Data Access.

E 2003-11-07 11:11:54.867 On Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:03.335 On Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

E 2003-11-07 11:12:04.913 Off Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:27.398 Off Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

1. The first event description tells us that the OPC server lost connection (On) to
controller for Alarm and Event subscription (and when this error occurred).

2. The second event description tells us that the OPC server also lost connection
(On) to controller for Data and Access subscription.

3. The third event description tells us that the OPC server regained connection
(Off) to controller for Alarm and Event subscription.

4. The forth event description tells us that the OPC server regained connection
(Off) to controller for Data and Access subscription.

As you can see, letter (E) stands for error and it occurs both when error activates
(On) and when the same error is gone (Off).
3BSE040935-510 299

Log Files Section 5 Maintenance and Trouble-Shooting

Control Builder Start Log

Control Builder creates a Start Log file for logging the last Offline to Online transfer
(in Test or Online mode). Information, such as warnings and error messages, will be
logged. The Start log is very useful when investigating errors that might occur
during or just after an Offline -> Online transition. Sometimes the Start log will give
a natural explanation of what at first looks like an error (for example, lost Cold
Retain values).

The nine latest Start logs are saved.

The path and file name of the Control Builder start log, are given in Table 26.

It is important to save a file containing information about a problem, with a new
name before it is overwritten. Furthermore, check that the date and time in the
Start log correspond with the time when the problem occurred.

Table 26. The Control Builder start log file path.

Denomination Path/Note

Control Builder
Start log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\startlog.txt

Note

The nine latest Start log files are saved:
startlog.txt
startlog.txt_bak1,startlog.txt_bak2, startlog.txt_bakn....
startlog.txt_bak9

(1) The default working directory is shown.
300 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

Field Bus Parameter Log Files

During compilation and simulation, CI851, CI854 master parameters will be
automatically calculated.

The calculation is performed for all controllers in the project and for all masters
connected to the controllers. The result is sent to text files, which is stored in the
same place as the Control Builder log files. The text files have no backup, and are
replaced at every compilation and simulation.

The path and file name of the Field bus parameter log files, are given in Table 27.

Table 27. The Field bus parameter log files path.

Denomination Path/Note

CI851
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\Profibus_DP_Calculation.txt

(1) The default working directory is shown.

CI854
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\Profibus_DPV1_Calculation.txt
3BSE040935-510 301

Log Files Section 5 Maintenance and Trouble-Shooting

Device Import Wizard Log File

When Device Import wizard is used a log file is created. If any failure during the
import occurs, errors and/or warnings are written to the log file, together with a text
describing the error/warning.

For a successful creation of a hardware definition file the log file contains some
entries: date and time of use, version of wizard and parser component, contents of
the device description file and contents of the generated hardware definition file.

When the file size of a log file reaches 10MB it will be renamed next time the
Device Import Wizard is invoked and a new log file is created. If there are an backup
file at that time, it will be deleted.

PROFINET configuration log file

The Control Builder creates a log file PROFINET_Configuration.txt during
download. This log file will have the result of the download compilation for the
current and previous configurations. The log file can store data upto 10 MB and is
stored in the LogFiles directory in Control Builder. The current compilation result is
stored at the end of the log file.

If the log file exceeds the maximum size of 10 MB, then the file is automatically
saved as PROFINET_Configuration1.txt and a new
PROFINET_Configuration.txt is created. A maximum of nine old log files will be
saved before the oldest file gets overwritten. The log file also contains internally
calculated data that are not available in the Control Builder.

Table 28. The Device Import Wizard log file path

Denomination Path/Note

Device Import
Wizard log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\DIW.log

(1) The default working directory is shown
302 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

Control Builder System Information Report

The system information report is a list of hardware, software and setup information
for an engineering station. This information is generated by a menu command and
presented in a text editor.

To generate a new report perform either of these two alternatives.

• Select menu Help > About Compact Control Builder AC 800M> List all
Information

• In the Control Builder Setup Wizard, click Show Settings button.
This alternative generates almost the same information as the alternative above,
but fewer Environment variables are printed.

The path and file name of the Control Builder System information report file are
shown in Table 30.

Table 29. The Device Import Wizard log file path

Denomination Path/Note

PROFINET
Configuration
log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\PROFINET_Configuration.txt

(1) The default working directory is shown

It is important to generate a new file containing information that was valid at the
time the problem occurred.

Table 30. The Control Builder system information report file path.

Denomination Path/Note

Control Builder
System
information
report

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder AC 800M\LogFiles\ SystemInformation.txt

(1) The default working directory is shown.
3BSE040935-510 303

Log Files Section 5 Maintenance and Trouble-Shooting

Heap Statistics Log

There is heap statistics log file for SoftController. Every time a message “memory
full” occurs (see Figure 123) in these products, the system software will
automatically generate a heap statistics log file containing information about the
content of the heap1.

If “memory full” occurs in a situation that cannot be explained as normal, then this
file should be included in an error report to your supplier’s service department.

When a system is unable to store more information in the heap, an error message
will be displayed. In most cases (more than 98%), this is due to an attempt to store
too much information in too small a heap. If this occurs for a product running on an
engineering station, increase the heap size for that product, using the Setup Wizard.

Figure 123. The “memory full” message.

The paths and file names of the heap statistics log files are given in Table 31

Controller System Log

Controllers have a circular log buffer that can hold a certain amount of information,
normally all information that has been generated during the last 5 to 8 start-ups.

1. A product, for example, a soft controller, uses a general memory area to store information. This area is called a
heap. In the engineering station this area does not necessarily reside in the RAM memory.

Table 31. The heap statistics log file path

Denomination Path/Note

SoftController
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\SoftController \heapstat.dat

Note

The file is intended to be stored and included in an error report.
304 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

A lot of the information gathered in a controller log file can be of great assistance,
but a controller file is circular, which means that the last error often disguises more
important previous errors. This means that the original error can be hard to discover.
Therefore, you are advised to first save the log file to a safe location (no risk of
deleting history) and then fault-find your way back. After renaming the first
controller log file, it is safe to fetch as many controller log files as necessary.
3BSE040935-510 305

Log Files Section 5 Maintenance and Trouble-Shooting

The Controller System log is never deleted. Provided that the battery backup is
working properly, the information can be retained during a power failure. This
function makes it possible to restart a faulty system immediately to regain control of
the process, without losing vital information about the error.

The recommended way to access the Controller System log information is to fetch it
via Control Builder. Selecting Tools > Maintenance > Remote System… will
show a Remote System dialog, see Figure 124.

Figure 124. The Remote System dialog box.

Enter the controller identity (the IP address) and click on the Show Controller Log
button to show the Controller System Log.

The information will be shown in a text editor and also be stored in a file.

You must first save the Controller system log file on a safe location before fault-
finding; it is much more difficult to identifying the original error after several
startups.

A redundant controller creates one log file for the primary unit and one for the
backup unit, hence two different log files.
306 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Log Files

However, the first controller log can still be overwritten. The 'First-in-First-out'
principle is still valid for controller logs if you activate the ‘Show Controller Log’
function from the Project Explorer.

Figure 125 below, is an excerpt of the controller system log.

Figure 125. One section of the controller system log showing the actual firmware in
the controller.

The path and file name of the Controller System log file are given in Table 32.

Controller Logs Sent to Computers at Shutdown of Controller

At a controller shutdown the Controller System log automatically is sent out on the
Control Network as a broadcast message. It is fetched and stored in the working
folder for the MMS Server on all computeors running an MMS Server.

If the Controller System log, fetched via the Remote System dialog, after a
shutdown is empty due to a battery failure in the controller, the log will still be
present at all computers running an MMS Server. It is then possible to find it in
the following path:

C:\ABB Industrial IT Data\Control IT Data\MMS Server for AC 800M\
Controller_a_b_c_d.log

In this path you will also find the communication interface log file
(CI_a_b_c_d.log).
3BSE040935-510 307

Log Files Section 5 Maintenance and Trouble-Shooting

Table 32. The controller system log and communication interface log file paths .

Denomination Path/Note

Controller
System log

Primary CPU

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(1)\Compact Control Builder AC
800M\LogFiles\Controller_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 304.
The nine latest Controller System logs are saved:
Controller_a_b_c_d.log
Controller_a_b_c_d.log_bak1, Controller_a_b_c_d.log_bak2, etc
Controller_a_b_c_d.log_bak9

Controller
System log

Backup CPU

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(2)\Compact Control Builder AC
800M\LogFiles\BackupCPU_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 304.
The nine latest Controller System logs are saved:
BackupCPU_a_b_c_d.log
BackupCPU_a_b_c_d.log_bak1, BackupCPU_a_b_c_d.log_bak2, etc
BackupCPU_a_b_c_d.log_bak9
308 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Crash Dumps for Analysis and Fault-Localization

Crash Dumps for Analysis and Fault-Localization

If a crash occurs (in Control Builder, OPC Server, SoftController, MMS Server
for AC 800M, two new files are generated at the same location as the session log
files. The first one is a dump file and the second is a rewritten session log file. These
two files contain crucial information that should be delivered to the support
personnel

If a Control Builder crash occurs at 16:20 on the 19:th of May, then a dump file and
a rewritten session log file will look like:

ControlBuilderStd 2006-05-19 16.20.29.184.dmp

ControlBuilderStd 2006-05-19 16.20.29.184 Session.LOG

Communication
Interface log

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(1)\Control Builder M
Professional\LogFiles\CI_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 304.
The nine latest Communication Interface logs are saved:
CI_a_b_c_d.log
CI_a_b_c_d.log_bak1, CI_a_b_c_d.log_bak2, etc
CI_a_b_c_d.log_bak9

(1) The default working directory is shown.
(2) The default working directory is shown.

The Communication Interface log (Example, the log in CI867 and CI868) is not
battery protected. Hence, the log will be erased when the power to the controller
is cut.

Table 32. The controller system log and communication interface log file paths (Continued).

Denomination Path/Note
3BSE040935-510 309

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

Remote Systems Information

A connected remote control system1 can be inspected and maintained from Control
Builder. This can be an important tool when troubleshooting the system.

Select Tools > Maintenance > Remote System to open the Remote System dialog,
see Figure 126.

Figure 126. Remote System dialog.

1. Remote systems are controllers, OPC servers, and engineering stations connected to the same Control network
as your own local system.

The “Show Remote System” function can only list nodes on the same physical
network! Thus, you must connect a Control Builder PC on the same Ethernet
network; you cannot Show Remote System on nodes beyond routers, sub-
networks etc.
310 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Remote Systems Information

The following remote system functions are available, see the Table 33 below. Click
on a button in the dialog to retrieve information.

Table 33. The available remote system dialog functions.

Menu Item Function

Show Remote Systems Shows a list of all addresses to the control
systems (including MMS process numbers)
connected to the same network as the requesting
system.

Show Downloaded Items Shows information about controller configuration
and about the application(s) running in the
selected remote controller system, such as
application name, application status, compilation
date and time, compiling engineering station
identity, and the checksum of the application. You
can also remove a running application here.

You can also access the source code report from
the Show Downloaded Items dialog, see Source
Code Report Generated for Project in the Compact
800 Engineering Compact Control Builder
AC 800M Getting Started (3BSE041584*) manual.

Show Firmware Information Shows information from a controller, such as unit
position, type of hardware unit, name and version
of the current firmware and firmware creation date.
Firmware can also be loaded to selected
controllers here.

Show MMS Variables Shows all the MMS variables in the system.

Show Controller Log Shows the Controller System log, described in the
section Controller System Log on page 304.

Show MMS Connections Shows connection information about the remote
systems, such as IP address, server/client
function, identity of the connected system
(destination system), usage, and number and
maximum of transactions sent since connection
was established.
3BSE040935-510 311

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

Show Controller Analysis Shows the Controller Analysis dialog that is used
to:

• Reset the Module Bus Fail Counters in the
selected controller.

• Get the selected result/data from the
controller.

The user can obtain results for "Heap Statistics",
"Module Bus Fail Counters", "Module Bus I/O
Revisions", "Network Information" and "Thread
Execution".

The respective result, obtained from the controller
log, is saved to a new log file. The file name of the
new log contains the "Controller ID" and the
selected result. For example, 172.16.85.187_Heap
Statistics.log.

Show Diagnostics for
Communication Variables

Shows a diagnostic overview of the internal and
external communication using the communication
variables in the controller. For details, see
Diagnostics for Communication Variables on page
313.

The dialog displays:

• Unresolved communication variables

• Different counters for errors/warnings, cycle
times, and timeout.

• Details about variable transaction in each
server connection and client connection.

• Out variables of the selected node.

For further information, refer to Control Builder online help. Use the Help button
in the Remote System dialog, see Figure 126.

Table 33. The available remote system dialog functions. (Continued)

Menu Item Function
312 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

Diagnostics for Communication Variables

The diagnostics tool for communication variables can be launched from the
Remote System dialog of the selected controller. Click Show Diagnostics for
Communication Variables in the Remote System dialog.

The first window that appears is the overview window. This window is a modeless
window, that is, it is possible to bring up and work in other windows in parallel.

The Diagnostic Overview for Communication Variables dialog contains three panes
that display information about the communication variables that are communicating
through the applications in the selected controller.

Figure 127. Diagnostic Overview for Communication Variables dialog
3BSE040935-510 313

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

The information is cyclically updated. The update interval is set to 5 seconds.

Counters Pane

The first pane lists different counters for the communication variables in the
controller. Each column in the pane corresponds to a cycle time category of the
communication variables.

The counters display the following values corresponding to the cycle time category
in different columns:

• Internal type errors–Type mismatch during communication between
applications within this controller.

• External type errors–Type mismatch during communication with an application
in another controller.

• Uncertains/Warnings–Variables that are not updated within the requested time
interval.

• Timeouts–Variables that are not updated within the requested timeout interval.

• Min Cycle Time–The lowest detected cycle time.

• Max Cycle Time–The highest detected cycle time.

• Average Cycle Time–The average cycle time.

In From and Out To Panes

The second pane "In From" contains information about the external client
connections with respect to communication variables in the selected controller. The
third pane "Out To" contains information about the external server connections with
respect to communication variables in the selected controller.

Each pane contains columns for:

• Variables/s–An average value, calculated since last reset time.

• Transactions–Number of transactions since last reset time.

• Transactions/s–An average value, calculated since last reset time.

• Max. Transactions/s–Maximum number of transactions per second since last
reset time.
314 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

• Expected Transactions/s–Number of expected transactions per second from the
client. This column appears in the In From pane only.

The Last reset time shows the time when the Reset button was pressed.

Buttons

There are seven buttons in the overview:

• Show Unresolved Variables–Click to open the Unresolved Variables dialog.

• Show Out Variables–Click to open the Out Variables dialog.

• Reset–Click to reset the information in the controller. New values will be
fetched.

• Details–Click to open the Detailed Diagnostics dialog for the selected client
connection.

• Overview–Click to open the Diagnostic Overview for the selected server or
client connection.

• Help–Click to open the online help topic for the diagnostic tool.

• Close–Click to close the window.
3BSE040935-510 315

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

Show Unresolved Variables

The Unresolved Variables dialog displays the list of unresolved variables. Select the
variable and click Search to open the Search & Navigation tool for the selected
variable.

Figure 128. Unresolved Variables dialog

The Search works in Offline mode and when the setting "Iterative Search in
Online Mode" is set to false.
316 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

Show Out Variables

The Out Variables dialog displays the list of out variables in the controller.

Figure 129. The Out Variables dialog
3BSE040935-510 317

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

Details

The Detailed Diagnostics dialog displays the information for the different cycle time
groups in a selected client connection. The following values are shown:

• Variables per second. An average value, calculated since last reset time.

• Number of transactions since last reset time.

• Transaction per second. An average value, calculated since last reset time.

• Maximum number of transactions per second since last reset time.

• Expected number of transaction per second. A value that is calculated at
compile time.

Click Overview to open the Diagnostic Overview (Figure 127) for the controller
that owns this client connection.

The information is cyclically updated. The interval is set to 5 seconds and it cannot
be changed.

Figure 130. Detailed Diagnostics dialog
318 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Analysis Tools

Analysis Tools

Control Builder Tools

The Control Builder Tools menu contains more useful tools for troubleshooting.
Note that a great deal of the information is only valuable for your supplier’s service
department.

Select Tools > Maintenance > Analysis to open the following menu items, see
Table 34.

For further information, refer to Control Builder online help.

Table 34. The menu items of the Analysis tool.

Menu Item Function

Disable Double-buffering Not useful for troubleshooting

Disable Information Zoom Not useful for troubleshooting

Disable Clipping Not useful for troubleshooting

Image Selector Info in Online
Mode

Not useful for troubleshooting

Image Selector Information Not useful for troubleshooting

Show control modules in
Online Mode

Not useful for troubleshooting

Write Variable Memory Used for counting modules and instances.

Write Exported Variables Not useful for troubleshooting

Write Variables in View Not useful for troubleshooting

Start log Shows the Control Builder Start log, described in
Control Builder Start Log on page 300.

System log Shows the Control Builder System log, described in
System Log File on page 295.
3BSE040935-510 319

Analysis Tools Section 5 Maintenance and Trouble-Shooting

Statistics for Application

The user can get the statistics about the application, for example, the number of
instances that exists in the application. This is useful when the maximum number of
instances has been exceeded. From the context menu of the selected application,
select Statistics as shown in Figure 131.

Figure 131. Obtaining statistics for the application
320 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting System Diagnostics

The maximum number of instances in an application is 65536. When this number is
exceeded, the following dialog is shown.

Figure 132. Error message shown at download, when an application has too many
instances.

System Diagnostics

System Diagnostics Function Block

The Basic library contains a function block type called System Diagnostics. You can
use this function block type to measure and display the following functions.

• Cyclic load resulting from task execution,

• Stop time and memory usage during a controller download,

• Current memory in use,

• Maximum memory used since the last cold start,

• Alarm and event information,

• Total CPU Load,

• Ethernet statistics:

– number of data packages sent,

– number of sent data packages that were lost,

– number of data packages received,

– number of received data packages that were lost.

The System Diagnostics function block is, as default, located in one of the Program
folders of the Project Explorer tree, see Figure 133.
3BSE040935-510 321

System Diagnostics Section 5 Maintenance and Trouble-Shooting

Figure 133. The System Diagnostics function block

Values can be updated either on command or cyclically using the Interaction
Window, which is opened by selecting the System Diagnostics function block, right-
clicking, and then selecting Interaction Window.

System Diagnostics Interaction Window.

The System Diagnostics Interaction window contains system memory and program
download information. The interaction windows can be displayed in two versions,
Simple and Advanced.

The Simple Interaction window contains the following information:

The System Diagnostics Interaction window is only available in Test/Online
mode.

The values shown in Test mode are not those valid in Online mode. You cannot
use this information to check in advance which controller size you have to
purchase.

Table 35. The Simple Interaction window

Function Description

System Displays the TCP/IP address of the supervised system.

Cyclic load Displays cyclic load due to task execution in percent.

Latest update Displays the time of the last update.
322 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting System Diagnostics
 Click on the Advanced button, and the Advanced Interaction window will appear. It
contains the following additional information.

Cyclic update Cyclic update is activated by checking the check box.
Cyclic update interval is set in time format, for example 5 m
(5 minutes).

Total Load CPU Shows the total CPU load for the controller. The total load
is available as a parameter of type dint, called
TotalSystemLoadPerCent.

Ethernet Statistics By clicking the Ethernet button, you display Ethernet
statistics in a separate window.

This window shows the number of sent/received
packages, and how many of those that were lost. These
statistics are available as parameters. There are also
parameters for resetting the counters. See online help for
the SystemDiagnostics function block.

Table 36. The Advanced interaction window.

Function Description

Memory size The allocated heap size, see Figure 134.

Used memory The part of the heap used in bytes and percent of the total
heap size.

Max used memory The maximum part of the heap used in bytes and percent of
the total heap size.

Memory quota The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.
Note. This setting is only used for a warning indication.

Stop time Stop time during the last download.

Init peak memory Memory used during initiation phase.

Table 35. The Simple Interaction window (Continued)

Function Description
3BSE040935-510 323

System Diagnostics Section 5 Maintenance and Trouble-Shooting

In the System Diagnostics function block, “Memory size” is the total physical
memory, minus executing firmware. This is sometimes also called the “heap”.

Used memory at
stop

The part of the heap used during the stop phase in bytes
and percent of the total heap size.

Max used memory at
stop

The maximum part of the heap used during the stop phase
in bytes and percent of the total heap size.

Memory quota at
download

The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.

Table 36. The Advanced interaction window. (Continued)

Function Description
324 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting System Diagnostics

Memory usage is also displayed in the dialog “Heap Utilization” which can be
displayed for each controller. The available memory is called “Non-Used Heap” and
the rest is called “Used Shared Heap”.

Figure 134. Memory organization

Available Memory

“Non-used heap”
Memory Size
“Heap”

Empty Project

Used by Firmware

Executing Firmware

Spare
(20-50%)

8-256 MB
RAMUsed

Shared
Heap

Max
Used
Shared
Heap
3BSE040935-510 325

Trouble-Shooting Error Symptoms Section 5 Maintenance and Trouble-Shooting

Trouble-Shooting Error Symptoms

Below are some examples of error symptoms and suggested measures.

Table 37. Examples of error symptoms and suggested measures.

Error Symptom Measure

Control Builder fails. 1.Click OK.

2.Copy the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 309), the
Start Log and the Heap Statistics Log files (if there are
any).

3.Read the Session Log, and see if there is any
information that indicates the source of the problem.

4.Try to start Control Builder. If it starts, select
Help>About Compact Control Builder>List all
information in the Project Explorer and the Control
Builder System Information Report will be created.

5.Try to reproduce the fault, if possible. If the problem is
reproducible, export the project with all dependencies
and include the .afw file in the error report.

6.Check basic things, such as if the hard disk full.

7.If the fault appears during Offline to Online transfer,
and it is possible to reproduce the fault, check the
message written in the message pane, just prior to
fault occurrence. This will give a hint about what
operation (for example, sorting, compiling) and what
application is involved in the problem.

8.Make an error report and include the log files.

A Memory Full message appears. The
Heap Statistics log (SoftController)
states that the heap is full.

Increase the heap size in SoftController, see Heap
Statistics Log on page 304. Open Help > About and
check the amount of free memory. Free memory should
not be lower than 30%.
326 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

A Too many instances in application
message appears.

The maximum number of above 65535
instances has been reached.

1.Try to reduce your application, see Statistics for
Application on page 320.

The MMS Server, OPC Server, or
SoftController fails.

1.Click OK.

2.Locate the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 309).

3.Read the Session Log, and see if there is any
information that points to the source of the problem.

4.Make an error report and include the log file.

The controller fails. The red F LED is lit,
and the green R LED is off.

1.Press the Init push-button on the controller until the
Run LED starts to blink. Note that the controller will be
empty if the red F LED is lit, that is, the application
program has been deleted.

2.Fetch the Controller System log and save it, see
Remote Systems Information on page 310.

3.Study the log, and find the marked reason for the stop
(normally, at the end of the log).

4.If an OPC Server for AC 800M is involved in
communication, check the OPC Server function.

5.Make an error report and include the saved log files.

6.Reload the application.

7.If possible, try to reproduce the problem. If the
problem is reproducible, backup the project.

Note that behavior similar to the example above is when
there is no firmware installed in the controller (for
example, when a new controller has been installed).

Table 37. Examples of error symptoms and suggested measures. (Continued)

Error Symptom Measure
3BSE040935-510 327

Connection to Aspect Server Section 5 Maintenance and Trouble-Shooting

Connection to Aspect Server

When the connection to the Aspect Server is broken, the Control Builder does not
automatically indicate the loss of connection. However, if the user runs any action
that requires the Aspect Server to be accessed (for example, saving or refreshing a
type or program), a message is displayed.

If the connection to the Aspect Server is broken while some configuration is being
saved in Control Builder, the Control Builder might stop functioning. The solution
is to re-establish the connection to the Aspect Server, or to stop the Control Builder
process using Task Manager.
328 3BSE040935-510

Section 5 Maintenance and Trouble-Shooting Error Reports

Error Reports
An error report contains information to the problem in question. A detailed report is
particularly valuable if your supplier’s service department is to be involved.

The following information should always be included in an error report.

• Name of the person reporting the error (and the project, site, customer, etc.).

• Product (including the type of product and version).

• A listing of all information from the faulty system, such as the appropriate logs
and reports, see Log Files on page 295. The latter includes a great deal of
information such as software version and revision, setup, etc. If the fault
occurred during, or just after downloading a new version of the application
program, the Control Builder Start Log and the Control Builder Session Log
from the engineering station that performed the download should be included.
Whenever a problem involving I/O handling occurs, it is very important to
include a complete description of the I/O configuration.

• A description of the problem. Add all information that could help solve the
problem, for example, what happened just before the error occurred, and other
important circumstances. If it is possible to reproduce the error, describe the
circumstances under which the error occurs. Sometimes it is advisable to create
a small application to demonstrate the error, and add it to the error report.

If several systems are involved, information about the system configuration must
be included (hardware type, etc.).
3BSE040935-510 329

Error Reports Section 5 Maintenance and Trouble-Shooting

330 3BSE040935-510

Appendix A Array, Queue and Conversion
Examples

In this section you will find examples on how to handle arrays, queues, and some
examples on how to use bit conversion functions.

Arrays
It is possible to create a one-dimensional array with elements of any type, that is, the
elements can be a struct with variables of any type, or a single variable of any type.
Using PutArray and/or CopyArray, it is possible to build a tree structure of arrays.
Array elements are accessed direct via an index. A lower and upper boundary of the
index should be defined. The array must first be created using CreateArray.

The size of an array is limited to 65,524 components (variables of simple data type).

Example

In this example, there is a data type trec1 with the components b (bool), i (dint), and
st (string).

The following variables are also needed:

Name Data Type Initial Value

MyArray ArrayObject

lrec trec1

lrec1 trec1

lrec2 trec1

lrec3 trec1

Status dint

FirstScan bool TRUE
3BSE040935-510 331

Arrays Appendix A Array, Queue and Conversion Examples

Create and initialize an array with 20 array elements of the type trec1.

Use an IF – THEN statement for the CreateArray function and let it be controlled by
a variable, which is executed once during startup.
IF FirstScan THEN
FirstScan := false;
CreateArray(MyArray,1,20,lrec,status);
end_if;

Set up values for the different variables:
lrec1.b := TRUE
lrec1.i := 123
lrec1.st := A variable contaning the string 'Hello'
lrec2.b := FALSE
lrec2.i := 27
lrec2.st := A variable contaning the string 'BYE'
lrec3.b := TRUE
lrec3.i := 53
lrec3.st := A variable contaning the string 'BYE'

Set up the array contents:
PutArray (MyArray,1,lrec1,status);
PutArray (MyArray,2,lrec2,status);
PutArray (MyArray,3,lrec3,status);
332 3BSE040935-510

Appendix A Array, Queue and Conversion Examples SearchStructComponent

The array now contains the following:

SearchStructComponent
SearchStructComponent is a boolean function which searches for a specific part in a
record component. The corresponding components in Exrecord are scanned to find a
part in the component which matches the SearchComponent.
Variable = SearchStructComponent(Struct, SearchIndex,
SearchCount, SearchStruct, SearchComponent, FoundStruct,
Status)

Table 38.

Parameter Data type Direction

Struct AnyType in_out

SearchIndex dint in_out

SearchCount dint in

SearchStruct AnyType in_out

SearchComponent AnyType in_out

FoundStruct AnyType in_out

Status dint in_out

b = TRUE
i = 123
st = 'Hello'

1

b = FALSE
i = 27
st = 'BYE '

2

b = TRUE
i = 53
st = 'BYE '

3

b = Undef.

i = Undef.
st = Undef.

4

b = Undef.
i = Undef.
st = Undef.

20
3BSE040935-510 333

SearchStructComponent Appendix A Array, Queue and Conversion Examples

The data type SearchComponent is either a single variable or a record containing a
couple of variables corresponding to a subset of the record component in Struct. The
SearchComponent could be either a boolean, integer, real or string data type or a sub
record which contains these data types. The SearchRecord shall consist of a variable
of SearchType and variables of the data types as the remaining variables in the
record component and at the same positions.

Figure 135. An example of the SearchComponent and a SearchRecord.

The SearchComponent may contain structured data types but the match is only
carried out on the boolean, integer, real and string data types. The variables in
SearchComponent of string data types must have the same length and content for a
match. The content of string is not case sensitive and the space characters are treated
as any other character. On match the whole record component is copied to
FoundStruct and the function returns true.
334 3BSE040935-510

Appendix A Array, Queue and Conversion Examples SearchStructComponent

Figure 136. The working principal of the SearchStructComponent.

The search starts in the index SearchIndex + 1 and ends at the first equivalent
component located or, if there are no more sub-records, in the last component of the
record.

A maximum number of record components given by SearchCount are scanned. The
component, in which a match occurs, is returned in FoundStruct and the index is
returned in SearchIndex.

Note that SearchIndex always points to the last record component that was scanned,
even if no matching occurs. This index can then be used in a repeated call to find all
occurrences of SearchComponent within the record.
3BSE040935-510 335

SearchStructComponent Appendix A Array, Queue and Conversion Examples

Restrictions

The following data types in ExRecord will NOT be copied: QueueObject and
tObject.

The status returns:

• (1 Success)
– The Search was successful

• (- 5 ErrTypeMismatch)
– 1: Found sub-record was not of the same type as the structRecord.
– 2: SearchComponent was not a subset of SearchRecord

• (- 6 ErrSizeMismatch)
– 1: SearchRecord was not of the same size as the StructRecord.
– 2: SearchComponent size is zero.

• (-30 ErrInvalidPar)
– 1: SearchIndex was less than 0 or greater than the number of the Struct

minus one.
– 2: SearchCount was less or equal to zero.
– 3: SearchComponent has no valid components (i.e., boolean, real, integer

or string)
336 3BSE040935-510

Appendix A Array, Queue and Conversion Examples InsertArray

InsertArray

InsertArray(Array, Index, ArrayElement, Status)

Procedure: Inserts a new element in an array. All successive elements are moved one
step, and the last element overwritten. Inserts the contents of ArrayElement into the
record at position Index in the array Array. The records at position Index + 1 to
position LastIndex will be moved one position higher. The contents (even objects) of
the record at position LastIndex will be lost. Variables of the data type tObjects will
not be copied, unless the variable is an ArrayObject, then this array and its whole
tree structure of arrays will be copied into an identical tree structure. If the record at
position Index lacks some array in the tree structure, the array will be created.

Table 39.

Parameter Data type Direction

Array ArrayObject in_out

Index dint in

ArrayElement AnyType in_out

Status dint in_out
3BSE040935-510 337

SearchArray Appendix A Array, Queue and Conversion Examples

SearchArray

SearchArray(Array, SearchIndex, SearchCount, SearchElement,
SearchComponent, FoundElement, Status)

This boolean function searches the array Array for a certain component in an array
element. All elements in the array are scanned to find an element with a component
(e.g. a string, or an entire record) that matches the search variable component.

The component SearchComponent in the element SearchElement is tested for
equality with corresponding components in each array element. The function
returns true if there is a find.

The search starts in the index SearchIndex + 1 and ends at the first equivalent
component located or if there are no more elements in the array to be scanned. A
maximum of number of array elements indicated by SearchCount are scanned. The
array element, in which a find occurs, is returned in FoundElement and the index for
the find is also returned in SearchIndex.

Note that SearchIndex always points to the last element that was scanned, even if no
find occurs. This index can then be used in a repeated call in order to find all
occurrences of SearchComponent within the array.

An error status is returned if:
• the index SearchIndex points outside array limits.
• the counter SearchCount is less then or equal to 0.
• the element SearchElement is not of the same type as FoundElement.
• the element SearchElement has a different size than FoundElement.
• the SearchComponent is not a part of the element SearchElement.
338 3BSE040935-510

Appendix A Array, Queue and Conversion Examples SearchArray

Example

Table 40.

Parameter Data type Direction

Array ArrayObject in_out

SearchIndex dint in_out

SearchCount dint in

SearchElement AnyType in_out

SearchComponent AnyType in_out

FoundElement AnyType in_out

Status dint in_out

Table 41. Data Type Definitions

Name Data Type

trec1 Struct

b Boolean

i dint

s String

tSearchStruct STRUCT

b Boolean

SSR tSearchSubRec

tSearchSubStruct Struct

i dint

s String
3BSE040935-510 339

SearchArray Appendix A Array, Queue and Conversion Examples
 Create and initialize an array with 20 array elements of type trec1.

IF Firstscan THEN
Firstscan = false;
CreateArray(Array,1,20,lrec,status);
ENDIF;

Set up values for the different variables e.g. via interaction objects:
lrec1.b <- TRUE
lrec1.i <- 123
lrec1.s <- "hello"
lrec2.b <- FALSE
lrec2.i <- 27
lrec2.s <- "BYE"
lrec3.b <- TRUE
lrec3.i <- 53
lrec3.s <- "BYE"

Table 42. Variables

Name Data type Initial value

Array ArrayObject

HitBoolean Boolean

HitRec trec1

Lrec trec1

Irec1 trec1

Irec2 trec1

Irec3 trec1

Status dint

SearchRec tSearchStruct

FirstScan Boolean TRUE

The Create function may be in a Start_Code and in that case it is not necessary to
use the IF -THEN statement and Firstscan variable.
340 3BSE040935-510

Appendix A Array, Queue and Conversion Examples SearchArray

Set up array contents:
PutArray (Array,1,lrec1,status);
PutArray (Array,2,lrec2,status);
PutArray (Array,3,lrec3,status);

The array now contains the following:

Figure 137. An example of an Array.

Access the array by index:
Index = 3;
GetArray(Array,Index,lrec,status);

lrec now contains:
TRUE 53 "BYE "

Now access the array by searching. First set up the search component.
SearchRec.SSR.i = 27;
3BSE040935-510 341

Queues Appendix A Array, Queue and Conversion Examples

SearchRec.SSR.s has its default value "BYE" Search a maximum of 10 array
elements for the search component. A find occurs where the integer element is 27
and the string element is "BYE", in this case at array index no 2. Start searching in
the first element number 1.

Index = 0;
IF SearchArray(Array,Index,10,SearchRec,SearchRec.SSR,
HitRec,Status) THEN
IF Status > 0 THEN
HitBoolean = HitRec.b;(Save Boolean content of hit element)
ENDIF;
ENDIF;

Queues
A queue may consist of elements of any type, that is, the elements could be a struct
with variables of any type, or a single variable of any type. Queue elements can be
accessed at both ends of the queue, that is, only the first and last element can be
accessed, but any element in the queue can be read. When using PutFirstQueue and
GetFirstQueue, the queue act as a stack. When using PutLastQueue and
GetFirstQueue, the queue will act as a FIFO queue. The size of the queue is not
dynamic, and has to be defined. The number of elements in the queue is dynamic.

The size of a queue is limited to 65,524 components (variables of simple data type).
342 3BSE040935-510

Appendix A Array, Queue and Conversion Examples Queues

Example 1

The following structured variable Item is needed:

The following variables are needed:

Create and initialize an array with 10 elements of data type item:

Name Data Type Initial Value

b bool TRUE

i dint 123

st string 'Hello'

Name Data Type Initial Value

data1 Item

data2 Item

Queue QueueObject

Status dint

FirstScan bool TRUE

flag1 bool

flag2 bool
3BSE040935-510 343

Queues Appendix A Array, Queue and Conversion Examples

In an IF – THEN statement the CreateQueue function may be controlled by a first
scan variable.
if FirstScan then

FirstScan := false;
CreateQueue(Queue := Queue,

Size := 10,
QueueElement := data1,
Status := status);

end_if;
if flag1 then

PutLastQueue(Queue := Queue,
QueueElement := data2,
Status := status);
flag1 := false;

elsif flag2 then
GetFirstQueue(Queue := Queue,

QueueElement := data2,
Status := status);

flag2 := false;
end_if;

Example 2

The following parameters are needed:

Name Data Type Description

Size dint Max no. of elements in queue

InData AnyType In element, of same type as OutData

OutData AnyType Out element, of same type as InData

Put bool Put InData in queue on up edge

Get bool Get OutData from queue on up edge

Clear bool Clear contents of queue

Error bool Out: type or size of error
344 3BSE040935-510

Appendix A Array, Queue and Conversion Examples Queues

The following variables are needed:

Code block 1 called Start_name
(*CreateQueue*)
CreateQueue(Queue,Size,InData,status);
Error := status < 0;

Code block 2 (queue statement)
PutState := Put;
GetState := Get;
if PutState:NEW and not PutState:OLD then

PutLastQueue(Queue,InData,status);
Error := status < 0;

end_if;
if GetState:NEW and not GetState:OLD then

GetFirstQueue(Queue,OutData,status);
Error := status < 0;

end_if;
if Clear then

ClearQueue(Queue,status);
Error := false;

end_if;

Name Data Type Description

Queue QueueObject Queue object

PutState bool state

GetState bool state

Status dint
3BSE040935-510 345

Conversion Functions Appendix A Array, Queue and Conversion Examples

Conversion Functions

DIntToBCD

The DIntToBCD function converts an integer to a BCD value. An error status is
returned if overflow occurs and no BCD value is produced.

Example

The following variables are needed:

Convert an integer into a BCD value:

N = 12345 (N is 0 0 0 1 2 3 4 5)

N can be divided into eight four-bit nibbles, where each nibble represents one BCD
digit. The least significant nibble is 5, the next 4, etc. These nibbles can be written in
binary form as below:

DIntToBCD (N, BCD, Status) ;

BCD now contains the value 74565.

Name Data Type

N dint

BCD dint

Status dint

All four-
bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101

which is
equiv. to

00 000 000 000 000 010 010 001 101 000 101

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5
346 3BSE040935-510

Appendix A Array, Queue and Conversion Examples BCDToDInt

BCDToDInt

BCDToDInt converts a BCD value to an integer. An error status is returned if the
BCD value is illegal (no integer value in these cases).

Example

The following variables are needed:

Convert the BCD value into an integer:

BCD = 74565

Each nibble represents one BCD digit. The least significant nibble is 5, the next 4,
etc. These nibbles can be written in decimal form as: 0 0 0 1 2 3 4 5.

BCDToDInt (BCD, N, Status) ;

N now contains the value 12345.

Name Data Type

N dint

BCD dint

Status dint

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5

BCD as
32-bit
pattern

00 000 000 000 000 010 010 001 101 000 101

BCD as
four-bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101
3BSE040935-510 347

ASCII Appendix A Array, Queue and Conversion Examples

ASCII

ASCII character codes

ASCII (American Standards Committee for Information Interchange) originally
defined a set of codes for 128 characters and commands. Manufacturers later
extended the ASCII codes to provide another 128 characters.

ASCII is a method of coding characters and command sequences, which is
extensively used by manufacturers of peripheral equipment. Many devices transmit
information in ASCII code (for example bar-code readers, keyboards) and many
devices accept information in this form (for example VDUs and printers).

ASCII-coded strings allow for the transmission of non-printable characters and
control characters. ASCII character sequences can be used to change the mode of a
VDU display, or the character set of a printer.

Control Builder provides three procedures and one function manipulating ASCII
strings (ISO Latin-1 only). These are useful when a device requires ASCII-coded
information, and can be used to send ASCII-coded strings to printers, terminals etc.

Any ASCII character code may be used, thus it is possible to send control characters
and sequences to switch printers and VDUs into various display modes. (Bold,
Double Space, Reverse video etc.).

Before describing the procedures and functions available for ASCII strings, it is
useful to examine the way in which an integer is stored in the system memory.

Integers are represented by a four-byte (32-bit) storage area. In normal usage, the
bits are used to store both the value and the sign of the integer. This 4-byte storage
space may also be used to store a series of values which represent an ASCII string.

Each ASCII character requires 1 byte of storage space. Therefore, it is possible to
store up to 4 ASCII characters in a single memory area reserved for an integer.

Figure 138. Integers are stored as four bytes in memory.

Bit31 Bit0

Byte 0Byte 1Byte 2Byte 3
MSB LSBMSB LSBMSB LSBMSB LSB
348 3BSE040935-510

Appendix A Array, Queue and Conversion Examples ASCII

The procedures below allow 1, 2 or 4 characters to be stored per integer.

Each ASCII character is coded with an integer value (in binary) between 0 and 255
(decimal). ASCII codes are normally represented as either their decimal equivalent,
or as a hexadecimal number. If the character is represented as a hexadecimal
number, then 2 digits are required for each character.

The hexadecimal digits, their decimal, and binary bit pattern equivalents are given in
the table below:

The letter capital “A” is represented by the ASCII code 6510 or 41HEX. Thus the
letter “A” is stored as a byte having the bit pattern 0100 0001.

Table 43. ASCII code representatives

Hexadecimal digit Decimal digit Binary bit pattern

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
3BSE040935-510 349

ASCII Conversion Appendix A Array, Queue and Conversion Examples

ASCII Conversion

StringToASCIIStruct (String1, NoOfCharsPerDint, DintStruct, Status)

This procedure converts a string to an ASCIIStruct. An ASCIIStruct consists of any
number of integer components (see below).

The value of the parameter NoOfCharsPerDint determines how many ASCII
characters are stored within each ASCII record component. This value can be 1, 2, 4
or –1, –2, –4 only. A negative value means that the sequence of bytes is reversed.

NoOfCharsPerDint determines how many character codes are packed into the four
bytes available for the integer. If one character is stored per integer, then only the
first eight least significant bits of each integer are used for storage, if positive, or the
last eight, if negative.

DintStruct must be defined as follows: the type definition and its components can be
given any name, but the components must all be of integer data type. The number of
components (of integer type) should be decided based on the length of the string to
be converted, and also the number of characters which are to be stored in each
integer. The converted string may need to be transmitted to a peripheral device, so
the characteristics of this device should also be taken into account.

The maximum length for any string is 140 characters, and if this maximum is to be
stored in the minimum number of integer components, then this will require 35
integer components in the integer record (at four ASCII characters per integer). If
you anticipate the need to store this number of characters, then an integer record of
35 integer components should be defined.

Status returns an indication of the result of the operation.
350 3BSE040935-510

Appendix A Array, Queue and Conversion Examples ASCII Conversion

Storage with Different Character Packing Factors

When NoOfCharsPerDint is set to 1, each integer variable holds the value for one
ASCII character. Thus the character capital “A” is stored as decimal 65 in the
integer, as a bit pattern of 0100 (Nibble1) and 0001 (Nibble0).

When NoOfCharsPerDint is set to 2, each integer variable stores the value for two
ASCII characters. The characters “AB” are stored as decimals 65 and 66 in the
integer. The value 65 for “A” is stored in the first byte of the integer, and that for “B”
in the second byte.

When NoOfCharsPerDint is set to 4, each integer variable contains the value for
four ASCII characters. The characters “ABCD” are stored as decimals 65, 66, 67
and 68 in the integer. The value 65 for “A” is stored in the first byte of the integer,
“B” in the second byte, “C” in the third byte, and “D” in the fourth byte.

Figure 139. The ASCII code for “A” stored in an integer (packing = 1 character
per integer)

Figure 140. The ASCII codes for “AB” stored in an integer (packing = 2 characters
per integer)

Figure 141. The ASCII codes for “ABCD” stored in an integer (packing = 4
characters per integer)

Bit31

Byte 0Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

AMSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

AB MSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

Nibble4Nibble5Nibble6Nibble7
0 1 00 0 0 110 1 00 0 1 00

ABCD MSB LSB
3BSE040935-510 351

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Definition of DintStruct type

The appropriate length of an integer struct to store ASCII code is defined by the
number of components required as follows.

Suppose we want to be able to store the maximum string length at a packing factor
of 4 characters per integer. A data type called, for instance, ASCIIMaxStringType,
should be defined consisting of 35 components which must be of integer data type
called, for example Chars1_4, Chars5_8 etc.

Usage

A string interaction is used to input the value of a string, (to a string variable called
String1), which is to be converted to ASCII code. The code is stored in an integer
struct called IntStruct which has 4 components (Comp1 to Comp4).

The procedure call:

StringToASCIIStruct(String1,1,IntStruct,Status1)

will write to the integer record components.

If the input string is “ABCD”, then the components will have the values 65, 66, 67
and 68, respectively. The literal value of 1 for the NoOfCharsPerDint determines
that there is to be one character code in each component.

If NoOfCharsPerDint had been set to 2, then the first integer component would have
the value 16961 (which is the decimal equivalent of 65 in the first byte and 66 in the
second), and the second component would have the value 17475, which is the
decimal equivalent of 67 in the first byte and 68 in the second. The other two bytes
in each integer component are set to 0000.

Unused components

NoOfCharsPerDint determines how many bits are allocated for storage (8 bits – 1
byte per character) for a component. For example, if NoOfCharsPerDint is set to 2,
then only the first two bytes are used in each component for data storage. The
remaining bytes are set to 0 (zero).
352 3BSE040935-510

Appendix A Array, Queue and Conversion Examples ASCII Conversion

This is illustrated below:

Figure 142. The diagram shows four integer components of an integer record.
NoOfCharsPerDint has been set to 2, so that each component stores two ASCII
characters. The character string “ABCD” has been transferred to the struct.

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 100 1 00 0 0 01

AB

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 110 1 00 0 1 00

CD

Bit31

Byte 0Byte 1Byte 2Byte 3

Bit31

Byte 0Byte 1Byte 2Byte 3

0 0 00 0 0 000 0 00 0 0 00

0 0 00 0 0 000 0 00 0 0 00

NullNull

0 0 000 0 00 0 0 00

NullNull

0 0 00

0 0 000 0 00 0 0 00

NullNull

0 0 00 0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

Component1

Component2

Component3

Component4

Null Null
3BSE040935-510 353

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Note the following

If there are two characters per integer, the allocated storage areas Byte 0 and Byte 1
contain either the code for the string character, or if there is no character available,
the code for a space (20HEX). Unused bit positions (Bytes 2 and 3 in this case)
contain zero.

Note:

• Characters from the string to be transferred are read from the current pointer
position in the source string.

• Space characters are inserted into the allocated storage areas within each
component. They are also inserted into all records to which no characters have
been transferred, for example, if the actual string requires less than the number
of components available for storage.

• An error status is returned to the value of Status, if the string to be transferred is
longer than the storage space allocated. In this case, no transfer of any part of
the string occurs.

ASCIIStructToString(DIntStruct, NoOfCharacters, NoOfCharsPerDint, String1,
Status)

This procedure is the reverse of StringToASCIIStruct described above. It takes an
integer struct, which contains the codes for an ASCII string, and recreates the string
from the values in the components of the record. (See StringToASCIIStruct for full
details of the structure of the integer struct and the encoding method.)

The component values of the integer struct, DIntStruct are read and translated to the
value of the destination string, String1.

The value of the parameter NoOfCharacters determines how many ASCII
characters are read from the source record, DIntStruct, and the value of the
parameter NoOfCharsPerDInt informs the procedure how many characters are to be
expected in each integer component. Status returns an indication of the result of the
operation.

The DIntStruct parameter must be structured as an integer struct, that is, it must
have integer components only. (See details in StringToASCIIStruct.)
354 3BSE040935-510

Appendix A Array, Queue and Conversion Examples ASCII Conversion

NoOfCharacters and NoOfCharsPerDInt may be variables, module parameters or
literals.

Usage

Suppose the integer struct DIntStruct from the previous example is to be converted
back to a string. The destination string is called String1 and the three characters are
to be copied. It is known that the original storage protocol defined 2 characters per
integer component.

The following code will perform the task:

ASCIIStructToString(DIntStruct,3,2,String1,Status2)

After execution the value of String1 value will be “ABC”.

Note

• The number of characters per integer of the original record must be known,
only values of 1, 2, 4 or –1, –2, –4 are allowed.

• The new output string will be inserted at the current pointer position in the
destination string.

• An error status is reported as a value to Status if the generated string results in a
new string which is longer than the permitted length for the destination string.
3BSE040935-510 355

ASCII Conversion Appendix A Array, Queue and Conversion Examples

356 3BSE040935-510

Appendix B System Alarms and Events

This section is divided in sub-sections for system alarms and system simple events
and it describes system alarms and system simple events from a controller
perspective. Additional information can also be found in the Control Builder online
help.

General

OPC Server

System alarms and system simple events generated within OPC server can be
divided in two general groups regarding to originating part of the OPC server
(source).

• Software

• Subscriptions

Controller

System alarms and system simple events generated within controller can be divided
in two general groups regarding to originating part of the controller (source).

• Software generated system alarms and system simple events.

• Hardware generated system alarms and system simple events.
3BSE040935-510 357

OPC Server – Software Appendix B System Alarms and Events

OPC Server – Software
All system alarms and system simple events triggered by base code executing in
OPC Server belong to this group. This group is further divided into appropriate parts
uniquely identified by source name suffix.

• _SWFirmware – for common base code

• _SWDataAccess – for OPC Data Access specific code

• _SWAlarmEvent – for OPC Alarm and Event specific code

The SrcName shall be automatically formed as:

SrcName = SystemIP address- SrcNameSuffix

Example: SrcName = 172.16.85.90:200-_SWFirmware

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

SrcNameSuffix = _SWDataAccess

System Simple Event SaveColdRetainFailed

Generated when OPC Data Access server can not save cold retain files for an
application.

SrcNameSuffix = _SWFirmware;
Message = "(5000) Save Cold Retain failed for {1}";
{1} = The name of the application.
SeverityLevel = Medium;
358 3BSE040935-510

Appendix B System Alarms and Events OPC Server – Software

SrcNameSuffix = _SWAlarmEvent

System Simple Event AlarmNotUnique

Generated when OPCAE server discover that there are two alarms with same
combination SouceName ConditionName defined in two different controllers.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6000) Alarm not unique {1}, {2}";
{1} = Source name of the alarm
{2} = Condition name of the alarm
SeverityLevel = Medium;

System Simple Event AlarmHandler overflow

Generated when an item in the EventHandler must be deleted because of overflow.
If there is space again in the EventHandler, the system initializes an AlarmSummary
and updates the missing information. The size of the EventHandler is limited by the
system variable MaxNoOfAlarms.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6001) AlarmHandler overflow. MaxNoOfAlarms exceeded";
SeverityLevel = Medium;

System Simple Event FailedToSubscribe

Generated when a try from OPC AE server to subscribe to a certain control system
was not successful. The corresponding control system name shall be concatenated to
this message.

SrcNameSuffix = _SWAlarmEvent;
Message = "(6002) Failed to subscribe on {1}";
{1} = The IP address of the control system.
SeverityLevel = Medium;
3BSE040935-510 359

OPC Server – Subscription Appendix B System Alarms and Events

System Simple Event Overflow in queue to OPC client

Generated after an overflow of the event queue to an OPC client queue and when the
queue is filled less than 75% of the actual size. The system event is generated and
sent to the client to announce the overflow. On overflow the latest event is thrown
away. The size of every event queue to an OPC client queue is limited by the system
setting "Queue size".

SrcNameSuffix = _SWAlarmEvent;
Message = "(6003) Overflow in queue to OPC client";
SeverityLevel = Medium;

OPC Server – Subscription
OPC server can subscribe a number of controllers from both Data Access and Alarm
and Event part. Thus, each subscribed controller may have one or two system alarms
for its disposal, depending on number of subscription to controller from OPC server.
These system alarms must be created in a moment of corresponding connection i.e.
subscription establishing.

The SrcNameSuffix for Data Access subscriptions group is:

SrcNameSuffix = SubDataAccess
Example: SourceName = 172.16.85.90:22-SubDataAccess

The SrcNameSuffix for Alarm and Event subscriptions group is:

SrcNameSuffix = SubAlarmEvent
Example: SourceName = 172.16.85.90:22-SubAlarmEvent

The ConditionName for these system alarms is supposed to provide a unique
combination of SrcName and ConditionName (since SrcName is the same for whole
category). Thus, ConditionName has form that contains controller IP address.

Example: ConditionName = 172.16.85.90:2-ConnectionError

The following category of system alarms and system simple events handle errors
and warnings concerning connection towards subscribed controllers.
360 3BSE040935-510

Appendix B System Alarms and Events OPC Server – Subscription

SrcNameSuffix = SubDataAccess

Each controller subscribed from Data Access should have one system alarm for its
disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = 10.46.37.121:2-ConnectionError.

System Alarm ConnectionError to DA subscription

SrcNameSuffix = SubDataAccess;
Condition name = -ConnectionError;
Message = "(5500) Connection error to DA subscribed controller";
Severity Level = Critical;

SrcNameSuffix = SubAlarmEvent

Each controller subscribed from Alarm and Event should have one system alarm for
its disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = "10.46.37.121:2-ConnectionError".
3BSE040935-510 361

Controller – Software Appendix B System Alarms and Events

System Alarm ConnectionError to AE subscription

SrcNameSuffix = SubAlarmEvent;
Condition name = -ConnectionError;
Message = "(6500) Connection error to AE subscribed controller";
Severity Level = Critical;

Controller – Software
All system alarms and system simple events triggered by base code belongs to this
group.

This is important to note that system alarms and system simple events issued by
protocol specific code may belong to this group. Normally system alarms and
system simple events issued by protocol specific code are handled within 'Hardware
group'. Under certain circumstances when it is necessary to define errors or
warnings that are not cowered by HW state error handling, this group i.e.
corresponding dedicated SrcNameSuffix should be used. The following set of
source name suffixes are defined for this group.

• _SWFirmware - for base code

• _SW1131Task - for 1131 task execution specific code

• _SWTargets - for HW and OS abstraction layer of the base code

• _SWInsum-, _SWS100-, _SWMB300-, _SWProfibus-, _SWModbus- 1for
protocol specific code

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

1. System alarms and system simple events generated by respective communication protocol are described in the
online help function for respective protocol.
362 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Alarm ErrorHandler sum alarm

SrcNameSuffix = _SWFirmware
Condition name = ErrorHandler;
Message = "(1001) ErrorHandler sum alarm created";
SeverityLevel = Medium;

System Alarm Data transfer failed during FW-upgrade of Alarm&Event

This alarm is generated when Alarm&Event failed in the transfer of
Alarm&Event data from Primary CPU to Trainee CPU. It shows how many
items of different Alarm&Event data that failed. The consequence after
upgrade could be that inactive alarms disappear but active alarms will be
activated again.

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1002) Alarm&Event failed in FW-upgrade. No of Static alarms =
{1}. No of Simple events = {2}. No of Dynamic alarms = {3}. No of SOE-
events = {4}";
{1} = Number of failed items.
{2} = Number of failed items.
{3} = Number of failed items.
{4} = Number of failed items.
SeverityLevel = High;

System Simple Event EventNotificationLost

An event notification was lost. This can happen when the particular OPC-
Server or printer queue containing event notification is full. A system simple
event is generated when there is space again in this queue. After this the
missing information about alarms in the subscribing systems-OPC Servers is
updated, but this does not mean that all missed events are regenerated.

SrcNameSuffix = _SWFirmware;
Message = "(1010) Lost event notification(s) to {1}";
{1} = The remote systems (the OPC Servers) IP address when generated
event indicates full OPC-Server queue or with string "local printer" when
there is a lost event notification from a filled buffer in printer queue.
Severity Level = Medium;
3BSE040935-510 363

Controller – Software Appendix B System Alarms and Events

System Simple Event Alarm definition failed

An attempt to define a process alarm in controller, or a system alarm in
controller or in OPC server was not successfully completed.

SrcNameSuffix = _SWFirmware;
Message = "(1011) Alarm definition failed for {1}, {2}";
{1} = Source name
{2} = Condition name
Severity Level = Low;

System Simple Event Undeclared External event

A low level event issued by external device is received, but no declaration was
found in applications.

SrcNameSuffix = _SWFirmware;
Message = "(1012) Undeclared external event; {1}";
{1} = Signal ID and new value delivered by low level event.
Severity Level = Medium;

System Simple Event Event notification(s) lost during firmware upgrade

Generated if events are lost during firmware upgrade

SrcNameSuffix = _SWFirmware;
Message = "(1014) Event notification(s) lost during firmware upgrade"
SeverityLevel = Medium

System Simple Event Alarm definition(s) failed during firmware upgrade

Generated if there are attempting to create alarms during firmware upgrade.

SrcNameSuffix = _SWFirmware;
Message = "(1015) Alarm definition(s) failed during firmware upgrade"
SeverityLevel = Medium

System Simple Event CommandedSwitchover

The system event below is issued when a commanded switchover has
successfully been executed.
364 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

SrcNameSuffix = _SWFirmware;
Message = "(1020) CPU Switchover was commanded";
SeverityLevel = Medium;

System Simple Event CommandedSwitchoverFailed

The system event below is issued when a commanded switchover has been
unsuccessfully executed.

SrcNameSuffix = _SWFirmware;
Message = "(1021) CPU Switchover command failed";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU was commanded

The system event below is issued when a commanded reset of backup CPU has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1022) Reset of backup CPU was commanded";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU command failed

The system event below is issued when a commanded reset of backup CPU has
unsuccessfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1023) Reset of backup CPU command failed";
SeverityLevel = Medium;

System Simple Event Error found in DataToSimpleEvent

The system event below is generated during calls to DataToSimpleEvent
function block.

SrcNameSuffix = _SWFirmware;
Message = "(1030) AE setting NamValItem/LogStrings to low";
Message = "(1031) Error in FB parameters";
Message = "(1032) Data overflow in communication buffer";
SeverityLevel = Medium;
3BSE040935-510 365

Controller – Software Appendix B System Alarms and Events

System Simple Event Reset of controller forces performed

System event generated from Access Management. Message when Override
Control has made a reset of controller forces.

SrcNameSuffix = _SWFirmware;
Message = "(1033) Reset of controller forces performed";
SeverityLevel = Medium;

System Simple Event Ack of event denied

System event generated from Access Management, when acknowledgement of
an alarm is denied.

SrcNameSuffix = _SWFirmware;
Message = "(1034) Acknowledge of event denied ({1}, {2})";
{1} = source name of the alarm
{2} = condition name of the alarm
SeverityLevel = Medium;

System Simple Event No configuration image found at compact flash card

The system event below is issued when a compact flash card, without a
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = ">(1040) No configuration image found at compact flash
card";
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash card is
corrupt

The system event below is issued when a compact flash card, with a corrupt
configuration image, is detected during startup of controller

SrcNameSuffix = _SWFirmware;
Message = "(1041) Configuration image found at compact flash is
corrupt";
SeverityLevel = Medium;
366 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Simple Event Configuration image found at compact flash does not
match controller

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium

System Simple Event Configuration load is started from compact flash

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium

System Simple Event Configuration image found at compact flash has different
format

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium
3BSE040935-510 367

Controller – Software Appendix B System Alarms and Events

System Simple Event Configuration image found at compact flash does not
match controller

The system event below is issued when a compact flash card, with a
configuration image created for another type of CPU, is detected during startup
of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium;

System Simple Event Configuration load is started from compact flash

The system event below is issued when a compact flash card, with a valid
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash has not equal
format

The system event below is issued when a compact flash card, with a
configuration image created in a format not supported, is detected during
startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium;

System Simple Event

SrcNameSuffix = _SWFirmware;
Message = “(1045) Write attempt to constant variable {1} of instance
{2}";
Severity Level = High;
368 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Simple Event

SrcNameSuffix = _SWFirmware;
Message = “(1046) System variable LogConstAbuse set to 0 since limit on
{1} messages reached";
Severity Level = High;

This message can occur on process alarms when the alarms have not executed yet.
For example, after an OLU. It should only occur temporarily and will disappear
when the execution has started and the alarm have changed state or when OPC/AE
clients (example PPA) are refreshed.

Message = “(1047) The message text is temporarily unavailable since the
alarm is issued before 1131 has been run.";
Severity Level = Medium;
3BSE040935-510 369

Controller – Software Appendix B System Alarms and Events

SrcNameSuffix = _SW1131Task

System Alarm TaskAbort

SrcNameSuffix = _SW1131Task;
Condition name = TaskAbort;
Message = "(2000) Execution time too long in Task {1}";
{1} = Task name will be added to message, for example, "Execution time
too long in Task Fast"
Severity Level = Fatal;

System Simple Event Interval time in ordinary tasks inc

SrcNameSuffix = _SW1131Task;
Message = "(2001) Interval time in ordinary tasks increased {1}%";
{1} = The increase of the interval time in percent with the precision of one
decimal.
Severity Level = Medium;

System Simple Event Interval time in ordinary tasks dec

SrcNameSuffix = _SW1131Task;
Message = "(2002) Interval time in ordinary tasks decreased {1}%";
{1} = The decrease of the interval time in percent with the precision of
one decimal.

Severity Level = Medium;

System Simple Event Interval Time was changed

Only used for tasks executing at Time-Critical priority.

SrcNameSuffix = _SW1131Task;
Message = "(2003) Interval time changed to {1} ms. Task={2}";
{1} = New interval time ,
{2} = Name of the task.
Severity Level = Medium;
370 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Alarm Latency high in normal tasks

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2004) Latency high in task {1}, {2} ms"
{1} = Name of the task,
{2} = Actual latency.
Message Off = "(2004) Latency high inactive "
Condition name = High Latency
SeverityLevel = Medium

System Alarm Latency high in time critical task

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2005) Latency high in task {1}, {2} ms"
Message Off = "(2005) Latency high inactive "
{1} = Name of the task,
{2} = Actual latency.

Condition name = High Latency
SeverityLevel = Medium

SrcNameSuffix = _SWTargets

System Simple Event RCU error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4000) Primary CPU: RCUError(0x{2})";
{2} = Content of the RCU Error Register in hexadecimal format.
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the end of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4025) Failed to set RCU Driver state to
3BSE040935-510 371

Controller – Software Appendix B System Alarms and Events

eRCUTakeoverPossible";
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the start of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4026) Failed to set RCU Driver state to eRCUNormal";
Severity Level = High;

This event is issued from the RCU Driver if Online Upgrade has been suspended
due to an internal error in the RCU Driver.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4027) Failed to set RCU Driver state to eRCUOLU";
Severity Level = High;

System Simple Event RCU test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4001) Primary CPU: RCUTestError({2}, 0x{3})";

{2} = Test Number
1 = RCU Register test
2 = Log Parity test
3 = Log test
4 = Log Range test
5 = I O Emulation test
6 = CPU Bus Timeout test

{3} = The Error status is printed in hexadecimal format.

Severity Level = High;

System Simple Event Dual test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4002) Primary CPU: DualTestError({2}, 0x{3})";
{2} = The Dual Test status (see Table 44)
372 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

Table 44. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup CPU

CPUCEXBusMessageError Failed to receive test message from the Backup CPU

CheckpointTestError Failed to upgrade memory of the Backup CPU
3BSE040935-510 373

Controller – Software Appendix B System Alarms and Events

System Simple Event Backup CPU CEX-Bus test error detected in the Primary
CPU

SrcNameSuffix = _SWTargets;
Message = "(4003) Primary CPU: BkpCEXBusTestError({2}, 0x{3})";
{2} = The Test status (see Table 45)
{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

System Simple Event Error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4004) Primary CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 46)
{3} = The state when the error was detected.
Severity Level = High;

Table 45. Test status from Backup CPU

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup
CPU

CPUCEXBusMessageError Failed to receive response message from the
Backup CPU

CEXBusTestError Failed to test the CEX-Bus interface in the
Backup CPU

Table 46. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the peer CPU

RCUDrvErro Failed when calling the RCU driver
374 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Simple Event A Backup CPU is recognized and started

SrcNameSuffix = _SWTargets;
Message = "(4005) Primary CPU: Backup CPU started";
Severity Level = Medium;

System Simple Event The system has reached the Synchronized state

The Backup CPU is ready to take-over if the Primary CPU fails

SrcNameSuffix = _SWTargets;
Message = "(4006) Primary CPU: Synchronized state";
Severity Level = Medium;

InitCommError Failed to initialize interrupt handling with the peer CPU

InformCommParamError Failed to inform other CPU about communication
parameters

GetCommParamError Failed to get communication parameters from other
CPU

BkpCPUNotAlive The Backup CPU is not alive

BkpCPUCEXBusError Backup CPU not connected to the CEX-bus

BkpCPUIllegalExternalState Backup CPU has an illegal External state

Timeout Backup CPU has not sent a response message within
a specified timeout time

CloningStartError Failed to start cloning in state Upgrading

CloningNotCompletedError Cloning not completed in state Unconfirmed

CloningError Cloning failed in state Synchronized

BkpFirmwareError Backup CPU’s firmware id not equal to Primary CPU’s
firmware id

Table 46. The name of the detected error.

Message Description
3BSE040935-510 375

Controller – Software Appendix B System Alarms and Events

System Simple Event Switchover has occurred

SrcNameSuffix = _SWTargets;
Message = "(4007) Switchover to {2} has occurred";
{2} = "Lower CPU" or "Upper CPU"
Severity Level = Medium;

System Simple Event Report of Backup CPU error after a switchover

SrcNameSuffix = _SWTargets;
Message = "(4008) Primary CPU: {2} in {3}";
{2} = The error reported from the backup CPU
{3} = The position reported from the backup CPU
Severity Level = Medium;

System Simple Event The Backup CPU has stopped

SrcNameSuffix = _SWTargets;
Message = "(4009) Primary CPU: Backup CPU stopped ({2})";
{2} = Stop reason (seeTable 47)
Severity Level = High;

System Simple Event The Primary CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4010) Primary CPU: CPU halted";
Severity Level = High;

Table 47. Stop reason.

Message Description

BkpCPUCEXBusError Backup CPU not connected to the CEX bus

BkpHaltRequest A Backup CPU problem has been detected in the Primary
CPU. The Backup CPU however seems fully alive

BkpCPUNotAlive The Backup CPU has stopped or been removed without
reporting its status to the Primary CPU

Status sent from backup CPU Backup CPU status received via the CEX bus
376 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Simple Event RCU error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4020) Backup CPU: RCUError(0x{2})";
{2} = The contents of the RCU Error Register in hexadecimal format.
Severity Level = High;

System Simple Event RCU test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4021) Backup CPU: RCUTestError({2}, 0x{3})";
{2} = Test Number (see Table 48)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

System Simple Event Dual test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4022) Backup CPU: DualTestError({2}, 0x{3})";
{2} = Dual Test status (see Table 49)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

Table 48. Test Number

Test Number Error Status

1 RCU Register test

2 Log Parity test

3 Log test

4 Log Range test

5 I/O Emulation test

6 CPU Bus Timeout test
3BSE040935-510 377

Controller – Software Appendix B System Alarms and Events

System Simple Event Error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4023) Backup CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 50)
{3} = The state when the error was detected.
Severity Level = High;

Table 49. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Primary
CPU

CPUCEXBusMessageError Failed to receive test message from the
Primary CPU

RCUDrvError Failed when calling the RCU driver to set
threshold value for the Log Data Buffer

Table 50. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own
CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the
peer CPU

RCUDrvError Failed when calling the RCU driver

InitCommError Failed to initialize interrupt handling with the
peer CPU

InformCommParamError Failed to inform other CPU about
communication parameters

GetCommParamError Failed to get communication parameters from
other CPU
378 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

System Simple Event The Backup CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4024) Backup CPU: CPU halted";
Severity Level = High;

System Simple Event Stopped due to ModuleBus inaccessible from Backup
CPU

This event is issued from the MBTestMC unit if the Backup CPU has been stopped
due redundancy supporting modules on the module bus turned out to be inaccessible
from the Backup CPU.

SrcNameSuffix = _SWTargets;
Message = "(4030) Stopped due to ModuleBus inaccessible from Backup
CPU";
Severity Level = "High";

This event is issued from the RCU Driver if the Backup CPU has been halted due to
an overload situation in the redundancy control HW.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4028) RCU LDB overflow has occured in Backup/trainee
PM";
Severity Level = High;

EqualityCheckFailed Memory upgrading of Backup CPU has failed

RCUMessageHaltReceived A Halt request has been received from the
Primary CPU

PrimCPUExitConnection Primary CPU has exit connection

Table 50. The name of the detected error. (Continued)

Message Description
3BSE040935-510 379

Controller – Software Appendix B System Alarms and Events

This event is issued if the Backup CPU has been halted during start-up due to that it
uses the same MAC address as the Primary CPU. (This can happen if the original
Primary CPU unit has been removed from a redundant controller and the same unit
is later re-inserted as spare part in the same running controller.)

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4042) Backup CPU has the same MAC Address as Primary
CPU";
Severity Level = High;

System Simple Event Switched over due to ModuleBus inaccessible from
Primary CPU

This event is issued from the MBTestMC unit if a switch-over occurred due to
redundancy supporting modules on the module bus turned out to be inaccessible
from the Primary CPU.

SrcNameSuffix = _SWTargets;
Message = "(4031) Switched over, ModuleBus inaccessible from Primary
CPU";
Severity Level = High;

Events from Network Interface Supervision

System Simple Event Backup CPU halted: Bad Network interface

This event is issued from the NIS primary task if the Backup CPU has been halted
due to both network interface in Backup CPU are not working properly.

SrcNameSuffix = _SWTargets;
Message = "(4040) Backup CPU halted: Bad Network interface";
Severity Level = High;
380 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Events from Checking of Available MAC address in Backup

System Simple Event No MAC address in Backup CPU

This event is issued to the primary PM if the backup PM has no MAC address.

SrcNameSuffix = _SWTargets;
Message = "(4041) No MAC address in backup PM";
Severity Level = High;

Events from Modulebus driver

System Simple Event Diverse pointer check

This event is issued from the check of pointers to the DPM which is used in all
accesses to read/write data to/from IO modules.

SrcNameSuffix = _SWTargets;
Message = "(4050) Fatal Error in diverse pointer check";
Severity Level = Fatal;

System Simple Event Failed to send message to queue

SrcNameSuffix = _SWTargets;
Message = "(4051) Mbus msgQ failed: control of Primary/Backup Leds
not run";
Severity Level = Low;

System Simple Event Null pointer

SrcNameSuffix = _SWTargets;
Message = "(4052) Null pointer check failed";
Severity Level = Fatal;

System Simple Event Failed to create message queue

SrcNameSuffix = _SWTargets;
Message = "(4053) Failed to create message queue";
Severity Level = High;

System Simple Event Test of RAM Error in MBM1 failed
3BSE040935-510 381

Controller – Software Appendix B System Alarms and Events

SrcNameSuffix = _SWTargets;
Message = "(4054) Cyclic test of Ram Error in MBM1 failed";
Severity Level = Critical;

System Simple Event Runtime RAM Error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4055) Runtime Ram Error in MBM1";
Severity Level = Critical;

System Simple Event Diagnostic test of CRC32 calculator in FPGA failed

SrcNameSuffix = _SWTargets;
Message = "(4056) Cyclic test of CRC32 calculator failed in {1}";
{1} = Cause of failure. Example: checkFailed, timeout
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler

SrcNameSuffix = _SWTargets;
Message = "(4057) Failure in SM detected by PM";
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler due to Bus
Error

SrcNameSuffix = _SWTargets;
Message = "(4058) Try to switch PM due to Bus Error";

Severity Level = Critical;

System Simple Event CPU interface error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4059) CPU interface error in FPGA";
Severity Level = Critical;

Events from the MMU

System Simple Event Software errors
382 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

SrcNameSuffix = _SWTargets;
Message = "(4060) Software error detected by MMU";
Severity Level = Fatal;

System Simple Event Memory violation

SrcNameSuffix = _SWTargets;
Message = "(4061) Attempted write access in write-protected memory";
Severity Level = Fatal;

System Simple Event MMU checker error

SrcNameSuffix = _SWTargets;
Message = "(4062) Unexpected write in protected memory";
Severity Level = Critical;

System Simple Event DMA checker error

SrcNameSuffix = _SWTargets;
Message = "(4063) DMA Checker time. Test failed";
Severity Level = Critical;

System Simple Event Primary CPU: DMA memory violation

SrcNameSuffix = _SWTargets;
Message = "(4064) Primary CPU: DMA memory violation at {2}"
{2} = General fail address information
SeverityLevel = High

Events from FW Integrity Verification

Indication that FW CRC did not match original in primary PM.

SrcNameSuffix = _SWTargets;
Message = "(4070) FW Integrity Verification primary:CRC did not
match original";
Severity Level = Medium;

Indication that FW CRC did not match original in backup PM.
3BSE040935-510 383

Controller – Software Appendix B System Alarms and Events

SrcNameSuffix = _SWTargets;
Message = "(4071) FW Integrity Verification backup:CRC did not match
original";
Severity Level = Medium;

Indication that FW CRC did not match in stand alone PM.

SrcNameSuffix = _SWTargets;
Message = "(4072) FW Integrity Verification standalone:CRC did not
match original";
Severity Level = Medium;

Address parameter failure in FW Integrity Verification.

SrcNameSuffix = _SWTargets;
Message = "(4073) FW Integrity Verification: Address parameter
failure";
Severity Level = Medium;

System Simple Event CRC error in FW Integrety Verification

SrcNameSuffix = _SWTargets;
Message = "(4074) FW Integrity Verification trainee CRC did not match
original"
SeverityLevel = Critical

Events from the Heap: Software Errors

SrcNameSuffix = _SWTargets;
Message = "(4080) Software error detected by Heap manager";
Severity Level = Fatal;

Events from the Heap: Memory Violation

SrcNameSuffix = _SWTargets;

Message = "(4081) Heap violation during allocation of an element";
Severity Level = Fatal;
384 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Message = "(4082) Heap violation during deallocation of an element";
Severity Level = Fatal;

Message = "(4083) Null element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4084) Corrupt element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4085) Corrupt elements are detected after a power fail";

Severity Level = Fatal;

Message = "(4086) The Protected Heap is out of memory";
Severity Level = Low;

Message = "(4087) The Shared Heap is out of memory";
Severity Level = Low;

Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap";
Severity Level = Medium;

Message = "(4094) The max boundary size of an element is exceeded in
the Protected Heap";
Severity Level = Medium;

Events from the Heap: Heap Checker Error

System Simple Event MemFree error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4088) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Critical;

System Simple Event MemFree error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4089) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Fatal;
3BSE040935-510 385

Controller – Software Appendix B System Alarms and Events

System Simple Event Synchronous heap check error - logging

SrcNameSuffix = _SWTargets;
Message = "(4090) Corrupt element during synchronous heap check";
Severity Level = Low;

System Simple Event Cyclic heap check error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4091) Corrupt element during cyclic heap check";
Severity Level = Critical;

System Simple Event Cyclic heap check error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4092) Corrupt element during cyclic heap check";
Severity Level = Fatal;

System Simple Event Max boundary size exceeded in the Shared Heap

SrcNameSuffix = _SWTargets
Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap."
SeverityLevel = Medium

System Simple Event Max boundary size exceeded in the Protected Heap

SrcNameSuffix = _SWTargets
Message = (4094) The max boundary size of an element is exceeded in the
Protected Heap."
SeverityLevel = Medium

Events from Irq Supervisor

These messages are short (twelve characters) since most of them have to be printed
from interrupt context when an irq error has occurred, which means there is only a
very small time margin.

SrcNameSuffix = _SWTargets;
386 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Message = "(4100) Irq error. Unable to spawn Reset Irq Supervisor
thread";
Severity Level = Medium;

Message = "(4101) Irq error. MSCallout array full; not possible to add
SuperviseIrq; the IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4102) Irq error. Irq supervisor: Irq timed out; primary PM
will be shut down";
Severity Level = Medium;

Message = "(4103) Irq error. Irq supervisor: Irq timed out; backup PM
was shut down";
Severity Level = Medium;

Message = "(4104) Irq error. Irq supervisor: Irq timed out error in
standalone PM";
Severity Level = Medium;

Message = "(4105) Irq error. Unable to create a OS periodic timer, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4106) Iirq error. Unable to raise thread priority, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4107) Irq supervisor: Irq timed out; trainee PM was shut
down"
SeverityLevel = Medium

Events from CEX Bus Interrupt Handler

SrcNameSuffix = _SWTargets;

Message = "(4110) Hanging CEX IRQ: All CEMs on the upper CEX bus
segment are disabled";
Severity Level = Medium;
3BSE040935-510 387

Controller – Software Appendix B System Alarms and Events

Message = "(4111) Hanging CEX IRQ: All CEMs on the lower CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4112) Hanging CEX IRQ: The upper PM has been shut
down";
Severity Level = Critical;

Message = "(4113) Hanging CEX IRQ: The lower PM has been shut
down";
Severity Level = Medium;

Message = "(4115) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4116) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM.
Severity Level = Medium;

Message = "(4117) Invalid CEX IRQ backup PM: The upper PM has
been shut down";
Severity Level = Medium;

Message = "(4118) Invalid CEX IRQ backup PM: The lower PM has
been shut down";
Severity Level = Medium;

Message = "(4119) Spurious CEX IRQ: {1} spurious IRQs since system
startup";
{1} = Number of spurious IRQ since start
Severity Level = Low;

Message = "(4120) Hanging CEX IRQ: All CEMs on the dir CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4121) Hanging CEX IRQ: All CEMs on the indir CEX bus
segment are disabled";
Severity Level = Medium;
388 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Message = "(4122) Hanging CEX IRQ: The PM has been shut down";
Severity Level = Critical;

Message = "(4123) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4124) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4125) Insufficient memory to create the Reset BC thread";
Severity Level = Medium;

Events from DMA Supervisor

SrcNameSuffix = _SWTargets;

Message = "(4126) Error in DMA Supervisor configuration";
Severity Level = Fatal;

Events from Internal Diagnostics Engine

SrcNameSuffix = _SWTargets;

Message = "(4130) Software error detected by Diagnostic Engine";
Severity Level = Medium;

Message = "(4131) Diagnostic Engine: FDRT deadline passed";
Severity Level = Medium;

Message = "(4132) Diagnostic Engine: Diurnal deadline passed";
Severity Level = Medium;

Events from RAMTest

SrcNameSuffix = _SWTargets;

Message = "(4133) RAMTest Primary Parity error self test;
Severity Level = Critical;
3BSE040935-510 389

Controller – Software Appendix B System Alarms and Events

Message = "(4134) RAMTest Backup Parity error self test";
Severity Level = Critical;

Message = "(4135) RAMTest Standalone Parity error self test";
Severity Level = Critical;

Message = "(4136) RAMTest Primary Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4137) RAMTest Backup Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4138) RAMTest Standalone Address line test 0x{1}";
Severity Level = Critical;
{1} = Fail address

Message = "(4139) RAMTest Primary Internal error";
Severity Level = Fatal;

Message = "(4140) RAMTest Backup Internal error";
Severity Level = Fatal;

Message = "(4141) RAMTest Standalone Internal error";
Severity Level = Fatal;

Events from the RCU CRC Checker

SrcNameSuffix = _SWTargets;

Message = "(4142) Hardware error detected by RCU CRC Checker";
Severity Level = Critical;

Events from RAMTest

Message = "(4143) RAMTest Trainee Parity error self test"
SeverityLevel = = Critical

Message = "(4144) RAMTest Trainee Address line test 0x{1}"
{1} = Fail address
SeverityLevel = Critical
390 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Message = "(4145) RAMTest Backup Internal error"
SeverityLevel =Critical

Events from SSPActiveTest

Message = "(4146) SSP error detected by SSPActiveTest"
SeverityLevel = Fatal

Events from HWSetupVerification

These events are issued if HW Setup Verification detected an error in HW Setup.
The message also contains a test label, specifying the failing test.

SrcNameSuffix = _SWTargets;

Message = "(4150) HW Setup Verification in Primary: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4151) HW Setup Verification in Backup: {1}";
Severity Level = Medium;
{1} = Subtest strings used to specify the failing test method.

Message = "(4152) HW Setup Verification in Standalone: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4153) HW Setup Verification in Trainee: {1}"
{1} = Subtest strings used to specify the failing test method.
SeverityLevel = Critical

Events from EXTCLKSupervision

These events are issued from the EXTCLK Supervision if etiher the EXTCLK
frequency is or the FPGA divider is working incorrect.

SrcNameSuffix = _SWTargets;

Message = "(4160) EXTCLK Error Allowed range {1} us";
{1} = Sleep-time information
Severity Level = Medium;
3BSE040935-510 391

Controller – Software Appendix B System Alarms and Events

Message = "(4161) EXTCLK Supervision Error: FATAL error";
Severity Level = Medium;

Events from HRESETSupervision

This event is issued from the Oscillator Supervision task if etiher the SPPL or
EXTCLK frequency is working incorrect.

SrcNameSuffix = _SWTargets;
Message = "(4170) HRESET Error asserted by {1}";
{1} = Strings used to specify the signals generating HRESET
Severity Level = High;

Events from Modulebus Driver

System Simple Event Comparision of CRC32 from SM and PM failed

SrcNameSuffix = _SWTargets;
Message = "(4180) MBM1 SM vs PM CRC32 failed, address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Low;

System Simple Event Failed to create SMDrv in Modulebus

SrcNameSuffix = _SWTargets;
Message = "(4181) Failed to create SMDrv From Modulebus";
Severity Level = Medium;

System Simple Event BusErrorIn interrupt routine

SrcNameSuffix = _SWTargets;
Message = "(4182) Bus Error In Modulebus ISR address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Critical;

System Simple Event BS Exception in MBM1scanner

SrcNameSuffix = _SWTargets;

Message = "(4183) BS EXCEPTION In MBM1 Scanner";
Severity Level = Critical;
392 3BSE040935-510

Appendix B System Alarms and Events Controller – Software

Message = "(4184) Incoming safety header failure, address 0x{1}"
{1} = Address (hexadecimal)
SeverityLevel = Medium

Message = "(4185) Primary shutdown due to suspect SM"
SeverityLevel = Medium

Message = "(4186) No answer from SM address 0x{1}, error code 0x{2}"
SeverityLevel = Medium

Message = "(4187) Failure in safety IO, address 0x{1}, error code 0x{2}"
{1} = Address (hexadecimal)
{2} = Error code (hexadecimal)
SeverityLevel = Medium

Events from ModuleBus

System Simple Event

Message = "((4901) Event overflow in module: {1}{2}"
{1} = Path to ModuleBus unit.
{2} = Unit number.
SeverityLevel = Medium
3BSE040935-510 393

Controller – Hardware Appendix B System Alarms and Events

Controller – Hardware
Hardware generated system alarms are automatically available when the hardware is
configured. They may however be disabled.

All Hardware Units in the hardware configuration have one system alarm and one
system simple event each for its disposal. The intention is to have a sum alarm and a
sum event for different errors and warnings that can be detected on the hardware
unit.

.

Table 51. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions

Class All hardware generated system alarms and events have the same
value of parameter 'Class' that is determined by the value of CPU
setting 'AE System AE class'.

Severity Values of severity are defined through the CPU setting 'AE System
AE high severity' for hardware generated system alarms, respective
'AE System AE medium severity' for hardware generated system
simple events.
394 3BSE040935-510

Appendix B System Alarms and Events Controller – Hardware

Message The message contains reference to more detailed information,
because each alarm is a sum alarm that can indicate many different
errors on the unit. This information is given in the description of
Errors and Warnings in Control Builder.

The error code is stored in two 32 bit words first word is
ErrorsAndWarnings and the second is ExtendedStatus.

In each hardware generated system alarm or event message,
ErrorsAndWarnings and ExtendedStatus bit patterns are translated
into a text in the OPC-server. General status bits are translated into
a explaining text e.g. "I/O configuration error". Device specific bits
from ErrorsAndWarnings are translated into a text in the
OPC-server, if a matching text is available in the hardware definition.
Otherwise they are displayed as "Device specific bit xx" in the
message e.g. "Device specific bit 31". The same goes for
ExtendedStatus. If a matching text is not available in the hardware
definition, unit specific bits from ExtendedStatus are displayed as
"Extended status bit xx" in the message e.g. "Extended status bit 0".
The bits for every unit are explained later in this section.

Example
"Controller_1 (0000) I/O configuration error, Device specific bit 31,
Extended status bit 0"

If the Unit in this example is a PM865, "Device specific bit 31"=
"Battery low" and "Extended status bit 0" = "Backup CPU stopped"

In the controller log ErrorsAndWarnings and ExtendedStatus are
presented as HEX format.

Example:

"E 2004-03-08 10:25:06.677 On Unit= 2 HWError Controller_1
Errorcode=16#80004000 16#00000001 (0000) See HW-tree

Table 51. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions
3BSE040935-510 395

Alarms and Events Common for all Units Appendix B System Alarms and Events

Alarms and Events Common for all Units

Table 52 lists those status bits that have the same meaning for all hardware units.

Note however that different units have different capabilities. A specific unit will
typically only be able to generate alarms and events for an assortment of the
common status bits.

These general bits do not apply to the IAC MMS hardware object (for Unit Status of
IAC MMS object, see Table 54)

SrcName The syntax for the source name in the SrcName parameter is
dynamically based on the IP address together with the
SrcNameSuffix that is the hardware unit address in the hardware
tree configuration.

Example: IP address (172.16.85.33) + SrcNameSuffix (2.5.101)
= "172.16.85.33-2.5.101".

CondName All hardware generated system alarms have "HWError" as common
condition name in the CondName parameter.

AckRule Ack Rule 5 is used for these system alarms,.

Table 52. General status bit ErrorsAndWarnings

Bit Status Bit Value Indication Generation Severity Description

0 ConnectionDown 16#00000001 Error Alarm High Connection down

1 IoError 16#00000002 Error Alarm Medium I/O error

2 ModuleMissing 16#00000004 Error Alarm High Module missing

3 WrongModuleType 16#00000008 Error Alarm High Wrong module
type

4 StatusChannelError 16#00000010 Warning Alarm Medium Channel error

5 IoWarning 16#00000020 Warning Event Low I/O warning

6 StatusUnderflow 16#00000040 Warning Alarm Low Underflow

Table 51. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions
396 3BSE040935-510

Appendix B System Alarms and Events Alarms and Events Common for all Units

7 StatusOverflow 16#00000080 Warning Alarm Low Overflow

8 StatusForced 16#00000100 Warning Event Low Forced

9 WatchdogTimeout 16#00000200 Error Alarm High Watchdog timeout

10 DeviceFailure 16#00000400 Error Alarm High Device failure

11 DeviceNotFound 16#00000800 Error Alarm High Device not found

12 WrongDeviceType 16#00001000 Error Alarm High Wrong device type

13 IOConnectError 16#00002000 Error Alarm Medium I/O connection
error

14 IOConfigError 16#00004000 Error Alarm Medium I/O configuration
error

15 HWConfigError 16#00008000 Error Alarm High Hardware
configuration error

16 GeneralError 1 16#00010000 Error – – –

17 GeneralWarning 1 16#00020000 Warning – – –

18 RedWarningPrimary 2 16#00040000 Warning Event Low Warning on
primary unit

19 RedWarningBackup 2 16#00080000 Warning Event Low Warning on
backup unit

20 RedErrorBackup 2 16#00100000 Warning Alarm Medium Error on backup
unit

21 Reserved 16#00200000 – – – –

22 DeviceSpecific10 16#00400000 3 3 3 3

23 DeviceSpecific9 16#00800000 3 3 3 3

24 DeviceSpecific8 16#01000000 3 3 3 3

25 DeviceSpecific7 16#02000000 3 3 3 3

26 DeviceSpecific6 16#04000000 3 3 3 3

27 DeviceSpecific5 16#08000000 3 3 3 3

Table 52. General status bit ErrorsAndWarnings (Continued)

Bit Status Bit Value Indication Generation Severity Description
3BSE040935-510 397

Alarms and Events Common for all Units Appendix B System Alarms and Events

28 DeviceSpecific4 16#10000000 3 3 3 3

29 DeviceSpecific3 16#20000000 3 3 3 3

30 DeviceSpecific2 16#40000000 3 3 3 3

31 DeviceSpecific1 16#80000000 3 3 3 3

1 Used together with other status bits.
2 Used only if hte unit is configured as a redundant unit.
3 Depends on the specific hardware device ,defined within hardware definition file.

Table 53. General status bit ExtendedStatus

Bit Status Bit Value Indication Generation Severity Description

0 ExtendedStatus1 16#00000001 1 1 1 1

1 ExtendedStatus2 16#00000002 1 1 1 1

2 ExtendedStatus3 16#00000004 1 1 1 1

3 ExtendedStatus4 16#00000008 1 1 1 1

4 ExtendedStatus5 16#00000010 1 1 1 1

5 ExtendedStatus6 16#00000020 1 1 1 1

6 ExtendedStatus7 16#00000040 1 1 1 1

7 ExtendedStatus8 16#00000080 1 1 1 1

8 ExtendedStatus9 16#00000100 1 1 1 1

9 ExtendedStatus10 16#00000200 1 1 1 1

10 ExtendedStatus11 16#00000400 1 1 1 1

11 ExtendedStatus12 16#00000800 1 1 1 1

12 ExtendedStatus13 16#00001000 1 1 1 1

13 ExtendedStatus14 16#00002000 1 1 1 1

14 ExtendedStatus15 16#00004000 1 1 1 1

15 ExtendedStatus16 16#00008000 1 1 1 1

Table 52. General status bit ErrorsAndWarnings (Continued)

Bit Status Bit Value Indication Generation Severity Description
398 3BSE040935-510

Appendix B System Alarms and Events Alarms and Events Common for all Units

16 ExtendedStatus17 16#00010000 1 1 1 1

17 ExtendedStatus18 16#00020000 1 1 1 1

18 ExtendedStatus19 16#00040000 1 1 1 1

19 ExtendedStatus20 16#00080000 1 1 1 1

20 ExtendedStatus21 16#00100000 1 1 1 1

21 ExtendedStatus22 16#00200000 1 1 1 1

22 Reserved 16#00400000 – – – –

23 PrimaryIncompatibleFW 2 16#00800000 Error Alarm High Version of
the Running
Primary is

incompatible

24 BackupIncompatibleFW 2 16#01000000 Warning Alarm Medium Version of
the Running
Backup is

incompatible

25 PrimaryNotPrefrdFW 2 16#02000000 Warning Alarm Medium Version of
the Running
Primary is

not preferred

26 BackupNotPrefrdFW 2 16#04000000 Warning Alarm Medium Version of
the Running
Backup is

not preferred

27 TimeouOnBackup 2 16#08000000 Warning Alarm Low Watchdog
timeout on

backup

28 DeviceFailureBackup 2 16#10000000 Warning Alarm Low Backup
device failure

Table 53. General status bit ExtendedStatus (Continued)

Bit Status Bit Value Indication Generation Severity Description
3BSE040935-510 399

Alarms and Events Common for all Units Appendix B System Alarms and Events

1
2
3

29 SwitchoverInProgress 2 16#20000000 Warning Event Low Switchover in
progress

30 ConfiguredAsRedundant 2, 3 16#40000000 - - - Redundant
mode

enabled

31 UnitBPrimary 2 16#80000000 - - - Unit B acts
primary

Depends on the specific hardware device, defined within the hardware definition file.
Used only if the unit is configured as a redundant unit.
If this bit is set and bit 31 is not set, the text Unit A acts primary will be shown.

Table 54. Unit Status for IAC MMS hardware object

Value Description

16#00000000 The status is OK.

16#07000000 The type does not match the corresponding out variable.

16#08000000 Wrong message type in the response message.

16#0A000000 The out variable cannot be found.

16#0B000000 Initiate request was unsuccessful.

16#0C000000 The PhIAC_MMS version between client and server does
not match.

16#0D000000 The heap is full.

16#0E000000 Permanent MMS error.

16#FF000000 Unspecified Protocol Handler error.

Table 53. General status bit ExtendedStatus (Continued)

Bit Status Bit Value Indication Generation Severity Description
400 3BSE040935-510

Appendix B System Alarms and Events Unit Specific Alarms and Events

Unit Specific Alarms and Events

This subsection lists the unit specific alarms and events, sorted in the following
categories of units:

• Controller units and communication interfaces (see Controller Units and
Communication Interfaces on page 401).

• Adapters (see Adapters on page 453).

• S800 I/O (see S800 I/O on page 460).

• S900 I/O (see S900 I/O on page 506).

• S100 I/O (see S100 I/O on page 543).

• INSUM devices (see INSUM Devices on page 544).

• FF devices (see FF Devices on page 547).

• MB300 nodes (see MB300 Nodes on page 547).

• ABB Standard drive (see ABB Standard Drive on page 548).

Controller Units and Communication Interfaces

Table 55. PM851 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.
3BSE040935-510 401

Controller Units and Communication Interfaces Appendix B System Alarms and Events

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 56. PM856 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

Table 55. PM851 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
402 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 57. PM860 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

Table 56. PM856 / TP830

Bit StatusType Indication Generation Severity Description
3BSE040935-510 403

Controller Units and Communication Interfaces Appendix B System Alarms and Events

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 58. PM861 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

Table 57. PM860 / TP830

Bit StatusType Indication Generation Severity Description
404 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

Table 58. PM861 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 405

Controller Units and Communication Interfaces Appendix B System Alarms and Events

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 59. PM864 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

Table 58. PM861 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
406 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 59. PM864 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 407

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 60. PM866

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Warning Alarm Medium Battery Low

30 ErrorsAndWarnings Warning Alarm Medium RPB

29 ErrorsAndWarnings Warning Alarm Medium RPA

28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

27 ErrorsAndWarnings Warning Alarm Medium No Time sync

26 ErrorsAndWarnings Warning Alarm Medium Battery Low on Backup

25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on Backup

0 ExtendedStatus Warning Alarm Medium Backup CPU stopped

1 ExtendedStatus Warning Alarm Medium Switchover occured

2 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

upper CEX bus segment
are disabled.

3 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

lower CEX bus segment
are disabled

4 ExtendedStatus Warning Alarm Medium Hanging or invalid CEX
IRQ: A PM has been shut

down.
408 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

5 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

direct CEX bus segment
are disabled.

6 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

indirect CEX bus segment
are disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable connector is
open

Table 61. PM891

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Warning Alarm Medium Battery Low

30 ErrorsAndWarnings Warning Alarm Medium RPB

29 ErrorsAndWarnings Warning Alarm Medium RPA

27 ErrorsAndWarnings Warning Alarm Medium No Time sync

26 ErrorsAndWarnings Warning Alarm Medium Battery Low on Backup

25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

0 ExtendedStatus Warning Alarm Medium Backup CPU stopped

1 ExtendedStatus Warning Alarm Medium Switchover occured

2 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

upper CEX bus segment
are disabled.

Table 60. PM866 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 409

Controller Units and Communication Interfaces Appendix B System Alarms and Events

3 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

lower CEX bus segment
are disabled

4 ExtendedStatus Warning Alarm Medium Hanging or invalid CEX
IRQ: A PM has been shut

down.

5 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

direct CEX bus segment
are disabled.

6 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

indirect CEX bus segment
are disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable connector is
open

Table 61. PM891 (Continued)

Bit StatusType Indication Generation Severity Description
410 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 62. CF Card

Bit StatusType Indication Generation Severity Description

27 ErrorsAndWarnings Warning Alarm Medium Image is corrupt

28 ErrorsAndWarnings Warning Alarm Medium Controller version
mismatch

29 ErrorsAndWarnings Warning Alarm Medium Invalid save setting

 30 ErrorsAndWarnings Warning Alarm Medium Application version
mismatch

 31 ErrorsAndWarnings Warning Alarm Medium No card present

Table 63. SD Card

Bit StatusType Indication Generation Severity Description

27 ErrorsAndWarnings Warning Alarm Medium Image is corrupt

28 ErrorsAndWarnings Warning Alarm Medium Controller version
mismatch

29 ErrorsAndWarnings Warning Alarm Medium Invalid save setting

 30 ErrorsAndWarnings Warning Alarm Medium Application version
mismatch

 31 ErrorsAndWarnings Warning Alarm Medium No card present

Table 64. CI852

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Warning Alarm Medium Ext FF Config
missing

 25 ErrorsAndWarnings Error Alarm High CIff DB
Compatibility Error

 26 ErrorsAndWarnings Warning Alarm Medium CIff EEPROM
error

 27 ErrorsAndWarnings Error Alarm High CIff Power Up Test
Fail
3BSE040935-510 411

Controller Units and Communication Interfaces Appendix B System Alarms and Events

 28 ErrorsAndWarnings Error Alarm High Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High Syst Mgm Not Op

 31 ErrorsAndWarnings Warning Event Medium H1 Bus Idle

Table 65. CI854

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error Alarm Medium Hardware
watchdog on

CI854(A) expired

24 ErrorsAndWarnings Error Alarm Medium Error in
PROFIBUS master

configuration

25 ErrorsAndWarnings Warning Alarm Medium PROFIBUS com.
failure between

Primary and
Backup

26 ErrorsAndWarnings Warning Event High Communication
memory obtained

too long

27 ErrorsAndWarnings Warning Alarm Medium Duplicate slave
address

28 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line A

29 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line B

30 ErrorsAndWarnings Error Alarm High Hardware fail of
CI854(A)

31 ErrorsAndWarnings Error Alarm Medium Firmware needs to
be reloaded

Table 64. CI852

Bit StatusType Indication Generation Severity Description
412 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

0 ExtendedStatus Warning Event Low Timeout on bus,
maybe duplicate

slave address
(TTO)

1 ExtendedStatus Warning Event Low Bus
synchronization

failure, check
hardware (SYN)

2 ExtendedStatus Warning Event Low Taken out of ring
by another master,

check system
conf.

3 ExtendedStatus Warning Event Low Fatal medium
access error

4 ExtendedStatus Warning Event Low Fatal hardware
error

5 ExtendedStatus Warning Alarm Medium All slaves failed

6 ExtendedStatus Warning Event Low Hardware
configuration error

on backup

7 ExtendedStatus Warning Event Low Backup device not
found

8 ExtendedStatus Warning Alarm Medium I/O configuration
error on backup

9 ExtendedStatus Warning Alarm Medium I/O connection
error on backup

10 ExtendedStatus Warning Event Low Hardware
watchdog on

Backup CI854(A)
expired

Table 65. CI854 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 413

Controller Units and Communication Interfaces Appendix B System Alarms and Events

11 ExtendedStatus Warning Event Low Error in
PROFIBUS master

configuration of
Backup

12 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line A

of Backup

13 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line B

of Backup

14 ExtendedStatus Warning Alarm Medium Hardware fail of
CI854A Backup

15 ExtendedStatus Warning Alarm Medium Firmware needs to
be reloaded on

Backup

16 ExtendedStatus Warning Alarm Medium CEX-Bus com.
failure between

Primary and
Backup

17 ExtendedStatus Error Alarm High Fatal error on
Primary detected

18 ExtendedStatus Warning Alarm Medium Fatal error on
Backup detected

Table 65. CI854 (Continued)

Bit StatusType Indication Generation Severity Description
414 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 66. CI855

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Warning Alarm Medium No communication
on port 1

23 ErrorsAndWarnings Warning Alarm Medium No communication
on port 2

31 ErrorsAndWarnings Warning Event Low MB300 System
message received.

Check log-file

Table 67. CI856

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Warning Event Low CPU overload

1 ExtendedStatus Warning Event Low Scan task
overload

2 ExtendedStatus Warning Event Low Lack of scan
resources

3 ExtendedStatus Warning Event Low PTC status queue
full

4 ExtendedStatus Warning Event Low PTC event queue
full

5 ExtendedStatus Warning Event Low SOE status queue
full

6 ExtendedStatus Warning Event Low DI queue full

7 ExtendedStatus Warning Event Low AI queue full

8 ExtendedStatus Warning Alarm Medium Unknown I/O
module type
3BSE040935-510 415

Controller Units and Communication Interfaces Appendix B System Alarms and Events

9 ExtendedStatus Warning Alarm Medium Illegal I/O module
ID

10 ExtendedStatus Warning Alarm Medium I/O module ID
conflict

11 ExtendedStatus Warning Alarm Medium Max number of
PTC devices

exceeded

Table 68. CI857

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High FW downl mode

23 ErrorsAndWarnings Error Alarm High Internal Supv

24 ErrorsAndWarnings Error Alarm High Appl Task Failed

25 ErrorsAndWarnings Error Alarm High Init Failed

26 ErrorsAndWarnings Error Alarm High Device Not Found

27 ErrorsAndWarnings Error Alarm High FW Watchdog
Error

28 ErrorsAndWarnings Error Alarm High Ethernet Error

29 ErrorsAndWarnings Error Alarm High Device Failure

30 ErrorsAndWarnings Warning Event Low Warning!

31 ErrorsAndWarnings Error Alarm Medium Error!

0 ExtendedStatus Error Alarm High No MAC Addr

1 ExtendedStatus Error Alarm High HW Fail

2 ExtendedStatus Error Event Medium Error reading CI
status reg.

3 ExtendedStatus Warning Alarm Medium Suspend State

4 ExtendedStatus Warning Alarm Medium Shutdown State

Table 67. CI856 (Continued)

Bit StatusType Indication Generation Severity Description
416 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

6 ExtendedStatus Warning Event Medium Cfg State

7 ExtendedStatus Warning Event Medium Init State

8 ExtendedStatus Error Alarm High Incompat driver
version

9 ExtendedStatus Error Alarm High Incompat FW
version

10 ExtendedStatus Error Alarm Medium PH task stalled

12 ExtendedStatus Error Alarm High Wrong dev type

13 ExtendedStatus Warning Event Low Data Trans Q Full

14 ExtendedStatus Warning Event Low Status Trans Q
Full

15 ExtendedStatus Warning Event Low Misc Trans Q Full

16 ExtendedStatus Warning Event Low Dev Trans Q Full

17 ExtendedStatus Warning Event Low Trans Q Full

18 ExtendedStatus Warning Event Low Net Q Full

19 ExtendedStatus Warning Event Low Intern Q Full

20 ExtendedStatus Error Alarm High FW Corrupt

Table 69. CI865 (Satt I/O Interface)

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Overload

Table 68. CI857 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 417

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 70. CI867 (MODBUS TCP)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm High Internal task failure

1 ExtendedStatus Error Alarm High Firmware not
working properly
due to e.g. failed
initialization of

objects, tasks etc.

2 ExtendedStatus Error Alarm High Out of memory

3 ExtendedStatus Error Alarm High Failed to open or
create transceiver

channel(s)

4 ExtendedStatus Error Alarm High Wrong module
type

5 ExtendedStatus Error Alarm High Incompatible driver

6-7 Reserved - - - -

8 ExtendedStatus Error Alarm Medium Internal task failure
in the backup

9 ExtendedStatus Error Alarm Medium Firmware not
working properly
due to e.g. failed
initialization of
objects in the

backup

10 ExtendedStatus Error Alarm Medium Out of memory in
the backup
418 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

11 ExtendedStatus Error Alarm Medium Failed to open or
create transceiver
channel(s) in the

backup

12 ExtendedStatus Error Alarm Medium Backup is of wrong
module type

13 ExtendedStatus Error Alarm Medium Incompatible
backup driver

Table 70. CI867 (MODBUS TCP)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 419

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 71. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description

31 ErrorsAndWarnings Error Alarm High Internal HW error (see
CI log).

Set when a fatal
software hardware
error has been
detected. See
controller log and the
CI log for more
information.

30 ErrorsAndWarnings Error Alarm High Internal FW Error (see
CI log).

Set when a fatal
software error has
been detected. See
controller log and the
CI log for more
information.

29 ErrorsAndWarnings Error Alarm High Error generated by
task supervisor.

Set when the task
supervision detects
that a task is not
responding.

0 ExtendedStatus Error Alarm Medium BAP DMA error.

The BAP fails to
perform DMA access
to the Traffic Memory.

1 ExtendedStatus Error Alarm Medium BAP failure.

Malfunction of the BAP.

2 ExtendedStatus Error Alarm Medium Traffic memory corrupt.

The Traffic Memory is
corrupt.
420 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3 ExtendedStatus Warning - - Redundant Line A
error.

Bus traffic only on line
A. This is only reported
if it is configured that
cable redundancy
should be used.

4 ExtendedStatus Warning - - Redundant Line B
error.

Bus traffic only on line
B. This is only reported
if it is configured that
cable redundancy
should be used.

5 ExtendedStatus Warning Alarm Low No bus traffic.

No traffic at all on the
AF 100 bus.

6 ExtendedStatus Error Alarm Medium Time sync lost.

No time sync
transmitted (slave
frame) on the AF100
bus.

Reported if no Time
Sync Slave Frame has
been received for 2.3
seconds.

7 ExtendedStatus Error Alarm Medium Multiple time masters.

The slave frame of the
time sync CDP is
corrupt (Only tested if
time sync mode =
slave).

Table 71. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description
3BSE040935-510 421

Controller Units and Communication Interfaces Appendix B System Alarms and Events

8 ExtendedStatus Warning - - CDP error.

No master frame for
the CI869 station
status CDP.

9 ExtendedStatus Error Alarm Medium Stn status CDP config
err.

CDP state = Config
error for the Station
Status CDP.

10 ExtendedStatus Error Alarm Medium Stn status CDP not
addressed.

The Station Status
CDP is not sent on the
bus.

11 ExtendedStatus Warning - - Backup address is 255.

12 ExtendedStatus Warning - - Partner sup not active.

Partner supervision is
not active.

14 ExtendedStatus Warning - - Permanent sender
detected.

15 ExtendedStatus Warning - - Invalid bus length.

The CI869 is
configured for a bus
length not valid on the
bus.

16 ExtendedStatus Warning - - Too many CDPs on the
bus.

Table 71. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description
422 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

17 ExtendedStatus Warning - - Too many CDPs on
CI869.

Too many CDP has
been configured on the
CI869 (dependent on
bus length, longer bus
means less CDPs).

18 ExtendedStatus Warning Alarm Low No bus traffic on
backup.

19 ExtendedStatus Warning - - Redundant Line A error
on backup

20 ExtendedStatus Warning - - Redundant Line B error
on backup

Table 71. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description
3BSE040935-510 423

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 72. CI871 (PROFINET IO)

Bit Status Type Indication Generation Severity
Status text and

Description

27 ErrorsAndWarnings Error Event High PNIO Alarms blocked.

The alarm handling on
CI871 is blocked.
Further alarms from
the devices cannot be
operated.

28 ErrorsAndWarnings Error Event High CEX watchdog expired
on CI871.

The CEX-Bus
watchdog on CI871
was not triggered by
the PM8xx processor
module through the
CEX-Bus.

29 ErrorsAndWarnings Warning Event High Communication
memory obtained too
long.

Overload of the
communication
memory access.
There is too much
access from the
application tasks to the
PROFINET IO-data in
the shared memory on
the CI871 so that the
CI871 cannot update
the memory on time.
424 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

30 ErrorsAndWarnings Error Alarm High Ethernet cable
dropped.

The Ethernet
connector on CI871 is
unplugged.

31 ErrorsAndWarnings Error Event High Hardware failure.

The CI871 has
identified a serious
failure and cannot
proceed execution.

Extended Status bits are not supported in PROFINET IO.

Table 73. PNIO Device, Modules, Submodules (PROFINET IO)

Bit Status Type Indication Generation Severity
Status text and

Description

0 ErrorsAndWarnings Error Alarm High Connection down.

No communication with
the device. For the
device and all connected
modules and
submodules
ConnectionDown will be
set.

2 ErrorsAndWarnings Error Alarm High Module missing.

A configured
module/submodule is
physically missing.

Table 72. CI871 (PROFINET IO) (Continued)

Bit Status Type Indication Generation Severity
Status text and

Description
3BSE040935-510 425

Controller Units and Communication Interfaces Appendix B System Alarms and Events

3 ErrorsAndWarnings Error Alarm High Wrong module type.

The configured
module/submodule is of
different type than the
physical one.

26 ErrorsAndWarnings Error Alarm High Parameterization fault.

Wrong, too less or too
many parameters are
written.

28 ErrorsAndWarnings Warning Event Medium Locked by other
controller/supervisor.

Indicates a change of
parameter for a
module/submodule. Will
only be set if parameter
was changed without
download.

29 ErrorsAndWarnings Warning Event Medium Diagnosis active.

HW-unit has active
diagnosis.

30 ErrorsAndWarnings Warning Event Medium Maintenance is
demanded.

31 ErrorsAndWarnings Warning Event Medium Maintenance required.

Maintenance is
requested.

Extended Status bits are not supported in PROFINET IO.

Table 73. PNIO Device, Modules, Submodules (PROFINET IO) (Continued)

Bit Status Type Indication Generation Severity
Status text and

Description
426 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 74. CI872 (MOD5)

Bits Status Type Indication Generation Severity
Status text and

Description

3 ExtendedStatus - - - MOD5 Task State is
LEFT FOX on primary.

The state of the Primary
CI872module is LEFT
FOX.

4 ExtendedStatus - - - MOD5 Task State is
RIGHT FOX on primary.

The state of the Primary
CI872 module is RIGHT
FOX.

5 ExtendedStatus MOD5 Task State is
RIGHT ECHO.

The state of the CI872
module is RIGHT ECHO.

9 ExtendedStatus - - - MOD5 Task State is
LEFT DOG on backup.

The state of the Backup
CI872 module is LEFT
DOG.

10 ExtendedStatus - - - MOD5 Task State is
RIGHT DOG on backup.

The state of the Backup
CI872 module is RIGHT
DOG.

11 ExtendedStatus - - - MOD5 Task State is
LEFT ECHO.

The state of the CI872
module is LEFT ECHO.
3BSE040935-510 427

Controller Units and Communication Interfaces Appendix B System Alarms and Events

29 ErrorsAndWarnings Error1 Alarm High Error generated by task
supervisor

A supervised task has not
replied to a ping. For
more details, see the log
files.

30 ErrorsAndWarnings Error1 Alarm High Internal FW Error (see CI
Log)

An error has occurred in
the firmware of CI872.
For more details, see the
log files.

31 ErrorsAndWarnings Error1 Alarm High Internal HW Error (see CI
Log)

An error has occurred in
the hardware. For more
details, see the log files.

1 This error results in a reboot of the CI872. The reason for the error appears in the CI log.

Table 74. CI872 (MOD5) (Continued)

Bits Status Type Indication Generation Severity
Status text and

Description
428 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3)

Bits Status Type Indication Generation Severity
Status text1 and

Description

0 ExtendedStatus Error Alarm Medium Port x: Eye Contact not
successful in Primary.

The hardware is not able to
make a successful eye
contact on the primary
CI872 module. This could be
due to cable break or timing
issues.

1 ExtendedStatus Error Alarm Medium Port x: CPUID conflict in
Primary.

This is due to any of the
following reasons:

• The CPUID of the
remote MOD5 system
is same as the Primary
host system.

• The CPUID of the
configured remote
MOD5 controller in the
Hardware Tree (in the
Control Builder) is
different from the
CPUID of the physically
connected remote
MOD5 controller.

2 ExtendedStatus Error Alarm Medium Port x: Failed to initialize
Port in Primary.

No activation or
configuration of the port in
the Primary CI872 module.
3BSE040935-510 429

Controller Units and Communication Interfaces Appendix B System Alarms and Events

3 ExtendedStatus Error Alarm Medium Port x: Parity Error in
Primary.

Received message on the
port has incorrect parity.

4 ExtendedStatus Error Alarm Medium Port x: Framing Error in
Primary.

Request/Response frame
received has error.

5 ExtendedStatus Error Alarm Medium Port x: StuckOn Error in
Primary.

Remote MOD5 controller is
stuck and sends continuous
light signal, trying to perform
Eye Contact.

6 ExtendedStatus Error Alarm Medium Port x: TimeOut Error in
Primary.

The message is not sent
within a period of 1 second.

7 ExtendedStatus Error Alarm Medium Port x: Buffer Overload Error
in Primary.

Hardware Rx Buffer is full.

8 ExtendedStatus - - - Port x: Communication is
good on Remote Port in
Primary.

Communication is good on
remote MOD5 controller
connected to this port.

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description
430 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

9 ExtendedStatus Error Alarm Medium Port x: Wrong address
received from Remote
MOD5 in Primary.

Remote MOD5 requested
for address which is not
supported.

10 ExtendedStatus Warning - - Port x: Check for Cable
Break in Primary

After successful Eye
Contact, the cable is not
connected properly or the
cable is removed from the
port (it may be removed
from CI872 port or from
Remote MOD5 port).

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description
3BSE040935-510 431

Controller Units and Communication Interfaces Appendix B System Alarms and Events

11 ExtendedStatus Error Alarm Medium Port x: Eye Contact not
successful in Backup.

The hardware is not able to
make a successful eye
contact on the backup CI872
module. This could be due
to cable break or timing
issues.

12 ExtendedStatus Error Alarm Medium Port x: CPUID conflict in
Backup.

This is due to any of the
following reasons:

• The CPUID of the
remote MOD5 system
is same as the Primary
host system.

• The CPUID of the
configured remote
MOD5 controller in the
Hardware Tree (in the
Control Builder) is
different from the
CPUID of the physically
connected remote
MOD5 controller.

13 ExtendedStatus Error Alarm Medium Port x: Failed to initialize
Port in Backup.

No activation or
configuration of the port in
the Backup CI872 module.

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description
432 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

14 ExtendedStatus Error Alarm Medium Port x: Parity Error in
Backup.

The received message on
the port has incorrect parity.

15 ExtendedStatus Error Alarm Medium Port x: Framing Error in
Backup.

Request/Response frame
received has error.

16 ExtendedStatus Error Alarm Medium Port x: StuckOn Error in
Backup.

Remote MOD5 controller is
stuck and sends continuous
light signal, trying to perform
Eye Contact.

17 ExtendedStatus Error Alarm Medium Port x: TimeOut Error in
Backup.

The message is not sent
within a period of 1 second.

18 ExtendedStatus Error Alarm Medium Port x: Buffer Overload Error
in Backup.

Hardware Buffer is full.

19 ExtendedStatus - - - Port x: Communication is
good on Remote Port in
Backup.

Communication is good on
remote MOD5 port
connected to this port.

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description
3BSE040935-510 433

Controller Units and Communication Interfaces Appendix B System Alarms and Events

20 ExtendedStatus Error Alarm Medium Port x: Wrong address
received from Remote
MOD5 in Backup.

Remote MOD5 requested
for address which is not
supported.

21 ExtendedStatus Warning - - Port x: Check for Cable
Break in Backup.

After successful Eye
Contact, the cable is not
connected properly or the
cable is removed from the
port (it may be removed
from CI872 port or from
Remote MOD5 port).

1 The term ‘Port x’ in the messages in this column corresponds to any of the ports (Port1, Port2, or Port3).

Table 75. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description
434 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 76. CI872 - Remote MOD5 Controller Status Bits

Bits Status Type Indication Generation Severity
Status Text and

Description

0 ExtendedStatus - - - Remote MOD5 is in
RIGHT FOX state on
primary.

The Right MOD5
controller is
connected to the
Primary CI872
module and is in FOX
state.

1 ExtendedStatus - - - Remote MOD5 is in
RIGHT DOG state on
primary.

The Right MOD5
controller is
connected to the
Primary CI872
module and is in DOG
state.

2 ExtendedStatus - - - Remote MOD5 is in
RIGHT ECHO state
on primary

The MOD5 controller
is connected to the
Primary CI872
module and is in
ECHO state.
3BSE040935-510 435

Controller Units and Communication Interfaces Appendix B System Alarms and Events

3 ExtendedStatus - - - Remote MOD5 is in
LEFT FOX state on
primary.

The Left MOD5
controller is
connected to the
Primary CI872
module and is in FOX
state.

4 ExtendedStatus - - - Remote MOD5 is in
LEFT DOG state on
primary.

The Left MOD5
controller is
connected to the
Primary CI872
module and is in DOG
state.

5 ExtendedStatus - - - Remote MOD5 is in
LEFT ECHO state on
primary.

The MOD5 controller
is connected to the
Primary CI872
module and is in
ECHO state.

Table 76. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description
436 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

6 ExtendedStatus Warning Alarm Medium No successful Eye
Contact with Remote
MOD5 System on
primary.

No eye contact with
the Primary CI872
module, due to optical
fiber break or time out
on Rx port.

7 ExtendedStatus - - - Remote MOD5 is in
RIGHT FOX state on
backup.

The Right MOD5
controller is
connected to the
Backup CI872
module and is in FOX
state.

8 ExtendedStatus - - - Remote MOD5 is in
RIGHT DOG state on
backup.

The Right MOD5
controller is
connected to the
Backup CI872
module and is in DOG
state.

Table 76. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description
3BSE040935-510 437

Controller Units and Communication Interfaces Appendix B System Alarms and Events

9 ExtendedStatus - - - Remote MOD5 is in
RIGHT ECHO state
on backup.

The MOD5 controller
is connected to the
Backup CI872
module and is in
ECHO state.

10 ExtendedStatus - - - Remote MOD5 is in
LEFT FOX state on
backup.

The Left MOD5
controller is
connected to the
Backup CI872
module and is in FOX
state.

11 ExtendedStatus - - - Remote MOD5 is in
LEFT DOG state on
backup.

The Left MOD5
controller is
connected to the
Backup CI872
module and is in DOG
state.

Table 76. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description
438 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

12 ExtendedStatus - - - Remote MOD5 is in
LEFT ECHO state on
backup.

The MOD5 controller
is connected to the
Backup CI872
module and is in
ECHO state

13 ExtendedStatus Warning Alarm Medium No successful Eye
Contact with Remote
MOD5 System on
backup.

No eye contact with
the Backup CI872
module, due to optical
fiber break or time out
on Rx port.

Table 77. Device Specific Status of CI873 Hardware Unit

Bit StatusType Indication Generation Severity Description

29 ErrorsAndWarnings Error Alarm Medium Set when the Task
Supervisor Error
occurs

30 ErrorsAndWarnings Error Alarm High Set when internal
Firmware Error
occurs

Table 76. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description
3BSE040935-510 439

Controller Units and Communication Interfaces Appendix B System Alarms and Events

31 ErrorsAndWarnings Error Alarm High Set when internal
Hardware Error
occurs

1 ExtendedStatus Error Alarm High Set when the
Ethernet cable is
removed from
CI873

Table 78. Unit status of the LD 800DNEthernet to DeviceNet Linking Device

Bit StatusType Indication Generation Severity Description

13 ErrorsAndWarnings Error Alarm High Set when the
connection to the
LD 800DN
Ethernet to
DeviceNet Linking
device fails

14 ErrorsAndWarnings Error Alarm High Set when
configuration of LD
800DN Ethernet to
DeviceNet Linking
device fails

22 ErrorsAndWarnings Error Alarm High Set when the CAN
bus is OFF

23 ErrorsAndWarnings Error Alarm High Set when
DeviceNet
network’s power
supply is OFF

Table 77. Device Specific Status of CI873 Hardware Unit (Continued)

Bit StatusType Indication Generation Severity Description
440 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

24 ErrorsAndWarnings Error Alarm High Set when ADR
error occurs during
auto configuration
message
sequence

25 ErrorsAndWarnings Error Alarm High Set when Major
Unrecoverable
Error occurs

26 ErrorsAndWarnings Error Alarm High Set when Major
Recoverable Error
occurs

27 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device switches to
Fault mode

28 ErrorsAndWarnings Error Alarm High Set when Internal
Errors such as
Shared Master
Error and Shared
Master Choice
Error occurs

29 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device returns error
for its configuration

Table 78. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 441

Controller Units and Communication Interfaces Appendix B System Alarms and Events

30 ErrorsAndWarnings Error Alarm High Set when the
identity of the LD
800DN Ethernet to
DeviceNet Linking
device mismatch
with the configured
LD 800DN
Ethernet to
DeviceNet Linking
device in Control
Builder

31 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device is not
available in the
EtherNet/IP
network

0 ExtendedStatus Warning Alarm Low Set when the minor
revision of the LD
800DN Ethernet to
DeviceNet Linking
device mismatch
with the configured
LD 800DN
Ethernet to
DeviceNet Linking
device in Control
Builder

1 ExtendedStatus Warning Alarm Low Set when no data
is received to LD
800DN Ethernet to
DeviceNet Linking
device

Table 78. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description
442 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

2 ExtendedStatus Warning Alarm Low Set when LD
800DN is in Idle
mode

3 ExtendedStatus Error Alarm Medium Set when LD
800DN Ethernet to
DeviceNet Linking
device checks for
duplicate MAC ID
on DeviceNet
network

4 ExtendedStatus Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device fails to
check for duplicate
MAC ID on
DeviceNet network

5 ExtendedStatus Error Alarm High Set when wrong
MAC ID is
configured in
Control Builder for
LD 800DN
Ethernet to
DeviceNet Linking
device

Table 78. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 443

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 79. Unit Status of EtherNet/IP Device

Bit StatusType Indication Generation Severity Description

25 ErrorsAndWarnings Error Alarm High Set when Major
Unrecoverable
Error occurs

26 ErrorsAndWarnings Error Alarm High Set when Major
Recoverable Error
occurs

27 ErrorsAndWarnings Error Alarm High Set when Minor
Unrecoverable
Error occurs

28 ErrorsAndWarnings Warning Alarm High Set when Minor
Recoverable Error
occurs

29 ErrorsAndWarnings Error Alarm High Set when
EtherNet/IP device
returns error
during its
configuration

30 ErrorsAndWarnings Error Alarm Medium Set when the
identity of
EtherNet/IP device
mismatch with the
configured
EtherNet/IP device
in Control Builder
444 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

31 ErrorsAndWarnings Error Alarm Medium Set when the
EtherNet/IP device
is not available

0 ExtendedStatus Warning Alarm Low Set when the
minor revision of
EtherNet/IP device
mismatch with the
configured
EtherNet/IP device
in Control Builder

Table 80. Unit Status of the DeviceNet Device

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High Indicates CAN
controller is in
bus-off state

23 ErrorsAndWarnings Error Alarm High Set when
DeviceNet
network’s power
supply is OFF

24 ErrorsAndWarnings Error Alarm High Set when ADR
Error occurs due to
slave returning
error during auto
device
replacement

Table 79. Unit Status of EtherNet/IP Device (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 445

Controller Units and Communication Interfaces Appendix B System Alarms and Events

25 ErrorsAndWarnings Warning Set when
connection
initialization from
LD 800DN
Ethernet to
DeviceNet Linking
device to
DeviceNet device
is in progress

26 ErrorsAndWarnings Warning Set when keeper
space in LD800DN
cannot
accommodate the
slave device
configuration

27 ErrorsAndWarnings Error Alarm High Set when a
duplicate MAC ID
is found for the
DeviceNet device

28 ErrorsAndWarnings Error Alarm High Set when
connection from
LD 800DN
Ethernet to
DeviceNet Linking
device to the
DeviceNet device
is timed out.

29 ErrorsAndWarnings Error Alarm High Set when
DeviceNet device
returns error
during its
configuration

Table 80. Unit Status of the DeviceNet Device (Continued)

Bit StatusType Indication Generation Severity Description
446 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

30 ErrorsAndWarnings Error Alarm Medium Set when the
identity of
DeviceNet device
mismatch with the
configured
DeviceNet device
in Control Builder

31 ErrorsAndWarnings Error Alarm Medium Set when a
DeviceNet device
is not available

0 ExtendedStatus Warning Alarm Low Set when the
minor revision of
DeviceNet device
mismatch with the
configured
DeviceNet device
in Control Builder

Table 81. Errors and Warning of the CI868

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm High Internal HW Error(see CI Log)

30 ErrorsAndWarnings Error Alarm High Internal FW Error(see CI Log)

29 ErrorsAndWarnings Error Alarm High Error generated by task
supervisor

28 ErrorsAndWarnings Error Alarm High IEC61850 Stack Error

1 ErrorsAndWarnings Warning Alarm High Cable break on ethernet port

Table 80. Unit Status of the DeviceNet Device (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 447

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 82. Errors and Warning of the IED

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this IED

Table 83. Errors and Warning of the DPSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 84. Errors and Warning of the INSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 85. Errors and Warning of the ACTGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 86. Errors and Warning of the ACDGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 87. Errors and Warning of the MVGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block
448 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

Table 88. Errors and Warning of the SPSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 89. Ethernet Ch1 and Ch2 (on CI867)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm High Cable break on
Ethernet port X1

1 X = port 1 or port 2

 1 ExtendedStatus Error Alarm High IP conflict

 2 ExtendedStatus Error Alarm High Failed to initialize
Ethernet port X1

 3-7 Reserved - - - -

8 ExtendedStatus Error Alarm Medium Cable break on
Ethernet port X1

on backup

9 ExtendedStatus Error Alarm Medium IP conflict on the
backup

10 ExtendedStatus Error Alarm Medium Failed to initialize
Ethernet port X1
on the backup

Table 90. Gateway to Modbus Serial Slave

Bit StatusType Indication Generation Severity Description

 16 ExtendedStatus Error Alarm Low TCP Connection
to Gateway Down
3BSE040935-510 449

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 91. Modbus Serial Slave (under the gatyeway)

Bit StatusType Indication Generation Severity Description

 24-31 ErrorsAndWarnings - - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 0-15 ExtendedStatus -r - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 16 ExtendedStatus Error Alarm Low TCP Connection
to Serial Slave(s)
Gateway Down

17 ExtendedStatus Warning Event Medium Diagnostic
Retrieval Error

18 ExtendedStatus Warning Event Medium Exception
Retrieval Error

19 ExtendedStatus Warning Event Medium Polling Retrieval
Error

Table 92. ModuleBus

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 0 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error
450 3BSE040935-510

Appendix B System Alarms and Events Controller Units and Communication Interfaces

 1 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 2 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 3 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 4 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 5 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 6 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

Table 93. Ethernet

Bit StatusType Indication Generation Severity Description

29 ErrorsAndWarnings Warning Alarm Medium No communication
Backup CPU

 30 ErrorsAndWarnings Warning Alarm Medium No communication

Table 94. MODBUS

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Event Medium Offline

Table 92. ModuleBus (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 451

Controller Units and Communication Interfaces Appendix B System Alarms and Events

Table 95. Modbus TCP Slave

Bit StatusType Indication Generation Severity Description

 24-31 ErrorsAndWarnings - - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 0-15 ExtendedStatus -r - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 16 ExtendedStatus Error Alarm Low TCP Connection
Down

17 ExtendedStatus Warning Event Medium Diagnostic
Retrieval Error

18 ExtendedStatus Warning Event Medium Exception
Retrieval Error

19 ExtendedStatus Warning Event Medium Polling Retrieval
Error

Table 96. PPP

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Medium No communication
452 3BSE040935-510

Appendix B System Alarms and Events Adapters

Adapters

Table 97. DSBC 173A

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 98. DSBC 174

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 99. DSBC 176

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning
3BSE040935-510 453

Adapters Appendix B System Alarms and Events

Table 100. CI801

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm Medium Configuration data
fault

2 ExtendedStatus Error Alarm Medium Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report diagnostics
fault

10 ExtendedStatus Warning Alarm Low Station address
warning

Table 101. CI830

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Alarm Low Power B error

 29 ErrorsAndWarnings Warning Alarm Low Power A error

 30 ErrorsAndWarnings Warning Event High Peripheral HW
error

 31 ErrorsAndWarnings Error Alarm Medium Error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist
454 3BSE040935-510

Appendix B System Alarms and Events Adapters

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

Table 102. CI840

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

 28 ErrorsAndWarnings Warning Alarm Low Cable B error

 29 ErrorsAndWarnings Warning Alarm Low Cable A error

 30 ErrorsAndWarnings Warning Alarm Low Unit A error

 31 ErrorsAndWarnings Warning Alarm Low Unit B error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

Table 101. CI830

Bit StatusType Indication Generation Severity Description
3BSE040935-510 455

Adapters Appendix B System Alarms and Events

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

 10 ExtendedStatus Warning Alarm Low Station address
warning

Table 103. S900

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error - - Slave does not
exist

 1 ExtendedStatus Error - - Configuration data
fault

 2 ExtendedStatus Error - - Parameter data
fault

 3 ExtendedStatus Warning - - Static diagnostic

 4 ExtendedStatus Warning - - Redundant slave
does not exist

Table 104. CI920* (CIPB)

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Low Red. CIPB missing

 31 ErrorsAndWarnings Warning Event Low Red. CIPB error

 0 ExtendedStatus Error Alarm Medium ROM error

 1 ExtendedStatus Error Alarm Medium RAM error

Table 102. CI840 (Continued)

Bit StatusType Indication Generation Severity Description
456 3BSE040935-510

Appendix B System Alarms and Events Adapters

 2 ExtendedStatus Error Alarm Medium EEPROM error

 3 ExtendedStatus Warning Event Low Cold start

 4 ExtendedStatus Warning Event Low Error 20

 5 ExtendedStatus Warning Event Low Error 21

 6 ExtendedStatus Error Event Medium Internal bus fault

 7 ExtendedStatus Warning Event Low Internal bus fault
(passive)

 8 ExtendedStatus Warning Event Low Power supply 1
error

 9 ExtendedStatus Warning Event Low Power supply 2
error

 10 ExtendedStatus Warning Event Low Reset after
watchdog

 11 ExtendedStatus Warning Event Low Redundancy
switchover

 12 ExtendedStatus Warning Event Low Red. CIPB missing

 13 ExtendedStatus Warning Event Low Red. CIPB not
ready

 14 ExtendedStatus Warning Event Low Red. CIPB error

 15 ExtendedStatus Warning Event Low Red. CIPB no DP
comm.

Table 104. CI920* (CIPB) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 457

Adapters Appendix B System Alarms and Events

Table 105. RPBA-01 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

10 ExtendedStatus Warning Event Low Communication
temporary lost

11 ExtendedStatus Warning Event Low Communication
permanently lost

Table 106. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic
458 3BSE040935-510

Appendix B System Alarms and Events Adapters

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

Table 106. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 459

S800 I/O Appendix B System Alarms and Events

S800 I/O

Table 107. AI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error
460 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 108. AI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 107. AI801 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 461

S800 I/O Appendix B System Alarms and Events

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 109. AI815

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

Table 110. AI820 and AI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 108. AI810 (Continued)

Bit StatusType Indication Generation Severity Description
462 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 111. AI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 110. AI820 and AI825 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 463

S800 I/O Appendix B System Alarms and Events

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 111. AI830 (Continued)

Bit StatusType Indication Generation Severity Description
464 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 112. AI835

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error
3BSE040935-510 465

S800 I/O Appendix B System Alarms and Events

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 113. AI835A

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm High Error

30 ErrorsAndWarnings Warning Event Low Warning

0 ExtendedStatus Warning Event Low OSP

4 ExtendedStatus Warning Event Low Not configured

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 114. AI843

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 112. AI835 (Continued)

Bit StatusType Indication Generation Severity Description
466 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 114. AI843 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 467

S800 I/O Appendix B System Alarms and Events

Table 115. AI845

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Event Low Backup Warning

 27 ErrorsAndWarnings Warning Alarm Medium Backup Error

 28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

 29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

 30 ErrorsAndWarnings Warning Event Low Warning

 31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedWarning Warning Event Low OSP

 1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

 4 ExtendedStatus Warning Event Low Not configured

 5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

 8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
468 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 116. AI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 469

S800 I/O Appendix B System Alarms and Events

Table 117. AI893 RTD

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
470 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 118. AI893 TC

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 471

S800 I/O Appendix B System Alarms and Events

Table 119. AI895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
472 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 120. AO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 473

S800 I/O Appendix B System Alarms and Events

Table 121. AO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
474 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 122. AO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error
3BSE040935-510 475

S800 I/O Appendix B System Alarms and Events

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 123. AO815

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

Table 124. AO845

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

Table 122. AO810 (Continued)

Bit StatusType Indication Generation Severity Description
476 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 125. AO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

Table 124. AO845

Bit StatusType Indication Generation Severity Description
3BSE040935-510 477

S800 I/O Appendix B System Alarms and Events

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 126. AO895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 125. AO890

Bit StatusType Indication Generation Severity Description
478 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 127. DI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 126. AO895

Bit StatusType Indication Generation Severity Description
3BSE040935-510 479

S800 I/O Appendix B System Alarms and Events

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 127. DI801

Bit StatusType Indication Generation Severity Description
480 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 128. DI802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 481

S800 I/O Appendix B System Alarms and Events

Table 129. DI803

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
482 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 130. DI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 483

S800 I/O Appendix B System Alarms and Events

Table 131. DI811

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Warning

 0 ExtendedStatus Warning Event Low OSP

 4 ExtendedStatus Warning Event Low Not configured

Table 132. DI814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing
484 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 133. DI820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

Table 132. DI814

Bit StatusType Indication Generation Severity Description
3BSE040935-510 485

S800 I/O Appendix B System Alarms and Events

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 134. DI821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

Table 133. DI820 (Continued)

Bit StatusType Indication Generation Severity Description
486 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 135. DI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

Table 134. DI821 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 487

S800 I/O Appendix B System Alarms and Events

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 136. DI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 135. DI830 (Continued)

Bit StatusType Indication Generation Severity Description
488 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 137. DI831

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 136. DI825 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 489

S800 I/O Appendix B System Alarms and Events

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 137. DI831 (Continued)

Bit StatusType Indication Generation Severity Description
490 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 138. DI840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 491

S800 I/O Appendix B System Alarms and Events

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 139. DI885

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 138. DI840 (Continued)

Bit StatusType Indication Generation Severity Description
492 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 140. DI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

Table 139. DI885 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 493

S800 I/O Appendix B System Alarms and Events

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 141. DO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

Table 140. DI890 (Continued)

Bit StatusType Indication Generation Severity Description
494 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 142. DO802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 141. DO801 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 495

S800 I/O Appendix B System Alarms and Events

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 143. DO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 142. DO802 (Continued)

Bit StatusType Indication Generation Severity Description
496 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 143. DO810 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 497

S800 I/O Appendix B System Alarms and Events

Table 144. DO814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
498 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 145. DO815

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 499

S800 I/O Appendix B System Alarms and Events

Table 146. DO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
500 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 147. DO821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 501

S800 I/O Appendix B System Alarms and Events

Table 148. DO840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
502 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 149. DO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 503

S800 I/O Appendix B System Alarms and Events

Table 150. DP820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
504 3BSE040935-510

Appendix B System Alarms and Events S800 I/O

Table 151. DP840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935-510 505

S900 I/O Appendix B System Alarms and Events

S900 I/O

Table 152. AI910* (AI4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1
506 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 153. AI920* (AI4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

Table 152. AI910* (AI4) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 507

S900 I/O Appendix B System Alarms and Events

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 154. AI921* (AI4I U)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

Table 153. AI920* (AI4I) (Continued)

Bit StatusType Indication Generation Severity Description
508 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 155. AI930* (AI4H A)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 154. AI921* (AI4I U) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 509

S900 I/O Appendix B System Alarms and Events

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

Table 155. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description
510 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 156. AI930* (AI4H A 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

Table 155. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 511

S900 I/O Appendix B System Alarms and Events

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 156. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description
512 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 157. AI930* (AI4H A 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 156. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 513

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 157. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description
514 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 158. AI930* (AI4H A 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 157. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 515

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 158. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description
516 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 159. AI931* (AI4H P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 158. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 517

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 159. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description
518 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 160. AI931* (AI4H P 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

Table 159. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 519

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 160. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description
520 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 161. AI931* (AI4H P 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 160. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 521

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 161. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description
522 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 162. AI931* (AI4H P 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 161. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 523

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 162. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description
524 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 163. AI950* (TI4 R)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 162. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 525

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 164. AI950* (TI4 T)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 163. AI950* (TI4 R) (Continued)

Bit StatusType Indication Generation Severity Description
526 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 165. AO910* (AO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

Table 164. AI950* (TI4 T) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 527

S900 I/O Appendix B System Alarms and Events

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 166. AO920* (AO4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 165. AO910* (AO4) (Continued)

Bit StatusType Indication Generation Severity Description
528 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

Table 167. AO930* (AO4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1
3BSE040935-510 529

S900 I/O Appendix B System Alarms and Events

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 168. AO930* (AO4H 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

Table 167. AO930* (AO4H) (Continued)

Bit StatusType Indication Generation Severity Description
530 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 169. AO930* (AO4H 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 168. AO930* (AO4H 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 531

S900 I/O Appendix B System Alarms and Events

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 169. AO930* (AO4H 4H) (Continued)

Bit StatusType Indication Generation Severity Description
532 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

Table 170. AO930* (AO4H 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1
3BSE040935-510 533

S900 I/O Appendix B System Alarms and Events

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 171. DO910* (DO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 170. AO930* (AO4H 8H) (Continued)

Bit StatusType Indication Generation Severity Description
534 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

Table 172. DO930* (RO6)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

Table 173. DO940* (TO8)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2
3BSE040935-510 535

S900 I/O Appendix B System Alarms and Events

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 174. DO980* (TO16)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 173. DO940* (TO8) (Continued)

Bit StatusType Indication Generation Severity Description
536 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

 8 ExtendedStatus Warning Event Low Line fault ch. 9

 9 ExtendedStatus Warning Event Low Line fault ch. 10

 10 ExtendedStatus Warning Event Low Line fault ch. 11

 11 ExtendedStatus Warning Event Low Line fault ch. 12

 12 ExtendedStatus Warning Event Low Line fault ch. 13

 13 ExtendedStatus Warning Event Low Line fault ch. 14

 14 ExtendedStatus Warning Event Low Line fault ch. 15

 15 ExtendedStatus Warning Event Low Line fault ch. 16

Table 175. DP910* (FI2 P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

Table 174. DO980* (TO16) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 537

S900 I/O Appendix B System Alarms and Events

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 176. DP910* (FI2 F)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 175. DP910* (FI2 P) (Continued)

Bit StatusType Indication Generation Severity Description
538 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 177. DX910* (DIO8)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 176. DP910* (FI2 F) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 539

S900 I/O Appendix B System Alarms and Events

Table 178. DX910* (DIO8 S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 179. DX910* (DIO8 8I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected
540 3BSE040935-510

Appendix B System Alarms and Events S900 I/O

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 180. DX910* (DIO8 8I S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 179. DX910* (DIO8 8I) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 541

S900 I/O Appendix B System Alarms and Events

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 181. DI920* (DI4)

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Error Alarm Medium Module error

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistant

26 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Line fault ch. 1

1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 180. DX910* (DIO8 8I S) (Continued)

Bit StatusType Indication Generation Severity Description
542 3BSE040935-510

Appendix B System Alarms and Events S100 I/O

S100 I/O

Table 182. DSAI 130/130A (S100 I/O)

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 183. DSAI 130D

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 184. DSAI 133/133A

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error
3BSE040935-510 543

INSUM Devices Appendix B System Alarms and Events
 INSUM Devices

Table 185. DSAX 110

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error

Table 186. DSAX 110A

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error

Table 187. INSUM Device

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!
544 3BSE040935-510

Appendix B System Alarms and Events INSUM Devices

Table 188. INSUM Gateway

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Error Alarm Medium GW Disconnected

 23 ErrorsAndWarnings Error Alarm Medium CI857 Connection
error

 25 ErrorsAndWarnings Warning Event Low HA Offline

 26 ErrorsAndWarnings Warning Event Low GW paused

 27 ErrorsAndWarnings Warning Alarm Medium GW shutdown

 28 ErrorsAndWarnings Warning Event Low Status unknown

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

 3 ExtendedStatus - - - Gateway sending
lifelist

 4 ExtendedStatus Warning Alarm Medium Consistency check
failed

 5 ExtendedStatus Warning Event Low Switched Offline
via LNT

Table 189. Circuit Breaker (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!
3BSE040935-510 545

INSUM Devices Appendix B System Alarms and Events

 7 ExtendedStatus Warning Event Low LocalOpMode

 14 ExtendedStatus Warning Event Low Tripped

 15 ExtendedStatus Warning Event Low Warning

Table 190. MCU, MCU A+ and MCU v2 (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error - - GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning - - Warning!

 31 ErrorsAndWarnings Error - - Error!

0 ErrorsAndWarnings - - - Runs1

1 ExtendedStatus - - - Runs2

2 ExtendedStatus - - - Stopped

 3 ExtendedStatus Warning1 - - Tripped

 4 ExtendedStatus Warning1 - - Alarm

5 ExtendedStatus - - - Acuator open

6 ExtendedStatus - - - Acuator closed

7 ExtendedStatus - - - StaggStart

 8 ExtendedStatus Warning1 - - Failsafe

 9 ExtendedStatus Warning1 - - TOLBypass

10 ExtendedStatus Warning1 - - TestPos

11 ExtendedStatus - - - Star

Table 189. Circuit Breaker (INSUM) (Continued)

Bit StatusType Indication Generation Severity Description
546 3BSE040935-510

Appendix B System Alarms and Events FF Devices

FF Devices

MB300 Nodes

12 ExtendedStatus - - - Delta

13 ExtendedStatus - - - Soft

14 ExtendedStatus Warning1 - - No remote reset

15 ExtendedStatus Warning1 - - LocalOpMode

1 Indication applies only for MCU and MCU A+. For MCU v2 these indications are disabled.

Table 191. FF Device

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Error Alarm High FF CIff Power Up
Test Fail

 28 ErrorsAndWarnings Error Alarm High FF Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High FF CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High FF Resources Low

 31 ErrorsAndWarnings Warning Event Medium FF H1 Bus Idle

Table 192. MB300 Node

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Node unreachable

Table 190. MCU, MCU A+ and MCU v2 (INSUM) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 547

ABB Standard Drive Appendix B System Alarms and Events

ABB Standard Drive

Table 193. ABB Standard Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Mediu
m

Communicati
on broken

1 ExtendedStatus Error Alarm High Wrong drive
type

2 ExtendedStatus Error Alarm High Wrong
application ID

3 ExtendedStatus Warni
ng

Event Low Undefined
error

4 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

5 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

6 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

Table 194. ABB Engineering Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error
548 3BSE040935-510

Appendix B System Alarms and Events ABB Standard Drive

Table 195. ABB Drive Template (basic)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Table 196. ABB Drive Template (extension)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error
3BSE040935-510 549

Process Panel Appendix B System Alarms and Events

Process Panel

Table 197. ABB Process Panel

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm High Configuration data
fault

2 ExtendedStatus Error Alarm High Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report
Diagnostics fault
550 3BSE040935-510

Appendix B System Alarms and Events ITS

ITS

Table 198. ITS

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error - - GW Connection
error

28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

30 ErrorsAndWarnings Warning - - Warning!

31 ErrorsAndWarnings Error - - Error!

0 ExtendedStatus Warning - - Fuse Ph1 blown

1 ExtendedStatus Warning - - Fuse Ph2 blown

2 ExtendedStatus Warning - - Fuse Ph3 blown

3 ExtendedStatus Warning - - Tripped

4 ExtendedStatus Warning - - Warning

10 ExtendedStatus Warning - - Overcurr Ph1

11 ExtendedStatus Warning - - Overcurr Ph2

12 ExtendedStatus Warning - - Overcurr Ph3

13 ExtendedStatus Warning - - Overtemp Ph1

14 ExtendedStatus Warning - - Overtemp Ph2

15 ExtendedStatus Warning - - Overtemp Ph3
3BSE040935-510 551

NAIO ff Appendix B System Alarms and Events

NAIO ff

Table 199. NAIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 200. NBIO-21

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
552 3BSE040935-510

Appendix B System Alarms and Events NAIO ff

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 201. NBIO-31

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 200. NBIO-21 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 553

NAIO ff Appendix B System Alarms and Events

Table 202. NCTI

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 203. NDIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
554 3BSE040935-510

Appendix B System Alarms and Events NAIO ff

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 204. NDSC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 203. NDIO

Bit StatusType Indication Generation Severity Description
3BSE040935-510 555

NAIO ff Appendix B System Alarms and Events

Table 205. NPCT

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 206. NTAC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
556 3BSE040935-510

Appendix B System Alarms and Events NAIO ff

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 207. NWIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 206. NTAC (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935-510 557

PPO Appendix B System Alarms and Events

PPO

Table 208. PPO Type1

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 209. PPO Type2 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
558 3BSE040935-510

Appendix B System Alarms and Events PPO

Table 210. PPO Type 2

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 211. PPO Type 3

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
3BSE040935-510 559

PPO Appendix B System Alarms and Events

Table 212. PPO Type 4 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 213. PPO Type 4

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
560 3BSE040935-510

Appendix B System Alarms and Events PPO

Table 214. PPO Type 5 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 215. PPO Type 5

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
3BSE040935-510 561

Special IO Template Appendix B System Alarms and Events

Special IO Template

Table 216. Special IO template

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken
562 3BSE040935-510

INDEX

A
abort

tasks 127
access variables 65
accuracy 211
acknowledge

errors 274
warnings 274

acknowledgement rules 190, 227
add

message to alarm 190
to libraries 97

AF 100 261
alarm condition

name 190
alarm conditions 186
Alarm handling

INSUM 204
Alarm lists

INSUM 204
AlarmCond 186

parameters 187
AlarmCondBasic 188
AlarmCondBasicM 188
AlarmCondM 186
alarms

add message 190
classify 191
communication 212
condition name 190
disable 196
disable condition 190
enable 189
examples 218
in control loops 195

inhibit 196
local printer 215
logging 207
severity 191
source name 190
state diagrams 227
status 192
subscribe to 212
system 205

alarms and events
ABB standard drive 548
adapters 453
controller units and communcation

interfaces 401
FF devices 547
INSUM devices 544
MB300 nodes 547
S100 I/O 543
S800 I/O 460
S900 I/O 506
unit specific 401

all inputs 270
all outputs 270
all unit status 269
analog signals

scale 267
analysis tools 319
arrays

example 331
ASCII codes 348
ASCII conversion 350
aspect objects 54
asynchronous communication 259
attributes

Hidden 107
3BSE040935-510 563

IndexIndex

Protected 107

B
backup 285

individual files 287
BasicLib 28
buffer queues 214
buffers

configure 214
memory planning 214

C
CASE 168
change

library state 96
channel status

check 270
check

channel status 270
classify

alarms 191
client/server 257
Closed 95
CNCP 211
codes

ASCII 348
COMLI 234
communication

alarm and event 212
client/server 257
cyclic vs. asynchronous 259
function blocks 254
libraries 234, 254
master/slave 257
modem 241
provider/subscriber 258
serial 243
statistics 249
using access variables 68
using global variables 69

variables 249
communication libraries

library 234
Communication Variables 69, 249

Diagnostics 313
complex types

modify 42
condition name

alarms 190
condition-related events 184
configure

buffers 214
Error Handler 288
OPC AE communication 212

connect
I/O channels 83
libraries 91
library 92
objects 44
to other system 253

Control Builder
start log 300
system information report 303

Control Builder start log
file path 300

control loops
alarms 195

control module types
AlarmCondBasicM 188
AlarmCondM 186

control modules
execution 51
single 53

Control Network 247
network areas 247

control project
insert library 92
remove library 94

controller logs
file paths 308
564 3BSE040935-510564 3BSE040935-510

Index

controller system log 304
controllers

system alarms 206
conversion

ASCII 350
conversion functions

example 346
conversions

ASCII 348
Coordinated Universal Time 210
crash dumps 309
create

library 95
objects 44

cyclic communication 259

D
data

read 253
send 253

data types 59
simple 59

debug mode 130
decisions

when creating types 43
declare

external variables 34
function blocks 35
parameter 33
types 32
variables 33

define
variables 58

development state
libraries 95

Device Import Wizard 101
DeviceNet EDS 101
dialogs

Remote System 248
disable

alarm condition 190
alarms 196
events 196

disconnect
library 94

document conventions 14
download

reports 174

E
EDIT parameters 188
editors

declare types 32
graphics 37
programming 35

enable
alarm detection 189

enter
variables 58

Error Handler
configure 288
log entries 293

error messages 277
Error Reaction

settings 291
error reports 329
errors

acknowledge 274
non-unique alarms 191
suggested actions 326
symptoms 326

ErrorsAndWarnings 425
events

communication 212
condition-related 184
disable 196
inhibit 196
logging 207
low level 197
simple 184
3BSE040935-510 565

IndexIndex

system 205
tracking-related 184

examples
alarm and event 218
arrays 331
conversion functions 346
queues 342
type protection 110

execution
control for individual objects 75
control modules 51
control using external variables 75
control using parameter 76
debug mode 130
function blocks 49
non-cyclic 130

EXIT 168
extensible parameters 88
external 65
external time stamps 209
external variables 65

declare 34

F
fatal overrun 290
fault localization

crash dumps 309
file paths

Control Builder start log 300
controller logs 308
heap statistics log 304
session logs 297

firmware functions 20
folders

System 20
FOR 168
function block types

AlarmCond 186
AlarmCondBasic 188
System Diagnostics 321

SystemDiagnostics 226
function blocks

communication 254
declare 35
execution 49

functions 20

G
graphical editor 37

H
hardware

monitor 87
hardware status 268
heap 324
heap statistics log 304

file path 304
Heap Utilization 325
Hidden

attribute 107

I
I/O addressing 82
I/O channels

connect 83
force values 265
monitor 87
online mode 265

IAC MMS 250
IEC 61131-3 19
Implicit Cast 168
inhibit

alarms 196
events 196

initial values 64
Instruction List 168
INSUM

Alarm handling method 204
Alarm lists 204

INSUM Alarms 199
566 3BSE040935-510566 3BSE040935-510

Index

InsumCommLib 234
interaction windows 275
internal time stamps 209
interval time

tasks 117
intervals

tasks 117
IP 261

K
keywords

in parameter descriptions 89

L
Ladder Diagram 168
latency 123, 125
latency supervision 289
libraries

add to 97
BasicLib 28
communication 234, 254
connect 91
connect to application 92
connect to library 92
create 95
disconnect 94
insert into control project 92
InsumCommLib 234
management 90
remove from control project 94
states 95

library management 90
library state

change 96
library states

Closed 95
Open 95
Released 95

load balancing 128, 289
Load Firmware 162

local printers 215
log

alarms and events 207
simple events 208

log entries
Error Handler 293

log files 295
Control Builder start log 300
controller system log 304
heap statistics 304
session 296
system log 295

logging
alarms and events 207

Loops In ST 168
low level event 197

M
master

time synchronization 211
master/slave 257
MB 300 TS 211
MB300 239
memory size 324
MMS 240
MMS Time Service 211
ModBus 241
modem communication 241
monitor

hardware 87
I/O channels 87

MTMCommLib 242

N
Nested If or Case 168
network areas 247
network redundancy 247
non-cyclic execution 130
non-unique alarms

errors 191
3BSE040935-510 567

IndexIndex

number conversion
example 346

O
objects 30

connect 44
control execution 75
create 44

offset
tasks 118

online mode 87
all inputs/outputs 270
all unit status 269
force I/O channels 265
hardware status 268
I/O channels 265
interaction windows 275
messages 277
project documentation 282
search and navigation 278
status indications 272
task overview 274
unit status 267

OPC AE communication
configure 212

OPC Server
session log example 299

OPC server
subscriptions 212

OPC Server for AC 800M 212
Open 95
open

code block menu 37
override

protection 108
type protection 107

overrun 123
overrun supervision 289

P
parameter

declare 33
parameters 54

AckCond 190
AckRule 189
AE Limit auto disable 193
AlarmCond 187
Class 191
CondName 190
CondState 192
DisCond 190
EDIT 188
EnCond 190
EnDetection 189
Error 192
extensible 88
ExtTimeStamp 189
FilterTime 189
Inhibit 196
Inverted 189
keywords 89
Message 190
Severity 191
Signal 189
SignalID 189
SrcName 190
Status 192
TransitionTime 209
UseSigToInit 189

POU 19
definition 19

printers
local 215

priorities
tasks 115

process alarms 185
PROFIBUS

DP-V1 259
PROFIBUS GSD 101
568 3BSE040935-510568 3BSE040935-510

Index

PROFINET IO 260
C871 260
GSD 260

PROFINET IO GSD 101
programming editor 35
project

insert library 92
remove library 94

project constants 78
structured 79

project documentation 179, 282
Protected

attribute 107
protection

example 110
override 108
override for types 107

Protocols
PROFINET IO 260

protocols
COMLI 234
MB300 239
MMS 240
ModBus 241
modem communication 241
SattBus 242
serial communication 243
Siemens S3964R 241
supported 246

provider/subscriber 258
publisher/subscriber 258

Q
queues

buffer 214
example 342

R
read

data 253

redundancy
network 247

Released 95
Remote System dialog 248
remote systems information 310
REPEAT 168
reports

at download 174
system information 303

resolution 211
restore 285
Reverse attribute 73
RS-232C 247
RT 261

S
S3964R 241
SattBus 242
scale

analog signals 267
search and navigation 138

online mode 278
Secure Digital 157
self-defined types 108
send

data 253
Sequence-of-Events (SOE) 197 to 198
serial communication 243
session log

OPC server example 299
session log files 296
session logs

file paths 297
severity

alarms 191
SFC 168
Siemens

S3964R protocol 241
simple data types 59
simple events 184
3BSE040935-510 569

IndexIndex

log 208
Simultaneous Execution in SFC 168
single control modules 53
SNTP 211
Source Code Report 172
source name

alarms 190
start code blocks 37
state

libraries 95
state diagrams

alarms 227
alarms,alarms

state diagrams 227
statistics

communication 249
status

alarms 192
indications 272

status messages 277
structured project constants 79
subscribe

to alarms 212
sum system alarms 230
supervise

hardware 87
I/O channels 87
unit status 267

supervision
latency 125
overrun 123

supported protocols 246
System alarms

List 206
system alarms

controller generated 206
sum 230

system alarms and events 205
System Diagnostics 248, 321
system diagnostics 226, 321

System folder 20
system information 303
system log file 295

T
Task Analysis 131
tasks 274

abort 127
execution 115
interval time 117
offset 118
priorities 115
time-critical 115

TCP/IP 261
terminology 15
time stamps 209

external 209
internal 209

time synchronization 211
time-critical tasks 115
tools

analysis 319
tracking-related events 184
TransitionTime 209
trouble-shooting 294

symptoms and measures 326
type concept 30
types 30

document 179
in applications 40
in libraries 41
self-defined 108

U
UDP/IP 261
unit status

supervise 267
UTC 210
570 3BSE040935-510570 3BSE040935-510

Index

V
variable communication 249
variables 54, 65

access 65
attributes 60
declare 33
define 58
initial values 64
list 57

W
warnings

acknowledge 274
WHILE 168
3BSE040935-510 571

Index

3BSE040935-510 572

Index

3BSE040935-510 573

IndexIndex

574 3BSE040935-510574 3BSE040935-510

Copyright © 2003-2010 by ABB.
All Rights Reserved

ABB AB
Control Systems
Västerås, Sweden
Phone: +46 (0) 21 32 50 00
Fax: +46 (0) 21 13 78 45
E-Mail: processautomation@se.abb.com
www.abb.com/controlsystems

ABB Industry Pte Ltd
Control Systems
Singapore
Phone: +65 6776 5711
Fax: +65 6778 0222
E-Mail: processautomation@sg.abb.com
www.abb.com/controlsystems

ABB Automation GmbH
Control Systems
Mannheim, Germany
Phone: +49 1805 26 67 76
Fax: +49 1805 77 63 29
E-Mail: marketing.control-prod-
ucts@de.abb.com

ABB Inc.
Control Systems
Wickliffe, Ohio, USA
Phone: +1 440 585 8500
Fax: +1 440 585 8756
E-Mail: industrialitsolutions@us.abb.com
www.abb.com/controlsystems

Power and productivity
for a better worldTM

Contact us

3B
S

E
04

09
35

-5
10

	HOME
	Configuration
	TABLE OF CONTENTS
	About This Book
	General
	Document Conventions
	Warning, Caution, Information, and Tip Icons
	Terminology

	Section 1 Basic Functions and Components
	Introduction
	Control Project Templates
	Program Organization Units, POU
	System Firmware Functions
	Hardware
	Standard System Libraries with Hardware
	Customized Hardware Types
	Configuring the Controller
	Basic Hardware

	Basic Library for Applications
	Application Types and Instances
	Types and Instances - Concept
	Define a Type in the Editor
	Control Modules and Function Blocks
	Types in Applications
	Types in User defined Library
	Modify Complex Types
	Decisions When Creating Types
	Create and Connect instances

	Function Block Execution
	Control Module Execution
	FD Port
	Single Control Modules

	Variables and Parameters
	Variable and Parameter Concept
	Variables
	Variable Entry
	External Variables
	Access Variables
	Communication between Applications Using Access Variables
	Communication in an Application Using Global Variables
	Communication Variables
	Control the Execution of Individual Objects
	Project Constants
	I/O Addressing Guidelines
	Connecting Variables to I/O Channels
	Extensible Parameters in Function Blocks
	Keywords for Parameter Descriptions

	Library Management
	Connect Libraries
	Create Libraries
	Library States
	Library Password Protection
	Add Types to Libraries Used in Applications
	Add Customized Hardware Types to Library
	Device Import Wizard
	Additional Files for Libraries with Hardware
	Delete Hardware Types
	Type Usage for Hardware Types

	Hide and Protect Control Module Types, Function Block Types and Data Types
	Protect a Self-Defined Type

	Task Control
	Task Connections
	Task Execution
	Task Priority
	Interval Time
	Offset
	Execution Time

	Overrun and Latency
	Overrun Supervision
	Latency Supervision
	Task Abortion
	Load Balancing
	Non-Cyclic Execution in Debug Mode

	Task Analysis
	Exploring the Interface
	Modifying Task Execution Time
	Error and Warning Categories

	Search and Navigation
	Search and Navigation Dialog
	Search Settings
	Symbol and Definition
	References
	Navigation to Editors
	Search and Navigation Settings
	Search Data
	Reports

	Input and Output Signal Handling
	Backup Media
	Compact Flash
	Secure Digital
	Adding CF Card or SD Card to Hardware
	Saving Cold Retain Values on Files
	Downloading the Application to Removable Media
	Configuration Load
	Upgrading Controller Firmware using Backup Media
	Restoring Formatted CF Cards to Original Size

	Compiler Switches
	Settings

	Reports
	Difference Report
	Source Code Report
	Reports Generated at Download
	Portability Verification

	Performance Management
	Project Documentation
	Objects and Types
	Editor Items
	Used Types

	Section 2 Alarm and Event Handling
	Introduction
	Alarms and Events
	Alarm and Event Library

	Process Alarm and Event Generation
	Process Alarms and Events
	Detection of Simple Events
	Built-in Alarm and Event Handling in Other Libraries
	External Time Stamps (S800 I/O)
	External Time Stamps (PROFINET IO)
	External Time Stamps (INSUM)
	Choose Alarm Handling Method for INSUM Alarms

	System Alarm and Event Generation
	Controller Generated System Alarms and System Simple Events
	User Generated System Alarms

	Handling Alarms and Events
	Simple Events
	System Alarms and Events
	Time Stamps

	Alarm and Event Communication
	Subscriptions
	Configuration of OPC AE Communication - Overview
	Buffer Configuration
	Local Printers
	Print Format
	Sending an Alarm to the Application
	Condition State Example
	Inhibit Example
	Simple Event Examples

	Alarm and Event Functions
	System Diagnostics
	Acknowledgement Rules - State Diagrams

	Section 3 Communication
	Introduction
	Communication Libraries
	COMLI Communication Library
	INSUM Communication Library
	MB300 Communication Library
	MMS Communication Library
	MODBUS RTU Communication Library
	MODBUS TCP Communication Library
	Modem Communication Library
	Siemens S3964 Communication Library
	SattBus Communication Library
	MTM Communication Library
	Serial Communication Library

	Supported Protocols
	Control Network
	Network Redundancy
	Statistics and Information on Communication

	Variable Communication
	StartAddr

	Reading/Sending Data
	Connection Methods
	Communication Concepts

	Fieldbus Communication
	MMS Communication
	How to Choose Function Block/Control Modules in MMSCommLib

	Section 4 Online Functions
	Introduction
	Online Editors
	Dynamic Display of I/O Channels and Forcing
	Scaling Analog Signals
	Supervising Unit Status
	Find Out What is Wrong by Using HWStatus
	AllUnitStatus
	Binary Channels

	Supervising Communication Variable Status
	Status Indications
	Acknowledge Errors and Warnings

	Tasks
	Interaction Windows
	Status and Error Messages
	Search and Navigation in Online and Test Mode
	Project Documentation

	Section 5 Maintenance and Trouble-Shooting
	Introduction
	Backup and Restore
	Introduction
	Backup
	Restore
	Files for Separate Backup

	Controller Configuration
	Controller Settings in Controllers
	Error Handler Log Entries

	Trouble-Shooting
	General
	Log Files
	Crash Dumps for Analysis and Fault-Localization
	Remote Systems Information
	Diagnostics for Communication Variables
	Analysis Tools
	System Diagnostics
	Trouble-Shooting Error Symptoms
	Connection to Aspect Server

	Error Reports

	Appendix A Array, Queue and Conversion Examples
	Arrays
	SearchStructComponent
	InsertArray
	SearchArray

	Queues
	Conversion Functions
	DIntToBCD
	BCDToDInt
	ASCII
	ASCII Conversion

	Appendix B System Alarms and Events
	General
	OPC Server - Software
	OPC Server - Subscription
	Controller - Software
	Controller - Hardware
	Alarms and Events Common for all Units
	Unit Specific Alarms and Events
	Controller Units and Communication Interfaces
	Adapters
	S800 I/O
	S900 I/O
	S100 I/O
	INSUM Devices
	FF Devices
	MB300 Nodes
	ABB Standard Drive
	Process Panel
	ITS
	NAIO ff
	PPO
	Special IO Template

	INDEX

