AlSCAN and AlSCAN Argon
Hydrogen analysis in liquid aluminum
Measurement made easy

Today’s global economy and competition have compelled aluminum producers and foundries to produce the highest possible quality aluminum and shape castings.

Good process understanding is essential in securing top quality. It is reached by measuring key process parameters, thus enabling control of the melt quality at all stages of the manufacturing process.
A\lSCAN and A\lSCAN Argon
Hydrogen analysis in liquid aluminum

A\lSCAN™ technology provides a proven solution for direct measurement of dissolved hydrogen in molten aluminum. It provides an on-line quantitative measurement based on field-proven probe and closed-loop recirculation (CLR) technologies.

Benefits of A\lSCAN
- Accurate on-line quantitative measurement of dissolved hydrogen
- Continuous monitoring capabilities
- Probe failure detection option

A\lSCAN Argon for very low hydrogen levels
The A\lSCAN Argon is a special version of the A\lSCAN analyzer that uses argon as a carrier gas to allow accurate readings of very low hydrogen levels. A\lSCAN Argon can accurately read hydrogen levels below 0.06 ml H₂/100 g Al and will not interpret low hydrogen levels as a probe leak.

The hydrogen problem
Hydrogen forms whenever molten aluminum comes into contact with water vapor, and it easily dissolves into the melt. The gas tends to come out of the solution and form porosities as the melt solidifies.

Detrimental effects arising from excess dissolved hydrogen in aluminum are numerous. Hydrogen causes porosity in aluminum products leading to many casting defects, reduced mechanical properties and lower corrosion resistance. Several methods are used to reduce the amount of dissolved hydrogen in the melt, such as furnace fluxing prior to the casting process or degassing during the casting process.

On-line hydrogen measurement in aluminum is required to monitor the performance of the degassing process and ensure the quality of outgoing products. Traditional laboratory methods such as hot extraction are too expensive for routine quality assurance, and too slow for effective process control.

Reduced-pressure tests, sometimes used on the production floor, are only semi-quantitative and do not provide the required degree of accuracy.

A\lSCAN – the leading hydrogen analyzer

Since its introduction in 1989, A\lSCAN has established itself as the most-used hydrogen analyzer in the world with more than 600 systems installed. Used by all major aluminum producers, its success is mainly due to outstanding reproducibility and a rugged, low-cost probe that requires neither preheating nor careful handling. The A\lSCAN is clearly superior to any other direct hydrogen measurement analyzer:
- User-friendly and designed for long-term reliability on the shop floor
- Easy to use by non-technical floor personnel, even those wearing gloves
- Can be programmed to perform single measurements or repeated automatic measurements
- Flexible enough to continuously monitor hydrogen levels in molten metal
- Autonomous operation (once started) requiring little to no attention

Dual user interface
The A\lSCAN analyzer has two distinct sets of controls. The control panel is used for routine procedures and can even be used by personnel wearing gloves. The controls located in the recessed panel are only used to configure operating parameters.
Features

Operation principle
Closed-Loop Recirculation (CLR) is a proven method for directly monitoring hydrogen in molten aluminum. A small volume of carrier gas, either nitrogen or argon, is brought in contact with the melt by means of an immersed probe, and is continuously recirculated in a closed loop until its hydrogen content reaches equilibrium with the vapor pressure of H₂ in the melt. The H₂ concentration in the gas is measured and converted into a reading of the gas concentration in the metal. This fast, reproducible and accurate method can be used on the cast shop floor for online measurements.

The amount of H₂ in the gas loop of the instrument is determined by a proprietary thermal conductivity sensor, which provides high reproducibility and a broad measurement range. The analyzer has a built-in microprocessor that controls its operation and processes data.

A/SCAN continuous monitoring option
The A/SCAN continuous monitoring option is a tool that allows the A/SCAN to perform long sequences of measurements while being connected to a remote computer. There is no need to watch over the instrument as its operation can be remotely monitored from a control room or even from your own computer. Direct access to saved data and flexibility in the A/SCAN operation have never been so easy and straightforward, thanks to the networkability and multi-tasking capabilities of the continuous monitoring option software.

As well, the A/SCAN continuous monitoring option is a powerful tool that links aluminum hydrogen content to its main source: humidity in ambient air. With this option, the analyzer measures the ambient temperature and humidity then calculates the absolute humidity and the theoretical dissolved hydrogen content in the melt coming from this source. Process characterization and equipment optimization of in-line degassers or other degassing treatments can be performed more rapidly and efficiently as all the information related to dissolved hydrogen is put together for easy data analysis.
Analyzer calibration module
The analyzer calibration module is used to perform basic validation tests and confirm accuracy. Additionally, the calibration module can be used to re-calibrate the analyzer as required.

The external-supply calibration unit is connected to external low-pressure sources of calibration gases, including argon, helium and nitrogen. The unit is installed at a fixed location, where the analyzer is brought for verification every four to eight weeks. Current users have proven that ASCAN analyzers remain stable and accurate month after month. New users do not have to believe this – they can verify it.

ABB calibration certification service
ABB’s internationally recognized calibration certification service meets ISO9000 standards. This service is offered to customers whose measuring and test equipment requires calibration for production service.

Practical accessories
There are a numerous practical and useful accessories available for the ASCAN analyzer:
• Rugged universal mounting plate
• Probe failure detection accessory
• Continuous monitoring option
• Spare parts kit
• Heavy duty transport case
• Elongated probe arm, for reaching into less accessible locations like the interior of crucibles
• Dolly, to make the instrument more transportable; serves also as a platform for measurements
• Bottle refilling accessory, for safe and easy refilling of the built-in gas bottle

<table>
<thead>
<tr>
<th>Types of ASCAN probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HME2000D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HME3000D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HME1200D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Specification

Hydrogen measurement
- Sensor type: Catharometer
- Range: 0 to 9.99 ml of hydrogen per 100 g of aluminum (ml/100 g)
- Reproductibility: ±0.01 ml/100 g or 5 % of reading, whichever is higher
- Duration: Typically 10 minutes, varies with alloy and hydrogen level, and adjustable from 1 to 99 minutes
- Automatic sequence: Adjustable from 1 to 99 measurements

Melt-temperature measurement
- Sensor type: Type K thermocouple, ungrounded
- Range: 650 to 1260 °C (1202 to 2300 °F)
- Repeatability: ±1.2%

Hardware
- Display: 3.5 digits, 2.5 cm (1 in) high LED
- Printer: Dot matrix thermal printer
- Communications: Serial, RS-232 (standard)

Supplies (gas requirements)
- Gas: Nitrogen or argon
- Purity: 99.998 % high purity grade (99.995 % minimum purity)
- Cylinder size: Typically 15 cm (6 in) dia., 63.5 cm (26 in) maximum height
- Delivery pressure: 300 mbar (5 psig) nominal pressure
- Average consumption: Typically 0.5 liter at STP per measurement

Supplies (electrical requirements)
- Rated line voltage: 100 to 240 V AC (self-adjusting)
- Rated line frequency: 50 to 60 Hz
- Rated line current: 0.9 A at 100 V, 0.4 A at 240 V
- Delivery pressure: 300 mbar (5 psig) nominal pressure
- Fuse type: T2A/250V

Environmental
- Storage temperature: 10 to 50 °C (50 to 122 °F)
- Operating temperature: 10 to 50 °C (50 to 122 °F)
- Storage humidity: Up to 60 % (non-condensing)
- Operating humidity: Up to 90 % (non-condensing)

Size (H × W × D)
- Analyzer: 30.5 × 38 × 23.5 cm (12 × 15 × 9.25 in)
- Calibration module: 30.5 × 20.3 × 25.4 cm (12 × 8 × 10 in)
- Trough mating plate: 38 × 20 cm (15 × 30.5 × 8 in)
- Dolly: 122 × 56 × 61 cm (48 × 22 × 24 in)
- Probe holding arm: aluminum, 2 segments, friction joints, length (fully extended): 57 cm (22.5 in.).
- Extended probe holding arm: aluminum 4 segments, friction joints, length (fully extended): 114 cm (45 in.)

Weight
- Analyzer: 16 kg (35 lb)
- Calibration module: 5.6 kg (12.5 lb)
- Trough mating plate: 5 kg (11 lb)
- Dolly: 34 kg (75 lb)
Additional Information

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

© ABB, 2018