Electric Vehicle Infrastructure
Frequently Asked Questions

The market for plug-in electric vehicles has increased rapidly in recent years and is projected to become significantly larger during the next decade. This document answers common questions about the cars, the technology, the energy and the infrastructure supporting the growing population of EVs around the world.

Why do people buy electric cars?
Buyer values include energy cost savings, reducing vehicle emissions and GHGs, premium performance, latest vehicle technology, energy security and lower maintenance costs.

What is a PEV? BEV? PHEV?
All vehicles with a battery that can be recharged from an external source of electricity are considered plug-in vehicles or PEVs. One category of PEV is a BEV, or Battery Electric Vehicle, which is a fully electric vehicle powered by an electric motor with no gas engine, such as the Nissan Leaf, Chevy Bolt, Audi e-tron, VW e-Golf, Jaguar i Pace and Tesla’s Model S, X and 3. Another kind of PEV is a PHEV, or plug-in hybrid electric vehicle, which has both a plug-in electric system and a gasoline engine as backup to power the car. Examples include the Chevy Volt, Toyota Prius Prime, Chrysler Pacifica Hybrid Minivan or Honda Clarity PHEV.

Does any premium paid for buying an EV offset the energy savings over gasoline?
It can, but more so when including vehicle lifecycle costs. Savings are already realized by the lower cost of electricity versus gasoline (MPGe) as well as greatly reduced maintenance. In addition, with the steep cost reduction of Li ion batteries, electric vehicles will often deliver a lower cost of ownership versus traditional gas engine vehicles. The more one drives, the more savings can be realized.

Electricity is a fossil fuel-based source of energy as well, so are EV’s really cleaner?
Yes. Even if your EV is powered by electricity generated by coal, EVs have a lower carbon footprint in terms of both CO2 and traditional pollutants like nitrogen oxides, carbon monoxide and volatile organic compounds. Not only is the overall emissions content lower, but the location and timing of the emissions is better for air quality in high population centers. Gasoline vehicles emit pollution in the middle of the city during the day. The emissions related to EV charging typically happens at off-peak hours at plant locations away from population centers. An EV’s carbon footprint is further improved as electricity generation moves to cleaner generation technologies and renewable energy sources; and as more EV owners install solar power that supports their home vehicle charging needs.

How much savings can be achieved when using electricity instead of gasoline?
Driving an EV can save over $1000 per year in typical energy costs. When primarily charged at home, electricity costs a fractional amount of the price of equivalent gasoline needs. For example, if electricity rates are 12 cents per kWh; charging an EV for 100
miles of range would cost around $3. Those same 100 miles would cost around $10 in gasoline for a combustion engine car rated at 25 mpg, and a gas price of $2.50 per gallon. Public charging prices will often exceed residential electricity costs for offering the convenience of quick charging away from home, and are often on par with gasoline price levels.

Do electric vehicles still make financial sense when gas prices go down?
Absolutely; the example above illustrates the gas to electric equation even at a fairly low $2.50 per gallon. In addition, historical price indexes for gasoline are quite volatile as compared to electricity. Figure 1 shows the price index for gasoline by the gallon, versus comparable electricity prices for equivalent energy over the last 40 years. The chart shows that economic, geopolitical and natural disaster events can make a significant impact on the fluctuation of gasoline prices, but electricity has been far less subject to those forces. This is an important distinction not only for how highly variable energy costs can impact personal finances, but larger national economic and energy security concerns as well.

Do electric cars have the same speed and performance as traditional gas-engine vehicles?
In many cases, even better. While top speeds for EV’s are comparable to similarly sized gas-engine vehicles, vehicles powered by electric motors enjoy the inherent benefit of high torque, and can get up to traveling speed very quickly. In addition, EV drivers usually express an appreciation for the smooth, quiet and quick performance provided by an electric drivetrain.

Are maintenance costs higher with an EV?
On the contrary, maintenance costs for EVs have been shown to be significantly lower than comparably equipped gas-powered vehicles. Electric vehicles do not require oil changes, have no transmission or exhaust system service/parts needs, and have much longer brake life due to regenerative designs. Fewer moving parts and lower vibration mean a lot less wear and tear on the entire vehicle over time.

Will an electric motor last as long as a traditional gas engine?
Longer. Electric motors have been replacing combustion engines for decades in stationary industrial applications for their much higher reliability and efficiency, very low maintenance and emissions, and significantly longer lifetimes. Traditional combustion engine systems that have a thousand or more moving parts are subject to more vibration wear as well as regular maintenance of the supporting fuel, exhaust, fluid and cooling systems. Electric drivetrains usually boast fewer than 20 moving parts.

How long does an EV battery last?
Current lithium-ion battery packs in electric vehicles are estimated to be serviceable for 10 years or longer. All electric vehicle manufacturers offer very lengthy battery warranties, and most EVs have already shown excellent performance due to sophisticated battery management systems and cooling technologies.

Can EV batteries be recycled?
EV batteries can be recycled, and can also find significant after-life use in stationary energy storage applications to manage electricity supply and demand for both utilities and energy consumers.

Is an EV more dangerous in an accident than a gas engine vehicle?
All cars can be dangerous machines due to their power and size, regardless of what gives them energy. Protective features such as seat belts, airbags, and well-engineered ‘crumple’ zones have saved thousands of lives, but there are also energy-related safety concerns as well. With about 170,000 vehicle fires reported every year in the United States alone,
Gas combustion engines have always faced the risk of flammable petrochemicals igniting due to mechanical and electrical failures. Battery electric vehicles do not have those same concerns.

However, whenever there is stored energy, safety is a paramount consideration. For optimal battery safety, EV automakers engineer sophisticated battery management systems with sensors and protection devices that disconnect the battery when the pack is about to sustain damage. In addition, battery cooling systems are integrated to keep batteries in an optimal temperature range while the car is running to mitigate heat concerns. In their construction, EV batteries are generally organized in an array, modularized into steel-protected sections that further safety objectives.

With many millions of EVs now driven around the world, emergency personnel are regularly trained on how to approach electric and hybrid vehicles safely, with standardized response protocols in place in the event of an accident.

Who is ABB?
ABB is a pioneering technology leader that works closely with utility, industry, transport and infrastructure customers, with 147,000 employees in over 100 countries, and in the US, we employ about 24,000. Our EV infrastructure offering is part of ABB’s overall power delivery expertise, including our deep experience with power electronics and grid connected systems as well as digitally connected and enabled technology.

Does ABB manufacture electric vehicles?
No, we provide charging infrastructure, both hardware and software, that enables drivers, service providers and utilities to re-charge electric vehicles.

Do I need special infrastructure at my home to charge an EV?
No, all EV’s come with a standard plug for charging in any home outlet. Many EV owners do choose to install a “Level 2” AC 240V charger at their home to charge their vehicle faster than in a 120V outlet. With their higher power features, DC fast charging units are best suited for many public, transit and commercial fleet settings.

How fast do EV’s charge?
A standard 120V outlet can charge at about 5 miles of range per hour; a Level 2 charger at 220/240V can deliver anywhere from 10 to 25 miles of range per hour depending on the power limitations of the charger, the vehicle, and the power supply at the home or facility. DC fast charging systems can charge an EV in about 20-90 minutes at 50kW of rated power, and in less than 15 minutes with higher power technology. Some DC chargers can charge more slowly to manage site power concerns while fitting 1-2 hour use cases at 20-25KW rated power, for example (see Figure 2).

What is the difference between AC and DC charging?
An AC charger supplies AC (Alternating Current) to a vehicle’s onboard charging device that then charges the EV battery. Faster charging is accomplished with DC (Direct Current) technology. A DC fast charging station converts the grid’s AC supply, delivering power directly to the vehicle battery with no onboard charging infrastructure needed inside the vehicle.

What is the benefit of fast charging?
Case studies of EV adoption rates show that fast public charging is a key component in the successful roll-out of electric vehicles to reduce or eliminate range anxiety. Drivers are more likely to adopt EV technology when they are assured quick charging availability along their regular commutes and intercity travel routes.

Public EV Charging

<table>
<thead>
<tr>
<th>AC Level 2</th>
<th>DC</th>
<th>DC Fast</th>
<th>DC High Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-19 kW</td>
<td>20-25kW</td>
<td>50kW</td>
<td>150 to 350kW+</td>
</tr>
<tr>
<td>4 to 20 hours</td>
<td>1 to 4 hours</td>
<td>20 to 90 min</td>
<td>5 to 30 min</td>
</tr>
</tbody>
</table>

- Office, workplace
- Multi family housing
- Hotel and hospitality
- Overnight fleet
- Supplement DC charging sites for PHEVs
- Workplace, multifamily
- Parking structures
- Dealerships
- Urban fleets
- Public or private campus
- Sensitive power supply applications
- Retail, grocery, mall, big box, restaurant
- High turnover parking
- Convenience fueling stations
- Highway truckstops and travel plazas
- OEM R&D
- Highway corridor travel
- Metro ‘charge and go’
- Large fleet
- Bus and heavy vehicle
- OEM R&D

Figure 2: The chart shows common power ratings and average charge times for public EV infrastructure solutions. Variance among power and charge times related to vehicle capabilities (charging protocol, BMS, environmental), battery capacity (state of charge, overall kWh capacity) and charging hardware power rating. Level 1 charging at 1kW or less is not included in this chart as is limited for most public, fee-based charging applications.
Which cars are able to fast charge?
Most BEV’s launched in the North American market over the last few years have fast charging capability, including the Nissan Leaf, BMW i3, Tesla Model S, Audi e-tron, Volkswagen e-Golf, Ford Focus Electric, Chevrolet Bolt and Jaguar iPace. Many more models have been announced to enter the market over the next 2-3 years that will charge at even higher rates such as 150-350kW.

Why do DC fast chargers “fill” to 80% and not 100%?
Modern battery chemistries achieve the longest lifetime when not frequently charged to full capacity. In order to lengthen the lifetime of EV car batteries, DC fast charging protocol standards provide for quickly getting an EV to 80% of capacity, and then switch to slow trickle charging. This method gets drivers back on the road sooner, while extending the lifespan of the vehicle battery.

Does fast charging affect battery longevity?
No. Multiple studies suggest that cycling, that is, frequency of charging, causes some measurable impact on battery lifetime, as all batteries degrade over long periods of time and use. However, charging speed has been shown thus far to have little or no impact on long term BEV battery performance. Fortunately, automakers build reserve capacity into their battery management design to buffer against the effects of excessive cycling.

Do multiple fast charging standards hinder EV adoption?
CHAdeMO and CCS-1 are the two open fast charging protocols that have been adopted by most passenger and fleet vehicle manufacturers in North America. ABB manufactures DC fast chargers that meet both standards in a single unit, supporting all BEVs that are compliant with either standard. While Tesla is unique with their proprietary fast charging network, they do offer their drivers adaptors that allow charging via open charging protocols. That said, open standards are the key to adoption, growth and infrastructure scale to meet the needs of the most vehicles and their drivers.

How many DC fast chargers does ABB have installed?
ABB has well over a thousand installed throughout North America, and 11,500 installed globally.

Where are DC fast chargers usually installed?
Fast chargers are ideally installed in ‘charge and go’ locations such as near highways and convenience locations, as well as serving fleet charging needs. They’re also often used at commercial sites such as shopping centers, restaurants, campuses and urban parking cases (see figure 2). These charging locations are growing quickly, and can be easily found in smart device apps and websites.

Will a rise in EVs strain the electric grid?
Most EV charging is done at home and work in slower AC voltages, and often not during peak demand hours. With strategies like rate incentives and smart charging algorithms, utilities actually have a fantastic opportunity to use EVs to balance loads while power producers can better balance generation and demand.

At fast charging sites, while more on-demand, there is still an opportunity to leverage time of use, demand response, and power limiting programs to manage demand. In addition, energy storage technologies may offer demand reduction possibilities. ABB is a leader in smart grid and renewable technologies, supporting site owners, infrastructure providers and utilities.