8037
Sodium monitor
Measurement made easy
Rugged and reliable performance in a wide range of harsh environments

Wide measuring range
• covers all power plant applications

Automatic sample temperature compensation
• maximizes measurement accuracy

‘Pumpless’ liquid handling section
• ensures low maintenance

Comprehensive diagnostics facility with built-in software protection
• provides security and confidence in operation

Detachable cable electrode option
• simplifies maintenance

Reagent entrainment system
• sample flow controls addition of reagent; no diffusion tubing required
Introduction

The prevention of damage to the boilers on modern power stations becomes more and more critical as the cost of repairs and out-of-service plant continues to rise. To reduce the effect of boiler tube corrosion and the formation of scale on the inside of the tubes, the levels of impurities in the various parts of the steam/water cycle must be monitored carefully.

Sodium ions are normally the most abundant element found in solution in boiler plant, therefore the measurement of sodium provides a valuable indication of the overall purity of the solution. While on-line conductivity can give useful information concerning the total concentration of the ionic element, it is far less sensitive than a specific measurement for sodium.

The points where on-line sampling for sodium would be required are:

- Water treatment plant
 - Sodium measurement, at the outlet of cation and mixed resin exchange beds, gives an early indication of resin exhaustion and treated water quality.

- Condensate monitoring at the extraction pump discharge
 - As condensers are operated under vacuum, leaks result in the ingress of cooling water into the process water. If the cooling water contains relatively high levels of sodium (as is usually the case), monitoring of sodium in the process water can provide an early indication of condenser leaks.

- Saturated steam in drum boilers
 - The monitoring of sodium in the saturated steam between the boiler drum and the superheater detects carryover and, in conjunction with sodium monitoring in the condensate (the sodium balance), can indicate problems caused by sodium deposits on superheated tubes and turbine blades.

- Once-through boilers
 - Since the purity of the boiler water is more stringent in these boilers, sodium monitoring, after the condensate polishing plant, boiler feed and superheated steam, can assist in maintaining water/steam purity within limits.

General information

The ABB 8037 Sodium Monitor uses an ABB sodium ion-selective electrode and reference electrode to measure the sodium ion concentration in power station waters.

The model 8037 is an accurate, reliable instrument which requires very little maintenance and measures sodium ion concentrations within the ranges of 0.10 µg kg⁻¹ to 10 mg kg⁻¹.

The basic monitor is supplied with a panel- or wall-mount unit and cable-attached electrodes. Optional facilities are available as detailed below:

- Detachable cable electrodes
- Serial data interface
- Second current output
- Reservoir-fed reference electrode
- Environmental cover kit
Transmitter

The 8037 Series transmitter provides the operator interface and communications to other devices. The signal from the sensing system is converted by the transmitter and information is displayed as a µg/l, µg/kg, ppb, mg/l, mg/kg or ppm value.

A process retransmission signal and two alarm relay outputs are provided as standard. A second current output or RS485 serial interface, which allows the transmitter to be easily incorporated into an ABB PC30 or other Modbus-compatible supervisory systems, are available as options.

Available in wall-mount or 1/4 DIN panel-mount versions, the transmitter is protected to IP66, ensuring reliable operation in the most demanding situations. The same level of protection is maintained during programming and calibration.

The large, easy-to-read, customized liquid crystal display (LCD) is used in conjunction with the four tactile membrane key pads to prompt the user through the programming procedures. Included, as standard, is a four-language software package, to display information in English, French, Spanish or German.

Sensing panel

A flow schematic is shown opposite. The sample enters the monitor via the compression fitting on the 3-way changeover valve. It then passes through the changeover valve to the constant head unit which removes the effect of changes in sample pressure and flow-rate. A small tube, overflowing into the constant head on one side, ensures self-starting when the sample is lost and enables the monitor to function over a wide sample flow range.

The sample is then delivered to the entrainment ‘T’ piece and stainless steel entrainment tube, where an alkaline vapor reagent is added to raise the pH value, before flowing past the sodium and reference electrodes mounted in the flowcell.

Finally, the sample leaves the flowcell and exits to drain.

The potential developed between the sodium ion-responsive electrode and silver/silver chloride reference electrode is logarithmic with respect to changes in sodium ion concentration. The signal from the electrode pair is connected to the 8037 Transmitter.

A temperature sensor, fitted into the flowcell, detects the temperature of the sample. The sensor is connected to the transmitter unit which compensates for changes in output from the electrode pair over a range of 5 to 55 °C (41 to 131 °F).

Calibration is carried out manually after connection of the calibration tube to the standard solution container. The 3-way changeover valve on the liquid handling panel is changed-over manually from sample to standard solution. The calibration is initiated from the transmitter unit, where it is controlled by the microprocessor. The standard solution takes the same path as the sample through the liquid handling panel.
Schematic flow diagram

- Reagent solution container
- Standard solution container
- Constant head unit
- 3-way changeover valve
- Sample inlet
- Flowcell
- Sodium electrode
- Reference electrode
- Pt1000
- Contaminated drain
- Uncontaminated drain
- Output to 8037 transmitter
- Entrainment 'T' piece
Components of 8037 sodium monitor

Interconnecting cable (maximum length 10 m [32.5 ft.])

Wall-mount transmitter

Panel-mount transmitter
Specification

General

Display
- Measured value: 5-digit, 7-segment back-lit LCD
- Information: 16-character, single-line, dot matrix back-lit LCD

Display range
- 0.01 µg kg\(^{-1}\) to 10 mg kg\(^{-1}\)

Units of measure
- ppb / ppm
- µg/l / mg/l
- µg kg\(^{-1}\) / mg kg\(^{-1}\)

Current output expansion
- Scale expansion between 2 and 4 decades logarithmic or the equivalent linearized
- Programmable in the range 0.10 µg kg\(^{-1}\) to 10 mg kg\(^{-1}\)
- Maximum load resistance 500 Ω (20 mA)

Display resolution
- 0.01 µg kg\(^{-1}\) in range 0.01 µg kg\(^{-1}\) to 9.99 µg kg\(^{-1}\)
- 0.1 µg kg\(^{-1}\) in range 10.0 µg kg\(^{-1}\) to 99.9 µg kg\(^{-1}\)
- 1 µg kg\(^{-1}\) in range 100 µg kg\(^{-1}\) to 999 µg kg\(^{-1}\)
- 0.01 mg kg\(^{-1}\) in range 1.00 mg kg\(^{-1}\) to 9.99 mg kg\(^{-1}\)

Accuracy
- ±10 % of concentration or ±0.1 µg kg\(^{-1}\) whichever is the greater (when sample temperature is within ±5 °C (±9 °F) of calibration temperature)

Reproducibility
- ±5 % of concentration or 0.1 µg kg\(^{-1}\) (whichever is the greater) at constant temperature

Response time
- 1 to 100 µg kg\(^{-1}\) less than 4 minutes for 90 % step change
- 100 to 1 µg kg\(^{-1}\) less than 6 minutes for 90 % step change

Temperature compensation
- Automatic within ±5 °C (±9 °F) of calibration temperature

Current outputs
- One, fully isolated
- Two, fully isolated (optional)
- 0 to 10, 0 to 20 or 4 to 20 mA, programmable

Serial communication
- RS422/RS485 (optional)
- Modbus compatible

Alarms
- Two fail-safe, high and low concentration alarms
- Hysteresis ±1 % of FSD (fixed)
- Relay contacts (single pole changeover):
 - Rating: 250 V AC 250 V DC max.
 - Loading: 3 A AC 3 A DC max.
- Insulation, contacts to earth: 2 kV RMS

Calibration
- Manual initiation of calibration sequence
- Calibration frequency (typically) weekly for 1-point, and 4-weekly for 2-point calibration

Installation Information

Sample temperature
- 5 to 55 °C (41 to 131 °F)

Sample flow
- 50 ml/min\(^{-1}\) to 500 ml/min\(^{-1}\)

Sample pressure (gauge)
- Maximum 0.14 bar (2 psi)
- Outlet from sensing panel must go to atmospheric drain

Ambient temperature
- 0 to 55 °C (32 to 131 °F)

Dimensions of sensing panel
- 250 mm (9.84 in.) wide x 440 mm (17.32 in.) high
- (690 mm [27.16 in.] high to clear bottle assemblies)
- x 160 mm (6.29 in.) deep

Mounting for sensing panel
- Four holes: 8.5 mm (0.33 in.) diameter
- 200 mm (7.87 in.) horizontal
- 325 mm (12.79 in.) vertical

Weight of sensing panel
- 11 kg (24.3 lb.) (including optional environmental cover)

Connections to sensing panel
- Sample inlet: ¼ in OD compression fitting (6.3 mm)
- Sample drains: 10 mm (0.39 in.) ID flexible, atmospheric drain

Dimensions of transmitter unit
- Wall-mount: 160 x 214 x 68 mm (6.29 x 8.42 x 2.67 in.)
- Panel-mount: 96 x 96 x 191 mm (3.78 x 3.78 x 7.52 in.)
 - Cut-out: 92 x 92 mm (3.62 x 3.62 in.)

Weight of transmitter unit
- Wall-mount: 2 kg (4.41 lb.)
- Panel-mount: 1.5 kg (3.31 lb.)

Power supply requirements
- 115 V nom. ±15 V, 50/60 Hz or
- 230 V nom. ±30 V, 50/60 Hz
- <10 VA

Power consumption
- 2 kV RMS

Max. cable core sizes
- Mains supply 32/0.2 mm
- Signal 24/0.2 mm

Maximum distance between sensor & transmitter unit
- 10 m (32.8 ft.)

Environmental data

Storage temperature limits
- 0 to 55 °C (32 to 131 °F)

Operating humidity limits
- Up to 95 % RH non-condensing

Environmental protection
- Wall-mount transmitter: IP66/NEMA4X
- Panel-mount transmitter: P66/NEMA4X (front)
Installation

It is recommended that the sample supply line is fitted with a needle valve and flow indicator (not supplied) and the sample is discharged from the monitor to an atmospheric drain.

Sensing panel installation details

Maximum distance between sensing panel and transmitter 10 m (32.8 ft.) (with detachable-cable electrode option).

Note. Leave at least 250 mm (9.84 in.) between units if the transmitter is mounted above the sensor panel.

Note. Leave at least 160 mm (6.29 in.) space required below the sensor panel to allow for the opening of the optional environmental cover.
Overall dimensions

8037 wall-mount version
Dimensions in mm (in.)

8037 panel-mount version
Dimensions in mm (in.)
Electrical connections

8037 wall-mount version

Channel 1
- Sodium / Reference electrodes
 - 1 – Coax core (sodium electrode)
 - 2 – Black (reference electrode)
 - 3 – Black (sodium electrode screen)
 - 4 – Earth connection to delivery tube mounting stud on sensor panel

Channel 2
- Pt1000 temperature compensator
 - 5 – Red
 - 6 – Green
 - 7 – Blue

Serial
- RS422 / RS485
 - 1 – 2 – Rx+
 - 3 – Rx–
 - 4 – Tx+
 - 5 – Tx–
 - 6 – 0 V

Retransmission output
- 1 – NC
- 2 – C
- 3 – NO
- 4 – NC
- 5 – C
- 6 – NO

Relay 1
- Relay 1
- Relay 2

Power supply
- N = Normally closed
- C = Common
- NO = Normally open

8037 panel-mount version

Channel 1
- Sodium / Reference electrodes
 - 1 – Coax core (sodium electrode)
 - 2 – Black (reference electrode)

Channel 2
- Pt1000 temperature compensator
 - 5 – Red
 - 6 – Green
 - 7 – Blue

Serial
- RS422 / RS485 (if fitted)
 - 1 – 2 – Rx+
 - 3 – Rx–
 - 4 – Tx+
 - 5 – Tx–

Relay 1
- Relay 1
- Relay 2

Power supply
- RS422 / RS485 serial interface (if fitted)
 - 1 – OV
 - 2 – Rx–
 - 3 – Rx+
 - 4 – Tx–
 - 5 – Tx+
 - 6 – Blue
 - 7 – Green
 - 8 – Red

Relay 2
- Normally closed
- Common
- Normally closed
- Normally open
- Neutral
- Live

Mains supply
- Earth stud

Earth connection to delivery tube mounting stud on sensor panel
Ordering information

<table>
<thead>
<tr>
<th>Model 8037 sodium monitor</th>
<th>8037/00</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall-mount transmitter</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel-mount transmitter</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current output only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current output and serial data interface (Modbus optional)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 current outputs</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrode type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable attached electrodes (1 m [39 in.] only)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable detached electrodes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable detached electrodes (reservoir-fed reference)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable assemblies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable attached electrodes</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 m (39 in.) cable assemblies</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 m (9.75 ft.) cable assemblies</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 m (16.25 ft.) cable assemblies</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 m (32.5 ft.) cable assemblies</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without environmental cover kit</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With environmental cover kit</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reservoir-fed reference electrode kit

A kit to upgrade model 8037 from using a refillable reference electrode to one using a reservoir-fed reference electrode is available – part no. 8037-150.