Epoxiimpregnerad genomföring, olja till luft, typ GSB
Installations- och underhållsanvisning
Bruksanvisning i original

Detta dokument får ej kopieras utan skriftligt tillstånd från oss och innehållet får ej delges tredje part eller användas för något icke godkänt ändamål. Överträdelse befrias.
Säkerhetsinformation

Denna anvisning ska finnas tillgänglig för dem som ansvarar för installation, underhåll och drift av genomföringen.

Vid montering, drift och installation av genomföringen kan olika riskydda situationer uppstå, inklusive, men inte begränsat till:

- högt tryck
- livsfarlig spänning
- rörliga maskindelar
- tunga komponenter
- risk att halka, snubbla eller falla.

Särskilda rutiner och instruktioner krävs och måste följas vid arbeten med dessa produkter. Om instruktionerna inte följs kan följen bli svåra personskador, dödsfall och/eller skador på produkten eller saksalar.

Dessutom ska alla tillämpliga säkerhetsbestämmelser, till exempel lokala säkerhetsbestämmelser, säkra arbetsrutiner och gott omdöme tillämpas av personalen vid montering, drift, underhåll och/eller skrotning av sådan utrustning.

Säkerheten definieras här på två sätt:

1. risk för personskador eller dödsfall
2. saksalar eller skador på produkt (inklusive skador på genomföring eller annan utrustning och minskning av genomföringens livslängd).

Säkerhetsanmärkningar är till för att varna personalen för risken om medföra allvarlig personskador, dödsfall eller saksalar. De har lagts in i instruktionen före den text som behandlar risken.

Följande varningar och anmärkningar används i denna handbok:

WARNING

WARNING anger en omedelbart farlig situation som, om den ej undviks, kan medföra allvarlig personskada eller dödsfall. Signalordet skall endast användas i de mest extrema situationer.

WARNING anger också en potentiellt farlig situation som, om den ej undviks, kan medföra allvarlig personskada eller dödsfall.

VIKTIGT

VIKTIGT anger en potentiellt farlig situation som, om den ej undviks, kan medföra mindre eller måttlig personskada. Det kan även användas för att varna för osäkra rutiner.

VIKTIGT kan också användas för att ange risk för skada på egendom.

INFO ger ytterligare information för att hjälpa till vid utförande av arbetet som beskrivs och ge en problemfri användning.
Innehåll

1 Beskrivning ... 7
 1.1 Konstruktion .. 7
 1.2 Driftförhållanden ... 8
 1.3 Mekanisk belastning .. 8
 1.4 Reservdelar ... 8

2 Installation ... 9
 2.1 Verktyg ... 9
 2.2 Förbrukningsmaterial 9
 2.3 Transport, förvaring och hantering ... 9
 2.4 Lyft ur lådan .. 9
 2.5 Lyft och montering ... 10
 2.6 Dragstång för anslutning av bottenkontakt ... 11
 2.7 Inre anslutning/flexibel ledare .. 14
 2.8 Fast bottenkontakt .. 16
 2.8.1 Anslutning av kabelskor till bottenkontakt och montering av skärmkropp på oljesidan .. 16
 2.9 Montering av yttre anslutning .. 18
 2.10 Flänsens jordning .. 19
 2.11 Väntetid före spänningssättning ... 19
 2.12 Rekommenderade prov före spänningssättning 19
 2.12.1 Täthetsprov mellan transformator och genomföringens fläns 19
 2.12.2 Täthetsprov av genomföringens yttre anslutning 19
 2.12.3 Mätning av kapacitans och tan δ .. 20
 2.12.4 Kontroll av genomgångsresistans .. 20

3 Underhåll .. 21
 3.1 Rekommenderat underhåll och övervakning .. 21
 3.1.1 Rengöring av isolantens yta .. 21
 3.1.2 Mätning av kapacitans och tan δ .. 21
 3.1.3 Värmekamera för kontroll av lokal överhettning av anslutningar 21
 3.1.4 Läckagekontroll 21
 3.2 Skrotning ... 21
1 Beskrivning

1.1 Konstruktion

Genomföringen är avsedd att monteras i en vinkel på högst 90° från vertikalt läge. Kompositisolantens standardfärg är ljusgrå.

Fig. 1. Konstruktion, genomföring typ GSB.
1.2 Driftförhållanden

Tabellen nedan visar tekniska standarddata för genomföringar typ GSB. För förhållanden som överskrider nedanstående värden, kontakta ABB.

Allmänna data

<table>
<thead>
<tr>
<th>Tillämpning:</th>
<th>Transformatörer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klassificering:</td>
<td>Epoxiimpregnerad, kapacitansstyrda, kondensatorgenomföring</td>
</tr>
<tr>
<td>Omgivningstemperatur:</td>
<td>-40 till 40 °C enligt temperaturklass 2 i IEC 60137. (-60 °C enligt GOST 10693-81 i tillämpliga delar.)</td>
</tr>
<tr>
<td>Monteringsplatsens höjd över havet:</td>
<td>< 1000 m</td>
</tr>
<tr>
<td>Regnmängd och luftfuktighet:</td>
<td>1–2 mm regn/min horisontellt och vertikalt enligt IEC 60060-1, och 5 mm mm/min enligt IEEE</td>
</tr>
<tr>
<td>Föroreningsgrad:</td>
<td>Enligt angiven krypsträcka och IEC 60815</td>
</tr>
<tr>
<td>Max. tryck i medium:</td>
<td>100 kPa (övertryck)</td>
</tr>
<tr>
<td>Monteringsvinkel:</td>
<td>Horisontell till vertikalt</td>
</tr>
<tr>
<td>Mätuttag:</td>
<td>Enligt IEEE, spänningsuttag typ A. Spänningsuttag 6 kV som tillval.</td>
</tr>
<tr>
<td>Mätuttags kapacitans, (C_2):</td>
<td>< 5000 pF</td>
</tr>
<tr>
<td>Ledare:</td>
<td>Centrumrörs- eller flexibelt ledare.</td>
</tr>
<tr>
<td>Märkning:</td>
<td>Enligt IEC/IEEE.</td>
</tr>
</tbody>
</table>

1.3 Mekanisk belastning

Genomföringen är konstruerad för nedanstående böjbelastningar, applicerade på mitten av toppanslutningen, vinkelrätt mot genomföringens axel. I axiell riktning tål GSB-genomföringen en kontinuerlig belastning på 20 kN. Maximalt åtdragningsmoment för den yttre anslutningstappen är 200 Nm.

<table>
<thead>
<tr>
<th>Genomföring</th>
<th>Max. böjbelastning vid vertikal montering kN</th>
<th>Max. böjbelastning vid horisontell montering kN</th>
<th>Max. böjpöbelastning kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB</td>
<td>245</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>362</td>
<td>3.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>3.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>6.5</td>
<td>4</td>
</tr>
</tbody>
</table>

1.4 Reservdelar

I händelse av större skada på genomföringen rekommenderar vi att hela genomföringen skickas tillbaka till ABB för reparation och omprovning. Om någon del skadats eller förlorats under transport eller installation kan reservdelar beställas från ABB.
2 Installation

2.1 Verktyg
- Mjuka lyftstroppar.
- Lyftverktyg, 9760 667-A
- Schacklar, för hål Ø 25 mm, för att fästa mjuka lyftstroppar vid genomföringens fläns.
- Momentytterska för sexkantskruvar, nyckelvidd 16 mm (M10) och 13 mm (M8).
- Talja för montering av genomföringen i en viss vinkel.
- Mjukt underlägg.
- Flexibel draglina 9760 669-A, för montering av dragstång.
- Hylsnyckel 9760 669-B, för monterings- och dragstång.

2.2 Förbrukningsmaterial
- Vattenfritt vaselin, Mobilgrease 28 eller annat smörjmedel som inte skadar transformatoroljan, för att smörja skruvar som kommer i kontakt med transformatorolja.
- Mobilgrease 28 eller annat lämpligt fett för att smörja och skydda jordskruven och den yttre anslutningens O-ringspackning.
- Molykote 1000 eller annat lämpligt smörjmedel för att smörja kontaktsskruvarna och tätningen vid den yttre anslutningen.

2.3 Transport, förvaring och hantering

Fig. 4. Lyft ur lådan.

2.4 Lyft ur lådan

VIKTIGT

2.5 Lyft och montering

VIKTIGT

Ett mjukt underlag – t.ex. en gummimatta eller träskiva – måste användas under genomföringens nedre ände.

Lyft inte i kompositisolantens silikondel. Silikon- eller glasfiberröret kan skadas.

Genomföringens vikt anges på märkskylten. Genomföringar ska lyftas till vertikalt läge enligt fig. 5. Genomföringen levereras normalt med en skyddshuv i metall. Var försiktig så att inte huvens packning skadas vid demontering av skyddshuven.

För lyft till viss vinkel ska lyftdonen monteras enligt fig. 6. Genomföringar med kompositisolant får inte lyftas i isolanten. Centrumhålet i genomföringens ledare och oljesidan under fästflänsen ska rengöras noggrant och avsynas innan genomföringen monteras på transformatorn. En textil- eller stållina med tapp M8 (fig. 7) dras genom genomföringens centrumhål och ansluts till toppen enligt fig. 10 för dragstångssystem, och fig. 15 för flexibel ledare. Genomföringen är därefter klar att lyftas på transformatorn.

Skyddshuven i metall, med packning, torkmedel och fästen, ska återmonteras efter transformatorprovning. Åtdragningsmoment 50 Nm.

Det är viktigt att genomföringen packas om på samma sätt som när den levererades. Genomföringen bör fixeras i axiell och radiell riktning och säkras från att rotera med hjälp av trästöd.

Lådan med genomföringen försluts med skruvar och plastband vid ABB:s fabrik. Vi rekommenderar att använda skruvar och plastband när lådan återförsluts efter transformatorprovning.

VIKTIGT

Lyftöglan på lyftverktyget måste riktas in mot lyftöglan på flänsen för att undvika att toppmuttern börjar rotera och lossar.

Fig. 5. Lyft av genomföring.

Fig. 6. Lyft av genomföring till en viss vinkel.
2.6 Dragstång för anslutning av bottenkontakt

Montering av dragstång måste utföras enligt nedan. Kontaktytorna måste vara rena.

Delarna under transformatorlocket stöds vanligtvis av transportlocket under transport, fig. 8.

1. Som framgår av fig. 7 är ett temperaturkompenseringsdon placerat i toppen av genomföringens centralrör. Den övre dragstången dras igenom genomföringen med hjälp av draglinan. Kompenseringsdonet är unikt för varje genomföringsstorlek.

2. Om dragstången har en extra skarv ska den extra skarvhylsan läsas med låsvättska (Locnite 242 och aktivator Loctite T747) på plats för att undvika att skarven lossnar oavsiktligt vid eventuell senare demontering av dragstångssystemet. Fig. 13 visar de skarvar som är låsta vid leverans. Dragstången ska dras åt ordentligt mot skarvhylsorna när dessa monteras.

3. Linan, som dras genom genomföringen med kompenseringsdonet, brickan, muttern och hylnyckeln på plats, som visas i fig. 10, används för att sänka den övre delen av dragstången till rätt läge för att sättas samman med den gångade hylsan i den nedre änden, fig. 9.

4. Sänk sedan ned genomföringen i transformatorn med linan väl sträckt.

VIKTIGT

Om fasta pinnskruvar används för att fästa genomföringsflänsen, rekommenderar vi att en plastmuff monteras på två eller tre av bultarna, för att styra flänsen och förhindra att metallspån skärs loss, eftersom dessa kan falla ned i transformatorn.

5. Fäst genomföringen vid transformatorlocket.
6. Brickan och muttern fästs enligt åtdragningsmetod A eller B, se fig. 11 och 12.

Smörjmedel appliceras på gångorna och muttern vid ABB:s fabrik. Om det går trögt att skruva på muttern, smörj skruven noggrant med Molykote 1000. Tag bort överskott av Molykote med en trasa.

Varje genomföring med dragstång är försett med ett informationsblad om måttet (b-a), vilket uppmätts vid fabriken, och åtdragningsmomentet. Om genomföringen inte är standard ska värdet vara enligt denna information. Åtdragningsmomentet ska vara mellan 70 och 140 Nm.

Se till att rätt kraft uppnås i dragstången. Muttern ska dras åt enligt en av följande två förfaranden:
Åtdragningsmetod A
1. Drag åt muttern till 10 Nm och mät avståndet (a) från toppen av muttern till toppen av bulten.
2. Fortsätt dra åt muttern tills skillnaden mellan den andra och den första mätningen (a-b) är lika med det värde som anges i tabell 2. Varje varv motsvarar 2 mm förlängning.
3. Kontrollera med momentnyckel att muttern är åtdragen till mellan 70 och 140 Nm.

Åtdragningsmetod B
Använd domkraft för att dra åt dragstångsbulten enligt det värde som anges i tabell 2. Dra åt muttern för hand och avlasta domkraften.

Table 2.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Skillnad (b-a) (mm)</th>
<th>Kraft med CT-förlängning 0,3 / 0,6 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB 245</td>
<td>7,0</td>
<td>36,0 / 34,5</td>
</tr>
<tr>
<td>GSB 362</td>
<td>8,5</td>
<td>37,5 / 36,1</td>
</tr>
<tr>
<td>GSB 420</td>
<td>9,5</td>
<td>38,0 / 36,5</td>
</tr>
<tr>
<td>GSB 550</td>
<td>12,0</td>
<td>38,5 / 37,3</td>
</tr>
</tbody>
</table>
Låst med låsvätska 1269 0014-408 (övre gänga) (Loctite 270)

Olåst vid leverans (nedre gänga)

Låst med låsvätska 1269 0014-408 (övre gänga) (Loctite 270)

Olåst vid leverans (nedre gänga)
Ska låsas med Loctite enligt anvisningarna i avsnitt 2.6, steg 2 vid installation vid anläggningen.

Extra skarv
2.7 Inre anslutning/flexibel ledare

Montering av flexibel ledare måste utföras enligt nedan. Kontakttyorna måste vara rena. Eventuell oxid på de hårdlödda kontakterna kan borstas bort med stålbörste.

Om fasta bultar används för att fästa genomföringsflänsen, rekommenderar vi att en plastmuff monteras på två eller tre av bultarna, för att styra flänsen och förhindra att metallspån skärs loss, eftersom dessa kan falla ner i transformatorn.

Tabell 3.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Avstånd från fläns till inre anslutning (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB 245</td>
<td>2577</td>
</tr>
<tr>
<td>GSB 362</td>
<td>3467</td>
</tr>
<tr>
<td>GSB 420</td>
<td>3847</td>
</tr>
<tr>
<td>GSB 550</td>
<td>4877</td>
</tr>
</tbody>
</table>

Under transport kan den inre anslutningen fästas vid täckplåten. Vid montering tas täckplåten bort och anslutningen lossas.

1. Se till att skärmadaptern sitter korrekt efter transport och hantering, genom att tillämpa proceduren för fast bottenkontakt i avsnitt 2.8.
3. Släpp ned draglinan genom genomföringens mitthål.
4. Lyft genomföringen ovanför öppningen.
6. Fäst draglinan vid den inre anslutningen.
7. Sänk ned genomföringen i transformatorn och styr den flexibla ledaren genom att hålla draglinan spänd. Om transformatorn har inspektionsöppningar nära genomföringen ska dessa vara öppna under monteringen, så att man kan kontrollera att ledaren går in i genomföringen korrekt.
8. Om ledaren är för kort eller mycket för lång måste genomföringen lyftas igen och längden justeras.
10. Dra upp draglinan en bit ovanför det slutliga läget och montera den delade stoppringen i spåret. Sänk därefter ned hela montage på plats. Se till att stoppringen är i rätt läge, Fig. 15 och 16.
11. Släpp försiktigt draglinan och avlägsna den, Fig. 17.
Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.
2.8 Fast bottenkontakt
Den fasta bottenkontakten monteras vid ABB:s fabrik och bör inte kräva någon ytterligare justering. För att se till att monteringen är korrekt även efter transport och hantering rekommenderar vi dock följande förfarande:

1. Kontrollera att avståndet mellan brickan ovanpå bottenkontakten och dragringen är 7 ±0,5 mm, se fig. 18.
2. Kontrollera att de sex skruvarna har ett åtdragningsmoment på 40 Nm.

2.8.1 Anslutning av kabelskor till bottenkontakt och montering av skärmkropp på oljesidan

Typ 1 bottenkontakt
Bottenkontakten i standardutförande (typ 1) är avsedd för enkel installation. Anslutning av kabelskor och montering av skärmkroppen sker enligt följande:

1. Montera bottenkontakten enligt beskrivningen i avsnitt 2.6 eller 2.8.
2. Placera skärmkroppen tillfälligt som visas i fig. 19. Se till att skärmkroppens breda ände sitter mot genomföringen.
3. Om systemet med fast bottenkontakt används, sänk ned genomföringen och fäst den på transformatorn.
4. Anslut kabelskorna till bottenkontakten.
 Åtdragningsmoment 68 ± 6 Nm.
6. Vrid skärmkroppen medurs cirka 20 grader och släpp därefter av på kraften.
7. Se till att skärmkroppen är i läst läge.

Bottenkontakt av typ 2 för anpassade skärmkroppar (endast för dragstång)
Utformningen av anpassade skärmkroppar ska alltid godkännas av tillverkaren av genomföringen.

Bottenkontakten av icke-standardmodell (typ 2) är försedd med tre gångade hål, M10, för montering av skärmkroppen. Anslutning av kabelskor och montering av skärmkropp på oljesidan sker enligt följande:

1. Beroende på typ av skärmkroppen kan denna monteras över eller under bottenkontakten. Om den är tänkt att monteras över den ska den tillfälligt placeras över centrumröret. I det andra fallet ska kabelskorna tillfälligt dras igenom skärmkroppen.
3. Om systemet med fast bottenkontakt används, sänk ned genomföringen och fäst den på transformatorn.
4. Anslut kabelskorna till bottenkontakten.
 Åtdragningsmoment 68 ± 6 Nm.
5. Säkra skärmkroppen vid bottenkontakten med tre M10-skruvar.
Exempel på montering av skärmkropp (ovanför bottenkontakten)

Fig. 18. Fast bottenkontakt.

Fig. 19. Anslutning till bottenkontakt.

Fig. 20. Monterade kablar och skärmkropp.

Fig. 21. Positionering av anpassad skärmkropp.

Fig. 22. Hålbild i bottenkontakten för anpassad skärmkropp.
2.9 Montering av yttre anslutning

Innan ledningsklämmorna ansluts måste de yttre anslutningarna av aluminium noggrant borstras rena med stålborste och smörjas med kontaktpasta eller vaselin. På yttre anslutningar av aluminium är de inre kontaktytorna tenn-zinkpläterade och får därför inte borstras med stålborste.

För att uppnå korrekt kontakttryck och låg resistans måste nedanstående procedur utföras.

1. Rengör kontakt- och packningsytorna noggrant.
4. Smörj alla skruvars gängor och undersidan av skruvskallen med Molykote 1000 eller annat lämpligt smörjmedel.
5. Sätt i och drag åt M10-skruvarna med planbricka, som trycker tappen mot ledarröret, den inre anslutningen eller den övre dragstången, beroende på vilket system som används. Dra korsvis till slutligt åtdragningsmoment 40 ±4 Nm.

I båda fallen är det mycket viktigt att dra åt jämnt. Skruvarna ska därför dras åt i steg, alternérande på vardera sidan.

Fig. 23.

Fig. 24. Övre skärmkropp för GSB 420.
Tillval för GSB 245 och GSB 362.

Fig. 25. Övre skärmkropp för GSB 550.

Fig. 26. Montering av övre skärmkropp.

Borsta inte inre kontaktytor med stålborste!
2.10 Flänsens jordning

Alternativ 1
Sätt i en infettad (Mobilgrease 28 rekommenderas) spetsig stoppskruv M12 (helst rostfritt stål A4-80). Dra åt till 40 Nm, så att den går igenom färgen på transformatortanken och när metallen under. Detta ger elektrisk kontakt mellan genomföringen och transformatorkärlet, så att de håller samma potential.

Alternativ 2
Montera en flexibel ledare mellan jordningshålet M12 i genomföringens fläns och en jordanslutning på transformatorn. Fetta in skruven (Mobilgrease 28 rekommenderas) och dra åt skruven M12 i genomföringsänden till 40 Nm. Anslut ledarens andra ände till transformatorn.

2.11 Väntetid före spänningsättning
Viss väntetid kan vara nödvändig före spänningsättning, för att förhindra överslag eller partiell urladdning på grund av luftbubblor på genomföringens yta. Välj lämplig metod nedan.

Transformator fylld under vakuum
Ingen väntetid är nödvändig för genomföringen.

Avgasad oljefyllt transformator
Använd ren och torr pensel för att frigöra bubblor på ytan vid monteringen. Vänta 6 timmar före spänningsättning.

Gasmättad oljefyllt transformator
Använd ren och torr pensel för att frigöra bubblor på ytan vid monteringen. Vänta 24 timmar före spänningsättning.

Avgasad oljefyllt transformator med reducerad oljenivå
Vänta 24 timmar före spänningsättning efter att oljenivån återställts.

För alla alternativ utom för transformator fyllt under vakuum ska olja tillåtas fylla centrumröret minst till i höjd med flänsen genom att den yttre anslutningens tätningssystem lättas, så att luft slipper ut den vägen.

2.12 Rekommenderade prov före spänningsättning
Nedanstående prov kan utföras för att kontrollera genomföringens isolation, tätning och strömbana. Proven ska göras efter montering men innan genomföringen ansluts till ställverkets övriga strömkretsar.

1. Täthetsprov mellan transformator och genomföringens fläns
2. Täthetsprov av genomföringens yttre anslutning
3. Mätning av kapacitans och tan δ
4. Kontroll av genomgångsresistans

2.12.1 Täthetsprov mellan transformator och genomföringens fläns
Flera olika metoder kan användas och vi hänvisar till instruktioner från företaget som ansvarar för montering i fält. Till exempel kan tätningen mellan transformatorn och genomföringens fläns kontrolleras när transformatorn är oljefyllt genom att man använder krita eller pappersremor.

2.12.2 Täthetsprov av genomföringens yttre anslutning

1. Fyll spårgas i centrumröret innan den yttre anslutningen monteras. Transformatororns oljenivå måste vara över genomföringens nedre ände men under flänsen.
2. Öka trycket i centrumröret genom att höja oljenivån så mycket som möjligt.
3. Sök med gasdetektor (sniffer) efter läckande gas vid packningen.
2.12.3 Mätning av kapacitans och tan δ

VIKTIGT

Eftersom C_2 oftast är relativt liten får mätuttaget aldrig ingå i en öppen krets när spänning läggs på genomföringen. Det måste alltid jordas eller anslutas till en yttre impedans. I annat fall kan genomföringen förstöras.

Packningen ska alltid vara på plats och kupolmuttern åtdragen när mätuttaget inte används, för att förhindra att damm eller vatten tränger in i mätuttaget.

Efter montering bör kapacitansen mätas. Anslut en mätbrygga mellan den yttre anslutningen och mätuttaget. Tack vare genomföringens isolerade mätuttag kan detta göras utan att genomföringen demonteras från transformatorn (se fig. 2). Mer information finns i produkthinformation 2750 515-142, "Bushing diagnostics and conditioning".

När genomföringen är spänningslös och inte ansluten kan mätuttagets lock tas bort. Mätutrustningen ansluts till mätuttaget och mätningens spänningskälla till genomföringens anslutning.

Kapacitansen C_1 mellan den yttre anslutningen och mätuttaget, samt kapacitansen C_2 mellan mätuttaget och flänsen, anges på märkskylten. Nominell kapacitans C_1 för de olika genomföringstyperna anges i tabell 4. C_2 med mätuttag är i högsta grad beroende av de omgivande delarna inuti transformatorn och det är inte möjligt att ange ett nominellt värde som gäller för alla drifts situationer.

Tabell 4. Nominell kapacitans för C_1 i pF (tillverkningstoleranser ± 10 %).

<table>
<thead>
<tr>
<th>Typ</th>
<th>CT = 300 mm</th>
<th>CT = 600 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_1</td>
<td>C_2</td>
</tr>
<tr>
<td></td>
<td>(mätuttag)</td>
<td>(spännings-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uttag)</td>
</tr>
<tr>
<td>GSB 245</td>
<td>663</td>
<td><5000</td>
</tr>
<tr>
<td>GSB 362</td>
<td>619</td>
<td><5000</td>
</tr>
<tr>
<td>GSB 420</td>
<td>579</td>
<td><5000</td>
</tr>
<tr>
<td>GSB 550</td>
<td>553</td>
<td><5000</td>
</tr>
</tbody>
</table>

2.12.4 Kontroll av genomgångsresistans

Vilken metod som används för att mäta genomgångsresistansen beror på transformatorns konstruktion. Allmänt gäller att en ström läggs på från genomföring till genomföring. Spänningsfallet från yttre anslutning till yttre anslutning mäts. Resistansen beräknas med hjälp av Ohms lag, $U = R·I$. (U: uppmätt spänningsfall; I: genomgångsström; R: total resistans i kretsen)

Den totala genomgångsresistansen är summan av transformatorlindningens resistans, ledarens resistans och genomföringens lednings- och kontaktresistans. Ytterligare resistans från genomföringens ledare ska inte vara mer än 150 $\mu\Omega$. Eftersom genomgångsresistansen i högpånningslindningen på en typisk krafttransformator är i storleksordningen 0,1–1 Ω, är detta en mycket grov metod som endast kan användas för att upptäcka mycket stora fel i strömbanan, såsom avbrott.

Otolrålig kontakt kan bara upptäckas genom noggrann mätning över varje anslutningspunkt, eller genom mätning av temperaturstegring under drift med hjälp av värmekamera.
3 Underhåll

GSB-genomföringarna kräver inget regelbundet underhåll och är i princip underhållsfria.

WARNING

Inget arbete får utföras på genomföringen när den är spänningsätt eller om den inte är jordad.

3.1 Rekommenderat underhåll och övervakning

1. Rengöring av isolantens yta
2. Mätning av kapacitans och tan δ
3. Värmekamerakontroll av lokal överhettning av anslutningar
4. Läckagekontroll

3.1.1 Rengöring av isolantens yta

Undvik lösningsmedel på genomföringens tätningar och på porslinsskarvar

3.1.2 Mätning av kapacitans och tan δ

Se kapitel 2 Installation.

3.1.3 Värmekamera för kontroll av lokal överhettning av anslutningar

Vid maximal nominell spänning är temperaturen hos genomföringens yttre anslutning normalt cirka 35 till 45 °C högre än omgivningstemperaturen. Väsentligt högre temperatur, speciellt vid lägre strömbelastning, kan vara ett tecken på dålig kontakt.

3.1.4 Läckagekontroll

Kontrollera visuellt att inga läckor finns mellan genomföringen och transformatorflänsen, i samband med normal övervakning av stationen.

3.2 Skrotning

GSB-genomföringen levereras i en trälåda med ett rör i rostfritt stål på oljesidan för att skydda mot fukt. Genomföringen består av följande:

Kompositisolanten består av silikongummi på ett rör av glasfiberarmerad epoxi. Mellan isolanten och kondensatorkroppen finns silikongel, upp till 150 l i de största genomföringarna.

Demonterbar giuten aluminiumfläns innehåller mätuttag, låsring av aluminium, skruvar i rostfritt stål samt O-ringer av gummi. Skruva loss låsringen och avlägsna flänsen från kondensatorkroppen. O-ringer monterade i flänsen är enkla att avlägsna.

Demonterbart mätuttag innehåller en stomme av epoxi, hölje i aluminium, kabel, mässingskontakter samt O-ringer. Dessa komponenter kan enkelt separeras, med undantag för den inbyggda centrumskruven i mässing i mätuttagets stomme. Skruven kan avlägsnas genom att krossa mätuttagets stomme.

På tillvalet med 20 kV spänningsuttag är flänsen fylld med cirka 2 dl silikongel. Denna gel kan skrapas ut och separeras när flänsen separeras från kondensatorkroppen.

Yttre anslutningar av koppar, mässing eller låghegnerat aluminium kan vara plåterade med till exempel silver, tenn, guld eller nickel med en skiktjocklek upp till 20 μm. Skruvarna är av rostfritt stål och O-ringarna av gummi. Dessa komponenter kan enkelt separeras.

Dragstangen innehåller detaljer av aluminium, stål, mässing och nylon. Bottenkontakten och den inre anslutningen är tillverkade av koppar, och dragringen och skruvarna av mässing. Skärmkropp av epoxyhålad aluminium och O-ringar av gummi. Dessa komponenter kan enkelt separeras.