IndustrialIT EMS – Power Management Module

- Electrical Process
- System Configuration
- Power Management Functionality
- References
- Benefits
Qualification Criteria for ABB Power Management

<table>
<thead>
<tr>
<th>Critical Loads</th>
<th>Load Shedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited In-plant Generation</td>
<td>Power Control</td>
</tr>
<tr>
<td>Insufficient Reliability of Public Grid</td>
<td>Mode Control</td>
</tr>
<tr>
<td>Several Generators</td>
<td></td>
</tr>
<tr>
<td>Contracted Power Importation</td>
<td></td>
</tr>
<tr>
<td>Different Electrical Operational Configurations possible</td>
<td></td>
</tr>
<tr>
<td>Complex Distribution Networks</td>
<td>SCADA</td>
</tr>
<tr>
<td>“Local only” Control facilities</td>
<td></td>
</tr>
</tbody>
</table>

Why ABB Power Management?

- Thorough understanding of the electrical process
- +15 years experience in implementing Power Management Systems in many projects (green- and brown-field plants)
- Standard software, well documented, tested, proven technology
- Fast Response Time for Load Shedding, Mode Control, Power Control, Re-acceleration
- High Resolution and Accuracy of Sequence of Event recording
- Solution complies with class 3 EMC immunity
- Single responsibility: One supplier for Power Management System integrated with Protection, Governor, Excitation, Tap Changer, Motor Control Centre, Variable Speed Drive, etc.
Typical Electrical Network of Industries

IndustrialIT EMS Power Management Overview
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

With Load Shedding
Load Shedding: the Types

- Fast Load Shedding on Loss of Power Resources
- Load Shedding on Frequency Drop
- Slow Load Shedding on Overload
- Slow Load Shedding for Peak Shaving
- Manual Load Shedding

Load Shedding: Keywords

- Fast
- Exact
- Flexible
- Coordinated
- Deterministic
- Security and Reliability
- Accurate Event Logging
- Operator Guidance
- Independent Back-up System
Load Shedding Example Displays

1. Load Shedding Control
2. Load Shedding Islands
3. Load Shedding Overview
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

Display Generator Capability Diagram
Active and Reactive Power Control

- **Active Power Sharing:**
 - Efficient Power Generation
 - Power Exchange Optimization (Power Demand Control)
 - Avoid Component Overloading
 - Spinning Reserve Optimization
 - Standby Optimization

- **Reactive Power Sharing:**
 - Achieve Stable Operation
 - Power Factor Optimization

Power Control Example Displays

1. Calculated Control Margins
2. Generator Capability Diagram
3. Grid Capability Diagram
4. Maximum Demand Monitoring
5. Tie-line Monitoring
6. Mark V Vibration
7. Mark V Gas Turbine Generator Overview
Overview of the control mode of the turbine generator unit

Overview of the control mode of the turbine

Overview of the control mode of the generator

Overview of the measurements and the setpoints

Overview of the operation of the network

10 Dynamic keys for operator control

Working point of the turbine and the generator

Setpoint to the turbine and the generator
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation
Mode Control

- for Generators
- for Turbines
- for Transformers
- for Switchboards

Mode Control Example Display
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation
Supervision, Control and Data Acquisition

- Clearly Structured Presentation
- Controls - Select Before Execute
- Status Indications
- Consistency Analysis
- Time Tagged Events (1 ms resolution)
- Alarm Handling, Reports, Trends
- Supervision and Self Diagnostics
- Single Window concept

Integration with Supervisory Systems

- Plant Information Systems - MIS
- Regional Dispatch Centres
- Power Generation Coordination Centres
- Energy Trading
- Utility Management Systems
- Process DCS
Integration with Subordinated systems

- Satellite Time Receiver (GPS)
- Alarm Annunciators
- SF-6 Density Monitoring Units
- Motor Control Centres
- Battery Chargers
- Meteorological Stations
- Diesel Generators
- Generator- and Turbine controller
- Protection and Control Units

Integrated Protection & Control Units

- Protection
- Measuring of U,I,E, calculation of P & Q
- Monitoring & Control
- Interlockings
- Alarm Annunciation
- Event Time Tagging
- Disturbance Recording
- Local Storage of trip-events
- Serial Communication to Power Management System
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

Re-Starting

- Triggered by Load Shedding or Undervoltage
- Individual Motors
- Priority per Motor
- Max. allowed Time Delay per Motor
- Network Configuration Check
- Network Restoration
Power Management Functionality

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

Synchronisation

- Automatic Synchronisation after Boiler Trip
- Automatic Synchronisation initiated by Operator
- Semi Automatic Synchronisation
- Manual Synchronisation
Synchronisation Example Displays

1. Synchronisation Overview
2. Synchronisation Display
Power Management Functionality: Summary

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Starting
- Synchronisation
- Circuit breaker Control
- Transformer Control
- Motor Control
- Generator Control
- Network Configuration Determination
ABB Power Management allows you to:

- Avoid black-outs (up to 500 kUSD / hour)
 - Power control including voltage control, frequency control, sharing power among generators and tie-line(s).
 - High Speed Consistency Load Shedding (< 100 ms.)
- Reduce electricity costs
 - Peak-shaving
 - Re-active Power Control & Sharing
- Minimize operational costs
 - Decreased number of operators
 - Event driven maintenance
 - Single Window concept
- Reduce investment costs
 - Minimized cabling and engineering
 - Optimized network design