This webinar brought to you by the Relion® product family

Relion. Thinking beyond the box.

Designed to seamlessly consolidate functions, Relion relays are smatrter,
more flexible and more adaptable. Easy to integrate and with an
extensive function library, the Relion family of protection and control
delivers advanced functionality and improved performance.




ABB Protective Relay School Webinar Series
Disclaimer

ABB is pleased to provide you with technical information regarding protective
relays. The material included is not intended to be a complete presentation of
all potential problems and solutions related to this topic. The content is
generic and may not be applicable for circumstances or equipment at any
specific facility. By participating in ABB's web-based Protective Relay School,
you agree that ABB is providing this information to you on an informational
basis only and makes no warranties, representations or guarantees as to the
efficacy or commercial utility of the information for any specific application or
purpose, and ABB is not responsible for any action taken in reliance on the
information contained herein. ABB consultants and service representatives
are available to study specific operations and make recommendations on
improving safety, efficiency and profitability. Contact an ABB sales
representative for further information.
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- Chris graduated from Ohio University, with Bachelors in Electrical

Engineering and The Ohio State University, with a Master of Business
Administration.

- He began his career in the electric utility industry in a consulting role with

Buckeye Power, Inc. out of Columbus, OH in 2002.

= In 2005, he graduated with his BSEE and accepted a position as a

Protection & Control Engineer at POWER Engineers, Inc. in St. Louis, MO.

= In 2008, he joined American Electric Power in Columbus where he help

multiple positions, including Protection and Control Engineer in Station
Projects Engineering, Lead Engineer supporting distribution automation for
Grid Management Deployment, and Supervisor of Planning & Engineering
for Protection & Control Asset Engineering.

= Chris is currently a “Substation Automation Systems Architect” for

“Substation Automation Systems” in ABB for the North America Region.
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Learning objectives

- Business Case
= Volt-Var Optimization Theory
- Conservation Voltage Reduction
- Power Factor Correction
- Implementation Concepts
= Project phasing and considerations
- Simple VVO Example
- System Integration/Architecture
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Key acronyms
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- VVO — Volt-Var Optimization

- VVC - Volt-Var Control

- CVR - Conservation Voltage Reduction

- CVRf - CVR Factor

- M&V — Measurement & Verification

- EOL — End of Line (Voltage Monitoring Point)

« SCADA — Supervisory Control and Data Acquisition
- DMS - Distribution Management System

- |[ED — Intelligent Electronic Device

« RTU — Remote Terminal Unit



Business case overview

= Utilities can apply CVR for short periods of time to reduce peak demand and/or to reduce capacity
payments for those distribution companies that are billed on the basis of their maximum monthly
peak demand (2012 DOE Report)

- 25 States with Energy Efficiency Resource Standards (EERS)

= Optimizing power delivery on the distribution system can reduce energy (kWh) and demand (kW) to
serve customers.

- Many loads (including motors) actually function more efficiently with reduced applied voltage
than when operated at (or above) system base voltage (eg 120V secondary)

- Public power entities are naturally incentivized to deliver power to customers at least cost, including
the more efficient delivery of power.

- VVO systems optimize delivery voltage through CVR on a closed loop system, ensuring customers
are receiving the lowest allowable voltage within ANSI C84.1 limits.

- VVO systems correct power factor is corrected at a central level to maximize capital investment
benefit.

- VVO systems can leverage benefits without any customer interface!

AL HD ED
©ABB F\iprmw

December 10, 2013 | Slide 7



Energy Efficiency Resource Standards (EERS)
Policy approaches by state (as of July 2013)




Conservation Voltage Reduction (CVR)

- Studies dating back to the 1980s (Effects of Reduced Voltage on the Operation and
Efficiency of Electric Loads, EPRI, September 1981) have shown that small
reductions in distribution voltage can reduce electricity demand from customer
equipment and save energy. This has become known as “Conservation Voltage
Reduction (CVR)".

= Utilities are regularly seeing energy and demand reduction of 3% or more with CVRf
between .7 and 1.0 (or greater).

- CVR response is dependent upon the type of loads on the feeder as well as general
feeder characteristics.

- Most heavily loaded feeders should be targeted first for the most “bang for your
buck”.
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Conservation Voltage Reduction (CVR)

Theory

126V
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Power Factor Correction
Theory

Supplied by
Capacitors

} Supplied by System

Real Power (P)
= Shunt capacitors can provide much of the reactive power required on a distribution
circuit, reducing the total power requirements

= Optimizing power factor (real power as a ratio of total power) to unity reduces
distribution system losses, minimizing capital investment requirements
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VVO system implementation
Automation system concepts

Rule-Based Volt/Var Control

v

Model-Based Volt/Var Optimization s}

Regional
Two-Way
Regi I Communication
eetons Control System
One-Way g
Communication )
Distribution Control System
System Provided asset

() status

Measured values
* Heuristics at devices now
* Rule-based visible
* Considers only few

or several points—
often just capacitor

Local Controls

(]
banks, not regulators
* Based on local g B
measurements * Thermal and
« No coordination voltage constraints

at system level not modeled

* Minimal visibility
into performance
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2010

* Reduced ownership
costs through shared
Infrastructure with
SCADA, OMS, DMS
applications

Maximizes CVR and loss
reduction through
mathematical
optimization

Uses present “as-

operated” network model

» Accountsforchanging
feeder configurations

» Models loads and their
voltage sensitivity

» Voltage and thermal limits
explicitly modeled

* Subtransmissionand
secondariescan be modeled

2011+



Volt-Var Optimization (VVO)
Technical considerations

= “Traditional” power factor correction solutions are able to solve simple power factor
problems at local levels

- How do you know the capacitor bank is online and functioning properly?
- How do you know the overall power factor is being optimally corrected?

- “Traditional” CVR correction techniques involve lowering LTC/regulator tap positions
at feeder/bus heads to implement demand response

- How do you know the utilization/service voltages are within acceptable ANSI
C84.1 limits?

- How do you know the voltage level has been optimized without closed loop
voltage monitoring on the system?

- “Centralized” VVO automation applications can help solve all of these challenges,
while providing better optimization at a system wide level.
AL HD ED
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VVO system implementation
System components

= Automation application
- Software (eg ABB MicroSCADA Pro)
- Hardware

- For subste)ltion based applications this should be a station hardened computer (eg ABB MicroSCADA Pro
SYS600C

- For sub-enterprise/enterprise based applications this should be a more traditional server
= Distribution circuit components
- Equipment (cap banks, reg banks, LTCs, reclosers, EOL sensors, etc.)
- Intelligent electronic devices (IEDs)
« These need to communicate via standard open protocols such as DNP3!
« Telecommunications equipment
- Typically wireless radios for telemetry to distribution circuit devices

- Fiber can also be integrated where feasible, such as station backhaul

AL HD
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VVO system implementation
Project steps

- Planning

- Model circuits to determine optimum equipment layout and investment requirements based
upon project budget

- Identify “bellweather” EOL monitoring locations to ensure ANSI C84.1 compliance
- Telecommunications site survey for any wireless infrastructure

- Engineering/Procurement
- Circuit engineering for new equipment (no different than “traditional” engineering)
- System engineering for automation application (VVO)
- Telecommunications engineering for wired/wireless infrastructure

- Integration (may be associated with factory acceptance testing)

- Ensure all distribution/telecommunications/automation applications function together as one
congenial system!

- Testing/Commissioining (typically associated with site acceptance testing)

AL HD ED
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Simple feeder scenario
Base case

Example Distribution Feeder

!

— 61.1A — 41.1A — 20.8A

e
- L 1
Transformer LTC L — — A
T l l

|a__J\__J~__J\_

YT

300kVAR  300kVAR  300kVAR EOL Volt
Capacitor  Capacitor  Capacitor Monitor

= 12.47kV feeder w/ LTC on transformer regulating to 125V secondary at feeder head
(120V base)

- Base power factor of .7 with no power factor correction implemented
- Line impedance of .4 +|.6 ohms per mile, each line section is 5 miles

= .4 ohms is the “real” resistance, .6 ohms is the “imaginary” reactance
= CVRf=1.0 (1% drop in demand for each 1% drop in voltage)
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Simple feeder scenario
Base case

Example Distribution Feeder
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Simple feeder scenario
Switch in capacitor bank 1

Example Distribution Feeder
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Simple feeder scenario
Switch in capacitor bank 2

Example Distribution Feeder
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Simple feeder scenario
Switch in capacitor bank 3

Example Distribution Feeder
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Simple feeder scenario
LTC lower 1 LTC tap position

Example Distribution Feeder
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Simple feeder scenario
LTC lower 1 LTC tap position

Example Distribution Feeder
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Simple feeder scenario
LTC lower 1 LTC tap position

Example Distribution Feeder
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Simple feeder scenario
Case comparison
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Volt-Var Optimization (VVO)
Example results & takeaways

- Feeder power factor corrected from .7 to near unity
- Feeder current reduced from 61 A/phase to 43 A/phase
- Feeder load reduced from 1.3MVA to .9MVA (33%)
= 2.5% demand reduction from CVR (assume CVRf of 1%)

= Majority of savings due to reduction in reactive power requirements provided by
utilizing shunt capacitors for power factor correction

= Loss reduction also evident through reduced line currents

AL HD
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Volt-Var Optimization (VVO)
Example results & takeaways

= Obviously, power factor correction provides the most “bang for your buck”

- Chances are, utilities already have installed capacitor banks operating locally so
some of this benefit is already achieved

- Implementing VVO presents the opportunity to revisit the power factor
correction studies from a centralized standpoint

= Ancillary benefit of VVO: integrating telecommunications network with IEDs
facilitates distribution SCADA system operational efficiency (keep your cap
banks online and functioning properly!)

= Capacitor banks help to flatten the load profile, allowing true voltage optimization
= CVR benefits seem small in comparison to power factor correction; however, when
combined across multiple feeders/stations the benefits are rather large

onss AL EDHD
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Example VVO geographical circuit layout
Multi-vendor integration
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Example VVO one-line circuit representation
Multi-vendor integration
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VVO geographical interface integration

= One-line integration
- Geographical representation

- Integrate additional automation
application functions
(SCADA/DMS/FDIR etc.)
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Mavigste Miew Settings Tools Help
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Alat 2009 March 12 10:39:11.338 NCC 1 APL 2 Status of Applcation state

L .|| Fauk Location Demo ToolMgr  Open visual SCIL Tool (vsa k)
& D W Onecor .| | e, EstRivHer BTN e

noo.-

Feeder ORLKO7LI Marett
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FIVAA-L-4000226 (Contral Certer) 2009 March 12 16:46:56
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Additional automation application synergies

AN Field Crew Management <~

| Graphical Network Maps

. . .
Field crew location and movement '

Decluttering

— Plan Management

e

Fault Location
Automatic Restoration &

&

. 4o
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Load modeling
Network load situation & simulation
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Putting it all together
Network architecture
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Putting it all together
System hardware
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Cyber security

= Password protection Monitor Bro - Login

= Auto logout after inactivity ‘&m‘g
« Password policies

. . Application: ]AF‘LDF‘EHA ~ ‘
= Security events logging Username:  [DEMO |
Password: ] P I

= Security Scripts
= Deployment Guideline

Evant Display (M Proconfiguration] - Manitor ra £ 1 - APLOPIRA [User ; DEMO]
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ABB value chain

Partnership Collaboration Coordination Execution Results

Svstem Proiect Englneerln Testmg
D>(lasi N Mana Jement Installation Training Services
9 9 Procurement Commlssmnmg

We support you in every step of your project
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Distribution automation in action

ABB
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Smart Grid Center of Excellence (COE)

= Single point of contact to leverage ABB’s

proven expertise as a worldwide
Transmission & Distribution (T&D)
Operations Technology (OT) and
Information Technology (IT) system
provider.

- Displays many of the products and

solutions from ABB’s smart grid portfolio
and allows utilities to get engaged with live
functional demonstrations.

- Integrated Verification Center where

utilities can collaborate with ABB

engineers to verify the integration and
interoperability of smart grid solutions
between vendors and manufacturers.
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Final takeaways

VVO systems have been proven to provide positive NPV investments

Increased focus on energy efficiency and retirement of generation pressuring utilities
to find alternate ways to maximize value of new and existing capital investments

Centralized automation systems provide system synergies, including:
= Distribution (“outside the fence”) SCADA
= Distribution Management Systems (DMS)
- Outage Management Systems (OMS)
= Automatic Reconfiguration (FDIR, FLISR, etc.)

- Remote access to distribution devices through wireless infrastructure

Rethink the strategy — move from schedule based to condition based maintenance

- VVO systems enable you to keep your field devices on-line and functioning properly!
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Thank you for your participation

Shortly, you will receive a link to an archive of this presentation.
To view a schedule of remaining webinars in this series, or for more
information on ABB’s protection and control solutions, visit:

www.abb.com/relion
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