Relion® 650 SERIES
Transformer protection RET650
Version 1.3 IEC
Commissioning manual
Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)

This product includes cryptographic software written/developed by: Eric Young (eay@cryptsoft.com) and Tim Hudson (tjh@cryptsoft.com).

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB AB
Grid Automation Products
SE-721 59 Västerås
Sweden
Telephone: +46 (0) 21 32 50 00
Facsimile: +46 (0) 21 14 69 18
http://www.abb.com/protection-control
Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Table of contents

Section 1: Introduction

1.1 This manual .. 7
1.2 Intended audience.. 7
1.3 Product documentation... 8
1.3.1 Product documentation set .. 8
1.3.2 Document revision history .. 9
1.3.3 Related documents .. 9
1.4 Symbols and conventions ... 10
1.4.1 Symbols .. 10
1.4.2 Document conventions ... 10

Section 2: Safety information

2.1 Symbols on the product ... 11
2.2 Warnings .. 11
2.3 Caution signs ... 12
2.4 Note signs .. 13

Section 3: Available functions

3.1 Main protection functions ... 15
3.2 Back-up protection functions ... 15
3.3 Control and monitoring functions ... 16
3.4 Station communication ... 20
3.5 Basic IED functions .. 21

Section 4: Starting up

4.1 Factory and site acceptance testing ... 23
4.2 Commissioning checklist ... 23
4.3 Checking the power supply .. 24
4.4 Energizing the IED ... 24
4.4.1 Checking the IED operation .. 24
4.4.2 IED start-up sequence ... 24
4.5 Setting up communication between PCM600 and the IED 25
4.6 Writing an application configuration to the IED .. 30
4.7 Checking CT circuits .. 31
4.8 Checking VT circuits .. 31
4.9 Using the RTXP test switch ... 32
4.10 Checking binary input and output circuits .. 32
4.10.1 Binary input circuits ... 32
4.10.2 Binary output circuits .. 33
4.11 Checking optical connections ... 33
<table>
<thead>
<tr>
<th>Section 5</th>
<th>Establishing connection and verifying the IEC 61850 station communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Setting the station communication</td>
</tr>
<tr>
<td>5.2</td>
<td>Verifying the station communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 6</th>
<th>Testing IED operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Preparing the IED to verify settings</td>
</tr>
<tr>
<td>6.2</td>
<td>Activating the test mode</td>
</tr>
<tr>
<td>6.3</td>
<td>Preparing the connection to the test equipment</td>
</tr>
<tr>
<td>6.4</td>
<td>Connecting the test equipment to the IED</td>
</tr>
<tr>
<td>6.5</td>
<td>Releasing the function to be tested</td>
</tr>
<tr>
<td>6.6</td>
<td>Verifying analog primary and secondary measurement</td>
</tr>
<tr>
<td>6.7</td>
<td>Testing the protection functionality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 7</th>
<th>Testing functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Testing disturbance report</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Disturbance report settings</td>
</tr>
<tr>
<td>7.2</td>
<td>Identifying the function to test in the technical reference manual</td>
</tr>
<tr>
<td>7.3</td>
<td>Testing differential protection functions</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Transformer differential protection T2WPDIFF and T3WPDIFF</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Restricted earth-fault protection, low impedance REFPDIFF</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.3.3</td>
<td>High impedance differential protection HZPDIF</td>
</tr>
<tr>
<td>7.3.3.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.3.3.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4</td>
<td>Testing current protection functions</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Instantaneous phase overcurrent protection 3-phase output PHPIOC</td>
</tr>
<tr>
<td>7.4.1.1</td>
<td>Measuring the operate limit of set values</td>
</tr>
<tr>
<td>7.4.1.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Four step phase overcurrent protection 3-phase output OC4PTOC</td>
</tr>
<tr>
<td>7.4.2.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.4.2.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Instantaneous residual overcurrent protection EFPIOC</td>
</tr>
<tr>
<td>7.4.3.1</td>
<td>Measuring the operate limit of set values</td>
</tr>
<tr>
<td>7.4.3.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Four step residual overcurrent protection, zero or negative sequence direction EF4PTOC</td>
</tr>
<tr>
<td>7.4.4.1</td>
<td>Four step directional residual overcurrent protection</td>
</tr>
<tr>
<td>7.4.4.2</td>
<td>Four step non-directional residual overcurrent protection</td>
</tr>
<tr>
<td>7.4.4.3</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Thermal overload protection, two time constants TRPTTR</td>
</tr>
<tr>
<td>7.4.5.1</td>
<td>Checking operate and reset values</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>7.4.5.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Breaker failure protection, phase segregated activation and output CCRBRF</td>
</tr>
<tr>
<td>7.4.6.1</td>
<td>Checking the phase current operate value, IP></td>
</tr>
<tr>
<td>7.4.6.2</td>
<td>Checking the residual (earth fault) current operate value /N> set below IP></td>
</tr>
<tr>
<td>7.4.6.3</td>
<td>Checking the re-trip and back-up times</td>
</tr>
<tr>
<td>7.4.6.4</td>
<td>Verifying the re-trip mode</td>
</tr>
<tr>
<td>7.4.6.5</td>
<td>Verifying the back-up trip mode</td>
</tr>
<tr>
<td>7.4.6.6</td>
<td>Verifying the case RetripMode = Contact</td>
</tr>
<tr>
<td>7.4.6.7</td>
<td>Verifying the function mode Current&Contact</td>
</tr>
<tr>
<td>7.4.6.8</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Pole discordance protection CCRPLD</td>
</tr>
<tr>
<td>7.4.7.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.4.7.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Directional underpower protection GUPPDUP</td>
</tr>
<tr>
<td>7.4.8.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.4.8.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.4.9</td>
<td>Directional overpower protection GOPPDOP</td>
</tr>
<tr>
<td>7.4.9.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.4.9.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.5</td>
<td>Testing voltage protection functions</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Two step undervoltage protection UV2PTUV</td>
</tr>
<tr>
<td>7.5.1.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.5.1.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Two step overvoltage protection OV2PTOV</td>
</tr>
<tr>
<td>7.5.2.1</td>
<td>Verification of single-phase voltage and time delay to operate for Step 1</td>
</tr>
<tr>
<td>7.5.2.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Two step residual overvoltage protection ROV2PTOV</td>
</tr>
<tr>
<td>7.5.3.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.5.3.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Overexcitation protection OEXPVPH</td>
</tr>
<tr>
<td>7.5.4.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.5.4.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.6</td>
<td>Testing frequency protection functions</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Underfrequency protection SAPTUF</td>
</tr>
<tr>
<td>7.6.1.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.6.1.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Overfrequency protection SAPTOF</td>
</tr>
<tr>
<td>7.6.2.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.6.2.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Rate-of-change frequency protection SAPFRC</td>
</tr>
<tr>
<td>7.6.3.1</td>
<td>Verifying the settings</td>
</tr>
<tr>
<td>7.6.3.2</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.7</td>
<td>Testing secondary system supervision functions</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Fuse failure supervision SDDRFUF</td>
</tr>
<tr>
<td>7.7.1.1</td>
<td>Checking that the binary inputs and outputs operate as expected</td>
</tr>
<tr>
<td>7.7.1.2</td>
<td>Measuring the operate value for the negative sequence function</td>
</tr>
</tbody>
</table>
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.1.3</td>
<td>Measuring the operate value for the zero-sequence function</td>
</tr>
<tr>
<td>7.7.1.4</td>
<td>Checking the operation of the du/dt and di/dt based function</td>
</tr>
<tr>
<td>7.7.1.5</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.8</td>
<td>Testing control functions</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Interlocking</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Apparatus control APC</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Voltage control</td>
</tr>
<tr>
<td>7.8.3.1</td>
<td>Secondary test</td>
</tr>
<tr>
<td>7.8.3.2</td>
<td>Check the activation of the voltage control operation</td>
</tr>
<tr>
<td>7.8.3.3</td>
<td>Check the normal voltage regulation function</td>
</tr>
<tr>
<td>7.8.3.4</td>
<td>Check the undervoltage block function</td>
</tr>
<tr>
<td>7.8.3.5</td>
<td>Check the upper and lower busbar voltage limit</td>
</tr>
<tr>
<td>7.8.3.6</td>
<td>Check the overcurrent block function</td>
</tr>
<tr>
<td>7.8.3.7</td>
<td>Automatic voltage control for tap changer, parallel control TR8ATCC</td>
</tr>
<tr>
<td>7.8.3.8</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.9</td>
<td>Testing scheme communication functions</td>
</tr>
<tr>
<td>7.10</td>
<td>Testing logic functions</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Tripping logic, common 3-phase output SMPPTRC</td>
</tr>
<tr>
<td>7.10.1.1</td>
<td>Three-phase operating mode</td>
</tr>
<tr>
<td>7.10.1.2</td>
<td>Circuit breaker lockout</td>
</tr>
<tr>
<td>7.10.1.3</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.11</td>
<td>Testing monitoring functions</td>
</tr>
<tr>
<td>7.11.1</td>
<td>Event counter CNTGGIO</td>
</tr>
<tr>
<td>7.11.2</td>
<td>Limit counter L4UFCNT</td>
</tr>
<tr>
<td>7.11.2.1</td>
<td>Completing the test</td>
</tr>
<tr>
<td>7.12</td>
<td>Testing metering functions</td>
</tr>
<tr>
<td>7.12.1</td>
<td>Pulse counter PCGGIO</td>
</tr>
<tr>
<td>7.13</td>
<td>Testing station communication</td>
</tr>
<tr>
<td>7.13.1</td>
<td>Establishing connection and verifying the IEC 61850 communication</td>
</tr>
<tr>
<td>7.13.1.1</td>
<td>Overview</td>
</tr>
<tr>
<td>7.13.1.2</td>
<td>Setting the station communication</td>
</tr>
<tr>
<td>7.13.1.3</td>
<td>Verifying the station communication</td>
</tr>
<tr>
<td>7.14</td>
<td>Exit test mode</td>
</tr>
<tr>
<td>9.1</td>
<td>Fault tracing</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Identifying hardware errors</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Identifying runtime errors</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Identifying communication errors</td>
</tr>
<tr>
<td>9.1.3.1</td>
<td>Checking the communication link operation</td>
</tr>
</tbody>
</table>

Section 8 Commissioning and maintenance of the fault clearing system

8.1 Commissioning and maintenance of the fault clearing system | 81 |
8.1.1 Commissioning tests | 81 |
8.1.2 Periodic maintenance tests | 81 |
8.1.2.1 Visual inspection | 82 |
8.1.2.2 Maintenance tests | 82 |

Section 9 Troubleshooting

9.1 Fault tracing | 85 |
9.1.1 Identifying hardware errors | 85 |
9.1.2 Identifying runtime errors | 85 |
9.1.3 Identifying communication errors | 85 |
9.1.3.1 Checking the communication link operation | 85 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.3.2</td>
<td>Checking the time synchronization</td>
<td>86</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Running the display test</td>
<td>86</td>
</tr>
<tr>
<td>9.2</td>
<td>Indication messages</td>
<td>86</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Internal faults</td>
<td>86</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Warnings</td>
<td>87</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Additional indications</td>
<td>87</td>
</tr>
<tr>
<td>9.3</td>
<td>Correction procedures</td>
<td>88</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Changing and setting the password</td>
<td>88</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Identifying IED application problems</td>
<td>88</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Inspecting the wiring</td>
<td>88</td>
</tr>
</tbody>
</table>

Section 10
Glossary
Section 1 Introduction

1.1 This manual

The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service. The chapters are organized in the chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities.

1.2 Intended audience

This manual addresses the personnel responsible for commissioning, maintenance and taking the IED in and out of normal service.

The commissioning personnel must have a basic knowledge of handling electronic equipment. The commissioning and maintenance personnel must be well experienced in using protection equipment, test equipment, protection functions and the configured functional logics in the IED.
1.3 Product documentation

1.3.1 Product documentation set

The intended use of manuals throughout the product lifecycle

The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for the engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 60870-5-103, IEC 61850 and DNP 3.0.

The installation manual contains instructions on how to install the IED. The manual provides procedures for mechanical and electrical installation. The chapters are organized in the chronological order in which the IED should be installed.

The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service. The chapters are organized in the chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities.

The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for the monitoring, controlling and setting of the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

Figure 1: The intended use of manuals throughout the product lifecycle
The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also provide assistance for calculating settings.

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

The communication protocol manual describes the communication protocols supported by the IED. The manual concentrates on the vendor-specific implementations.

The point list manual describes the outlook and properties of the data points specific to the IED. The manual should be used in conjunction with the corresponding communication protocol manual.

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/March 2013</td>
<td>First release</td>
</tr>
<tr>
<td>A/October 2016</td>
<td>Minor corrections made</td>
</tr>
<tr>
<td>B/November 2019</td>
<td>Maintenance release - Updated safety information and bug corrections</td>
</tr>
</tbody>
</table>

1.3.3 Related documents

Documents related to RET650

- **Application manual**
 - Identity number: 1MRK 504 134-UEN
- **Technical manual**
 - Identity number: 1MRK 504 135-UEN
- **Commissioning manual**
 - Identity number: 1MRK 504 136-UEN
- **Product Guide, configured**
 - Identity number: 1MRK 504 137-BEN
- **Type test certificate**
 - Identity number: 1MRK 504 137-TEN
- **Application notes for Circuit Breaker Control**
 - Identity number: 1MRK 5006806

650 series manuals

- **Communication protocol manual, DNP 3.0**
 - Identity number: 1MRK 511 280-UEN
- **Communication protocol manual, IEC 61850–8–1**
 - Identity number: 1MRK 511 281-UEN
- **Communication protocol manual, IEC 60870-5-103**
 - Identity number: 1MRK 511 282-UEN
- **Cyber Security deployment guidelines**
 - Identity number: 1MRK 511 285-UEN
- **Point list manual, DNP 3.0**
 - Identity number: 1MRK 511 283-UEN
- **Engineering manual**
 - Identity number: 1MRK 511 284-UEN
- **Operation manual**
 - Identity number: 1MRK 500 096-UEN
- **Installation manual**
 - Identity number: 1MRK 514 016-UEN
- **Accessories, 650 series**
 - Identity number: 1MRK 513 023-BEN
- **MICS**
 - Identity number: 1MRG 010 656
- **PICS**
 - Identity number: 1MRG 010 660
- **PIXIT**
 - Identity number: 1MRG 010 658
1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. It is important that the user fully complies with all warning and cautionary notices.

1.4.2 Document conventions

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons.

 For example, to navigate between the options, use ↑ and ↓.
- HMI menu paths are presented in bold.

 For example, select Main menu/Settings.
- LHMI messages are shown in Courier font.

 For example, to save the changes in non-volatile memory, select Yes and press .
- Parameter names are shown in italics.

 For example, the function can be enabled and disabled with the Operation setting.
- Each function block symbol shows the available input/output signal.

 - the character ^ in front of an input/output signal name indicates that the signal name may be customized using the PCM600 software.
 - the character * after an input/output signal name indicates that the signal must be connected to another function block in the application configuration to achieve a valid application configuration.
Section 2 Safety information

2.1 Symbols on the product

All warnings must be observed.

Read the entire manual before doing installation or any maintenance work on the product.

Class 1 Laser product. Take adequate measures to protect your eyes and do not view directly with optical instruments.

2.2 Warnings

Observe the warnings during all types of work related to the product.

Only electrically skilled persons with the proper authorization and knowledge of any safety hazards are allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed. Working in a high voltage environment requires serious approach to avoid human injuries and damage to equipment.

Do not touch circuitry during operation. Potentially lethal voltages and currents are present.

Always use suitable isolated test pins when measuring signals in open circuitry. Potentially lethal voltages and currents are present.

Never connect or disconnect a wire and/or a connector to or from a IED during normal operation. Hazardous voltages and currents are present that may be lethal. Operation may be disrupted and IED and measuring circuitry may be damaged.
Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Always connect the IED to protective earth, regardless of the operating conditions. This also applies to special occasions such as bench testing, demonstrations and off-site configuration. This is class 1 equipment that shall be earthed.

Never remove any screw from a powered IED or from a IED connected to powered circuitry. Potentially lethal voltages and currents are present.

Take adequate measures to protect the eyes. Never look into the laser beam.

2.3 Caution signs

Whenever changes are made in the IED, measures should be taken to avoid inadvertent tripping.

The IED contains components which are sensitive to electrostatic discharge. ESD precautions shall always be observed prior to touching components.

Always transport PCBs (modules) using certified conductive bags.

Do not connect live wires to the IED. Internal circuitry may be damaged.

Always use a conductive wrist strap connected to protective earth when replacing modules. Electrostatic discharge (ESD) may damage the module and IED circuitry.

Take care to avoid electrical shock during installation and commissioning.
2.4 Note signs

Observe the maximum allowed continuous current for the different current transformer inputs of the IED. See technical data.
Section 3 Available functions

Note that not all functions included in the tables below have commissioning information available.

3.1 Main protection functions

<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer RET650</th>
<th>Transformer RET650 (A01) 2W/1CB</th>
<th>Transformer RET650 (A05) 3W/1CB</th>
<th>Transformer RET650 (A07) OLTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
<td>RET650 (A01) 2W/1CB</td>
<td>RET650 (A05) 3W/1CB</td>
<td>RET650 (A07) OLTC</td>
</tr>
<tr>
<td>Differential protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2WPDIFF</td>
<td>87T</td>
<td>Transformer differential protection, two winding</td>
<td>0–1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3WPDIFF</td>
<td>87T</td>
<td>Transformer differential protection, three winding</td>
<td>0–1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFPDIFF</td>
<td>87N</td>
<td>Restricted earth fault protection, low impedance</td>
<td>0–3 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HZPDIF</td>
<td>87</td>
<td>1Ph High impedance differential protection</td>
<td>0–2 2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZMRPSB</td>
<td>68</td>
<td>Power swing detection</td>
<td>0–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZGCPDIS</td>
<td>21G</td>
<td>Underimpedance protection for generators and transformers</td>
<td>0–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPDIS</td>
<td></td>
<td>Load encroachment</td>
<td>0–1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page

3.2 Back-up protection functions

<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer RET650</th>
<th>Transformer RET650 (A01) 2W/1CB</th>
<th>Transformer RET650 (A05) 3W/1CB</th>
<th>Transformer RET650 (A07) OLTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
<td>RET650 (A01) 2W/1CB</td>
<td>RET650 (A05) 3W/1CB</td>
<td>RET650 (A07) OLTC</td>
</tr>
<tr>
<td>Current protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPIOC</td>
<td>50</td>
<td>Instantaneous phase overcurrent protection, 3-phase output</td>
<td>0–3 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC4PTOC</td>
<td>51/67</td>
<td>Four step phase overcurrent protection, 3-phase output</td>
<td>0–3 2 3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFPIOC</td>
<td>50N</td>
<td>Instantaneous residual overcurrent protection</td>
<td>0–3 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF4PTOC</td>
<td>51N/67N</td>
<td>Four step residual overcurrent protection, zero/negative sequence direction</td>
<td>0–3 2 3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPPTR</td>
<td>49</td>
<td>Thermal overload protection, two time constants</td>
<td>0–3 2 3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page
3.3 Control and monitoring functions

<table>
<thead>
<tr>
<th>IEC 61850 or ANSI</th>
<th>Function name</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
</tr>
<tr>
<td></td>
<td>CCRBRF 50BF</td>
<td>Breaker failure protection, 3-phase activation and output</td>
<td>0–3</td>
</tr>
<tr>
<td></td>
<td>CCRPLD 52PD</td>
<td>Pole discordance protection</td>
<td>0–3</td>
</tr>
<tr>
<td></td>
<td>GUPPDUP 37</td>
<td>Directional underpower protection</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>GOPPDOP 32</td>
<td>Directional overpower protection</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>DNSPTOC 46</td>
<td>Negative sequence based overcurrent function</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>UV2PTUV 27</td>
<td>Two step undervoltage protection</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>OV2PTOV 59</td>
<td>Two step overvoltage protection</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>ROV2PTOV 59N</td>
<td>Two step residual overvoltage protection</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>OEXPVPH 24</td>
<td>Overexcitation protection</td>
<td>0–1</td>
</tr>
<tr>
<td></td>
<td>SAPTUF 81</td>
<td>Underfrequency function</td>
<td>0–4</td>
</tr>
<tr>
<td></td>
<td>SAPTOF 81</td>
<td>Overfrequency function</td>
<td>0–4</td>
</tr>
<tr>
<td></td>
<td>SAPFRC 81</td>
<td>Rate-of-change frequency protection</td>
<td>0–4</td>
</tr>
<tr>
<td></td>
<td>TR8ATCC 90</td>
<td>Automatic voltage control for tap changer, parallel control</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>TCMYLTC 84</td>
<td>Tap changer control and supervision, 6 binary inputs</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>SLGGIO</td>
<td>Logic Rotating Switch for function selection and LHMI presentation</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>VSGGIO</td>
<td>Selector mini switch</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>DPGGIO</td>
<td>IEC 61850 generic communication I/O functions double point</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>SP8GGIO</td>
<td>Single point generic control 8 signals</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AUTOBITS</td>
<td>AutomationBits, command function for DNP3.0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I103CMD</td>
<td>Function commands for IEC60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I103IEDCMD</td>
<td>IED commands for IEC60870-5-103</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650 (A05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2W/1CB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3W/1CB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OLTC</td>
</tr>
<tr>
<td>I103USRCMD</td>
<td></td>
<td>Function commands user defined for IEC60870-5-103</td>
<td>4</td>
</tr>
<tr>
<td>I103GENCMD</td>
<td></td>
<td>Function commands generic for IEC60870-5-103</td>
<td>50</td>
</tr>
<tr>
<td>I103POSCMD</td>
<td></td>
<td>IED commands with position and select for IEC60870-5-103</td>
<td>50</td>
</tr>
<tr>
<td>Apparatus control and Interlocking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APC8</td>
<td></td>
<td>Apparatus control for single bay, max 8 app. (1CB) incl. interlocking</td>
<td>0–1</td>
</tr>
<tr>
<td>SCILO</td>
<td>3</td>
<td>Logical node for interlocking</td>
<td></td>
</tr>
<tr>
<td>BB_ES</td>
<td>3</td>
<td>Interlocking for busbar earthing switch</td>
<td></td>
</tr>
<tr>
<td>A1A2_BS</td>
<td>3</td>
<td>Interlocking for bus-section breaker</td>
<td></td>
</tr>
<tr>
<td>A1A2_DC</td>
<td>3</td>
<td>Interlocking for bus-section disconnector</td>
<td></td>
</tr>
<tr>
<td>ABC_BC</td>
<td>3</td>
<td>Interlocking for bus-coupler bay</td>
<td></td>
</tr>
<tr>
<td>BH_CONN</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td></td>
</tr>
<tr>
<td>BH_LINE_A</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td></td>
</tr>
<tr>
<td>BH_LINE_B</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td></td>
</tr>
<tr>
<td>DB_BUS_A</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td></td>
</tr>
<tr>
<td>DB_BUS_B</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td></td>
</tr>
<tr>
<td>DB_LINE</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td></td>
</tr>
<tr>
<td>ABC_LINE</td>
<td>3</td>
<td>Interlocking for line bay</td>
<td></td>
</tr>
<tr>
<td>AB_TRAFO</td>
<td>3</td>
<td>Interlocking for transformer bay</td>
<td></td>
</tr>
<tr>
<td>SCSWI</td>
<td></td>
<td>Switch controller</td>
<td></td>
</tr>
<tr>
<td>SXCBR</td>
<td></td>
<td>Circuit breaker</td>
<td></td>
</tr>
<tr>
<td>SXSWI</td>
<td></td>
<td>Circuit switch</td>
<td></td>
</tr>
<tr>
<td>POS_EVAL</td>
<td></td>
<td>Evaluation of position indication</td>
<td></td>
</tr>
<tr>
<td>SELGGIO</td>
<td></td>
<td>Select release</td>
<td></td>
</tr>
<tr>
<td>QCBAY</td>
<td></td>
<td>Bay control</td>
<td>1</td>
</tr>
<tr>
<td>LOCREM</td>
<td></td>
<td>Handling of LR-switch positions</td>
<td>1</td>
</tr>
<tr>
<td>LOCREMCTRL</td>
<td></td>
<td>LHMI control of Permitted Source To Operate (PSTO)</td>
<td>1</td>
</tr>
<tr>
<td>CBC2</td>
<td></td>
<td>Circuit breaker control for 2CB</td>
<td>0–1</td>
</tr>
<tr>
<td>CBC3</td>
<td></td>
<td>Circuit breaker control for 3CB</td>
<td>0–1</td>
</tr>
<tr>
<td>CBC4</td>
<td></td>
<td>Circuit breaker control for 4CB</td>
<td>0–1</td>
</tr>
<tr>
<td>Secondary system supervision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDDRFUF</td>
<td></td>
<td>Fuse failure supervision</td>
<td>0–1</td>
</tr>
<tr>
<td>TCSSCBR</td>
<td></td>
<td>Breaker close/trip circuit monitoring</td>
<td>3</td>
</tr>
<tr>
<td>Logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMPPTRC</td>
<td>94</td>
<td>Tripping logic, common 3-phase output</td>
<td>1–3</td>
</tr>
<tr>
<td>TMAGGIO</td>
<td></td>
<td>Trip matrix logic</td>
<td>12</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or ANSI Function name</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Configurable logic blocks</td>
<td>RET650 283, RET650 (A07) 283</td>
</tr>
<tr>
<td>INVERTER</td>
<td>Configurable logic blocks</td>
<td>RET650 140, RET650 (A07) 140</td>
</tr>
<tr>
<td>PULSETIMER</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>GATE</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>XOR</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>LOOPDELAY</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>TIMERSET</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>AND</td>
<td>Configurable logic blocks</td>
<td>RET650 280, RET650 (A07) 280</td>
</tr>
<tr>
<td>SRMEMORY</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>RSMEMORY</td>
<td>Configurable logic blocks</td>
<td>RET650 40, RET650 (A07) 40</td>
</tr>
<tr>
<td>Q/T</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–1</td>
</tr>
<tr>
<td>ANDQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–120</td>
</tr>
<tr>
<td>ORQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–120</td>
</tr>
<tr>
<td>INVERTERQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–120</td>
</tr>
<tr>
<td>XORQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–40</td>
</tr>
<tr>
<td>SRMEMORYQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–40</td>
</tr>
<tr>
<td>RSMEMORYQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–40</td>
</tr>
<tr>
<td>TIMERSETQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–40</td>
</tr>
<tr>
<td>PULSETIMERQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–40</td>
</tr>
<tr>
<td>INVALIDQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–12</td>
</tr>
<tr>
<td>INDCOMBSPPQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–20</td>
</tr>
<tr>
<td>INDEXTPSQT</td>
<td>Configurable logic blocks Q/T</td>
<td>RET650 0–20</td>
</tr>
<tr>
<td>FXDSIGN</td>
<td>Fixed signal function block</td>
<td>RET650 1</td>
</tr>
<tr>
<td>B16I</td>
<td>Boolean 16 to integer conversion</td>
<td>RET650 16</td>
</tr>
<tr>
<td>B16IFCVI</td>
<td>Boolean 16 to integer conversion with logic node representation</td>
<td>RET650 16</td>
</tr>
<tr>
<td>IB16A</td>
<td>Integer to Boolean 16 conversion</td>
<td>RET650 16</td>
</tr>
<tr>
<td>IB16FCVIB</td>
<td>Integer to Boolean 16 conversion with logic node representation</td>
<td>RET650 16</td>
</tr>
<tr>
<td>TEIGGIO</td>
<td>Elapsed time integrator with limit transgression and overflow supervision</td>
<td>RET650 12</td>
</tr>
</tbody>
</table>

Monitoring

CVMMXN	Measurements	RET650 6
CMMXU	Phase current measurement	RET650 10
VMMXU	Phase-phase voltage measurement	RET650 6
CMSQI	Current sequence component measurement	RET650 6
VMSQI	Voltage sequence measurement	RET650 6
VNMMXU	Phase-neutral voltage measurement	RET650 6

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer RET650</th>
<th>RET650 (A05) 2W/1CB</th>
<th>RET650 (A05) 3W/1CB</th>
<th>RET650 (A07) OLTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISVBAS</td>
<td></td>
<td>Function block for service values presentation of the analog inputs</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TM_P_P2</td>
<td></td>
<td>Function block for service values presentation of primary analog inputs 600TRM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AM_P_P4</td>
<td></td>
<td>Function block for service values presentation of primary analog inputs 600A1M</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TM_S_P2</td>
<td></td>
<td>Function block for service values presentation of secondary analog inputs 600TRM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AM_S_P4</td>
<td></td>
<td>Function block for service values presentation of secondary analog inputs 600A1M</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CNTGIO</td>
<td></td>
<td>Event counter</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>L4UFUNCT</td>
<td></td>
<td>Event counter with limit supervision</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>DRPRDRE</td>
<td></td>
<td>Disturbance report</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AnRADR</td>
<td></td>
<td>Analog input signals</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BNRBDR</td>
<td></td>
<td>Binary input signals</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SPGGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>SP16GGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions 16 inputs</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MVGGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MVEXP</td>
<td></td>
<td>Measured value expander block</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>SPVNZBAT</td>
<td></td>
<td>Station battery supervision</td>
<td>0-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SSIMG</td>
<td>63</td>
<td>Insulation gas monitoring function</td>
<td>0-2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SSIML</td>
<td>71</td>
<td>Insulation liquid monitoring function</td>
<td>0-2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SSCBR</td>
<td></td>
<td>Circuit breaker condition monitoring</td>
<td>0-3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>I103MEAS</td>
<td></td>
<td>Measurands for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103MEASUSR</td>
<td></td>
<td>Measurands user defined signals for IEC60870-5-103</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>I103AR</td>
<td></td>
<td>Function status auto-recloser for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103EF</td>
<td></td>
<td>Function status earth-fault for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103FLTPROT</td>
<td></td>
<td>Function status fault protection for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103IED</td>
<td></td>
<td>IED status for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103SUPERV</td>
<td></td>
<td>Supervision status for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103USRDEF</td>
<td></td>
<td>Status for user defined signals for IEC60870-5-103</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or ANSI Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
</tr>
</tbody>
</table>
| | | | RET650 (A01)| RET650 (A05)| RET650 (A07)
| | | | 2W / ICB | 3W / ICB | OLTC |

Metering

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>RET650</th>
<th>RET650 (A01)</th>
<th>RET650 (A05)</th>
<th>RET650 (A07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCGGIO</td>
<td>Pulse counter</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>ETPMMTR</td>
<td>Function for energy calculation and demand handling</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

3.4 Station communication

<table>
<thead>
<tr>
<th>IEC 61850 or ANSI Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RET650</td>
</tr>
</tbody>
</table>
| | | | RET650 (A01)| RET650 (A05)| RET650 (A07)
| | | | 2W / ICB | 3W / ICB | OLTC |

Station communication	IEC 61850 communication protocol	1	1	1	1
IEC61850-8-1	DNP3.0 communication general protocol	1	1	1	1
DNPGEN	DNP3.0 for RS-485 communication protocol	1	1	1	1
RS485DNP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
CH1TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
CH2TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
CH3TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
CH4TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
OPTICALDNP	DNP3.0 for optical RS-232 communication protocol	1	1	1	1
MSTSERIAL	DNP3.0 for serial communication protocol	1	1	1	1
MST1TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
MST2TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
MST3TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
MST4TCP	DNP3.0 for TCP/IP communication protocol	1	1	1	1
RS485GEN	RS485	1	1	1	1
OPTICALPROT	Operation selection for optical serial	1	1	1	1
RS485PROT	Operation selection for RS485	1	1	1	1
DNPFREC	DNP3.0 fault records for TCP/IP communication protocol	1	1	1	1

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RET650</td>
<td>RET650 (A03)</td>
</tr>
<tr>
<td>OPTICAL103</td>
<td></td>
<td>IEC60870-5-103 Optical serial communication</td>
<td>1</td>
</tr>
<tr>
<td>RS485103</td>
<td></td>
<td>IEC60870-5-103 serial communication for RS485</td>
<td>1</td>
</tr>
<tr>
<td>GOOSEINTLKRCV</td>
<td></td>
<td>Horizontal communication via GOOSE for interlocking</td>
<td>1</td>
</tr>
<tr>
<td>GOOSEBINRCV</td>
<td></td>
<td>GOOSE binary receive</td>
<td>4</td>
</tr>
<tr>
<td>GOOSEVCTRCONF</td>
<td></td>
<td>GOOSE VCTR configuration for send and receive</td>
<td>1</td>
</tr>
<tr>
<td>VCTRSEND</td>
<td></td>
<td>Voltage control sending block for GOOSE</td>
<td>1</td>
</tr>
<tr>
<td>GOOSEVCTRRCV</td>
<td></td>
<td>Voltage control receiving block for GOOSE</td>
<td>3</td>
</tr>
<tr>
<td>ETHFRNT ETHLAN1 GATEWAY</td>
<td></td>
<td>Ethernet configuration of front port, LAN1 port and gateway</td>
<td>1</td>
</tr>
<tr>
<td>ETHLAN1_AB</td>
<td></td>
<td>Ethernet configuration of LAN1 port</td>
<td>1</td>
</tr>
<tr>
<td>PRPSTATUS</td>
<td></td>
<td>System component for parallel redundancy protocol</td>
<td>1</td>
</tr>
<tr>
<td>CONF PROT</td>
<td></td>
<td>IED Configuration Protocol</td>
<td>1</td>
</tr>
<tr>
<td>ACTIVLOG</td>
<td></td>
<td>Activity logging parameters</td>
<td>1</td>
</tr>
<tr>
<td>SECALARM</td>
<td></td>
<td>Component for mapping security events on protocols such as DNP3 and IEC103</td>
<td>1</td>
</tr>
<tr>
<td>AGSAL</td>
<td></td>
<td>Generic security application component</td>
<td>1</td>
</tr>
<tr>
<td>GOOSEDPRCV</td>
<td></td>
<td>GOOSE function block to receive a double point value</td>
<td>32</td>
</tr>
<tr>
<td>GOOSEINTRCV</td>
<td></td>
<td>GOOSE function block to receive an integer value</td>
<td>32</td>
</tr>
<tr>
<td>GOOSEMVRCV</td>
<td></td>
<td>GOOSE function block to receive a measurand value</td>
<td>16</td>
</tr>
<tr>
<td>GOOSESPPRCV</td>
<td></td>
<td>GOOSE function block to receive a single point value</td>
<td>64</td>
</tr>
</tbody>
</table>

3.5 Basic IED functions

<table>
<thead>
<tr>
<th>IEC 61850/Function block name</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic functions included in all products</td>
<td></td>
</tr>
<tr>
<td>INTERRSIG</td>
<td>Self supervision with internal event list</td>
</tr>
<tr>
<td>SELFSUPEVLST</td>
<td>Self supervision with internal event list</td>
</tr>
<tr>
<td>TIMESYNCHGEN</td>
<td>Time synchronization</td>
</tr>
<tr>
<td>SNTP</td>
<td>Time synchronization</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850/Function block name</th>
<th>Function description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSBEGIN, DTSEND, TIMEZONE</td>
<td>Time synchronization, daylight saving</td>
<td>1</td>
</tr>
<tr>
<td>IRIG-B</td>
<td>Time synchronization</td>
<td>1</td>
</tr>
<tr>
<td>SETGRPS</td>
<td>Setting group handling</td>
<td>1</td>
</tr>
<tr>
<td>ACTVGRP</td>
<td>Parameter setting groups</td>
<td>1</td>
</tr>
<tr>
<td>TESTMODE</td>
<td>Test mode functionality</td>
<td>1</td>
</tr>
<tr>
<td>CHNGLCK</td>
<td>Change lock function</td>
<td>1</td>
</tr>
<tr>
<td>PRIMVAL</td>
<td>Primary system values</td>
<td>1</td>
</tr>
<tr>
<td>SMAI_20_1 - SMAI_20_12</td>
<td>Signal matrix for analog inputs</td>
<td>2</td>
</tr>
<tr>
<td>3PHSUM</td>
<td>Summation block 3 phase</td>
<td>12</td>
</tr>
<tr>
<td>GBASVAL</td>
<td>Global base values for settings</td>
<td>6</td>
</tr>
<tr>
<td>ATHSTAT</td>
<td>Authority status</td>
<td>1</td>
</tr>
<tr>
<td>ATHCHCK</td>
<td>Authority check</td>
<td>1</td>
</tr>
<tr>
<td>AUTHMAN</td>
<td>Authority management</td>
<td>1</td>
</tr>
<tr>
<td>FTPACCS</td>
<td>FTPS access with password</td>
<td>1</td>
</tr>
<tr>
<td>DOSFRNT</td>
<td>Denial of service, frame rate control for front port</td>
<td>1</td>
</tr>
<tr>
<td>DOSLANI</td>
<td>Denial of service, frame rate control for LAN1A and LAN1B ports</td>
<td>1</td>
</tr>
<tr>
<td>DOSSCKT</td>
<td>Denial of service, socket flow control</td>
<td>1</td>
</tr>
</tbody>
</table>
Section 4 Starting up

4.1 Factory and site acceptance testing

Testing the proper IED operation is carried out at different occasions, for example:

- Acceptance testing
- Commissioning testing
- Maintenance testing

This manual describes the workflow and the steps to carry out the commissioning testing.

Factory acceptance testing (FAT) is typically done to verify that the IED and its corresponding configuration meet the requirements of the utility or industry. This test is the most complex and in depth, as it is done to familiarize the user with a new product or to verify a new configuration. The complexity of this testing depends on several factors, such as:

- New IED type
- New configuration
- Modified configuration

Site acceptance testing (SAT or commissioning testing) is typically done to verify that the installed IED is correctly set and connected to the power system. SAT requires that the acceptance testing has been performed and that the application configuration is verified.

Maintenance testing is a periodic verification that the IED is healthy and has correct settings, depending on changes in the power system. There are also other types of maintenance testing.

4.2 Commissioning checklist

Before starting up commissioning at site, check that the following items are available.

- Single line diagram
- Protection block diagram
- Circuit diagram
- Setting list and configuration
- RJ-45 Ethernet cable (CAT 5)
- Three-phase test kit or other test equipment depending on the complexity of the configuration and functions to be tested.
- PC with PCM600 installed along with the connectivity packages corresponding to the IEDs to be tested.
- Administration rights on the PC, to set up IP addresses
4.3 Checking the power supply

Insert only the corresponding male connector to the female connector. Inserting anything else (such as a measurement probe) may violate the female connector and prevent a proper electrical contact between the printed circuit board and the external wiring connected to the screw terminal block.

Check that the auxiliary supply voltage remains within the permissible input voltage range under all operating conditions. Check that the polarity is correct before powering the IED.

<table>
<thead>
<tr>
<th>Battery Supervision BATS</th>
<th>Logic</th>
<th>Led Battery</th>
<th>VS+ (output voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Battery Output Ready</td>
<td></td>
<td></td>
<td>VS+ Supervision VS+ Output</td>
</tr>
<tr>
<td>Active</td>
<td>Active</td>
<td>1</td>
<td>On</td>
</tr>
</tbody>
</table>

Active	0	Off	< 14.6 V	> 33.5 V
Active	0	On	> 15.1 V	< 32.9 V
0	Off	< 14.6 V	< 32.9 V	

4.4 Energizing the IED

4.4.1 Checking the IED operation

Check all connections to external circuitry to ensure correct installation, before energizing the IED and carrying out the commissioning procedures.

Energize the power supply of the IED to start it up. This could be done in a number of ways, from energizing a whole cubicle to energizing a single IED. Set the IED time if no time synchronization source is configured. Check the self-supervision function in Main menu/Diagnostics/Internal events or Main menu/Diagnostics/IED status/General menu in local HMI to verify that the IED is functioning properly.

4.4.2 IED start-up sequence

The following sequence is expected when the IED is energized.

- The green Ready LED starts flashing instantly and the ABB logo is shown on the LCD.
- After approximately 30 seconds, "Starting" is shown on the LCD.
- Within 90 seconds, the main menu is shown on the LCD and the green Ready LED shows a steady light, which indicates a successful startup.

The startup time depends on the size of the application configuration. Application configurations with less functionality have shorter startup times.

If the green Ready LED continues to flash after startup, the IED has detected an internal error. Navigate via Main menu/Diagnostics/IED status/General to investigate the error description.
4.5 Setting up communication between PCM600 and the IED

The communication between the IED and PCM600 is independent of the communication protocol used within the substation or to the NCC.

The communication media is always Ethernet and the used protocol is TCP/IP.

Each IED has an RJ-45 Ethernet interface connector on the front. The front Ethernet connector shall be used for communication with PCM600.

When an Ethernet-based station protocol is used, PCM600 communication can use the same Ethernet port and IP address.

To connect PCM600 to the IED, two basic variants must be considered.

- Direct point-to-point link between PCM600 and the IED front port.
- Indirect link via a station LAN or from remote via a network.

The physical connection and the IP address must be configured in both cases to enable communication.

The communication procedures are the same in both cases.

1. If needed, set the IP address for the IEDs.
2. Set up the PC or workstation for a direct link (point-to-point), or
3. Connect the PC or workstation to the LAN/WAN network.
4. Configure the IED IP addresses in the PCM600 project for each IED to match the IP addresses of the physical IEDs.

Setting up IP addresses

The IP address and the corresponding mask must be set via the LHMI for each available Ethernet interface in the IED. Each Ethernet interface has a default factory IP address when the IED is delivered. This is not given when an additional Ethernet interface is installed or an interface is replaced.

- The default IP address for the IED front port is 10.1.150.3 and the corresponding subnetwork mask is 255.255.255.0, which can be set via the local HMI path Main menu/Configuration/Communication/TCP-IP configuration/ETHFRNT:1.

Setting up the PC or workstation for point-to-point access to IEDs front port

A special cable is needed to connect two physical Ethernet interfaces together without a hub, router, bridge or switch in between. The Tx and Rx signal wires must be crossed in the cable to connect Tx with Rx on the other side and vice versa. These cables are known as cross over cables. The maximum length is 2 m. The connector type is RJ-45.
The following description is an example valid for standard PCs using Microsoft Windows operating system. The example is taken from a Laptop with one Ethernet interface.

Administrator rights are required to change the PC communication setup. Some PCs have the feature to automatically detect that Tx signals from the IED are received on the Tx pin on the PC. Thus, a straight (standard) Ethernet cable can be used.

When a PC is connected to the IED and the setting *DHCP Server* is set to *On* via the local HMI path **Main menu/Configuration/Communication/TCP-IP configuration/ETHFRNT:1/DHCP Server**, the IEDs DHCP server for the front port assigns an IP address for the PC. The PC must be configured to obtain its IP address automatically as described in the following procedure.

1. Select **Search programs and files** in the **Start menu** in Windows.
Figure 3: Select: Search programs and files

2. Type **View network connections** and click on the **View network connections** icon.
3. Right-click and select **Properties**.

4. Select the TCP/IPv4 protocol from the list of configured components using this connection and click **Properties**.
5. Select **Obtain an IP address automatically** if the parameter **DHCP Server** is set to **On** in the IED.

6. Select **Use the following IP address** and define **IP address** and **Subnet mask** if the front port is used and if the **IP address** is not set to be obtained automatically by the IED, see **Figure 8**. The IP address must be different from the IP address chosen for the IED.
7. Close all open windows and start PCM600.

Setting up the PC to access the IED via a network

This task depends on the used LAN/WAN network.

- The PC and IED must belong to the same subnetwork for this set-up to work.

4.6 Writing an application configuration to the IED

Ensure that the IED includes the correct application configuration according to project specifications.

The application configuration is created using PCM600 and then written to the IED. Establish a connection between PCM600 and the IED when an application configuration must be written to the IED.

After writing an application configuration to the IED, the IED makes an application restart or a complete IED restart, when necessary.

- The IED does not restart after reconfiguring IEC61850 (regardless of whether the protocol is enabled or disabled).

- Be sure to set the correct technical key in both the IED and PCM600 to prevent writing an application configuration to a wrong IED.
See the engineering manual for information on how to create or modify an application configuration and how to write to the IED.

4.7 Checking CT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

- Primary injection test to verify the current ratio of the CT, the correct wiring up to the protection IED and correct phase sequence connection (that is L1, L2, L3.)
- CT secondary loop resistance measurement to confirm that the current transformer secondary loop DC resistance is within specification and that there are no high resistance joints in the CT winding or wiring.
- Earthing check of the individual CT secondary circuits to verify that each three-phase set of main CTs is properly connected to the station earth and only at one electrical point.
- Insulation resistance check.

CT and VT connectors are pre-coded, and the CT and VT connector markings are different. For more information, see the installation manual.

Both the primary and the secondary sides must be disconnected from the line and the IED when plotting the excitation characteristics.

4.8 Checking VT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

Correct possible errors before continuing to test the circuitry.

Test the circuitry.

- Polarity check
- VT circuit voltage measurement (primary injection test)
- Earthing check
- Phase relationship
- Insulation resistance check

The polarity check verifies the integrity of circuits and the phase relationships. The check must be performed as close to the IED as possible.

The primary injection test verifies the VT ratio and the wiring all the way from the primary system to the IED. Injection must be performed for each phase-to-neutral circuit and each phase-to-phase pair. In each case, voltages in all phases and neutral are measured.
4.9 Using the RTXP test switch

The RTXP test switch is designed to provide the means of safe testing of the IED. This is achieved by the electromechanical design of the test switch and test plug handle. When the test plug handle is inserted, it first blocks the trip and alarm circuits then it short circuits the CT secondary circuit and opens the VT secondary circuits making the IED available for secondary injection.

When pulled out, the test handle is mechanically stopped in half withdrawn position. In this position, the current and voltage enter the protection, but the alarm and trip circuits are still isolated. Before removing the test handle, check that no trip or alarms are present in the IED.

Not until the test handle is completely removed, the trip and alarm circuits are restored for operation.

- Verify that the contact sockets have been crimped correctly and that they are fully inserted by tugging on the wires. Never do this with current circuits in service.

Current circuit
1. Verify that the contacts are of current circuit type.
2. Verify that the short circuit jumpers are located in the correct slots.

Voltage circuit
1. Verify that the contacts are of voltage circuit type.
2. Check that no short circuit jumpers are located in the slots dedicated for voltage.

Trip and alarm circuits
1. Check that the correct types of contacts are used.

4.10 Checking binary input and output circuits

Insert only the corresponding male connector to the female connector. Inserting anything else (such as a measurement probe) may violate the female connector and prevent a proper electrical contact between the printed circuit board and the external wiring connected to the screw terminal block.

4.10.1 Binary input circuits

Preferably, disconnect the binary input connector from the binary input cards. Check all connected signals so that both input level and polarity are in accordance with the IED specifications.
4.10.2 Binary output circuits

Preferably, disconnect the binary output connector from the binary output cards. Check all connected signals so that both load and polarity are in accordance with IED specifications.

4.11 Checking optical connections

Check that the Tx and Rx optical connections are correct.

An IED equipped with optical connections requires a minimum depth of 180 mm for plastic fiber cables and 275 mm for glass fiber cables. Check the allowed minimum bending radius from the optical cable manufacturer.
Section 5 Establishing connection and verifying the IEC 61850 station communication

5.1 Setting the station communication

To enable IEC 61850 station communication:

- The IEC 61850-8-1 station communication functionality must be on in the local HMI. Navigate to Main menu/Configuration/Communication/Station communication/IEC61850-8-1:1 and set the Operation parameter to On.
- To enable GOOSE communication the Operation parameter for the corresponding GOOSE function blocks (GOOSEINRCV and GOOSEINLTKRCV) must be set to On in the application configuration.
- To enable GOOSE communication via the front port the parameter PortSelGOOSE in Main menu/Configuration/Communication/Station communication/IEC61850-8-1:1 must be set to Front. To enable GOOSE communication via rear port the parameter PortSelGOOSE must be set to LAN1.
- To enable MMS communication via the rear port the parameter PortSelMMS in Main menu/Configuration/Communication/Station communication/IEC61850-8-1:1 must be set to LAN1.

5.2 Verifying the station communication

Connect your PC to the substation network and ping the connected IED and the Substation Master PC, to verify that the communication is working (up to the transport layer).

The best way to verify the communication up to the application layer is to use protocol analyzer connected to the substation bus, and monitor the communication.
Section 6 Testing IED operation

6.1 Preparing the IED to verify settings

If a test switch is included, start preparation by making the necessary connections to the test switch. This means connecting the test equipment according to a specific and designated IED terminal diagram.

Put the IED into the test mode to facilitate the test of individual functions and prevent unwanted operation caused by other functions. The busbar differential protection is not included in the test mode and is not prevented to operate during the test operations. The test switch should then be connected to the IED.

Verify that analog input signals from the analog input module are measured and recorded correctly by injecting currents and voltages required by the specific IED.

To make testing even more effective, use PCM600. PCM600 includes the Signal monitoring tool, which is useful in reading the individual currents and voltages, their amplitudes and phase angles. In addition, PCM600 contains the Disturbance handling tool. The content of reports generated by the Disturbance handling tool can be configured which makes the work more efficient. For example, the tool may be configured to only show time tagged events and to exclude analog information and so on.

Check the disturbance report settings to ensure that the indications are correct.

For test functions and test and signal parameter names, see the technical manual. The correct initiation of the disturbance recorder is made on start and/or release or trip from a function. Also check that the wanted recordings of analog (real and calculated) and binary signals are achieved.

The IEDs in the 650 series can have between 1 and 4 individual parameter setting groups prepared with full sets of different parameters for all functions. The purpose of these groups is to be able to handle different power system load conditions to optimize the parameters settings of the different functions for these different power systems conditions (for example summer/winter and day/night).

Parameters can be entered into different setting groups. Make sure to test functions for the same parameter setting group. If needed, repeat the tests for all different setting groups used. The difference between testing the first parameter setting group and the remaining is that there is no need for testing the connections.

During testing, observe that the right testing method, that corresponds to the actual parameters set in the activated parameter setting group, is used.

Set and configure the function(s) before testing. Most functions are highly flexible and permit a choice of functional and tripping modes. The various modes are checked at the factory as part of the design verification. In certain cases, only modes with a high probability of coming into operation need to be checked when commissioned to verify the configuration and settings.

Requirements for testing the function.
• Calculated settings
• Valid configuration diagram for the IED
• Valid terminal diagram for the IED
• Technical manual
• Three-phase test equipment

Content of the technical manual.

• Application and functionality summaries
• Function blocks
• Logic diagrams
• Input and output signals
• A list of setting parameters
• Technical data for the function

The test equipment should be able to provide a three-phase supply of currents and three-phase voltage. The magnitude and angle of currents (and voltages) should be possible to vary. Check that the IED is prepared for test before starting the test session. Consider the logic diagram of the function when performing the test.

The response from a test can be viewed in different ways.

• Binary output signals
• Service values in the local HMI (logical signal or phasors)
• Using the online mode in the PCM600 configuration software

Do not switch off the auxiliary power supply to the IED before changes, for example, setting parameter or local/remote control state changes are saved.

A mechanism for limiting the number of writings per time period is included in the IED to prevent the flash memory to be worn out due to too many writings. As a consequence it may take up to an hour to save changes. If the auxiliary power is interrupted before a change is saved, that change is lost.

6.2 Activating the test mode

Put the IED into the test mode before testing. The test mode blocks all protection functions and some of the control functions in the IED, and the individual functions to be tested can be unblocked to prevent unwanted operation caused by other functions. In this way, it is possible to test slower back-up measuring functions without the interference from faster measuring functions. The busbar differential protection is not included in the test mode and is not prevented to operate during the test operations. The test switch should then be connected to the IED. Test mode is indicated when the yellow StartLED flashes.

1. Select Main menu/Tests/IED test mode/TESTMODE:1
2. Set parameter TestMode to On.
3. Save the changes.

As a consequence, the yellow startLED starts flashing as a reminder and remains flashing until the test mode is switched off.
6.3 Preparing the connection to the test equipment

The IED can be equipped with a test switch of type RTXP8, RTXP18 or RTXP24. The test switch and its associated test plug handle (RTXH8, RTXH18 or RTXH24) are a part of the COMBITEST system, which provides secure and convenient testing of the IED.

When using the COMBITEST, preparations for testing are automatically carried out in the proper sequence, that is, for example, blocking of tripping circuits, short circuiting of CT’s, opening of voltage circuits, making IED terminals available for secondary injection. Terminals 1 and 8, 1 and 18 as well as 1 and 12 of the test switches RTXP8, RTXP18 and RTXP24 respectively are not disconnected as they supply DC power to the protection IED.

The RTXH test-plug handle leads may be connected to any type of test equipment or instrument. When a number of protection IEDs of the same type are tested, the test-plug handle only needs to be moved from the test switch of one protection IED to the test switch of the other, without altering the previous connections.

Use COMBITEST test system to prevent unwanted tripping when the handle is withdrawn, since latches on the handle secure it in the half withdrawn position. In this position, all voltages and currents are restored and any re-energizing transients are given a chance to decay before the trip circuits are restored. When the latches are released, the handle can be completely withdrawn from the test switch, restoring the trip circuits to the protection IED.

If a test switch is not used, perform measurement according to the provided circuit diagrams.

Never disconnect the secondary connection of a current transformer circuit without first short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build up that may damage the transformer and cause personal injury.

6.4 Connecting the test equipment to the IED

Connect the test equipment according to the IED specific connection diagram and the needed input and output signals for the function under test. An example of a connection is shown in figure 9.

Connect the current and voltage terminals. Pay attention to the current polarity. Make sure that the connection of input and output current terminals and the connection of the residual current conductor is correct. Check that the input and output logical signals in the logic diagram for the function under test are connected to the corresponding binary inputs and outputs of the IED under test.

To ensure correct results, make sure that the IED as well as the test equipment are properly earthed before testing.
6.5 Releasing the function to be tested

Release or unblock the function to be tested. This is done to ensure that only the function or the chain of functions to be tested are in operation and that other functions are prevented from operating. Release the tested function(s) by setting the corresponding Blocked parameter under Function test modes to No in the local HMI.

When testing a function in this blocking feature, remember that not only the actual function must be activated, but the whole sequence of interconnected functions (from measuring inputs to binary output contacts), including logic must be activated. Before starting a new test mode session, scroll through every function to ensure that only the function to be tested (and the interconnected ones) have the parameters Blocked and eventually EvDisable set to No and Yes respectively. Remember that a function is also blocked if the BLOCK input signal on the corresponding function block is active, which depends on the configuration. Ensure that the logical status of the BLOCK input signal is equal to 0 for the function to be tested. Event function blocks can also be individually blocked to ensure that no events are reported to a remote station during the test. This is done by setting the parameter EvDisable to Yes.

Any function is blocked if the corresponding setting in the local HMI under Main menu/Tests/Function test modes menu remains On, that is, the parameter Blocked is set to Yes and the parameter TestMode under Main menu/Tests/IED test mode remains active. All functions that were blocked or released in a previous test mode session, that is, the parameter Test mode is set to On, are reset when a new test mode session is started.

Procedure

1. Click the Function test modes menu. The Function test modes menu is located in the local HMI under Main menu/Tests/Function test modes.
2. Browse to the function instance that needs to be released.
3. Set parameter Blocked for the selected function to No.
6.6 Verifying analog primary and secondary measurement

Verify that the connections are correct and that measuring and scaling is done correctly. This is done by injecting current and voltage to the IED.

Apply input signals as needed according to the actual hardware and the application configuration.

1. Inject a symmetrical three-phase voltage and current at rated value.
2. Compare the injected value with the measured values.
 The voltage and current phasor menu in the local HMI is located under Main menu/Measurements/Analog primary values and Main menu/Measurements/Analog secondary values.
3. Compare the frequency reading with the set frequency and the direction of the power.
 The frequency and active power are located under Main menu/Tests/Function status/Monitoring/CVMMXN/CVMMXN:1/Outputs. Then navigate to the bottom of the list to find the frequency.

Check both analog primary and secondary values, because then the CT and VT ratios entered into the IED are also checked.

These checks shall be repeated for Analog primary values.
4. Inject an unsymmetrical three-phase voltage and current, to verify that phases are correctly connected.

If some setting deviates, check the analog input settings under Main menu/Configuration/Analog modules

Measured values such as current and voltages as well as active, reactive and apparent power, power factor phase angles as well as positive and negative and zero sequence currents and voltages are available in the local HMI under Main menu/Tests/Function status/Monitoring.

Navigate to the measurement function that contains the quantity to be checked.

<table>
<thead>
<tr>
<th>Table 2: Measurement functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>CMMXU</td>
</tr>
<tr>
<td>CMSQI</td>
</tr>
<tr>
<td>CVMMXN</td>
</tr>
<tr>
<td>VMMXU</td>
</tr>
<tr>
<td>VMSQI</td>
</tr>
<tr>
<td>VNMMXU</td>
</tr>
</tbody>
</table>

Also the Signal Monitoring tool in PCM600 can be used to read the measured values. In many cases it is more convenient to use PCM600 since, among many things, reports on measured values can be exported from the Signal Monitoring tool to other tools (for example, MS Excel) for further analysis.
6.7 Testing the protection functionality

Each protection function must be tested individually by secondary injection.

- Verify operating levels (trip) and timers.
- Verify alarm and blocking signals.
- Use the disturbance handling tool in PCM600 to evaluate that the protection function has received the correct data and responded correctly (signaling and timing).
- Use the event viewer tool in PCM600 to check that only expected events have occurred.
Section 7 Testing functionality

7.1 Testing disturbance report

7.1.1 Introduction

The following sub-functions are included in the disturbance report function:

- Disturbance recorder
- Event list
- Event recorder
- Trip value recorder
- Indications

If the disturbance report is set on, then its sub-functions are also set up and so it is not possible to only switch these sub-functions off. The disturbance report function is switched off (parameter Operation = Off) in PCM600 or the local HMI under Main menu/Settings/IED Settings/Monitoring/Disturbance report/DRPRDRE:1.

7.1.2 Disturbance report settings

When the IED is in test mode, the disturbance report can be made active or inactive. If the disturbance recorder is turned on during test mode, recordings will be made. When test mode is switched off all recordings made during the test session are cleared.

Setting OpModeTest for the control of the disturbance recorder during test mode are located on the local HMI under Main menu/Settings/IED Settings/Monitoring/Disturbance report/DRPRDRE:1.

7.2 Identifying the function to test in the technical reference manual

Use the technical manual to identify function blocks, logic diagrams, input and output signals, setting parameters and technical data.

7.3 Testing differential protection functions

7.3.1 Transformer differential protection T2WPDIF and T3WPDIF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for T2WPDIF are available on the local HMI under Main menu/Tests/Function status/Differential/T2WPDIF(87T,Id)/T2WPDIF:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

Values of the logical signals for T3WPDIF are available on the local HMI under Main menu/Tests/Function status/Differential/T3WPDIF(87T,Id)/T3WPDIF:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.
7.3.1.1 Verifying the settings

1. Go to Main menu/Test/Function test modes/Differential protection and make sure that the restricted earth fault protection, low impedance function REFPDIF is set to Off and that the four step residual overcurrent function EF4PTOC under Main menu/Test/Function test modes/Current protection is set to Off, since they are configured to the same current transformer inputs as the transformer differential protection. Make sure that the transformer differential functions T2WPDIF or T3WPDIF are unblocked.

2. Connect the test set for injection of three-phase currents to the current terminals of the IED, which are connected to the CTs on the HV side of the power transformer.

3. Increase the current in phase L1 until the protection function operates and note the operating current.

4. Check that the trip and alarm contacts operate according to the configuration logic.

5. Decrease the current slowly from operate value and note the reset value.

Depending on the power transformer vector group (Yd and so on), the single-phase injection current will be different by a factor k from the three-phase start, see step 7. This factor k can have one of the following three values: 1.0, or 1.5, or 2.0.

6. Check in the same way the function by injecting current in phases L2 and L3 respectively. Phase L2 and L3 start shall be the same as for phase L1.

7. Inject a symmetrical three-phase current and note the operate value.

8. Connect the timer and set the current to twice the operate value.

9. Switch on the current and note the operate time.

10. Check in the same way the measuring circuits connected to the CTs on the LV side and other current inputs to the transformer differential protection.

11. Finally check that trip information is stored in the event menu.

12. If available on the test set, a second harmonic current of about 20% (assumes 15% setting on I1/I2 ratio parameter) can be added to the fundamental frequency in phase L1. Increase the current in phase L1 above the start value measured in step 6. Repeat test with current injection in phases L2 and L3 respectively.

Note that during this test setting SOTFMode must be set to Off.

The balancing of currents flowing into and out of the differential zone is typically checked by primary testing when suitable supply facilities exist on site. Fifth harmonic blocking can be tested in a similar way. Note, the blocking level for the fifth harmonic is 10% higher than the I5/I1 Ratio setting.

7.3.1.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Differential/T2WPDIF(87T,Id)/T2WPDIF:1for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Differential/T3WPDIF(87T,Id)/T3WPDIF:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.
7.3.2 Restricted earth-fault protection, low impedance REFPDIF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for REFPDIF are available on the local HMI under Main menu/Tests/Function status/Differential/REFPDIF(87,INd)/REFPDIF:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.3.2.1 Verifying the settings

1. Connect the test set for single-phase current injection to the protection terminals connected to the CT in the power transformer neutral-to-earth circuit.
2. Increase the injection current and note the operating value of the protection function.
3. Check that all trip and start contacts operate according to the configuration logic.
4. Decrease the current slowly from operate value and note the reset value.
5. Connect the timer and set the current to ten times the value of the IDMin setting.
6. Switch on the current and note the operate time.
7. Connect the test set to terminal L1 and neutral of the three-phase current input configured to REFPDIF. Also inject a current higher than half the Idmin setting in the neutral-to-earth circuit with the same phase angle and with polarity corresponding to an internal fault.
8. Increase the current injected in L1, and note the operate value. Decrease the current slowly and note the reset value.
9. Inject current into terminals L2 and L3 in the same way as in step 7 above and note the operate and reset values.
10. Inject a current equal to 10% of rated current into terminal L1.
11. Inject a current in the neutral-to-earth circuit with the same phase angle and with polarity corresponding to an external fault.
12. Increase the current to five times the operating value and check that the protection does not operate.
13. Finally check that trip information is stored in the event and disturbance recorder.

7.3.2.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Differential/REFPDIF(87,INd)/REFPDIF:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.3.3 High impedance differential protection HZPDIF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for HZPDIF are available on the local HMI under Main menu/Tests/Function status/Differential/HZPDIF(87,IdN)/HZPDIF:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.3.3.1 Verifying the settings
1. Connect single-phase or three-phase test set to inject the operating voltage. The injection shall be on the primary side of the stabilizing resistor.

The operating voltage is adjusted on the stabilizing resistor and the setting of the resistor value must be done in the function. This is essential for the measurement of the expected value. Normally a slightly higher operating value is no problem as the sensitivity is not influenced much.

2. Increase the voltage and make note of the operate value $U_{>\text{Trip}}$. This is done by manual testing and without trip of the test set.

3. Connect the trip contact to the test set to stop the test set for measurement of trip times below.

4. Reduce the voltage slowly and make note of the reset value. The reset value must be high for this function.

5. Check the operating time by injecting a voltage corresponding to $1.2 \cdot U_{>\text{Trip}}$ level. Make note of the measured trip time.

6. If required, verify the trip time at another voltage. Normally $2 \cdot U_{>\text{Trip}}$ is selected.

7. If used, measure the alarm level operating value. Increase the voltage and make note of the operate value $U_{>\text{Alarm}}$. This is done with manual test and without trip of the test set.

8. Measure the operating time on the alarm output by connecting the stop of the test set to an output from t_{Alarm}. Inject a voltage $1.2 \cdot U_{>\text{Alarm}}$ and measure the alarm time.

9. Check that trip and alarm outputs operate according to the configuration logic.

10. Finally check that start and alarm information is stored in the event menu and if a serial connection to the SA is available verify that the correct and only the required signals are presented on the local HMI and on the SCADA system.

Information on how to use the event menu is found in the operator’s manual.

7.3.3.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under **Main menu/Tests/IED test mode/TESTMODE:1**. If another function is tested, then set the parameter Blocked to No under **Main menu/Tests/Function test modes/Differential/HZIPDIF(87,IdN)/HZIPDIF:X** for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.4 Testing current protection functions

7.4.1 Instantaneous phase overcurrent protection 3-phase output PHPIOC

Prepare the IED for verification of settings as outlined in section **Preparing the IED to verify settings**.

Values of the logical signals for PHPIOC are available on the local HMI under **Main menu/Tests/Function status/Current/PHPIOC(50,\text{\textgreater\textgreater})/PHPIOC:1**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

To verify the settings the following fault type should be tested:

- Phase-to-earth fault
Ensure that the maximum continuous current, supplied from the current source used for the test of the IED, does not exceed four times the rated current value of the IED.

7.4.1 Measuring the operate limit of set values

1. Inject a phase current into the IED with an initial value below that of the setting.
2. Increase the injected current until the TRIP signal appears.
3. Switch the fault current off.

 Note: Do not exceed the maximum permitted overloading of the current circuits in the IED.

4. Compare the measured operating current with the set value.

7.4.1.2 Completing the test

Continue to test another function or end the testing by setting the parameter `TestMode` to `Off` under `Main menu/Tests/IED test mode/TESTMODE:1`. If another function is tested, then set the parameter `Blocked` to `No` under `Main menu/Tests/Function test modes/Current/PHPIOC(50,i)>>/PHPIOC:1` for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter `Blocked` to `Yes` for each individual function that has been tested.

7.4.2 Four step phase overcurrent protection 3-phase output OC4PTOC

Prepare the IED for verification of settings as outlined in section [Preparing the IED to verify settings](#).

Values of the logical signals for OC4PTOC are available on the local HMI under `Main menu/Tests/Function status/Current/OC4PTOC(51_67,4I)>>/OC4PTOC:1`. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.2.1 Verifying the settings

1. Connect the test set for current injection to the appropriate IED phases. If there is any configuration logic that is used to enable or block any of the four available overcurrent steps, make sure that the step under test is enabled (for example, end fault protection).
 Connect the symmetrical three-phase injection current into phases L1, L2 and L3.
2. Connect the test set for the appropriate three-phase voltage injection to the IED phases L1, L2 and L3. The protection shall be fed with a symmetrical three-phase voltage.
3. Set the injected polarizing voltage slightly larger than the set minimum polarizing voltage (default is 5% of UBase) and set the injection current to lag the appropriate voltage by an angle of 55° if forward directional function is selected. If 1 out of 3 currents for operation is chosen: The voltage angle of phase L1 is the reference.
 If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to 235° (equal to 55° + 180°).
4. Increase the injected current and note the operate value of the tested step of the function.
5. Decrease the current slowly and note the reset value.
6. If the test has been performed by injection of current in phase L1, repeat the test, injecting current into phases L2 and L3 with polarizing voltage connected to phases L2, respectively L3 (1 out of 3 currents for operation).

7. If the test has been performed by injection of current in phases L1 – L2, repeat the test, injecting current into phases L2 – L3 and L3 – L1 with the appropriate phase angle of injected currents.

8. Block higher set stages when testing lower set stages by following the procedure described below.

9. Connect a trip output contact to a timer.

10. Set the injected current to 200% of the operate level of the tested stage, switch on the current and check the time delay.
 For inverse time curves, check the operate time at a current equal to 110% of the operate current for \(tx_{\text{Min}} \).

11. Check that all trip and start contacts operate according to the configuration (signal matrixes)

12. Reverse the direction of the injected current and check that the protection does not operate.

13. Repeat the above described tests for the higher set stages.

14. Finally check that start and trip information is stored in the event menu.

Verification of the non-directional phase overcurrent function is done as instructed above, without applying any polarizing voltage.

7.4.2.2 Completing the test

Continue to test another function or end the testing by setting the parameter `TestMode` to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter `Blocked` to No under Main menu/Tests/Function test modes/Current/OC4PTOC(51_67,4I>)/OC4PTOC:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter `Blocked` to Yes, for each individual function that has been tested.

7.4.3 Instantaneous residual overcurrent protection EFPIOC

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".

Values of the logical signals for EFPIOC are available on the local HMI under Main menu/Tests/Function status/Current/EFPIOC(50N,IN>>)/EFPIOC:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

To verify the settings the following fault type should be tested:

- Phase-to-earth fault

Ensure that the maximum continuous current, supplied from the current source used for the test of the IED, does not exceed four times the rated current value of the IED.

7.4.3.1 Measuring the operate limit of set values
1. Inject a phase current into the IED with an initial value below that of the setting.
2. Increase the injected current in the Ln or in the neutral (summated current input) phase until the TRIP signal appears.
3. Switch the fault current off. Observe to not exceed the maximum permitted overloading of the current circuits in the IED.
4. Compare the measured operating current with the set value.

7.4.3.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Current/EFFPIOC(50N,IN>>)/EFFPIOC:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.4.4 Four step residual overcurrent protection, zero or negative sequence direction EF4PTOC

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for EF4PTOC are available on the local HMI under Main menu/Tests/Function status/Current/EF4PTOC(51N67N,4IN>)/EF4PTOC:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.4.1 Four step directional residual overcurrent protection

1. Connect the test set for single current injection to the appropriate IED terminals. Connect the injection current and voltage to terminals L1 and neutral.
2. Set the injected polarizing voltage slightly larger than the set minimum polarizing voltage (default 1% of Ur) and set the injection current to lag the voltage by an angle equal to the set reference characteristic angle (AngleRCA), if the forward directional function is selected. If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to RCA+180°.
3. Increase the injected current and note the value at which the studied step of the function operates.
4. Decrease the current slowly and note the reset value.
5. If the test has been performed by injection of current in phase L1, repeat the test, injecting current into terminals L2 and L3 with a polarizing voltage connected to terminals L2, respectively L3.
6. Block lower set steps when testing higher set steps according to the instructions that follow.
7. Connect a trip output contact to a timer.
8. Set the injected current to 200% of the operate level of the tested step, switch on the current and check the time delay. For inverse time curves, check the operate time at a current equal to 110% of the operate current for txMin.
9. Check that all trip and start contacts operate according to the configuration (signal matrixes).
10. Reverse the direction of the injected current and check that the step does not operate.
11. Check that the protection does not operate when the polarizing voltage is zero.
12. Repeat the above described tests for the higher set steps.
13. Finally, check that start and trip information is stored in the event menu.

7.4.4.2 Four step non-directional residual overcurrent protection

1. Do as described in "Four step directional residual overcurrent protection", but without applying any polarizing voltage.

7.4.4.3 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Current/EF4PTOC(51N67N,4IN+)/EF4PTOC:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.4.5 Thermal overload protection, two time constants TRPTTTR

Prepare the IED for verification of settings as outlined in the section "Preparing the IED to verify settings".

Values of the logical signals for TRPTTTR are available on the local HMI under Main menu/Tests/Function status/Current/TRPTTTR(49,T+)/TRPTTTR:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.5.1 Checking operate and reset values

1. Connect symmetrical three-phase currents to the appropriate current terminals of the IED.
2. Set the Time constant 1 (Tau1) and Time Constant 2 (Tau2) temporarily to 1 minute.
3. Set the three-phase injection currents slightly lower than the set operate value of stage IBase1, increase the current in phase L1 until stage IBase1 operates and note the operate value.

 ![Information](https://via.placeholder.com/150)

 Observe the maximum permitted overloading of the current circuits in the IED.

4. Decrease the current slowly and note the reset value.
 Check, in the same way, the operate and reset values of IBase1 for phases L2 and L3.
5. Activate the cooling input signal, thus switching to base current IBase2.
6. Check the operate and reset values (for all three phases) for IBase2 in the same way as described above for stage IBase1.
7. Deactivate the input signal for stage IBase2.
8. Set the time constant for IBase1 in accordance with the setting plan.
9. Set the injection current for phase L1 to 1.50 · IBase1.
10. Connect a trip output contact to the timer and monitor the output of contacts ALARM1 and ALARM2 to digital inputs in test equipment.
 Read the heat content in the thermal protection from the local HMI and wait until the content is zero.
11. Switch on the injection current and check that ALARM1 and ALARM2 contacts operate at the set percentage level and that the operate time for tripping is in accordance with the set Time Constant 1 (\(\text{Tau1}\)).
 With setting \(I_{tr} = 101\% I_{\text{Base1}}\) and injection current \(1.50 \cdot I_{\text{Base1}}\), the trip time from zero content in the memory shall be \(0.60 \cdot \text{Time Constant 1 (Tau1)}\).

12. Check that all trip and alarm contacts operate according to the configuration logic.

13. Switch off the injection current and check from the service menu readings of thermal status and LOCKOUT that the lockout resets at the set percentage of heat content.

14. Activate the cooling input signal to switch over to base current \(I_{\text{Base2}}\). Wait 5 minutes to empty the thermal memory and set Time Constant 2 (\(\text{Tau2}\)) in accordance with the setting plan.

15. Test with injection current \(1.50 \cdot I_{\text{Base2}}\) the thermal alarm level, the operate time for tripping and the lockout reset in the same way as described for stage \(I_{\text{Base1}}\).

16. Finally check that start and trip information is stored in the event menu.

7.4.5.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Current/TRPTTR(49,T>/TRPTTR:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.4.6 Breaker failure protection, phase segregated activation and output CCRBRF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for CCRBRF are available on the local HMI under Main menu/Tests/Function status/Current/CCRBRF(50BF)/CCRBRF:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The Breaker failure protection, 3-phase activation and output function CCRBRF should normally be tested in conjunction with some other function that provides a start signal. An external START signal can also be used.

To verify the settings in the most common back-up trip mode 1 out of 3, it is sufficient to test phase-to-earth faults.

At mode 2 out of 4 the phase current setting, \(I_p>\) can be checked by single-phase injection where the return current is connected to the summated current input. The value of residual (earth fault) current \(I_n\) set lower than \(I_p>\) is easiest checked in back-up trip mode 1 out of 4.

7.4.6.1 Checking the phase current operate value, \(I_p>\)

Check the current level \(I_p>\) where setting FunctionMode=Current and setting BuTripMode=1 out of 3 or 2 out of 4 as set under Main menu/Settings/IED Settings/Current/CCRBRF(50BF)/CCRBRF:1.

1. Apply the fault condition, including START of CCRBRF, with a current below set \(I_p>\).
2. Repeat the fault condition and increase the current in steps until a trip occurs.
3. Compare the result with the set \(I_p>\).
4. Disconnect AC and START input signals.
Note! If NoI>check or Retrip off is set, only back-up trip can be used to check set IP>.

7.4.6.2 Checking the residual (earth fault) current operate value IN> set below IP>

Check the low set IN> current where setting FunctionMode = Current and setting BuTripMode = 1 out of 4 as set under Main menu/Settings/IED Settings/Current/CCBRBF(50BF)/
CCRBFRF:1.

1. Apply the fault condition, including START of CCRBF, with a current just below set IN>Pickup_N.
2. Repeat the fault condition and increase the current in steps until trip appears.
3. Compare the result with the set IN>.
4. Disconnect AC and START input signals.

7.4.6.3 Checking the re-trip and back-up times

The check of the set times can be made in connection with the check of operate values above.

Choose the applicable function and trip mode, such as FunctionMode = Current and setting RetripMode = No CBPos. Check as set under Main menu/Settings/IED Settings/Current/
CCBRBF(50BF)/CCRBFRF:1.

1. Apply the fault condition, including start of CCRBF, well above the set current value. Measure time from START of CCRBF.
2. Check the re-trip t1 and back-up trip times t2.
3. Disconnect AC and START input signals.

7.4.6.4 Verifying the re-trip mode

Choose the mode below, which corresponds to the actual case.

In the cases below it is assumed that FunctionMode = Current as set under Main menu/
Settings/IED Settings/Current/CCBRBF(50BF)/CCRBFRF:1.

Checking the case without re-trip, RetripMode = Retrip Off

1. Set RetripMode = Retrip Off.
2. Apply the fault condition, including start of CCRBF, well above the set current value.
3. Verify that no re-trip, but back-up trip is achieved after set time.
4. Disconnect AC and START input signals.

Checking the re-trip with current check, RetripMode = CB Pos Check

1. Set RetripMode = CB Pos Check.
2. Apply the fault condition, including start of CCRBF, well above the set current value.
3. Verify that re-trip is achieved after set time t1 and back-up trip after time t2
4. Apply the fault condition, including start of CCRBF, with current below set current value.
5. Verify that no re-trip, and no back-up trip is obtained.
6. Disconnect AC and START input signals.

Checking re-trip without current check, RetripMode = No CBPos Check
1. Set RetripMode = No CBPos Check.
2. Apply the fault condition, including start of CCRBRF, without any current.
3. Verify that re-trip is achieved after set time \(t_1 \) and back-up trip after time \(t_2 \).
4. Apply the fault condition, including start of CCRBRF, with current below set current value.
5. Verify that re-trip is achieved after set time \(t_1 \), but no back-up trip is obtained.
6. Disconnect AC and START input signals.

7.4.6.5 Verifying the back-up trip mode

In the cases below it is assumed that FunctionMode = Current is selected.

Checking that back-up tripping is not achieved at normal CB tripping

Use the actual tripping modes. The case below applies to re-trip with current check.

1. Apply the fault condition, including start of CCRBRF, with phase current well above set value \(I_P \).
2. Interrupt the current, with a margin before back-up trip time, \(t_2 \). It may be made at issue of re-trip command.
3. Check that re-trip is achieved, if selected, but no back-up trip is obtained.
4. Disconnect AC and START input signals.

The normal mode \(BuTripMode = 1 \text{ out of 3} \) should have been verified in the tests above. In applicable cases the modes \(1 \text{ out of 4} \) and \(2 \text{ out of 4} \) can be checked. Choose the mode below, which corresponds to the actual case.

Checking the case \(BuTripMode = 1 \text{ out of 4} \)

It is assumed that the earth-fault current setting \(I_{N}> \) is below phase current setting \(I_P > \).

1. Set \(BuTripMode = 1 \text{ out of 4} \).
2. Apply the fault condition, including start of CCRBRF, with one-phase current below set \(I_P > \) but above \(I_{N}> \). The residual earth-fault should then be above set \(I_{N}> \).
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Disconnect AC and START input signals.

Checking the case \(BuTripMode = 2 \text{ out of 4} \)

The earth-fault current setting \(I_{N}> \) may be equal to or below phase-current setting \(I_P > \).

1. Set \(BuTripMode = 2 \text{ out of 4} \).
2. Apply the fault condition, including start of CCRBRF, with one-phase current above set \(I_P > \) and residual (earth fault) above set \(I_{N}> \).
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Apply the fault condition, including start of CCRBRF, with at least one-phase current below set \(I_P > \) and residual (earth fault) above set \(I_{N}> \). The current may be arranged by feeding three- (or two-) phase currents with equal phase angle (10-component) below \(I_P > \), but of such value that the residual (earth fault) current \(3I_{0} \) will be above set value \(I_{N}> \).
5. Verify that back-up trip is not achieved.
6. Disconnect AC and START input signals.

7.4.6.6 Verifying the case RetripMode = Contact

It is assumed that re-trip without current check is selected, \(RetripMode = Contact \).

1. Set FunctionMode = Contact
2. Apply input signal for CB closed to input CBCLDL1, CBCLD2 or CBCDL3.
3. Apply input signal, for start of CCRBRF.
4. Verify that phase selection re-trip and back-up trip are achieved after set times.
5. Disconnect the start signal. Keep the CB closed signal.
6. Apply input signal, for start of CCRBRF.
7. Arrange disconnection of CB closed signal well before set back-up trip time t_2.
8. Verify that back-up trip is not achieved.
9. Disconnect injected AC and START input signals.

7.4.6.7 Verifying the function mode Current&Contact

To be made only when $FunctionMode = \text{Current&Contact}$ is selected.

Checking the case with fault current above set value $I_{P}>$

The operation shall be as in $FunctionMode = \text{Current}$.

1. Set $FunctionMode = \text{Current&Contact}$.
2. Leave the inputs for CB close inactivated. These signals should not influence.
3. Apply the fault condition, including start of CCRBRF, with current above the set $I_{P}>$ value.
4. Check that the re-trip, if selected, and back-up trip commands are achieved.
5. Disconnect injected AC and START input signals.

Checking the case with fault current below set value $I_{>\text{BlkCont}}$

The case shall simulate a case where the fault current is very low and operation will depend on CB position signal from CB auxiliary contact. It is suggested that re-trip without current check is used, setting $RetripMode = \text{No CBPos Check}$.

1. Set $FunctionMode = \text{Current&Contact}$.
2. Apply input signal for CB closed to relevant input or inputs CBCLDL1 (2 or 3).
3. Apply the fault condition with input signal(s) for start of CCRBRF. The value of current should be below the set value $I_{>\text{BlkCont}}$.
4. Verify that phase selection re-trip (if selected) and back-up trip are achieved after set times. Failure to trip is simulated by keeping the signal(s) CB closed activated.
5. Disconnect the AC and the START signal(s). Keep the CB closed signal(s).
6. Apply the fault and the start again. The value of current should be below the set value $I_{>\text{BlkCont}}$.
7. Arrange disconnection of BC closed signal(s) well before set back-up trip time t_2. It simulates a correct CB tripping.
8. Verify that back-up trip is not achieved. Re-trip can appear for example, due to selection "Re-trip without current check".
9. Disconnect injected AC and START input signals.

7.4.6.8 Completing the test

Continue to test another function or end the testing by setting the parameter $TestMode$ to Off under $\text{Main menu/Tests/IED test mode/TESTMODE:1}$. If another function is tested, then set the parameter $Blocked$ to No under $\text{Main menu/Tests/Function test modes/Current/CCRBRF(50BF)/CCRBRF:X}$ for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter $Blocked$ to Yes, for each individual function that has been tested.

7.4.7 Pole discordance protection CCRPLD

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.
Values of the logical signals for CCRPLD are available on the local HMI under **Main menu/Tests/Function status/Current/CCRPLD(52PD)/CCRPLD:X**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.7.1 Verifying the settings

1. When CCRPLD is set for external, set setting _ContSel_ to _On_ under **Main menu/Settings/IED Settings/Current/CCRPLD/CCRPLD:1** to activate the logic that detects pole discordance when external pole discordance signaling is used (input EXTPDIND) in the application configuration.
2. Activate the input EXTPDIND on CCRPLD function block, and measure the operating time of CCRPLD.
3. Compare the measured time with the set value _tTrip_.
4. Reset the EXTPDIND input.
5. When CCRPLD is set for unsymmetrical current detection with CB monitoring, set setting _CurrSel_ under **Main menu/Settings/IED Settings/Current/CCRPLD/CCRPLD:1** to _On_. Use the TRIP signal from the configured binary output to stop the timer.
6. Repeat point 4 and 5 using OPENCMD instead of CLOSECMD. Set all three currents to 110% of _CurrRelLevel_. Activate CLOSECMD.
 NO TRIP signal should appear due to symmetrical condition.

7.4.7.2 Completing the test

Continue to test another function or end the testing by setting the parameter _TestMode_ to _Off_ under **Main menu/Tests/IED test mode/TESTMODE:1**. If another function is tested, then set the parameter _Blocked_ to _No_ under **Main menu/Tests/Function test modes/Current/CCRPLD(52PD)/CCRPLD:X** for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter _Blocked_ to _Yes_, for each individual function that has been tested.

7.4.8 Directional underpower protection GUPPDUP

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".

Values of the logical signals for GUPPDUP are available on the local HMI under **Main menu/Tests/Function status/Current/GUPPDUP(37,P<)/GUPPDUP:1**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.8.1 Verifying the settings

The underpower protection shall be set to values according to the real set values to be used.

The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test, the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three-phase test set is available this could be used for all the modes. If a single-phase current/voltage test set is available the test set should be connected to a selected input for one-phase current and voltage.

Use the formulas stated in **Table 3** for the different calculation modes used. The set mode _Mode_ can be found on the local HMI under **Main menu/Settings/IED Settings/Current/GUPPDUP(37,P<)/GUPPDUP:1/General**.
Table 3: Calculation modes

<table>
<thead>
<tr>
<th>Set value: Mode</th>
<th>Formula used for complex power calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2, L3</td>
<td>$\bar{S} = \bar{U}{L1} \cdot \bar{I}{L1}^* + \bar{U}{L2} \cdot \bar{I}{L2}^* + \bar{U}{L3} \cdot \bar{I}{L3}^*$</td>
</tr>
<tr>
<td>Arone</td>
<td>$\bar{S} = \bar{U}{L1L2} \cdot \bar{I}{L1}^* - \bar{U}{L2L3} \cdot \bar{I}{L3}^*$</td>
</tr>
<tr>
<td>PosSeq</td>
<td>$\bar{S} = 3 \cdot \bar{U}{PosSeq} \cdot \bar{T}{PosSeq}^*$</td>
</tr>
<tr>
<td>L1L2</td>
<td>$\bar{S} = \bar{U}{L1L2} \cdot (\bar{I}{L1}^* - \bar{I}_{L2}^*)$</td>
</tr>
<tr>
<td>L2L3</td>
<td>$\bar{S} = \bar{U}{L2L3} \cdot (\bar{I}{L2}^* - \bar{I}_{L3}^*)$</td>
</tr>
<tr>
<td>L3L1</td>
<td>$\bar{S} = \bar{U}{L3L1} \cdot (\bar{I}{L3}^* - \bar{I}_{L1}^*)$</td>
</tr>
<tr>
<td>L1</td>
<td>$\bar{S} = 3 \cdot \bar{U}{L1} \cdot \bar{I}{L1}^*$</td>
</tr>
<tr>
<td>L2</td>
<td>$\bar{S} = 3 \cdot \bar{U}{L2} \cdot \bar{I}{L2}^*$</td>
</tr>
<tr>
<td>L3</td>
<td>$\bar{S} = 3 \cdot \bar{U}{L3} \cdot \bar{I}{L3}^*$</td>
</tr>
</tbody>
</table>

2. Adjust the injected current and voltage to the set values in % of I_{Base} and U_{Base} (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction $Angle1$, angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.

3. Change the angle between the injected current and voltage to $Angle1 + 90°$. Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.

4. Change the angle between the injected current and voltage back to 0°. Decrease the current slowly until the START1 signal, start of stage 1, is activated.

5. Increase the current to 100% of I_{Base}.

6. Switch the current off and measure the time for activation of TRIP1, trip of stage 1.

7. If a second stage is used, repeat steps 2 to 6 for the second stage.

7.4.8.2 Completing the test

Continue to test another function or end the testing by setting the parameter $TestMode$ to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set
the parameter Blocked to No under Main menu/Tests/Function test modes/Current/GUPPDUP(37,P<)/GUPPDUP:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.4.9 **Directional overpower protection GOPPDOP**

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".

Values of the logical signals for GOPPDOP are available on the local HMI under Main menu/Tests/Function status/Current/GOPPDOP(32,P>/GOPPDOP:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.4.9.1 **Verifying the settings**

The overpower protection shall be set to values according to the real set values to be used. The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three phase test set is available this could be used for all the modes. If a single phase current/voltage test set is available the test set should be connected to a selected input for one phase current and voltage.

 Use the formulas stated in Table 3 for the different calculation modes used. The set mode Mode can be found under Main menu/Settings/IED Settings/Current/GOPPDOP(32,P>)/GOPPDOP:1/General.

2. Adjust the injected current and voltage to the set rated values in % of IBase and UBase (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction Angle1, angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.

3. Change the angle between the injected current and voltage to Angle1 + 90°. Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.

4. Change the angle between the injected current and voltage back to Angle1 value. Increase the current slowly from 0 until the START1 signal, start of stage 1, is activated. Check the injected power and compare it to the set value Power1, power setting for stage 1 in % of Sbase.

5. Increase the current to 100% of IBase and switch the current off.

6. Switch the current on and measure the time for activation of TRIP1, trip of stage 1.

7. If a second stage is used, repeat steps 2 to 6 for the second stage.

7.4.9.2 **Completing the test**

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Current/GOPPDOP(32,P>)/GOPPDOP:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.
Testing voltage protection functions

7.5.1 Two step undervoltage protection UV2PTUV

Prepare the IED for verification of settings as outlined in the section "Preparing the IED to verify settings".

Values of the logical signals for UV2PTUV are available on the local HMI under Main menu/Tests/Function status/Voltage/UV2PTUV(27,2U<)/UV2PTUV:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.5.1.1 Verifying the setting

Verification of START value and time delay to operate for Step 1

1. Check that the IED settings are appropriate, especially the START value, the definite time delay and the 1 out of 3 operation mode.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the voltage in one of the phases, until the START signal appears.
4. Note the operate value and compare it with the set value.

The operate value in secondary volts is calculated according to the following equations:

For phase-to-ground measurement:

\[
\frac{U1}{100} < \frac{U_{Base}}{\sqrt{3}} \times \frac{VT \text{ sec}}{VT_{prim}}
\]

(Equation 10)

For phase-to-phase measurement:

\[
\frac{U1}{100} < \frac{U_{Base}}{VT_{prim}} \times \frac{VT \text{ sec}}{VT_{prim}}
\]

(Equation 11)

5. Increase the measured voltage to rated load conditions.
6. Check that the START signal resets.
7. Instantaneously decrease the voltage in one phase to a value about 20% lower than the measured operate value.
8. Measure the time delay for the TRIP signal, and compare it with the set value.
9. Check the inverse time delay by injecting a voltage corresponding to 0.8 × U1<.

For example, if the inverse time curve A is selected, the trip signals TR1 and TRIP operate after a time corresponding to the equation:

\[
t(s) = \frac{k1}{1 - \frac{U}{U1<}}
\]

(Equation 12)

where:

- \(t(s)\) Operate time in seconds
- \(k1\) Settable time multiplier of the function for step 1
U Measured voltage
U1< Set start voltage for step 1

For example, if the measured voltage jumps from the rated value to 0.8 times the set
start voltage level and time multiplier k1 is set to 0.05 s (default value), then the TR1 and
TRIP signals operate at a time equal to 0.250 s ± tolerance.

10. The test above can be repeated to check the inverse time characteristic at different
voltage levels.

11. Repeat the above-described steps for step 2.

Extended testing

1. The tests above can be repeated for 2 out of 3 and for 3 out of 3 operation mode.

7.5.1.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off
under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set
the parameter Blocked to No under Main menu/Tests/Function test modes/Voltage/
UV2PTUV(27,2U<)/UV2PTUV:1 for the function, or for each individual function in a chain, to be
tested next. Remember to set the parameter Blocked to Yes, for each individual function that
has been tested.

7.5.2 Two step overvoltage protection OV2PTOV

Prepare the IED for verification of settings as outlined in the section "Preparing the IED to
verify settings".

Values of the logical signals for OV2PTOV are available on the local HMI under Main menu/
Tests/Function status/Voltage/OV2PTOV(59,2U>)/OV2PTOV:1. The Signal Monitoring in
PCM600 shows the same signals that are available on the local HMI.

7.5.2.1 Verification of single-phase voltage and time delay to operate for Step 1

1. Apply single-phase voltage below the set value $U_1>$.
2. Slowly increase the voltage until the ST1 signal appears.
3. Note the operate value and compare it with the set value.

The operate value in secondary volts is calculated according to the
following equations:

For phase-to-ground measurement:

$$U_1 > \frac{U_{Base}}{100} \times \frac{VT \text{ sec}}{\sqrt{3}} \times \frac{VT_{prim}}{VT_{prim}}$$

(Equation 13)

For phase-to-phase measurement:

$$U_1 > \frac{U_{Base}}{100} \times \frac{VT \text{ sec}}{VT_{prim}}$$

(Equation 14)
4. Decrease the voltage slowly and note the reset value.
5. Set and apply about 20% higher voltage than the measured operate value for one phase.
6. Measure the time delay for the TR1 signal and compare it with the set value.
7. Check the inverse time delay by injecting a voltage corresponding to $1.2 \times U_1 >$.

For example, if the inverse time curve A is selected, the trip signals TR1 and TRIP operate after a time corresponding to the equation:

$$t(s) = \frac{k_1}{\left(\frac{U}{U_1} - 1\right)}$$

(Equation 15)

where:
- $t(s)$: Operate time in seconds
- k_1: Settable time multiplier of the function for step 1
- U: Measured voltage
- $U_1 >$: Set start voltage for step 1

For example, if the measured voltage jumps from 0 to 1.2 times the set start voltage level and time multiplier k_1 is set to 0.05 s (default value), then the TR1 and TRIP signals operate at a time equal to 0.250 s ± tolerance.

8. The test above can be repeated to check the inverse time characteristic at different voltage levels.
9. Repeat the above-described steps for step 2.

7.5.2.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Voltage/OV2PTOV(59,2U >)/OV2PTOV:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.5.3 Two step residual overvoltage protection ROV2PTOV

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".

Values of the logical signals for ROV2PTOV are available on the local HMI under Main menu/Tests/Function status/Voltage/ROV2PTOV(59N,2U N >)/ROV2PTOV:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.5.3.1 Verifying the settings

1. Apply the single-phase voltage either to a single-phase voltage input or to a residual voltage input with the start value below the set value $U_1 >$.
2. Slowly increase the value until ST1 appears.
3. Note the operate value and compare it with the set value.
4. Decrease the voltage slowly and note the reset value.
5. Set and apply about 20% higher voltage than the measured operate value for one phase.
6. Measure the time delay for the TR1 signal and compare it with the set value.
7. Check the inverse time delay by injecting a voltage corresponding to 1.2 × U1>.

For example, if the inverse time curve A is selected, the trip signals TR1 and TRIP operate after a time corresponding to the equation:

\[t(s) = \frac{k1}{U - U1>} \]

(Equation 16)

where:
- \(t(s) \) Operate time in seconds
- \(k1 \) Settable time multiplier of the function for step 1
- \(U \) Measured voltage
- \(U1> \) Set start voltage for step 1

For example, if the measured voltage jumps from 0 to 1.2 times the set start voltage level and time multiplier \(k1 \) is set to 0.05 s (default value), then the TR1 and TRIP signals operate at a time equal to 0.250 s ± tolerance.

8. Repeat the test for step 2.

7.5.3.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Voltage/ROV2PTOV(59N,2UN>)/ROV2PTOV:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.5.4 Overexcitation protection OEXPVPH

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for OEXPVPH are available on the local HMI under Main menu/Tests/Function status/Voltage/OEXPVPH(24,U/f>)/OEXPVPH:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.5.4.1 Verifying the settings

1. Enable function.
2. Connect a symmetrical three-phase voltage input from the test set to the appropriate connection terminals of the overexcitation protection OEXPVPH. OEXPVPH is conveniently tested using rated frequency for the injection voltage and increasing the injection voltage to get the desired overexcitation level.
3. Connect the alarm contact to the timer and set the time delay \(t_{alarm} \) temporarily to zero.
4. Increase the voltage and note the operate value \(V/Hz \).
5. Reduce the voltage slowly and note the reset value.
6. Set the alarm time delay to the correct value according to the setting plan and check the time delay, injecting a voltage corresponding to \(1.2 \cdot V/Hz \).
7. Connect a trip output contact to the timer and temporarily set the time delay \(t_{Min} \) to 0.5s.
8. Increase the voltage and note the \(V/Hz \) operate value.
9. Reduce the voltage slowly and note the reset value.
10. Set the time delay to the correct value according to the setting plan and check the time delay \(t_{Min} \), injecting a voltage corresponding to \(1.2 \cdot V/Hz \).
11. Check that trip and alarm contacts operate according to the configuration logic.
12. Finally check that START and TRIP information is stored in the event menu.

7.5.4.2 Completing the test

Continue to test another function or end the testing by setting the parameter \(TestMode \) to \(Off \) under \(Main\ menu/Tests/IED\ test\ mode/TESTMODE:1 \). If another function is tested, then set the parameter \(Blocked \) to \(No \) under \(Main\ menu/Tests/Function\ test\ modes/Voltage/OEXPVPH(24,U/f)>/OEXPVPH:1 \) for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter \(Blocked \) to \(Yes \), for each individual function that has been tested.

7.6 Testing frequency protection functions

7.6.1 Underfrequency protection SAPTUF

Prepare the IED for verification of settings as outlined in section \(Preparing\ the\ IED\ to\ verify\ settings \).

Values of the logical signals for SAPTUF are available on the local HMI under \(Main\ menu/Tests/Function\ status/Frequency/SAPTUF(81,f<)/SAPTUF:X \). The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.6.1.1 Verifying the settings

Verification of START value and time delay to operate

1. Check that the IED settings are appropriate, for example the start value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and initial frequency.
 The initial frequency is calculated using Equation 17.

 \[
 \text{StartFrequency} + 0.02 + \text{floor} \left[\frac{f_r - \text{StartFrequency}}{0.04} \right] \times 0.04
 \]

 (Equation 17)

3. Slowly decrease the voltage frequency by steps of 40 mHz until the START signal appears; during each step apply the voltage signal for a time that is either at least 10% longer than \(t_{Delay}+100\ ms \) or a suitable time to monitor the function.
4. Note the frequency value at which the START signal appears and compare it with the set value \(\text{StartFrequency} \).
5. Increase the frequency until its rated value is reached.
6. Check that the START signal resets.

\[\text{floor}[x] \text{ is the largest integer less than or equal to } x\]
7. Supply the IED with three-phase voltages at their rated values and frequency 20 mHz over the set value StartFrequency.
8. Decrease the frequency with a 40 mHz step, applying it for a time that is at least 10% longer than (tDelay+100 ms).
9. Measure the time delay of the TRIP signal, and compare it with the set value tDelay. Note that the measured time consists of the set value of the time delay plus the minimum operate time of the function (80 - 90 ms).

Extended testing

1. Check that the IED settings are appropriate, for example the start value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and frequency 20 mHz under the set value StartFrequency, applying it for a time that is at least 10% longer than (tDelay+100 ms).
3. Verify that the TRIP signal is active.
4. Increase the frequency with a 40 mHz step, applying it until the TRIP signal resets.
5. Measure the reset time of the TRIP signal, and compare it with the technical data of the function.

Verification of the low voltage magnitude blocking

1. Check that the IED settings are appropriate, especially the StartFrequency and the tDelay in SAPTUF, and the GlobalBaseSel and the MinValFreqMeas in the SMAI preprocessing function.
2. Supply the IED with three-phase voltages at rated values.
3. Slowly decrease the magnitude of the applied voltage until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the value MinValFreqMeas x UBase / 100.
 Where:
 - MinValFreqMeas is a set value of the SMAI.
 - UBase is the value in the GBASVAL group identified by the setting GlobalBaseSel.
5. Slowly decrease the frequency of the applied voltage, to a value below StartFrequency as explained in Section "Verification of START value and time delay to operate".
6. Check that the START signal does not appear.
7. Wait for a time corresponding to (tDelay+100 ms), and check that the TRIP signal does not appear.
8. Slowly increase the magnitude of the applied voltages until the BLKDMAGN signal resets.
9. Verify that the signal START appears and wait for a time at least equal to (tDelay+100 ms) to verify that also the signal TRIP becomes active.

7.6.1.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Frequency/SAPTUF(81,f<)/SAPTUF:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.6.2 Overfrequency protection SAPTOF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.
Values of the logical signals for SAPTOF are available on the local HMI under **Main menu/Tests/Function status/Frequency/SAPTOF(81,f>)/SAPTOF:X**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.6.2.1 Verifying the settings

Verification of START value and time delay to operate

1. Check that the IED settings are appropriate, for example the start value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and initial frequency. The initial frequency is calculated using Equation 18.

\[
\text{StartFrequency} - 0.02 - \left\lfloor \frac{f_0 - \text{StartFrequency}}{0.04} \right\rfloor \times 0.04
\]

(Equation 18)

3. Slowly increase the voltage frequency by steps of 40 mHz until the START signal appears; during each step apply the voltage signal for a time that is either at least 10% longer than \((t\text{Delay}+100 \text{ ms})\) or a suitable time to monitor the function.
4. Note the frequency value at which the START signal appears and compare it with the set value \(\text{StartFrequency}\).
5. Decrease the frequency until its rated value is reached.
6. Check that the START signal resets.
7. Supply the IED with three-phase voltages at their rated values and frequency 20 mHz under the set value \(\text{StartFrequency}\).
8. Increase the frequency with a 40 mHz step, applying it for a time that is at least 10% longer than \((t\text{Delay}+100 \text{ ms})\).
9. Measure the time delay of the \(\text{TRIP}\) signal, and compare it with the set value \(t\text{Delay}\). Note that the measured time consists of the set value of the time delay plus the minimum operate time of the function (80 - 90 ms).

Extended testing

1. Check that the IED settings are appropriate, for example the start value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and frequency 20 mHz over the set value \(\text{StartFrequency}\), applying it for a time that is at least 10% longer than \((t\text{Delay}+100 \text{ ms})\).
3. Verify that the TRIP signal is active.
4. Decrease the frequency with a 40 mHz step, applying it until the TRIP signal resets.
5. Measure the reset time of the \(\text{TRIP}\) signal, and compare it with the technical data of the function.

Verification of the low voltage magnitude blocking

1. Check that the IED settings are appropriate, especially the \(\text{StartFrequency}\) and the \(t\text{Delay}\) in SAPTOF, and the \(\text{GlobalBaseSel}\) and the \(\text{MinValFreqMeas}\) in the SMAI preprocessing function.
2. Supply the IED with three-phase voltages at rated values.
3. Slowly decrease the magnitude of the applied voltage until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the value \(\text{MinValFreqMeas} \times \frac{\text{UBase}}{100}\). Where:

\[\text{floor}[x]\] is the largest integer less than or equal to \(x\)
7.6.2.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Frequency/SAPTOF(81,f>)/SAPTOF:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.6.3 Rate-of-change frequency protection SAPFRC

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".

Values of the logical signals for SAPFRC are available on the local HMI under Main menu/Tests/Function status/Frequency/SAPFRC(81,df/dt)/SAPFRC:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

7.6.3.1 Verifying the settings

Verification of START value and time delay to operate

1. Check that the appropriate settings are available in the IED, especially the START value and the definite time delay. Set StartFreqGrad, to a rather small negative value.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the frequency of the applied voltage, with an increasing rate-of-change that finally exceeds the setting of StartFreqGrad, and check that the START signal appears.
4. Note the operate value and compare it with the set value.
5. Increase the frequency to rated operating conditions, and zero rate-of-change.
6. Check that the START signal resets.
7. Instantaneously decrease the frequency of the applied voltage to a value about 20% lower than the nominal value.
8. Measure the time delay for the TRIP signal, and compare it with the set value.

Extended testing

1. The test above can be repeated to check a positive setting of StartFreqGrad.
2. The tests above can be repeated to test the RESTORE signal, when the frequency recovers from a low value.
7.6.3.2 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Frequency/SAPFRC(81,df/dt)/SAPFRC:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.7 Testing secondary system supervision functions

7.7.1 Fuse failure supervision SDDRFUF

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for SDDRFUF are available on the local HMI under Main menu/Tests/Function status/Secondary system supervision/SDDRFUF/SDDRFUF:1. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The verification is divided in two main parts. The first part is common to all fuse failure supervision options, and checks that binary inputs and outputs operate as expected according to actual configuration. In the second part the relevant set operate values are measured.

7.7.1.1 Checking that the binary inputs and outputs operate as expected

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Connect the nominal dc voltage to the DISCPOS binary input.
 • The signal BLKU should appear with almost no time delay.
 • No signals BLKZ and 3PH should appear on the IED.
 • Only the distance protection function can operate.
 • Undervoltage-dependent functions must not operate.
3. Disconnect the dc voltage from the DISCPOS binary input terminal.
4. Connect the nominal dc voltage to the MCBOP binary input.
 • The BLKU and BLKZ signals should appear without any time delay.
 • All undervoltage-dependent functions must be blocked.
5. Disconnect the dc voltage from the MCBOP binary input terminal.
6. Disconnect one of the phase voltages and observe the logical output signals on the binary outputs of the IED. BLKU and BLKZ signals should appear simultaneously wether the BLKU and BLKZ reset depends on the setting SealIn "on" or "off". If "on" no reset, if "off" reset.
7. After more than 5 seconds disconnect the remaining two-phase voltages and all three currents.
 • There should be no change in the high status of the output signals BLKU and BLKZ.
 • The signal 3PH will appear.
8. Establish normal voltage and current operating conditions simultaneously and observe the corresponding output signals.
 They should change to logical 0 as follows:
 • Signal 3PH after about 25ms
 • Signal BLKU after about 50ms
 • Signal BLKZ after about 200ms
7.7.1.2 Measuring the operate value for the negative sequence function

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Slowly decrease the measured voltage in one phase until the BLKU signal appears.
3. Record the measured voltage and calculate the corresponding negative-sequence voltage according to the equation.
 Observe that the voltages in the equation are phasors.
 \[3 \cdot \overline{U}_2 = \overline{U}_{L1} + a^2 \cdot \overline{U}_{L2} + a \cdot \overline{U}_{L3} \]
 \[\text{(Equation 19)} \]
 Where:
 \[\overline{U}_{L1}, \overline{U}_{L2} \text{ and } \overline{U}_{L3} = \text{the measured phase voltages} \]
 \[a = 1 \cdot e^{j \frac{2\pi}{3}} = -0.5 + j\frac{\sqrt{3}}{2} \]
4. Compare the result with the set value (consider that the set value \(3U_2^1\) is in percentage of the base voltage \(U_{Base}\)) of the negative-sequence operating voltage.
5. Repeat steps 1 and 2. Then slowly increase the measured current in one phase until the BLKU signal disappears.
6. Record the measured current and calculate the corresponding negative-sequence current according to the equation.
 Observe that the currents in the equation are phasors.
 \[3 \cdot \overline{I}_2 = \overline{I}_{L1} + a^2 \cdot \overline{I}_{L2} + a \cdot \overline{I}_{L3} \]
 \[\text{(Equation 22)} \]
 Where:
 \[\overline{I}_{L1}, \overline{I}_{L2} \text{ and } \overline{I}_{L3} = \text{the measured phase currents} \]
 \[a = 1 \cdot e^{j \frac{2\pi}{3}} = -0.5 + j\frac{\sqrt{3}}{2} \]
7. Compare the result with the set value of the negative-sequence operating current.
 Consider that the set value \(3I_2^1\) is in percentage of the base current \(I_{Base}\).

7.7.1.3 Measuring the operate value for the zero-sequence function

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Slowly decrease the measured voltage in one phase until the BLKU signal appears.
3. Record the measured voltage and calculate the corresponding zero-sequence voltage according to the equation.
 Observe that the voltages in the equation are phasors.
\[3 \cdot U_0 = U_L^1 + U_L^2 + U_L^3 \]
\text{(Equation 25)}

Where:
\[U_L^1, U_L^2 \text{ and } U_L^3 \]
\text{= the measured phase voltages}

4. Compare the result with the set value (consider that the set value \(3U_0\) is in percentage of the base voltage of the zero-sequence operating voltage.

5. Repeat steps 1 and 2. Then slowly increase the measured current in one phase until the BLKU signal disappears.

6. Record the measured current and calculate the corresponding zero-sequence current according to the equation.

Observe that the currents in the equation are phasors.

\[3 \cdot I_0 = I_L^1 + I_L^2 + I_L^3 \]
\text{(Equation 27)}

Where:
\[I_L^1, I_L^2 \text{ and } I_L^3 \]
\text{= the measured phase currents}

7. Compare the result with the set value of the zero-sequence operating current. Consider that the set value \(3I_0\) is in percentage of the base current \(I_{\text{Base}}\).

7.7.1.4 Checking the operation of the \(du/dt\) and \(di/dt\) based function

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.

2. Change the voltages and currents in all three phases simultaneously.

 The voltage change must be greater than the set value for \(DU>\) and the current change must be less than the set value for \(DI<\).

 - The BLKU and BLKZ signals appear without any time delay. The BLKZ signal will be activated only if the internal deadline detection is not activated at the same time.
 - 3PH should appear after 5 seconds, if the remaining voltage levels are lower than the set \(UDLD<\) of the DLD function.

3. Apply normal conditions as in step 1.

4. Change the voltages and currents in all three phases simultaneously.

 The voltage change must be greater than the set value for \(DU>\) and the current change must be more than the set value for \(DI<\).

 The BLKU, BLKZ and 3PH signals should not appear.

5. Repeat step 2.

6. Connect the nominal voltages in all three phases and feed a current below the operate level in all three phases.

7. Keep the current constant. Disconnect the voltage in all three phases simultaneously.

 The BLKU, BLKZ and 3PH signals should not appear.

8. Change the magnitude of the voltage and current for phase 1 to a value greater than the set value for \(DU>\) and \(DI<\).

9. Check that the start output signals STDUL1 and STDIL1 and the general start signals STDU or STD1 are activated.

10. Check that the start output signals for the current and voltage phases 2 and 3 are activated by changing the magnitude of the voltage and current for phases 2 and 3.
7.7.1.5 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Secondary system supervision/SDDRFUF/SDDRFUF:1 for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.8 Testing control functions

During periods of frequent counter state/value changes, if the auxiliary power to the IED is interrupted, it is possible that this information will be lost.

7.8.1 Interlocking

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals are available on the local HMI under Main menu/Tests/Function status/Control/<Function>/<Function:1>. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The interlocking function consists of a bay-level part and a station-level part. The interlocking is delivery specific and is realized by bay-to-bay communication over the station bus. For that reason, test the function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

7.8.2 Apparatus control APC

The apparatus control function consists of four types of function blocks, which are connected in a delivery-specific way between bays and to the station level. For that reason, test the total function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

If a block/unblock command is sent from remote to function, while the IED is shut down, this command will not be recognized after the start up, thus the command that was sent prior to the shut down is used. In such cases, where there is a mismatch, the user is advised to make a complete cycle of block/unblock operations to align the statuses.

7.8.3 Voltage control

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for TCMYLTC are available on the local HMI under Main menu/Tests/Function status/Control/TCMYLTC(84)/TCMYLTC:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.
Values of the logical signals for TR8ATCC are available on the local HMI under **Main menu/Tests/Function status/Control/TR8ATCC(90)/TR8ATCC:X**. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The automatic voltage control for tap changer, parallel control TR8ATCC, if installed, may be set to operate in Master Follower (MF) mode, or Minimise Circulating Current (CC) mode. The commissioning tests for each parallel control mode are addressed separately in the following procedure.

Secondary injection of load current (I_L) and secondary bus voltage (U_B) equivalent quantities are required during installation and commissioning tests. The test consists mainly of:

1. Increasing or decreasing the injected voltage or current at the analogue inputs of the IED.
2. Checking that the corresponding commands (Lower or Raise) are issued by the voltage control function.

Setting confirmation is an important step for voltage control in the installation and commissioning phase to ensure consistency of power systems base quantities, alarm/blocking conditions and parallel control settings for each transformer control function.

Before starting any test, verify the following settings in PCM600 or the local HMI for TR8ATCC and TCMYLTC.

- Confirm power system base quantities I_{Base} (for winding 1, which is defined in a global base function, selected with setting `GlobalBaseSel1` for TR8ATCC), I_{Base} (for winding 2, which is defined in a global base function, selected with setting `GlobalBaseSel2` for TR8ATCC), U_{Base}.

- **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC/General** and **Main menu/Settings/IED Settings/Control/TCMYLTC (84)**

- Confirm that the setting for short circuit impedance X_{r2} for TR8ATCC is in accordance with transformer data:
 - Short circuit impedance, available on the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:1/General/Xr2**.

- Confirm that the setting for TCMYLTC is in accordance with transformer data:
 - Tap change timeout duration - effectively the maximum transformer tap change time, $t_{TCTimeout}$, available on the local HMI under **Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/tTCTimeout**.
 - Load tap changer pulse duration - required length of pulse from IED to load tap changer, $t_{PulseDur}$, available on the local HMI under **Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/tPulseDur**.
 - Transformer tap range, $LowVoltTap$ and $HighVoltTap$, available on the local HMI under **Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/LowVoltTap** and **Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/HighVoltTap**.
 - Load tap changer code type - method for digital feedback of tap position, $CodeType$, available on the local HMI under **Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/CodeType**.
During the installation and commissioning, the behavior of the voltage control functions for different tests may be governed by a parameter group, available on the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC/TR8ATCC:1/General**. These parameter settings can cause a Total Block, Automatic Block or Alarm for a variety of system conditions including over and under voltage, over current and tap changer failure. It is important to review these settings and confirm the intended response of the voltage control function for different secondary injection tests.

Terminology

The busbar voltage UB is a shorter notation for the measured voltages Ua, Ub, Uc or Uij, where Uij is the phase-phase voltage, Uij = Ui -Uj, or Ui, where Ui is one single-phase-to-earth voltage.

IL is a shorter notation for the measured load current; it is to be used instead of the three-phase quantities Ia, Ib, Ic or the two-phase quantities li and lj, or single-phase current li.

Also note that, for simplicity, local HMI menu structures included in the following procedure are referred to universally as TR8ATCC, for example, **Main menu/Settings/IED Settings/Control/TR8ATCC/TR8ATCC:1/Time/t1**.

7.8.3.1 Secondary test

The voltage control function performs basic voltage regulation by comparing a calculated load voltage (UL) against a voltage range defined by setting UDeadband (with upper and lower limits U2 and U1 respectively). The calculated load voltage UL represents the secondary transformer bus voltage UB adjusted for Load drop compensation (LDC) where enabled in settings.

Note that when LDC is disabled, UB equals UL.

When the load voltage UL stays within the interval between U1 and U2, no action will be taken.

If UL < U1 or UL > U2, a command timer will start, which is constant time or inverse time defined by setting t1 and t1Use. The command timer will operate while the measured voltage stays outside the inner deadband (defined by setting UDeadbandInner).

If UL remains outside of the voltage range defined by UDeadband and the command timer expires, the voltage control will execute a raise or lower command to the transformer tap changer. This command sequence will be repeated until UL is brought back within the inner deadband range.

7.8.3.2 Check the activation of the voltage control operation

1. Confirm **Transformer Tap Control = On** and **Transformer Voltage Control = On**
 - Direct tap change control

 Main menu/Settings/IED Settings/Control/TCMYLTC (84)/TCMYLTC:1/Operation
 - Automatic transformer voltage control

 Main menu/Settings/IED Settings/Control
• Enable Tap Command

Commands to tap changer are enabled per default. While the test set is connected to the IED but no voltage is applied, the voltage control functions will detect an undervoltage condition that may result in an alarm or blocking of the voltage-control operation. These conditions will be shown on the local HMI.

2. Apply the corresponding voltage

Confirm the analog measuring mode prior to undertaking secondary injection (positive sequence, phase-phase, or phase-earth). This measuring mode is defined in the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:1/General/MeasMode**

The application of nominal voltage U_{Set} according to set $MeasMode$ to the IEDs should cause the alarm or blocking condition for undervoltage to reset.

7.8.3.3 Check the normal voltage regulation function

1. Review the settings for $U_{Deadband}$ (based on percentage of nominal bus voltage) and calculate the upper (U_2) and lower (U_1) voltage regulation limits for which a tap change command will be issued.

2. Review the expected time for first (t_1) and subsequent (t_2) tap change commands from the voltage control function on the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:1/Time/t1 and t2**

3. Lower the voltage 1% below U_1 and wait for the issue of a Raise command from the voltage control after the expiry of a constant or inverse time delay set by t_1. Detection of this command will involve locating the allocated binary output for a raise pulse command in the Signal Matrix in PCM600 and monitoring a positive from this output.

4. After the issue of the raise command, return the applied voltage to U_{Set} (nominal value).

5. Raise the voltage 1% above the upper deadband limit U_2 and wait for the issue of a lower command from the voltage control after the expiry of a constant or inverse time delay set by t_1. Detection of this command will involve locating the allocated binary output for a low pulse command in the Signal Matrix in PCM600 and monitoring a positive from this output.

6. Return the applied voltage to U_{Set}.

7.8.3.4 Check the undervoltage block function

1. Confirm the setting for U_{block}, nominally at 80% of rated voltage.

2. Confirm the voltage control function response to an applied voltage below U_{block}, by reviewing the setting in the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:1/General/UVBk** that may cause an alarm, total or automatic block of the voltage control function to be displayed on the local HMI.

3. Apply a voltage slightly below U_{block} and confirm the response of the voltage control function.

7.8.3.5 Check the upper and lower busbar voltage limit

1. Confirm the settings for U_{min} and U_{max} in the local HMI under **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:n/Voltage/Umin** and **Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:n/Voltage/Umax**

2. Confirm the voltage control function response to an applied voltage below U_{min} and above U_{max}, by reviewing the settings in the local HMI under **Main menu/Settings/IED**
3. Decrease the injected voltage slightly below the U_{\min} value and check for the corresponding blocking or alarm condition on the local HMI. For an alarm condition, the voltage regulation function is not blocked and a raise command should be issued from the IED.

4. Increase the applied voltage slightly above the U_{\max} value and check for the corresponding blocking or alarm condition on the local HMI. For an alarm condition, the voltage regulation function is not blocked and a lower command should be issued from the IED.

7.8.3.6 Check the overcurrent block function

1. Confirm the setting for I_{block} in the local HMI under `Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:n/TCCtrl/Iblock`

2. Confirm the voltage control function response to an applied current above I_{block}, by reviewing the settings in the local HMI under `Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:n/General/OCBk`.

3. Inject a current higher than the I_{block} setting and confirm the alarm or blocking condition is present on the local HMI. If an automatic or total blocking condition occurs, change the applied secondary voltage and confirm that no tap change commands are issued from the associated binary outputs. This situation can also be confirmed through reviewing the disturbance and service reports on the local HMI.

7.8.3.7 Automatic voltage control for tap changer, parallel control TR8ATCC

Master follower voltage regulation

1. For the transformers connected in the parallel group, confirm that $Operation_{\text{PAR}}$ is set to MF.

2. For parallel operation, it is also recommended to confirm for parallel group membership, defined by setting $TnRXOP$ in the local HMI under `Main menu/Settings/IED Settings/Control/TR8ATCC (90)/TR8ATCC:n/ParCtrl`

The general parallel arrangement of transformers are defined by setting $TnRXOP$ to On or Off. The following rules are applicable on the settings $T1RXOP$ – $T4RXOP$.

If IED $T1$ and $T2$ are connected,
- $T1RXOP$ shall be set to On in instance 2 of TR8ATCC,
- $T2RXOP$ shall be set to On in instance 3 of TR8ATCC,
- $T2RXOP$ and $T3RXOP$ shall be set to On in instance 1 of TR8ATCC, and so on.

The parameter corresponding to the own IED must not be set. $T1RXOP$ should thus not be set in IED $T1$, $T2RXOP$ not in IED $T2$, and so on.

3. The lowest transformer number in the parallel group is by default set as the Master – confirm that this is the case by reviewing the setting in the local HMI.

4. Review the settings for U_{Deadband} (based on percentage of nominal bus voltage) and calculate the upper (U_2) and lower (U_1) voltage regulation limits for which a tap change command will be issued from the master transformer in the group.

5. Apply a voltage 1% below U_1 and wait for the issue of a raise command from the voltage control after the expiry of a constant or inverse time delay set by t_1. Detection of this command will involve locating the allocated binary output for a raise command in the Signal Matrix in PCM600 and monitoring a positive from this output. Confirm the timing of this command correlates with the setting t_1.

© Copyright 2013 ABB. All rights reserved
6. After the issue of the raise command, confirm that all follower transformers in the group change tap in accordance with the command issued from the master transformer.

7. Inject a voltage UB for the master transformer that is 1% above the upper deadband limit U2 and wait for the issue of a lower command from the voltage control after the expiry of a constant or inverse time delay set by t2.

8. Confirm that all follower transformers in the group change tap in accordance with this command.

Circulating current voltage regulation

This instruction for confirmation of circulating current voltage regulation assumes two transformers in the parallel group. Setting confirmation through secondary injection requires calculation of circulating currents for each transformer based on impedance values and respective compensating factors, and is therefore more complex for greater than two transformers.

1. Confirm that OperationPAR is set to CC for the transformers in the parallel group.

2. For parallel operation, it is also recommended that settings be confirmed for parallel group membership, governed by setting TnRXOP in the local HMI under Main menu/Setting/IED Setting/Control/TR8ATCC (90)/TR8ATCC:n/ParCtrl. The general parallel arrangement of transformers are defined by setting TnRXOP to On or Off. The following rules are applicable on the settings T1RXOP - T4RXOP. If IED T1 and T2 are connected,
 • T1RXOP shall be set to On in instance 2 of TR8ATCC, and
 • T2RXOP shall be set to On in instance 1 of TR8ATCC.

 If T1 - T3 are available,
 • T1RXOP and T2RXOP shall be set to On in instance 3 of TR8ATCC,
 • T2RXOP and T3RXOP shall be set to On in instance 1 of TR8ATCC and so on.

 The parameter corresponding to the own IED must not be set. T1RXOP should thus not be set in IED T1, T2RXOP not in IED T2 and so on.

3. Review the settings for UDeadband (based on percentage of nominal bus voltage) and calculate the upper (U2) and lower (U1) voltage regulation limits for which a tap change command will be issued from the master transformer in the group.

4. Inject a voltage UB equal to USet for each transformer.

5. Inject a load current for Transformer 1 that is equal to rated load current IBase (for winding 2, which is defined in a global base function, selected with setting GlobalBaseSel2 for TR8ATCC) and a load current for Transformer 2 that is equal to 95% of rated load current IBase (for winding 2, which is defined in a global base function, selected with setting GlobalBaseSel2 for TR8ATCC). This will have the effect of producing a calculated circulating current that flows from HV to LV side for Transformer 1 and LV to HV side for Transformer 2.

6. Confirm that a circulating current is measured on the local HMI that is equal in magnitude to 5% of IBase (for winding 2, which is defined in a global base function, selected with setting GlobalBaseSel2 for TR8ATCC), with polarity as discussed in step 5.

7. Confirm the settings for Ci (Compensation Factor) and Xi (Transformer Short Circuit Impedance). Using these setting values and the measured quantity of circulating current from the local HMI (Icc_i), calculate the value for circulating current voltage adjustment Uci.

\[Udi = Ci \cdot Icc_i \cdot Xi \]

(Equation 29)
The voltage regulation algorithm then increases (for transformer T2) or decreases (for transformer T1) the measured voltage by U_{di} and compares U_i against the voltage deadband limits U_1 and U_2 for the purposes of voltage regulation.

$U_i = UB + U_{di}$

(Equation 30)

8. To cause a tap change, the calculated value for circulating current voltage adjustment must offset the injected quantity for bus voltage UB so that U_i is outside the voltage deadband created by setting $U_{Deadband}$. Expressed by equation 31 and equation 32.

$U_{di} > U_2 - UB$

(Equation 31)

$UB = U_{set}$

(for the purposes of this test procedure)

(Equation 32)

Therefore:

$Ci \cdot Icc _i \cdot Xi > U_2 - U_{set}$

(Equation 33)

$|Icc _i| > \frac{(U_2 - U_{set})}{(Ci \cdot Xi)}$

(Equation 34)

9. Using the settings for U_{set}, $U_{Deadband}$, C (Compensating factor) and Xr_2 (transformer short circuit impedance) calculate the magnitude of $Icc _i$ necessary to cause a tap change command.

10. Inject current equal to $IBase$ (for winding 2, which is defined in a global base function, selected with setting GlobalBaseSel2 for TR8ATCC) for Transformer 1 and $(IBase - |Icc _i|)$ for Transformer 2 so that the magnitude of calculated circulating current will cause a raise command to be issued for Transformer 2 and a lower command for Transformer 1. Magnitude and direction of circulating currents measured for each transformer can be observed as service values on the local HMI and raise/lower commands detected from the binary output mapped in the Signal Matrix.

The voltage injection equal to U_{set} is required for both transformers during this test.

11. Confirm that a tap change command is issued from the voltage control function to compensate for the circulating current.

12. Injected currents can be reversed such that the direction of calculated circulating currents change polarity, which will cause a lower command for Transformer 2 and a raise command for Transformer 1.

Circulating current limit
1. Confirm that OperationPAR is set to CC for each transformer in the parallel group.
2. Confirm that OperCCBlock is set to On for each transformer in the parallel group.
3. Review the setting for CircCurrLimit.
4. Review the setting for CircCurrBk to confirm whether a circulating current limit will result in an Alarm state, Auto Block or Auto&Man Block of the automatic voltage control for tap changer, for parallel control function TR8ATCC.
5. Inject a voltage UB equal to USet for each transformer.
6. Inject a load current for Transformer 1 that is equal to rated load current IBase (for winding 2, which is defined in a global base function, selected with setting GlobalBaseSel2 for TR8ATCC) and a load current for Transformer 2 that is 1% less than (IBase – (IBase · CircCurrLimit))
7. Confirm that the automatic voltage control for tap changer, for parallel control function TR8ATCC responds in accordance with the setting for CircCurrBk. Alarm and blocking conditions can be confirmed through interrogation of the event menu or the control menu on the local HMI.

V_Tmismatch during parallel operation

1. Confirm that OperationPAR is set to MF for each transformer in the parallel group.
2. Review the setting for V_Tmismatch and tV_Tmismatch.
3. Inject a voltage UB equal to USet for Transformer 1 and a voltage less than (USet – (V_Tmismatch · USet)) for Transformer 2.
4. This condition should result in a VTmismatch which will mutually block the operation of the automatic voltage control for tap changer, parallel control function TR8ATCC for all transformers connected in the parallel group, which can be confirmed through interrogation of the local HMI.
5. Confirm that the automatic voltage control for tap changer, parallel control function TR8ATCC responds in accordance with the setting for CircCurrBk.

7.8.3.8 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set the parameter Blocked to No under Main menu/Tests/Function test modes/Control/TR8ATCC(90)/TR8ATCC:X for the function, or for each individual function in a chain, to be tested next. Remember to set the parameter Blocked to Yes, for each individual function that has been tested.

7.9 Testing scheme communication functions

7.10 Testing logic functions

7.10.1 Tripping logic, common 3-phase output SMPPTRC

Prepare the IED for verification of settings as outlined in section Preparing the IED to verify settings.

Values of the logical signals for SMPPTRC are available on the local HMI under Main menu/Tests/Function status/Logic/SMPPTRC(94,1->0)/SMPPTRC:X. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

This function is functionality tested together with other protection functions (earth-fault overcurrent protection, and so on) within the IED. It is recommended that the function is tested together with the autorecloser function, regardless of whether the autorecloser function is integrated or external.
7.10.1.1 Three-phase operating mode

1. Check that AutoLock and TripLockout are both set to Off.
2. Initiate a three-phase fault.
 An adequate time interval between the faults should be considered, to overcome a
 reclaim time caused by the possible activation of the Autorecloser function, SMBRREC.
 The function must issue a three-phase trip in all cases, when a trip is initiated by any
 protection function, either integrated or external. The functional TRIP output signal must
 always appear.

7.10.1.2 Circuit breaker lockout

The following tests should be carried out when the built-in lockout function is used in addition
to possible other tests, which depends on the complete configuration of an IED.

1. Check that AutoLock and TripLockout are both set to Off.
2. Initiate a three-phase fault.
 The functional output TRIP should be active at each fault. The output CLLKOUT must not
 be activated.
3. Activate the automatic lockout function, set AutoLock = On and repeat.
 Besides the TRIP outputs, CLLKOUT should be set.
4. Reset the lockout signal by activating the reset lockout (RSTLKOUT) signal.
5. Activate the TRIP signal lockout function, set TripLockout = On and repeat.
 The output TRIP must be active and stay active after each fault. CLLKOUT must be
 activated.
6. Reset the lockout.
 All functional outputs should reset.
7. Deactivate the TRIP signal lockout function, set TripLockout = Off and the automatic
 lockout function, set AutoLock = Off if not used.

7.10.1.3 Completing the test

Continue to test another function or end the testing by setting the parameter TestMode to Off
under Main menu/Tests/IED test mode/TESTMODE:1. If another function is tested, then set
the parameter Blocked to No under Main menu/Tests/Function test modes/Logic/
SMPPTRC(94,1->0)/SMPPTRC:X for the function, or for each individual function in a chain, to
be tested next. Remember to set the parameter Blocked to Yes, for each individual function
that has been tested.

7.11 Testing monitoring functions

7.11.1 Event counter CNTGGIO

The event counter function CNTGGIO can be tested by connecting a binary input to the counter
under test and applying pulses to the counter. The speed of pulses must not exceed 10 per
second. Normally the counter will be tested in connection with tests on the function that the
counter is connected to, such as trip logic. When configured, test it together with the function
that operates it. Trig the function and check that the counter result corresponds with the
number of operations.
7.11.2 Limit counter L4UFCNT

The Limit counter function L4UFCNT can be tested by connecting a binary input to the counter and applying pulses to the counter. The speed of the pulses must not exceed the cycle time of the function. Normally the counter will be tested when testing the function that the counter is connected to, such as the trip function. When the function is configured, test it together with the function that operates it. Trig the function and check that the counter result corresponds to the number of operations.

7.11.2.1 Completing the test

Continue to test another function or end the test by changing the Test mode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

7.12 Testing metering functions

7.12.1 Pulse counter PCGGIO

The test of the Pulse counter function PCGGIO requires the Parameter Setting tool in PCM600 or an appropriate connection to the local HMI with the necessary functionality. A known number of pulses with different frequencies are connected to the pulse counter input. The test should be performed with settings Operation = On or Operation = Off and the function blocked or unblocked. The pulse counter value is then checked in PCM600 or on the local HMI.

7.13 Testing station communication

7.13.1 Establishing connection and verifying the IEC 61850 communication

About this chapter

This chapter contains instructions on how to establish connection and verify that the IEC 61850 communication operates as intended, when the IED is connected to an Ethernet network via the optical ports of the COM module.

7.13.1.1 Overview

The COM03 ports are used for substation bus (IEC 61850-8-1) communication as well as redundant communication.

The COM05 ports are also used for communication but not redundant communication.

For IEC 61850-8-1 redundant communication according to IEC62439–3 Edition 2, port LAN_1A and LAN_1B is utilized.

Redundant communication according to IEC62439–3 Edition 1 and IEC 61850–9–2LE process bus communication are not supported in the 650 Ver 1.3 series IEDs.
7.13.1.2 Setting the station communication

To enable the IEC 61850 communication, the corresponding COM03 ports must be activated. Port LAN1 A and LAN1 B are used for redundancy.

If COM03 is used; the following below apply. If COM05 is used; there is no redundancy and the port is named LAN1 or (FRONT)

To enable IEC 61850 station communication:

- The IEC 61850-8-1 station communication functionality must be configured in the local HMI. Navigate to **Main Menu/Configuration/Communication/TCP-IP configuration/ETHLAN1_AB** and set the OperationMode parameter to NonRedundant(A) or, for redundant communication, to PRP(A+B).
- To enable GOOSE communication, the *Operation* parameter for the corresponding GOOSE function blocks (GOOSEBINRCV and GOOSEINTLKRCV) must be set to On in the application configuration.
- To enable GOOSE communication via the front port the parameter *GOOSE* in **Main menu/Configuration/Communication/Station communication/IEC61850-8-1/PortSelGOOSE** must be set to Front. To enable GOOSE communication via rear port the parameter *PortSelGOOSE* must be set to LAN1.

To enable IEC 61850 station communication:

1. Enable IEC 61850-8-1 (substation bus) communication for port A and B.
 1.1. Set values for ETHLAN1_AB.
 Navigate to **Main Menu/Configuration/TCP-IP configuration/ETHLAN1_AB**. Set values for OperationMode, IPAddress and IPMask. OperationMode must be set to NonRedundantA. Check that the correct IP address is assigned to the port.
 1.2. Enable IEC 61850-8-1 communication.
 Navigate to **Main menu/Settings/General settings/Communication/Station communication/IEC 61850-8-1**. Set Operation to On and PortSelGOOSE to the port used.
2. Enable redundant IEC 61850-8-1 communication for port A and B.
 2.1. Enable redundant communication.
 Navigate to **Main Menu/Configuration/TCP-IP configuration/ETHLAN1_AB**. Set values for OperationMode, IPAddress and IPMask. OperationMode must be set to PRP(A+B).

Make sure that the optical fibres are connected correctly.

7.13.1.3 Verifying the station communication

Connect a PC to the substation network and ping the connected IED and the Substation Master PC to verify that the communication is working up to the transport layer.

The best way to verify the communication up to the application layer is to use a protocol analyzer connected to the substation or process bus and monitor the communication.

Verifying redundant IEC 61850-8-1 communication

Ensure that the IED receives IEC 61850-8-1 data on both ports A and B. In the local HMI navigate to **Main menu/Tests/Function status/Communication/PRP Status/LAN1–A / LAN1–**
and check that both signals LAN1-A and LAN1-B are shown as Ok. Remove the optical connection to one of the ports A or B. Verify that either signal LAN1-A or LAN1-B (depending on which connection that was removed) are shown as Error and that the other signal is shown as Ok. Be sure to re-connect the removed connection after completed verification.

7.14 Exit test mode

The following procedure is used to return to normal operation.

1. Navigate to the test mode folder.
2. Change the On setting to Off. Press the 'E' key and the left arrow key.
3. Answer YES, press the 'E' key and exit the menus.
8.1 Commissioning and maintenance of the fault clearing system

About this chapter
This chapter discusses maintenance tests and other periodic maintenance measures.

8.1.1 Commissioning tests

During commissioning all protection functions shall be verified with the setting values used at each plant. The commissioning tests must include verification of all circuits by green-lining the circuit diagrams and the configuration diagrams for the used functions.

Further, the settings for protection functions are tested and recorded carefully as outlined for the future periodic maintenance tests.

The final testing includes primary verification of all directional functions where load currents is checked on the local HMI and in PCM600. The amplitudes and angles of all currents and voltages should be checked and the symmetry verified.

Directional functions have information about the measured direction and, for example, measured impedance. These values must be checked and verified as correct with the export or import of power available.

Finally, final trip tests must be performed. This involves activation of protection functions or tripping outputs with the circuit breaker closed and the tripping of the breaker verified. When several breakers are involved, each breaker must be checked individually and it must be verified that the other involved breakers are not tripped at the same time.

8.1.2 Periodic maintenance tests

The periodicity of all tests depends on several factors, for example the importance of the installation, environmental conditions, simple or complex equipment, static or electromechanical IEDs, and so on.

The normal maintenance praxis of the user should be followed. However, ABB's recommendation is as follows:

Every second to third year

• Visual inspection of all equipment.
• Removal of dust on ventilation louvres and IEDs if necessary.
• Periodic maintenance test for protection IEDs of object where no redundant protections are provided.

Every four to six years

• Periodic maintenance test for protection IEDs of objects with redundant protection system.
First maintenance test should always be carried out after the first half year of service.

When protection IEDs are combined with built-in control, the test interval can be increased drastically, up to for instance 15 years, because the IED continuously reads service values, operates the breakers, and so on.

8.1.2.1 Visual inspection

Prior to testing, the protection IEDs should be inspected to detect any visible damage that may have occurred (for example, dirt or moisture deposits, overheating). Should burned contacts be observed when inspecting the IEDs, a diamond file or an extremely fine file can be used to polish the contacts. Emery cloth or similar products must not be used as insulating grains of abrasive may be deposited on the contact surfaces and cause failure.

Make sure that all IEDs are equipped with covers.

8.1.2.2 Maintenance tests

To be made after the first half year of service, then with the cycle as proposed above and after any suspected maloperation or change of the IED setting.

Testing of protection IEDs shall preferably be made with the primary circuit de-energized. The IED cannot protect the circuit during testing. Trained personnel may test one IED at a time on live circuits where redundant protection is installed and de-energization of the primary circuit is not allowed.

ABB protection IEDs are preferably tested by aid of components from the COMBITEST testing system described in information B03-9510 E. Main components are RTXP 8/18/24 test switch located to the left in each protection IED and RTXH 8/18/24 test handle, which is inserted in test switch at secondary testing. All necessary operations such as opening of trip circuits, short-circuiting of current circuits and opening of voltage circuits are automatically performed in the right order to allow for simple and safe secondary testing even with the object in service.

Preparation

Before starting maintenance testing, the test engineers should scrutinize applicable circuit diagrams and have the following documentation available:

- Test instructions for protection IEDs to be tested
- Test records from previous commissioning and maintenance tests
- List of valid settings
- Blank test records to fill in measured values

Recording

It is of utmost importance to carefully record the test results. Special test sheets covering the frequency of test, date of test and achieved test values should be used. IED setting list and protocols from previous tests should be available and all results should be compared for differences. At component failures, spare equipment is used and set to the requested value. A note of the exchange is made and the new measured values are recorded. Test records for several years of testing should be stored in a common file for a station, or a part of a station, to give a simple overview of the period of testing and achieved test values. These test records are valuable when analysis of service disturbances shall be done.
Secondary injection
The periodic maintenance test is done by secondary injection from a portable test set. Each protection shall be tested according to the secondary injection test information for the specific protection IED. Only the setting values adopted shall be checked for each protection function. If the discrepancy between obtained value and requested set value is too big the setting should be adjusted, the new value recorded and a note should be made in the test record.

Alarm test
When inserting the test handle the alarm and event signalling is normally blocked. This is done in the IED by setting the event reporting to Off during the test. This can be done when the test handle is inserted or the IED is set to test mode from the local HMI. At the end of the secondary injection test it should be checked that the event and alarm signalling is correct by activating the events and performing some selected tests.

Self supervision check
Once secondary testing has been completed, it should be checked that no self-supervision signals are activated continuously or sporadically. Especially check the time synchronization system, GPS or other, and communication signals, both station communication and remote communication.

Trip circuit check
When the protection IED undergoes an operational check, a tripping pulse is normally obtained on one or more of the output contacts and preferably on the test switch. The healthy circuit is of utmost importance for the protection operation. If the circuit is not provided with a continuous trip-circuit supervision, it is possible to check that circuit is really closed when the test-plug handle has been removed by using a high-ohmic voltmeter and measuring between the plus and the trip output on the panel. The measurement is then done through the tripping magnet of the circuit breaker and therefore the complete tripping circuit is checked.

Note that the breaker must be closed.

Please observe that the test system does not provide built-in security during this test. If the instrument should be set on Amp instead of Volts, the circuit breaker naturally is tripped, therefore, great care is necessary.

Trip circuit from trip IEDs to circuit breaker is often supervised by trip-circuit supervision. It can then be checked that a circuit is healthy by opening tripping output terminals in the cubicle. When the terminal is opened, an alarm shall be achieved on the signal system after a delay of some seconds.

Remember to close the circuit directly after the test and tighten the terminal carefully.

Measurement of service currents
After a maintenance test it is recommended to measure the service currents and service voltages recorded by the protection IED. The service values are checked on the local HMI or in PCM600. Ensure that the correct values and angles between voltages and currents are recorded. Also check the direction of directional functions such as Distance and directional overcurrent functions.
For transformer differential protection, the achieved differential current value is dependent on the tap changer position and can vary between less than 1% up to perhaps 10% of rated current. For line differential functions, the capacitive charging currents can normally be recorded as a differential current.

The zero-sequence current to earth-fault protection IEDs should be measured. The current amounts normally very small but normally it is possible to see if the current circuit is "alive".

The neutral-point voltage to an earth-fault protection IED is checked. The voltage is normally 0.1 to 1V secondary. However, voltage can be considerably higher due to harmonics. Normally a CVT secondary can have around 2.5 - 3% third-harmonic voltage.

Restoring

Maintenance is very important to improve the availability of the protection system by detecting failures before the protection is required to operate. There is however little point in testing healthy equipment and then putting it back into service with an open terminal, with a removed fuse or open miniature circuit breaker with an open connection, wrong setting, and so on.

Thus a list should be prepared of all items disturbed during test so that all can be put back into service quickly and without overlooking something. It should be put back into service item by item and signed by the responsible engineer.
Section 9 Troubleshooting

9.1 Fault tracing

9.1.1 Identifying hardware errors

1. Check the module with an error.
 - Check the general IED status in **Main menu/Diagnostics/IED status/General** for a faulty hardware module.
 - Check the history of changes in internal event list in **Main menu/Diagnostics/Internal Events**.
2. Inspect the IED visually.
 - Inspect the IED visually to find any physical error causes.
 - If you can find some obvious physical damage, contact ABB for repair or replacement actions.
3. Check whether the error is external or internal.
 - Check that the error is not caused by external origins.
 - Remove the wiring from the IED and test the input and output operation with an external test device.
 - If the problem remains, contact ABB for repair or replacement actions.

9.1.2 Identifying runtime errors

1. Check the error origin from IED's internal event list **Main menu/Diagnostics/IED status/General**.
2. Reboot the IED and recheck the supervision events to see if the fault has cleared.
3. In case of persistent faults, contact ABB for corrective actions.

9.1.3 Identifying communication errors

Communication errors are normally communication interruptions or synchronization message errors due to communication link breakdown.

- Check the IEC61850 and DNP3 communication status in internal event list in **Main menu/Diagnostics/IED Status/General**.
- In case of persistent faults originating from IED's internal faults such as component breakdown, contact ABB for repair or replacement actions.

9.1.3.1 Checking the communication link operation

There are several different communication links on the product. First check that all communication ports that are used for communication are turned on.

1. Check the front communication port RJ-45.
 1.1. Check that the uplink LED is lit with a steady green light.
The uplink LED is located on the LHMI above the RJ-45 communication port on the left. The port is used for direct electrical communication to a PC connected via a crossed-over Ethernet cable.

1.2. Check the communication status of the front port via the LHMI in Main menu/Test/Function status/Communication/DOSFRNT:1/Outputs. Check that the LINKUP value is 1, that is, the communication is working. When the value is 0, there is no communication link.

2. Check the communication status of the rear port X1 via the LHMI in Main menu/Tests/Function status/Communication/DOSLAN1:1/Outputs. The X1 communication port on the rear side of the IED is for optical Ethernet via LC connector.
 • Check that the LINKUP value is 1, that is, the communication is working. When the value is 0, there is no communication link.

9.1.3.2 Checking the time synchronization

• Select Main menu/Diagnostics/IED status/General and check the status of the time synchronization on Time Synch. The Time synch value is Ready when the synchronization is in order.

 Note that the time synchronization source has to be activated. Otherwise the value is always Ready.

9.1.4 Running the display test

To run the display test, either use the push buttons or start the test via the menu.

• Select Main menu/Tests/LED test.
• Press or simultaneously and . All the LEDs are tested by turning them on simultaneously. The display shows a set of patterns so that all the pixels are activated. After the test, the display returns to normal state.

9.2 Indication messages

9.2.1 Internal faults

When the Ready LED indicates an internal fault by flashing, the message associated with the fault is found in the internal event list in the LHMI menu Main menu/Diagnostics/Internal events. The message includes the date, time, description and signal state for the fault. The internal event list is not updated dynamically. The list is updated by leaving the Internal events menu and then selecting it again. The current status of the internal fault signals can also be checked via the LHMI in Main menu/Diagnostics/IED status.

Different actions are taken depending on the severity of the fault. If the fault is found to be permanent, the IED stays in internal fault mode. The IED continues to perform internal tests during the fault situation.

When a fault appears, the fault indication message is to be recorded and stated when requesting support or service.
Table 4: Internal fault indications

<table>
<thead>
<tr>
<th>Fault indication</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>Real Time Clock Error</td>
<td>Hardware error with the real time clock.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>Runtime Exec. Error</td>
<td>One or more of the application threads are not working properly.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>SW Watchdog Error</td>
<td>This signal will be activated when the terminal has been under too heavy load for at least 5 minutes.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>Runtime App Error</td>
<td>One or more of the application threads are not in an expected state.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>File System Error</td>
<td>A file system error has occurred.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>TRM-Error</td>
<td>A TRM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>COM-Error</td>
<td>A COM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
<tr>
<td>Internal Fault</td>
<td></td>
</tr>
<tr>
<td>PSM-Error</td>
<td>A PSM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
</tbody>
</table>

9.2.2 Warnings

The warning message associated with the fault is found in the internal event list in the LHMI menu Main menu/Diagnostics/Internal events. The message includes the date, time, description and signal state for the fault. The current status of the internal fault signals can also be checked via the LHMI in Main menu/Diagnostics/IED status/General.

When a fault appears, record the fault indication message and state it when ordering service.

Table 5: Warning indications

<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning IEC 61850 Error</td>
<td>IEC 61850 has not succeeded in some actions such as reading the configuration file, startup etc.</td>
</tr>
<tr>
<td>Warning DNP3 Error</td>
<td>Error in DNP3 communication.</td>
</tr>
</tbody>
</table>

9.2.3 Additional indications

The additional indication messages do not activate internal fault or warning.

The messages are listed in the LHMI menu under the event list. The signal status data is found under the IED status and in the internal event list.
Table 6: Additional indications

<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Synch Error</td>
<td>Source of the time synchronization is lost or time system has made a time reset.</td>
</tr>
<tr>
<td>Settings Changed</td>
<td>Settings have been changed.</td>
</tr>
<tr>
<td>Setting Groups Changed</td>
<td>Setting group has been changed.</td>
</tr>
</tbody>
</table>

9.3 Correction procedures

9.3.1 Changing and setting the password

The password can only be set with PCM600.

For more information, see PCM600 documentation.

9.3.2 Identifying IED application problems

Navigate to the appropriate menu in the LHMI to identify possible problems.

- Check that the function is on.
- Check that the correct setting group (1 to 4) is activated.
- Check the blocking.
- Check the mode.
- Check the measurement value.
- Check the connection to trip and disturbance recorder functions.
- Check the channel settings.

9.3.2.1 Inspecting the wiring

The physical inspection of wiring connections often reveals the wrong connection for phase currents or voltages. However, even though the phase current or voltage connections to IED terminals might be correct, wrong polarity of one or more measurement transformers can cause problems.

- Check the current or voltage measurements and their phase information from Main menu/Measurements/Analog primary values or Analog secondary values.
- Check that the phase information and phase shift between phases is correct.
- Correct the wiring if needed.
 - Change the parameter Negation in Configuration/Analog modules/3PhaseAnalogGroup/SMAI_20_n:1 (n= the number of the SMAI used).

 Changing the Negation parameter is not recommended without special skills.
 - In PCM600, change the parameter CTStarPointn (n= the number on the current input) under the parameter settings for each current input.
 - Check the actual state of the connected binary inputs.
• In LHMI, select **Main menu/Tests/I/O modules**. Then navigate to the board with the actual binary input to be checked.

• With PCM600, right-click the product and select **Signal Monitoring**. Then navigate to the actual I/O board and to the binary input in question. The activated input signal is indicated with a yellow-lit diode.

• Measure output contacts using the voltage drop method of applying at least the minimum contact load given for the output relays in the technical data, for example 100 mA at 24 V AC/DC.

 Output relays, especially power output relays, are designed for breaking high currents. Due to this, layers of high resistance may appear on the surface of the contacts. Do not determine proper functionality of connectivity or contact resistance by measuring with a regular hand-held ohm meter.

 Figure 10: Testing output contacts using the voltage drop method

 1 Contact current
 2 Contact voltage drop
 3 Load
 4 Supply voltage

© Copyright 2013 ABB. All rights reserved
To check the status of the output circuits driving the output relay via the LHMI, select **Main menu/Tests/I/O modules** and then navigate to the board with the actual binary output to be checked.

Test and change the relay state manually.

1. To set the IED to test mode, select **Main menu/Tests/IED test mode/TESTMODE:1** and set the parameter to **On**.
2. To operate or force the output relay to operate, select and then navigate to the board with the actual binary output relay to be operated/forced.
3. Select the **BOn_PO** to be operated/forced and use 🔄 and 🔄 to operate the actual output relay.

In PCM600, only the result of these operations can be checked by right-clicking the product and selecting Signal Monitoring tool and then navigating to the actual I/O-board and the binary input in question. The activated output signal is indicated with a yellow-lit diode. Each **BOn_PO** is represented by two signals. The first signal in LHMI is the actual value 1 or 0 of the output, and in PCM600 a lit or dimmed diode. The second signal is the status Normal or Forced. Forced status is only achieved when the BO is set to **Forced** or operated on the LHMI.
Set the parameter TestMode to Off after completing these tests. The Start LED stops flashing when the relay is no longer in test mode.

An initially high contact resistance does not cause problems as it is reduced quickly by the electrical cleaning effect of fritting and thermal destruction of layers, bringing the contact resistance back to the mOhm range. As a result, practically the full voltage is available at the load.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>ACC</td>
<td>Actual channel</td>
</tr>
<tr>
<td>ACT</td>
<td>Application configuration tool within PCM600</td>
</tr>
<tr>
<td>A/D converter</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>ADBS</td>
<td>Amplitude deadband supervision</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AR</td>
<td>Autoreclosing</td>
</tr>
<tr>
<td>ASCT</td>
<td>Auxiliary summation current transformer</td>
</tr>
<tr>
<td>ASD</td>
<td>Adaptive signal detection</td>
</tr>
<tr>
<td>ASDU</td>
<td>Application service data unit</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge standard</td>
</tr>
<tr>
<td>BBP</td>
<td>Busbar protection</td>
</tr>
<tr>
<td>BFOC/2,5</td>
<td>Bayonet fibre optic connector</td>
</tr>
<tr>
<td>BFP</td>
<td>Breaker failure protection</td>
</tr>
<tr>
<td>BI</td>
<td>Binary input</td>
</tr>
<tr>
<td>BOS</td>
<td>Binary outputs status</td>
</tr>
<tr>
<td>BR</td>
<td>External bistable relay</td>
</tr>
<tr>
<td>BS</td>
<td>British Standards</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>CCVT</td>
<td>Capacitive Coupled Voltage Transformer</td>
</tr>
<tr>
<td>Class C</td>
<td>Protection Current Transformer class as per IEEE/ ANSI</td>
</tr>
<tr>
<td>CMPPS</td>
<td>Combined megapulses per second</td>
</tr>
<tr>
<td>CMT</td>
<td>Communication Management tool in PCM600</td>
</tr>
<tr>
<td>CO cycle</td>
<td>Close-open cycle</td>
</tr>
<tr>
<td>COMTRADE</td>
<td>Standard format according to IEC 60255-24</td>
</tr>
<tr>
<td>COT</td>
<td>Cause of transmission</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>CR</td>
<td>Carrier receive</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic redundancy check</td>
</tr>
<tr>
<td>CROB</td>
<td>Control relay output block</td>
</tr>
<tr>
<td>CS</td>
<td>Carrier send</td>
</tr>
<tr>
<td>CT</td>
<td>Current transformer</td>
</tr>
<tr>
<td>CU</td>
<td>Communication unit</td>
</tr>
<tr>
<td>CVT</td>
<td>Capacitive voltage transformer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DAR</td>
<td>Delayed autoreclosing</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.)</td>
</tr>
<tr>
<td>DBDL</td>
<td>Dead bus dead line</td>
</tr>
<tr>
<td>DBLL</td>
<td>Dead bus live line</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DFC</td>
<td>Data flow control</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DI</td>
<td>Digital input</td>
</tr>
<tr>
<td>DLLB</td>
<td>Dead line live bus</td>
</tr>
<tr>
<td>DNP</td>
<td>Distributed Network Protocol as per IEEE Std 1815-2012</td>
</tr>
<tr>
<td>DR</td>
<td>Disturbance recorder</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic random access memory</td>
</tr>
<tr>
<td>DRH</td>
<td>Disturbance report handler</td>
</tr>
<tr>
<td>DTT</td>
<td>Direct transfer trip scheme</td>
</tr>
<tr>
<td>EHV network</td>
<td>Extra high voltage network</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>EnFP</td>
<td>End fault protection</td>
</tr>
<tr>
<td>EPA</td>
<td>Enhanced performance architecture</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>F-SMA</td>
<td>Type of optical fibre connector</td>
</tr>
<tr>
<td>FAN</td>
<td>Fault number</td>
</tr>
<tr>
<td>FCB</td>
<td>Flow control bit; Frame count bit</td>
</tr>
<tr>
<td>FOX 20</td>
<td>Modular 20 channel telecommunication system for speech, data and protection signals</td>
</tr>
<tr>
<td>FOX 512/515</td>
<td>Access multiplexer</td>
</tr>
<tr>
<td>FOX 6Plus</td>
<td>Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>FUN</td>
<td>Function type</td>
</tr>
<tr>
<td>GCM</td>
<td>Communication interface module with carrier of GPS receiver module</td>
</tr>
<tr>
<td>GDE</td>
<td>Graphical display editor within PCM600</td>
</tr>
<tr>
<td>GI</td>
<td>General interrogation command</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas-insulated switchgear</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic object-oriented substation event</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GSAL</td>
<td>Generic security application</td>
</tr>
</tbody>
</table>
GSE | Generic substation event
HDLC protocol | High-level data link control, protocol based on the HDLC standard
HFBR connector type | Plastic fiber connector
HMI | Human-machine interface
HSAR | High speed autoreclosing
HV | High-voltage
HVDC | High-voltage direct current
IDBS | Integrating deadband supervision
IEC | International Electrical Committee
IEC 61869-2 | IEC Standard, Instrument transformers
IEC 60870-5-103 | Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication
IEC 61850 | Substation automation communication standard
IEC 61850–8–1 | Communication protocol standard
IEEE | Institute of Electrical and Electronics Engineers
IEEE 802.12 | A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable
IEEE P1386.1 | PCI Mezzanine Card (PMC) standard for local bus modules. References the CMC (IEEE P1386, also known as Common Mezzanine Card) standard for the mechanics and the PCI specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force).
IEEE 1686 | Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities
IED | Intelligent electronic device
I-GIS | Intelligent gas-insulated switchgear
Instance | When several occurrences of the same function are available in the IED, they are referred to as instances of that function. One instance of a function is identical to another of the same kind but has a different number in the IED user interfaces. The word "instance" is sometimes defined as an item of information that is representative of a type. In the same way an instance of a function in the IED is representative of a type of function.
IP | 1. Internet protocol. The network layer for the TCP/IP protocol suite widely used on Ethernet networks. IP is a connectionless, best-effort packet-switching protocol. It provides packet routing, fragmentation and reassembly through the data link layer.
 | 2. Ingression protection, according to IEC standard
IP 20 | Ingression protection, according to IEC standard, level 20
IP 40 | Ingression protection, according to IEC standard, level 40
IP 54 | Ingression protection, according to IEC standard, level 54
IRF | Internal failure signal
IRIG-B: | InterRange Instrumentation Group Time code format B, standard 200
ITU | International Telecommunications Union
LAN | Local area network
LCD | Liquid crystal display
LDD | Local detection device
LED Light-emitting diode
LNT LON network tool
MCB Miniature circuit breaker
MVAL Value of measurement
NCC National Control Centre
NOF Number of grid faults
NUM Numerical module
OCO cycle Open-close-open cycle
OCP Overcurrent protection
OLTC On-load tap changer
OTEV Disturbance data recording initiated by other event than start/pick-up
OV Over-voltage
Overreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay “sees” the fault but perhaps it should not have seen it.
PCI Peripheral component interconnect, a local data bus
PCM600 Protection and control IED manager
PC-MIP Mezzanine card standard
POR Permissive overreach
POTT Permissive overreach transfer trip
Process bus Bus or LAN used at the process level, that is, in near proximity to the measured and/or controlled components
PSM Power supply module
PST Parameter setting tool within PCM600
PT ratio Potential transformer or voltage transformer ratio
PUTT Permissive underreach transfer trip
RCA Relay characteristic angle
RISC Reduced instruction set computer
RMS value Root mean square value
RS422 A balanced serial interface for the transmission of digital data in point-to-point connections
RS485 Serial link according to EIA standard RS485
RTC Real-time clock
RTU Remote terminal unit
SA Substation Automation
SBO Select-before-operate
SC Switch or push button to close
SCL Short circuit location
SCS Station control system
SCADA Supervision, control and data acquisition
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT</td>
<td>System configuration tool according to standard IEC 61850</td>
</tr>
<tr>
<td>SDU</td>
<td>Service data unit</td>
</tr>
<tr>
<td>SMA connector</td>
<td>Subminiature version A, A threaded connector with constant impedance.</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal matrix tool within PCM600</td>
</tr>
<tr>
<td>SMS</td>
<td>Station monitoring system</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network. Each embedded node can instead synchronize with a remote clock, providing the required accuracy.</td>
</tr>
<tr>
<td>SOF</td>
<td>Status of fault</td>
</tr>
<tr>
<td>SPA</td>
<td>Strömberg protection acquisition, a serial master/slave protocol for point-to-point communication</td>
</tr>
<tr>
<td>SRY</td>
<td>Switch for CB ready condition</td>
</tr>
<tr>
<td>ST</td>
<td>Switch or push button to trip</td>
</tr>
<tr>
<td>Starpoint</td>
<td>Neutral point of transformer or generator</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAr compensation</td>
</tr>
<tr>
<td>TC</td>
<td>Trip coil</td>
</tr>
<tr>
<td>TCS</td>
<td>Trip circuit supervision</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols. While TCP and IP specify two protocols at specific protocol layers, TCP/IP is often used to refer to the entire US Department of Defense protocol suite based upon these, including Telnet, FTP, UDP and RDP.</td>
</tr>
<tr>
<td>TEF</td>
<td>Time delayed earth-fault protection function</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TM</td>
<td>Transmit (disturbance data)</td>
</tr>
<tr>
<td>TNC connector</td>
<td>Threaded Neill-Concelman, a threaded constant impedance version of a BNC connector</td>
</tr>
<tr>
<td>TP</td>
<td>Trip (recorded fault)</td>
</tr>
<tr>
<td>TPZ, TPY, TPX, TPS</td>
<td>Current transformer class according to IEC</td>
</tr>
<tr>
<td>TRM</td>
<td>Transformer Module. This module transforms currents and voltages taken from the process into levels suitable for further signal processing.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type identification</td>
</tr>
<tr>
<td>UMT</td>
<td>User management tool</td>
</tr>
<tr>
<td>Underreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay does not “see” the fault but perhaps it should have seen it. See also Overreach.</td>
</tr>
</tbody>
</table>
Coordinated Universal Time. A coordinated time scale, maintained by the Bureau International des Poids et Mesures (BIPM), which forms the basis of a coordinated dissemination of standard frequencies and time signals. UTC is derived from International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronize it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit, the rotational axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based. The Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.

UV
Undervoltage

WEI
Weak end infeed logic

VT
Voltage transformer

3I₀
Three times zero-sequence current. Often referred to as the residual or the earth-fault current

3U₀
Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage