

BU PA-IS, A&ES, November 2013

SmartSharing[™] Adaptive Load Sharing Controller

Power and productivity for a better world™

Load Sharing In Gas Compression Stations

- When one machine is not enough to provide enough flow or pressure, multiple compressors/pumps are used in parallel
- The main goal of Load Sharing Control is to reduce compressors/pumps recycling, however these methods are mostly experience/empirical based and not very efficient on the long term
- Main Goals:
 - Reduce machine saturation
 - Less recycle
 - Less time spend in over-speed limit/temperature limit

- Improve response time to reference change
- Improve fuel/power efficiency per Sm3 of compressed gas

Load Sharing Base Concept

"Ideal Case" - Similar Machines, Similar Efficiency

- Load Sharing is a complex problem, that requires information on:
 - "Weights" of machine's efficiency
 - Operative Limits

"Real Case" – Similar Machines, Different Efficiency

Load Sharing Equal Sharing

Machine #1 Production 0.5 CMm3/h Machine #2 Production 0.5 CMm3/h Fuel Consumption 2000 Cm3/h Total Production 1.00 CMm3/h

Load Sharing Performance Based Sharing

Machine #1 Production 0.45 CMm3/h Machine #2 Production 0.55 CMm3/h Fuel Consumption 1900 Cm3/h (-5%) Total Production 1.00 CMm3/h

Same production Less consumption

Load Sharing What is needed

- Nowadays in order to define the efficiency "weights" and the operative limits it is needed:
 - A site survey of an expert of compressors/turbines
 - An extensive data collection
 - Several days for commissioning and testing
- However the efficiency and the operative limits change due to:
 - Different environmental conditions (seasons, day/night)
 - Wear and tear, maintenance activities, aging
 - Changes in the plant or in the pipeline
- Due to these causes, the tuning becomes quickly obsolete and the improvements fade away.
- How to respond to these changes? With Adaptive Load Sharing!

Load Sharing Patented Technology: Performance Identification

Load Sharing Patented Technology: Performance Identification

The technology tracks the performance drift caused by

Slow changes (aging, wear and seasons)

and

Fast changes (day/night, maintenance, washing)

Performance "weights" and operation limits are constantly updated, in order to have always a clear and fresh picture of machine status and performance

Load Sharing SmartSharing[™]: Adaptive Load Sharing Controller

Load Sharing SmartSharing™

Load Sharing Controller - SmartSharing™

- Stand alone module base configuration via embedded touchscreen HMI
- Easy integration in ABB and other suppliers DCS
- Communication with DCS by using common industrial interfaces: Modbus, OPC, Profibus, MMS
- Up to 10 machines monitored and optimized per controller
- Several optimization strategies selectable:
 - Maximum compressor efficiency
 - Maximum turbine and compressor efficiency
 - Minimum Fuel consumption
- Remote monitoring via web server (in development), access from PC or mobile devices

SmartSharing™ Potential Improvement

Typical Improvement

- Reduction of trips due to over-speed / high temperature
- Less recycle during normal operation
- Fuel savings depends on a case by case basis, however a preliminary study can be performed in order to estimate it before the investment
- Expected saving can vary from 1 to 6% in fuel gas or power consumption

Power and productivity for a better world[™]

