This webinar brought to you by the Relion[®] product family Advanced protection and control IEDs from ABB

Relion. Thinking beyond the box.

Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library, the Relion family of protection and control delivers advanced functionality and improved performance.

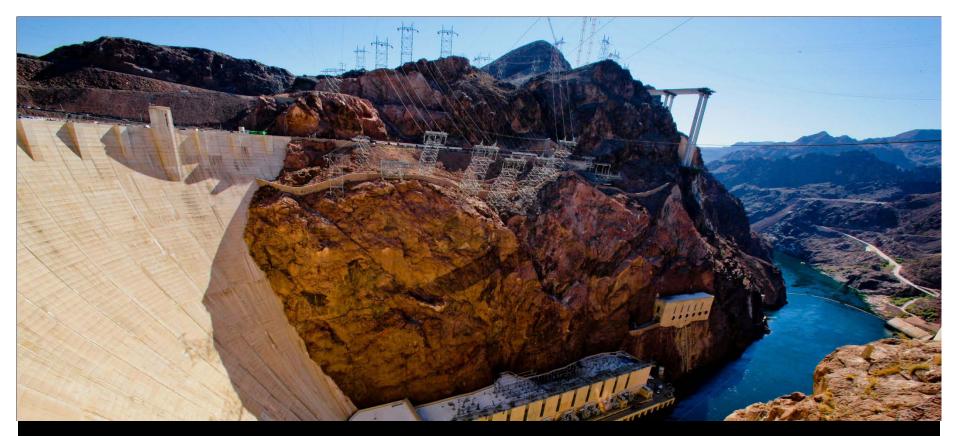


ABB Protective Relay School Webinar Series Disclaimer

ABB is pleased to provide you with technical information regarding protective relays. The material included is not intended to be a complete presentation of all potential problems and solutions related to this topic. The content is generic and may not be applicable for circumstances or equipment at any specific facility. By participating in ABB's web-based Protective Relay School, you agree that ABB is providing this information to you on an informational basis only and makes no warranties, representations or guarantees as to the efficacy or commercial utility of the information for any specific application or purpose, and ABB is not responsible for any action taken in reliance on the information contained herein. ABB consultants and service representatives are available to study specific operations and make recommendations on improving safety, efficiency and profitability. Contact an ABB sales representative for further information.

Pre-configured matching unit (PCMU) Thinking beyond the box

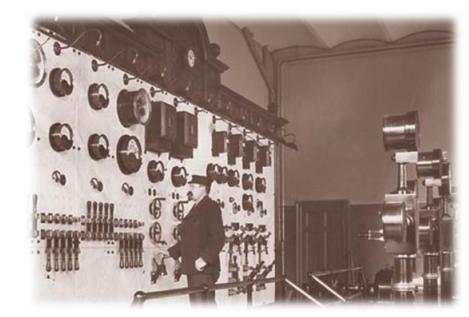
© ABB Group March 24, 2014 | Slide 3

Profile Michael Fleck, P.E.

- Regional Technical Manager, Midwest USA
- BSEE, Rose-Hulman Inst. of Technology, Indiana
- MSEE, Arizona State University, Arizona
- Professional Engineer (P.E.), Indiana
- IEEE Power & Energy Society Member & PSRC
- Experiences:
 - ABB DA Regional Technical Manager, configuration of products to meet customer applications, customer training
 - Protection and Control Engineer, system modeling, control design, mentoring junior engineers for national consulting company,
 - Transmission and Distribution P&C engineer, system modelling, system study, design, relay setting, trouble shooting for utility company

Learning objectives

- What we will discuss
 - Utility Constraints
 - Issues and Concerns Meeting those Constraints
 - PCMU
 - Mechanical Compatibility
 - Enhanced Communication & Security
 - Enhanced Performance & Functionality
 - Future Proof & Smart Grid Compatibility
 - Reliability


The new utility

Cost constrained... Risk constrained...

- Capital & Operating budgets under pressure
- Rate case challenges & cost control measures
- Internal competition for money (smart metering & renewable generation higher priority)
- Protection does not have the same access to funds
- Skilled human resource pool shrinking

This is the new normal !

- Older protection schemes designed for dependability
- Protection needs to be dependable & secure (avoid undesired operations)

The new utility The art of protection ...

DEPENDABILITY

SECURITY

Certainty of correct operation in response to system event Ability of the system to avoid undesired operations with or without faults

Today's goals for SAIFE and SAIDI

Why do utilities refurbish relays?

- Cost to repair/replace obsolete assemblies
- Protection for security (versus just reliability)
- Ability to support automation schemes
- Data source for the Smart Grid applications

Compliance

- NERC PRC
- NERC CIP
- Increase public safety
- Improve outage metrics (SAIFI/SAIDI)

It's obsolete! It does not do what utilities need it to do! Replace them as fast as practical

PRC Protection & Control

CIP Critical Infrastructure Protection

SAIFI System average interruption frequency index

SAIDI System average interruption duration index

Understanding the cost of refurbishment

Retrofit incurred costs include:

- Modifying drawings
- Mechanical changes to cabinets, doors or cut-outs
- Wiring and labeling
- Integration into existing substation automation system
- Test & commissioning Bay, HMI & control center(s)

Most of these costs exceed the price of a relay

How do we reduce these costs & risks to accelerate refurbishment?

Minimizing retrofit costs & risks What to ask for from relaying solutions

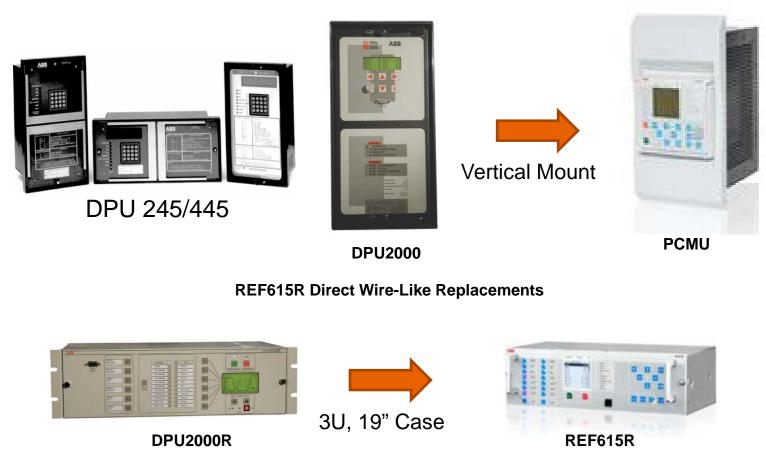
Mechanical Compatibility

Relay assembly that replaces a legacy relay without modifying the existing cutout and existing CT, VT, I/O wiring.

Communication & Security

Enhanced Performance & Functionality

Future proof for Smart Grid migration


Reliability

Form/Fit mechanical compatibility

PCMU Direct Wire-Like Replacements

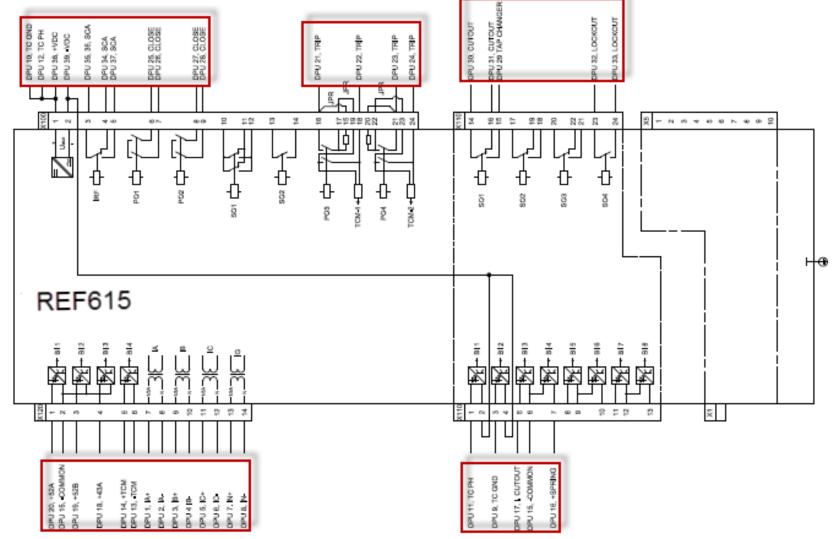
Eliminates the need to modify panels/doors or cutouts

Wire-like compatibility Different relays, same terminal blocks

Eliminates the need to modify engineering drawings & reduce scope of testing

Minimizing test scope Design for easy validation

Certify to the test switches ...


and not at the CT/PT

(where procedures allow)

Pre-made mapping drawings Shorten the design effort

I © ABB Inc. March 24, 2014 | Slide 14

Pre-made mapping drawings Shorten the design effort

Design Effort

- Reduced by up to 70%
- Drawing updates nonexistent – Wire alike solution
- Design savings in converting old settings and logic to new devices
- No fabrication of adapter plates needed

	Compe	tito	r solution	n PCMU			
Engineering of solution	16	hr	\$3,200	4	hr	\$800	
Translate protection							
settings to match old							
relays	4	hr	\$800	Included	CMU		
Translate logic settings							
to match relays	4	hr	\$800	Included	in PO	CMU	
New autocad dwgs	8	hr	\$1,600	2	hr	\$400	
Adapter plate	\$50	1	\$50	Included	Included in PCMU		
Miscellaneous	\$100	1	\$100	\$50	1	\$50	
Factory prewiring to							
relay terminals	6	hr	\$300	Included	in PO	OMU	
Removing existing relay				-			
& associated wiring	1	hr	\$50	1	hr	\$50	
Drill hole, mount plate,							
wire to terminal blocks	1	hr	\$50	0.5	hr	\$25	
Programming set up							
of new relay, including							
protection settings	2	hr	\$100	Included	in PO	CMU	
Wire check (ring out)	1	hr	\$50	0.5	hr	\$25	
Updating of drawings							
by customer	35	hr	\$7,000	10	hr	\$2,000	
	TOTAL		\$14,100			\$3,350	

Note: Calculation is typical and may vary depending on specific customer conditions. Calculation assumes replacement is planned so no utility downtime is considered.

Minimizing retrofit costs & risks What to ask for from relaying solutions

Mechanical Compatibility

Relay assembly that replaces a legacy relay without modifying the existing cutout and existing CT, VT, I/O wiring.

Communication & Security

Enhanced Performance & Functionality

Future proof for Smart Grid migration

Reliability

Data-communication compatibility

Relays should support multiple communication interfaces:

- Multiple Ethernet 10/100BaseT (RJ45) ports
- RS-232/RS-485 for legacy communication
- DNP 3.0 and IEC 61850 protocol support
- IRIG-B and SNTP for time synchronization
- Cyber-security support for NERC CIP compliance

The future is about secure, shared and actionable data

Data-communication compatibility Pre-configured data mapping for DNP 3.0

_	REF615A - Parameter Settin p / Parameter Name	IED Value	PC Value	Unit	Min	Max	
	NP3.0(DNP3.0: DNP3.0): 1	NCO Verde	10 1000	Cont	1446	INDA	
-	DNP3.0		_				
2	DNP physical layer		TCP/IP	12			
	Unit address		1		1	65519	
	Master address		3		1	65519	
	Serial port		Not in use				
	Need time interval		30	min	D	65535	
	Time format		Local			10000	
	CROB select timeout		10	sec	1	65535	
	Data link confirm		Never				
	Data link confirm TO		3000	ma	100	65535	
	Data link retries		3		0	65535	
	Data link Rx to Tx delay		0	ma	D	255	
	Data link inter char delay		4	char	0	20	
	App layer confirm		Disable				
	App confirm TO		5000	ma	100	65535	
	App layer fragment		2048	bytes	256	2048	
	UR mode		Disable				
	UR retries		3		0	65535	
	URITO		5000	am	0	65535	
	UR offline interval		15	min	0	65535	
	UR Class 1 Min events		2		0	999	
	UR Class 1 TO		50	ma	0	65535	
	UR Class 2 Min events		2		D	999	
	UR Class 2 TO		50	ma	0	65535	
	UR Class 3 Min events		2		0	999	
	UR Class 3 TO		50	me	0	65535	
	Legacy master UR		Disable				
	Legacy master SBO		Disable				
	Default Var Obj 01		1		1	2	
	Default Var Obj 02		2		1	2	

			LEDS							
	<u>ک</u>	·LEDS	ł	} -	ł	ł	ł	ł	ł	ł
			Programm able LED 1	Programm able LED 2	able LED 3	able LED 4	able LED 5	able LED 6	able LED 7	Program
X120 (AIM)	¥. X120-Input 1					-			•	
	X120-Input 2						1	-		
	K120-Input 1 K120-Input 2 K120-Input 3 K120-Input 4									
	X120-Input 4									
- X130 (AIM)										
X130 (AIM)	¥ X130-Input 1									
	↓↓ X130-Input 1 ↓↓ X130-Input 2 ↓↓ X130-Input 3									
	X130-Input 3									
	X130-Input 4									
- AND:1										
AND:1	0		x				2			
- AND:2										
AND:2	0			х						
- AND:3										
AND:3	0		1		x					
- AND6:0										
AND6:0	0									
- ARC SARC1(AFD-1;ARC)	(1)):11									
ARCSARC1(AFD-1;ARC (1)):11	TRIP ARC_FLT_DET		-							
- ARC SARC2(AFD-2;ARC)	2)):21									
ARC SARC2(AFD-2;ARC (2)):21	TRIP ARC_FLT_DET							-		
- ARCSARC3(AFD-3;ARC)					-		-			1
ARCSARC3[AFD-3;ARC	TRIP		1							
(3)):34	ARC_FLT_DET									
- CBXCBR1(52-1;K->O CB	(1)):1									
CBXCBR1(52-1;K->0 CB	SELECTED		1							
(1)):1	EXE_OP									
	Binary Outputs Analog Inputs / Fo	1								

Reduces the substation automation integration effort

Minimizing retrofit costs & risks What to ask for from relaying solutions

Mechanical Compatibility

Relay assembly that replaces a legacy relay without modifying the existing cutout and existing CT, VT, I/O wiring.

Communication & Security

Enhanced Performance & Functionality

Future proof for Smart Grid migration

Reliability

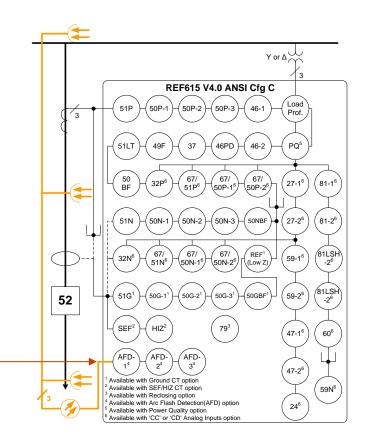
Enhanced human machine interface Improves accuracy of operation

Normal Pokup Trip IPEF615 I Praw A ID-A 100.0 Praw B ID-A 100.0 Praw C ID-A 50.0 Praw C ID-A Praw C Praw C ID-A Praw C Praw C <th>ABB</th> <th></th> <th></th> <th>REF615</th>	ABB			REF615
Idea LONCO IB-A 100.0 IC-A 3.1 IA-Du-A 100.0 IB-Du-A 100.0 IB-Du-A 100.0 ID-Du-A 3.0 IC-Du-A 3.0 I2-A 32.3 I1-A 67.7 IO-A 32.3	I.	Normal	Pickup trip	
IB-R 100.1 Pran C IC-A 3.1 Neural IA-Dn-A 100.0 Part Urbitics ID-Dn-A 100.0 Part Urbitics ID-Dn-A 5.0 Part Urbitics ID-Dn-A 5.0 Part Urbitics ID-Dn-A 5.0 Part Urbitics ID-Dn-A 5.0 Part Urbitics ID-A 5.0 Part Urbitics ID-A 52.3 Overload Alarm Trip Are Flath Detector HIZ Detector HIZ Detector ID-A 52.3 ID Contract Alarm Trip Are Flath Detector ID-A 52.3 ID Contract Alarm Trip Are Flath Detector ID-A 52.3 ID Contract Alarm Trip Are Flath Detector ID Contract ID Contract Alarm Trip ID Contract Alarm Trip ID -A 52.3 ID Contract Alarm Trip ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A ID -A		HEFG	15 0	Phile A
IB-A 100.1 IC-A 3.1 IA-Dn-A 100.0 Ib-Dn-A 100.0 Ib-Dn-A 100.0 IC-Dm-A 3.0 I2-A 32.3 I1-A 67.7 I0-A 32.3 I1-A 67.7 I0-A 32.3 I2-A 32.3 I1-A 67.7 I0-A 32.3 I2-A 52.3		TA-A	100.0	
IC-A 3.1 IA-Dn-A 100.0 IB-Dn-A 100.0 IC-Dn-A 3.0 I2-A 32.3 I1-A 67.7 I0-A 72.3 IC-Dn-A 32.0 ID-A 72.3 III-A 67.7 I0-A 72.3 IIII Defective IIII Defective IIII Defective				the second s
IB-Dm-R 100,0 IC-Dm-R 100,0 IC-Dm-R 5,0 I2-A 32,3 I1-A 67,7 I0-R 52,3 Overlaat Alarm/Top Act Plath Denctor HIZ Denctor HIZ Denctor			3.1	CONSTRUCTION OF A DESCRIPTION OF A DESCR
IC-Dm-R 5.0 Exstarr Locker I2-R 32.3 Decisal Alam/Top I1-R 67.7 Are Flath Detector I0-R 32.3 Hit Detector				the second se
IC-Ometric Sci 0 I2-A 32,3 I1-A 67,7 I0-A 32,3 Overliad Alarm Top Are Plant Dencise HIZ Dencise				
I1-A 57.7 Overload AlarmTrip I0-A 32.3 Hitz Detector ID-A 32.3 Hitz Detector				the second data and the second s
ID-R ID/A // J Are Plath Detectore ID-R ID-R ID-R				
		T Town	32.53	HIZ Detector
		ESC		Menu

Look for large displays with programmable target LED's to support existing and future protection philosophies

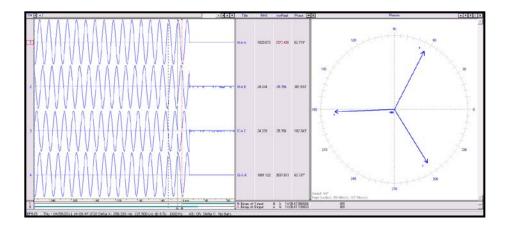
Ease of use Simplifying the user experience

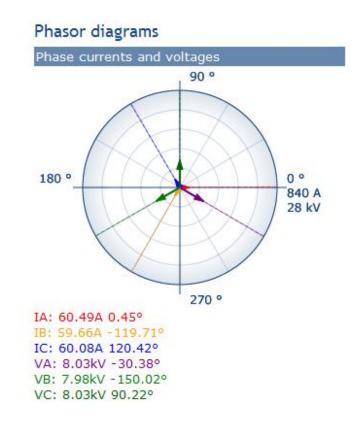
Fevorites 🖉 ABB :: REF615, A	ALII Q01A1 (User: Administrator,	<u>0</u> • 🛛 •	🖾 👼 + Page + Safety + Tools + 🔮 +	-		
BB			REF615, AALJ1Q01A1 02/13/2012, 0:06			
0	Programmable LEDs Phasor Diagrams DFR S REF615 > Phasor Diagrams	records Single 1	Line Diagram Logout			
REP615	II Freeze Showhide diagram 💌 1	00%	🍘 ABB :: REF615, AA1/1Q01A1 (User: Adminis	trator, Connection: Local) - Windows Internet Ex	plorer provided by IBM	
-∕_Events -∕_Neasurements	Phasor diagrams		CO . Mmp://192.168.0.254/htdocs	/application.html	🔹 47 🗙 📴 Sing	ρ.
O DFR records Settings	Phase currents and voltages	Sequence curre	The cas man repence room the			
Configuration Monitoring			🙀 Favorites 🖉 ABB :: REF615, AALJ1Q01	A1 (User: Administrator,	å • ⊠ • ⊡ #	n × Page * Safety * Tools * 💽 *
Tests			ABB			REF615, AAJJ1Q01A1 02/13/2012, 0:01
O Clear O Language	180* 0*	180 *	General Events Progra	mmable LEDs Phasor Diagrams	DFR records Single Line Diac	rgram Logout
O Parameter list O WHMI settings	840 28 k	A	🔏 150 🛛	REP615 > Events	10.007	
O when excende		K	Tontrol	Events 1-100 💌 II Freeze 🖬 S	eve 🗙 Clear events	
				Events		
	270 *		DFR records	Date Time Dev 02/13/2012 0:00:46.976 79	ce Object text SHOT_PTR	vsilva@li368-249: /usr/openquake — ssh — 76×26
	IA: 138.59A -43.07° IB: 138.6A 136.93°	11: 92.6A - 102. 12: 92.6A 17.07	🕀 🔂 Configuration	02/13/2012 0:00:46.964 79	UNSUC_RECL	🖸 vsilva@li36quake — ssh 🛛 🔅 bash
	IC: 138.59A -43.07" VA: 13.57kV 0"	10: 46.09A -43. V1: 7.83kV -30	Honitoring Forts	02/13/2012 0:00:46.964 79	LOCKED	GACK! at col 4 row 3
	VB: 13.57kV -180°	V2: 7.83kV 29.9	Information	02/13/2012 0:00:46.964 79 02/13/2012 0:00:37.097 52-	STATUS 1 ENA CLOSE	Point at 15.64 38.13 isnt on grid
	VC: 0kV 0°	V0: 0kV 0°	O Clear O Language	02/13/2012 0:00:36.993 IG	HIGH_WARN	GACK! at col 4 row 4
			O Parameter list	02/13/2012 0:00:36.993 IG	HIGH_ALARM	Point at 15.64 38.17 isnt on grid
		-	O WHMI settings	02/13/2012 0:00:36.966 79	UNSUC_RECL	GACK! at col 4 row 5
		Internet Protected Mo		02/13/2012 0:00:36.966 79	ACTIVE	Point at 15.64 38.21 isnt on grid
				02/13/2012 0:00:36.966 79 02/13/2012 0:00:36.964 79	STATUS	GACK! at col 4 row 6
				02/13/2012 0:00:36.958 52-		Point at 15.64 38.25 isnt on grid
				02/13/2012 0:00:36.964 79	SHOT_PTR	GACK! at col 4 row 7
				02/13/2012 0:00:36.962 520		Point at 15.64 38.29 isnt on grid
				02/13/2012 0:00:36.947 52-		INFO:serializer:> insert_output
				02/13/2012 0:00:36.947 TC 02/13/2012 0:00:36.947 TC		INF0:serializer:output = 'Output object'
				02/13/2012 0:00:36.945 510		INFO:serializer:< insert_output
			1	02/13/2012 0:00:36.945 79	OPEN CB	INF0:serializer:> serialize
			Done		Internet Protected Mode: Off	INFO:serializer:serializing 47 points
						INF0:serializer:output = 'Output object'
						INFO:serializer:serialized 47 points
						INFO:serializer:< serialize
						Mean region loss value: 65656509844.0
						Standard deviation region loss value: 38803793778.9
						vsilva@li368-249:/usr/openquake\$ INF0:root:Process 10617 not running
						INFO:root:Recording stop time for job 54 to job_stats
						INF0:root:Cleaning up after job 54
						INFO:root:KVS garbage collection removed 50 keys for job 54
						INF0:root:Exiting supervisor for job 54


Intuitive "command-less" graphic user interface Eliminates command driven line access

Enhanced performance & functionality Value add features to ask for

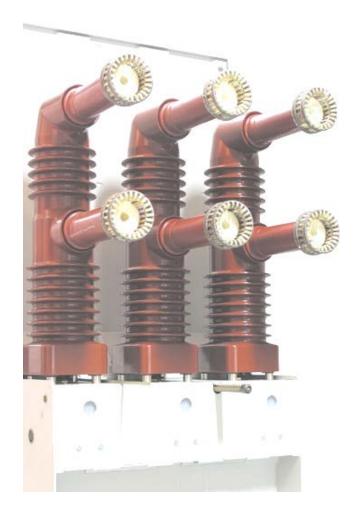
- Added protection functions for better coordination / enhanced feeder protection and control
 - Voltage Protective Functions
 - Arc Flash
 - Frequency Protection


The more ANSI functions supported (circles) the greater the application flexibility

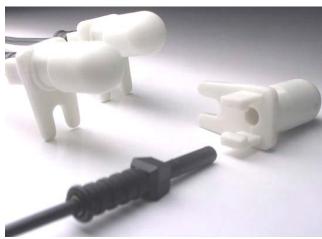


Enhanced performance & functionality Value add features to ask for

 Integrated sequence of event (SOE), fault and digital fault waveform recording & reporting (open formats)



Enhanced performance & functionality Value add features to ask for


- Enhanced monitoring of Power Quality(PQ)
- Condition Based Monitoring of plant operations
- Cable Fault Detection (CFD) using existing CT input wiring. Detects underground cable faults

Enhanced performance & functionality ARC Flash protection

Arc Trip based on:

- Current and light
- Current and binary input signal
- Light only

Operate time depends on options:

- 1 / 12 ms (current and light)
- 1 / 10 ms (light only)

Continuously supervises the CB, cable and busbar compartment of metalenclosed switchgear

* Distribution Feeder specific feature

Minimizing retrofit costs & risks What to ask for from relaying solutions

Mechanical Compatibility

Relay assembly that replaces a legacy relay without modifying the existing cutout and existing CT, VT, I/O wiring.

Communication & Security

Enhanced Performance & Functionality

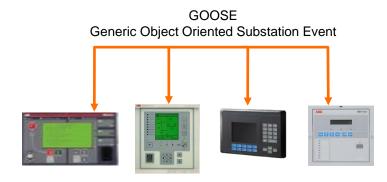
Future proof for Smart Grid migration

Reliability

Planning for the future

New relays support multi-object protection and value-add applications ... based on signals from other bays

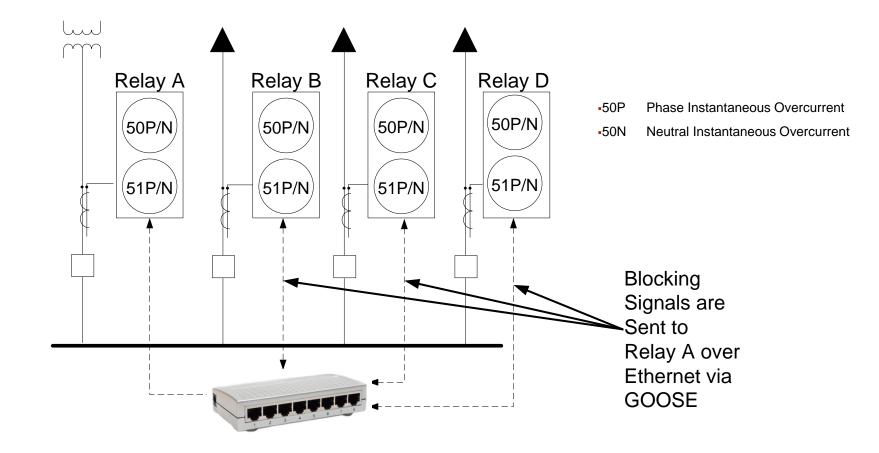
Reality check


- Retrofits and wire-for-wire replacements limit cabling to existing signals
- "Form fit" limits adding of I/O modules
- There is a fixed number of inputs/outputs a relay can support

How to extend the application capability?

- High speed Ethernet communication
- GOOSE messaging, a subset of IEC 61850 (Global Object Oriented Substation Event)

Secure horizontal communication What is GOOSE messaging?



Illustrative purpose only

- Standards based (IEC 61850) horizontal communication
- Replaces hard-wiring between IEDs
- Supports multi-vendor products
- GOOSE broadcasts events to peer IEDs in a substation using Ethernet
- Transmits binary and analogue process data between IEDs
- Should be supported on replacement relays for <u>new</u> applications
- Designed by protection engineers for protection engineers

Application example Bus blocking on feeder relay, GOOSE driven

Minimizing retrofit costs & risks What to ask for from relaying solutions

Mechanical Compatibility

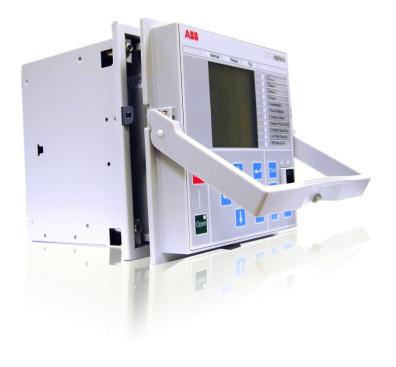
Relay assembly that replaces a legacy relay without modifying the existing cutout and existing CT, VT, I/O wiring.

Communication & Security

Enhanced Performance & Functionality

Future proof for Smart Grid migration

Reliability



Reliability

Is the solution easily repairable?

- Is the relay designed for 15+ years of uninterrupted service by a reputable vendor?
- Are faults easy to diagnose (with limited skills)
- Cost of non-modular repair outweighs benefits of extended warranties

Draw-out and modular designs improve system maintainability (MTTR)

In Summary ...

The PCMU is a direct wire-like, panel cutout replacement for existing ABB relays (DPU245, DPU445, and DPU2000)

The PCMU reduces engineering and installation time while keeping operational functions similar to legacy product and providing added relay functionality when system requirements evolve.

The PCMU is the most cost effective solution for replacement of older 245/445 and DPU2000 relays that takes advantage of the communication required for the evolving smart grid.

This webinar brought to you by the Relion[®] product family Advanced protection and control IEDs from ABB

Relion. Thinking beyond the box.

Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library, the Relion family of protection and control delivers advanced functionality and improved performance.

Thank you for your participation

Shortly, you will receive a link to an archive of this presentation. To view a schedule of remaining webinars in this series, or for more information on ABB's protection and control solutions, visit:

www.abb.com/relion

Power and productivity for a better world[™]

