
Disturbances and oscillations in production processes usually have a 
considerable effect on product quality, running costs and profitability 
because production and throughput may have to back away from their 
optimum settings to accommodate process variability. 

An international research and development team has developed an 
innovative solution for plant-wide disturbance analysis. After extensive field 
testing and collection of requirements, a Plant-wide Disturbance Analysis 
module has been productized and applied successfully at Eastman 
Kingsport, TN.
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In their drive towards efficiency, 
modern industrial process plants are 

making increased use of recycle streams 
and heat integration. This integration 
of mass and energy complicates pro-
cess control because variations can 
propagate through the plant in com-
plex ways. Often, a single source of 
variation manifests itself as a widely 
distributed disturbance. A propagated 
disturbance can affect key process 
variables such as feed, product and 
recycle flows, column temperature 
and product composition. Such a dis-
turbance can upset just a single unit, 
for example a distillation column, it 
can be plant-wide, affecting a com-
plete production process or even  
site-wide if utilities such as the steam 
supply are involved. When there are 
many disrupted or oscillating mea-
surements, finding the root cause of 
the disturbance is akin to looking for 
a needle in a haystack. The motiva-
tion behind the product development 
presented here is the automatic detec-
tion of plant-wide disturbances and 
determination of likely root causes. 
This allows disturbances to be re-
moved or dealt with by maintenance, 
new control schemes or simply con-
troller re-tuning.

In recent years, universities have de-
veloped several innovative algorithms 
based on advanced signal processing, 
spectral and nonlinear time series 
analysis for use in industrial process 
diagnosis. To better apply such 
knowledge to the problem described 

here, ABB initiated a project in coop-
eration with the Imperial College / 
UCL Centre for Process Systems Engi-
neering (CPSE). 

After preliminary field-tests, a large-
scale pilot application of the meth-
odology, using a first prototype 
 implementation, was evaluated by 
ABB. The plant-wide disturbance 
technology was applied to measure-
ment data from a Norwegian oil plat-
form. The analysis of disturbances 
was based on data from more than 
2000 measurement tags and more 
than one month’s worth of data at 
high resolution.

In recent years, universi-
ties have developed sev-
eral innovative algorithms 
based on advanced signal 
processing, spectral and 
nonlinear time series anal-
ysis for use in industrial 
process diagnosis.
 
Extensive analysis and discussion 
 revealed significant disturbances that 
had also been identified by parallel 
plant investigations by process and 
process control experts from ABB 
and the customer. These encouraging 
results indicated that the intelligent 
analysis of process data can, to a great 
extent, help and support the work of 

problem identification, localization 
and diagnosis. 

The final step in the product develop-
ment process was the integration into 
ABB’s product portfolio. Due to the 
nature of the methodology in support-
ing process performance analysis, it 
was chosen to productize the Plant-
wide Disturbance Analysis (PDA) 
functionality as a new module in 
ABB’s control loop optimization soft-
ware OptimizeIT Loop Performance 
Manager (LPM). The release contain-
ing the PDA module is now available 
from ABB. 

Following a brief overview of the 
methodology, this article will present 
two successful and surprisingly accu-
rate findings from an end-customer 
evaluation of the tool. Eastman Chem-
ical Company, Kingsport, TN (title 
picture), has been testing the integrat-
ed tool with encouraging results.

OptimizeIT – Loop Performance 
Manager 
Loop Performance Manager (LPM) is 
a control loop maintenance tool for 
control engineers, instrument techni-
cians and maintenance personnel. It 
has been designed to provide a bridge 
between the technologies developed 
in academia, and the existing, relevant 
needs in the industrial world [4]. Its 
mission is to ensure that control loops, 
and – consequently – the whole pro-
duction process, operates at peak per-
formance. 

1  LPM screen shot. A single environment for disturbance analysis, 
root cause detection, control loop monitoring and tuning 

2  Typical work flow of PDA analysis within the Loop Performance 
 Manager tool a  to e  are the five steps of this workflow
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The package has been structured in a 
modular way, currently consisting of 
three software applications: 
 A control loop-tuning component 
used to improve control loop per-
formance

 A control loop-auditing component 
used to monitor loop performance 

 A Plant-wide Disturbance Analysis 
(PDA) component. This software 
 simultaneously analyzes multiple 
loops detecting common behavior 
and identifying likely root causes.

 
1  shows a typical screen shot of the 
LPM tool.

Plant-wide disturbance analysis
A good survey of current research 
can be found in [6]. 2  shows the 
 overall procedure of PDA within the 
LPM tool [7].

Data import
Data can be read offline from either 
Excel files or from data collected in 
the tool while performing control 
loop monitoring 2a .
 
Data pre-processing and filtering
Standard and simple functionality for 
data-pre-processing is very useful 
when different aspects of data, eg 
 different frequency ranges are to be 
investigated. Also, problematic data, 
such as bad data, outliers or linear 
trends are filtered out automatically. 

The simple representation of superim-
posed data in the form of a high-den-
sity plot, is already a very useful pro-
cess for engineers. Such presentation 
modes are not usually available in his-
torians or on operator screens 2b  2c .

Problem cluster selection
The first main step in the analysis is 
the detection of clusters of time trends 
that display similar periodically oscil-
lating patterns. The oscillation detec-
tion is achieved with signal processing 
methods. In this context the signals are 
the time trends of the measurements. 
Oscillation detection has traditionally 
looked for zero crossings of the mean-
centered signal. One weakness of this 
approach is that noise causes addition-
al zero crossings, diminishing the value 
of the result. The key breakthrough 
applied here involves detecting oscilla-
tions using zero crossings of the sig-
nal’s autocovariance function [1]. This 
provides a significant improvement 
over previous methods that used time 
trends  directly 2d .

There is no restriction on the number 
of tags that can be handled. Past in-
vestigations used several hundred 
tags. These could be readily analyzed 
thanks to the efficient implementation 
of the underlying algorithms.

High-density plots as shown in 3  
show time trends. An alternative way 

of viewing such information is by 
spectral analysis. This method high-
lights periodic features better than 
time trends. Frequency spectra have 
several advantages when it comes to 
the detection of distributed distur-
bances. However, it is the combined 
use of time and frequency approaches 
that is a strength of the described 
tool. The method employed to  select 
clusters is based on spectral principal 
component analysis [2].

A powerful way of presenting the 
spectral clusters is by means of a 
 hierarchical tree, as described in [9]. 
Spectral clustering also works very 
 reliably for time trends with non-peri-
odic features, as long as their spectra 
are similar. Other, very intuitive ways 
of representing clusters are also 
 included in the tool. 

Finding the likely root cause 
for disturbance clusters
It is well known, eg [8], that a very 
common cause of disturbance in 
chemical processes is a faulty control 
valve with non-linear characteristics 
such as dead band or excessive static 
friction (known as stiction). The limit 
cycles arising from sticking control 
valves in a feedback control loop can 
propagate widely. For this reason, the 
tool was initially focused on the diag-
nosis of non-linear root causes. The 
methods developed for the diagnosis 
of sticking control valves can also be 
applied in locating faults originating 
in process nonlinearities such as peri-
odic foaming in a distillation column 
or slugging flows in pipelines 2e . 

Nonlinear trends
A nonlinear time trend [3] is a signal 
that cannot be described as the output 
of a linear system driven by white 
noise. It is characterized by phase 
 coherence and, if it is oscillatory, by 
the presence of harmonics. An exam-
ple of a very non-linear signal is one 
with a square wave pattern. A process 
plant typically acts as a low pass filter, 
which means that a measurement 
close to a non-linear source has more 
non-linearity than a measurement far 
away from the source. The nonlinear 
square pattern is smoothed as it prop-
agates through the plant. This behav-
ior is utilized to identify candidate 
 areas for root causes. 
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One way to detect non-lin-
earity is by visual inspection 
of the time trends and the 
spectra. However, this is a 
manual procedure that is un-
reliable, intricate and prone 
to error. The novel concept 
in the current approach is a 
nonlinearity assessment that 
is strongest at the source of 
the nonlinearity. In this way, 
the root cause oscillation can 
be distinguished from propa-
gated secondary oscillations. 
The assessment index is large 
for periodic but non-sinusoi-
dal oscillating time trends 
(that are typical of the output 
of a control loop with a limit 
cycle caused by nonlinearity).

The basis for the non-linearity assess-
ment is a comparison of the predict-
ability of each time trend and a set of 
constructed time trends that have the 
same power spectrum but random 
phases. A non-linear time trend will 
have a high predictability compared 
to the constructed time trends, where-
as this difference will be small for a 
linear time trend [3]. 

The nonlinear square 
 pattern is smoothed as 
it propagates through 
the plant. This behavior 
is  utilized to identify 
candidate areas for root 
causes.

The power of the described methodol-
ogy is underlined by the examples 
discussed below. A clear direction of 
operation and/or maintenance inter-
vention can easily enable significant 
reductions in the time lost pursuing 
the wrong root causes. Furthermore, 
when applied to large-scale problems, 
the methodology enables the identifi-
cation of problems that might never 
be identified manually since the root-
cause may be located very far from its 
effect.

A data-driven, computer-aided meth-
odology as shown here is a valuable 
support tool. It will not be able to 
 replace human know-how but it can 

greatly reduce the effort in 
finding and mapping out the 
extent of plant-wide prob-
lems and locating their 
causes. 

Two additional approaches 
to root-cause analysis are the 
use of transfer entropy and 
time-delay estimation meth-
ods [5].

Transfer entropy
This statistical method evalu-
ates the predictability of a 
variable from another vari-
able based on probability 
density functions (PDF). The 
causality measure used to 
quantify the extent of the in-
fluence of a variable X on 

another variable Y is derived from 
transfer entropy T(X|Y). The latter is 
itself derived from entropy which is a 
measure of uncertainty of a random 
variable and sums a weighed loga-
rithm of the PDF. Transfer entropy is 
calculated from the joint PDF of two 
variables. This provides a measure for 
the dependencies between those vari-
ables. The causality measure t(X,Y) is 
derived by comparing the influence of 
X on Y with the influence of Y on X:

t(X,Y) = T(X|Y ) – T(Y|X)

Thus, large values of t(X,Y) indicate a 
strong causality from X to Y.

Time delay analysis
The second method implemented in 
the PDA module for causality analysis 
is based on the Cross-Correlation 
Function (CCF). This function deter-
mines causal relationships between 
measurements from the presence of 
time delay between them. The under-
lying principle of the method is that 
when the disturbance propagates 
through the plant, the disturbance can 
often be observed at a number of pro-
cess variables with a time lag. Knowl-
edge of the exact time lag provides 
clues towards the root cause because 
it can be argued that the variable clos-
er to the root cause will show the dis-
turbance earlier than a variable further 
away. The CCF measures the similarity 
between signals at different time in-
stances and can therefore be used to 
evaluate time lags between signals. 

Key features of plant-wide 
disturbance analysis

 Automatic detection of the presence of 

one or more periodic oscillations

 Detection of non-periodic disturbances 

and plant upsets

 Determination of the locations of the 

various oscillations / disturbances in the 

plant and their most likely root causes 

Industrial examples

PDA (Plant-wide Disturbance Analysis) 

directed the process experts straight to the 

root-cause of plant-wide problems. These 

root causes were neither evident from look-

ing at data nor from using process knowl-

edge.

OptimizeIT Loop Performance 
Manager

Combining bottom-up monitoring (control 

loop auditing) and top-down disturbance 

analysis (PDA) with world-class controller 

tuning functionality offers the most compre-

hensive tool for process control staff on the 

market. 

3  Oscillatory data from a cluster with 68 minute oscillations. Data is 
sorted by nonlinearity, correctly indicating LC2 as the root cause
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The CCF of two signals has a maxi-
mum value at a time value that is 
equal to the dead time.

The difference between these two 
methods for causality analysis is that 
the causality matrix based on transfer 
entropy is more sensitive. It can find a 
causal relationship even in situations 
with no measurable time delay, be-
cause it detects other effects such as 
smoothing of the time trend that occur 
as a disturbance propagates from its 
source.

A first industrial example
In the following, the process section 
of 4  is considered. This shows a sec-
tion in a chemical plant consisting of 

5  Oscillatory data distributed over a vaporizer system. The identified root cause is marked red.
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two distillation columns. As can be 
seen, most measurements cycle with a 
period of 68 minutes (see also 3 ). 
Process experts suggested several the-
ories explaining this sustained oscilla-
tion. Hence several root causes were 
suggested. 

Applying PDA root cause analysis for 
the cluster related to 68 minutes cycle 
time suggested that a nonlinear prob-
lem around level control loop LC2 
was causing the oscillations in all 
 other tags in that specific cluster. This 
hypothesis was, in fact, experimental-
ly verified: The control in LC2 was re-
tuned 4–5 times as aggressively as its 
normal tuning. As a consequence, LC2 
cycled at a much higher frequency 

and the downstream cycles in all the 
other variables no longer occurred. 
This gave the experts confidence that 
the root cause was within the LC2 
loop and most likely a problem in the 
final control element. This hypothesis 
was also confirmed using LPM audit-
ing analysis on the LC2 control loop 
data.

Plant-wide disturbance 
analysis has moved 
from being a subject of 
advanced academic 
 research into a successful 
industrial application in 
the form of a released 
product.

A likely explanation for the plant-
wide upset is that the oscillation prop-
agates through the plant section as the 
decanter is filled with liquid. As a 
result, there is more or less flow 
through the LC2 valve and this affects 
the LC1 level measurement. LC1 in 
turn adjusts the feed FC4 (via the 
master-slave feedback) to column 
2. The resulting cycles in FC4 affect 
several column 2 variables, including 
the distillate flow FC6.

There was also a secondary cycle in 
the data set. This oscillation was 
somewhat faster and the cluster in-
volved another five measurements. 
Root cause analysis gave early indica-
tion of stiction behavior in FC2 – this 
is a correct result. 

On the basis of these results, mainte-
nance staff can improve the complete 
plant section peformance by attending 
to the two indicated valve-related 
problems in LC2 and FC2.

Second industrial example
This example describes the distur-
bances found in a vaporizer system 5 .

It can be seen that the pressure in the 
vapor header is oscillating at a period 
of 220 seconds. This frequency can 
clearly be found in all four vaporizers 
( 5a  5b  5c  and 5d ) that are used for 
steam and pressure generation. Vapor-
izer 5c  is used for pressure control in 

4  Process schematic for Example 1
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the header. A natural first guess by 
plant staff for a root cause was to in-
vestigate the vaporizer 5c . 

When applied to large-
scale problems, the 
 methodology enables 
the identification of 
 problems that might never 
be  identified manually.

However, when applying PDA to this 
problem, a cluster including all related 
tags was easily identified. Using non-
linearity analysis, the level control 
loop (LC2) in vaporizer 5a  was identi-
fied 6 . 

Experiments performed by process 
control experts actually verified that 
this was the – non-intuitive – root 

cause. In order to exemplify how LPM 
can be used for further confirmation, 
LPM Auditing was applied to this 
loop. It generated the following diag-
nosis which was found true in the 
plant Factbox .

Conclusions
Plant-wide disturbance analysis has 
moved from being a subject of ad-
vanced academic research into a suc-
cessful industrial application in the 
form of a released product. The in-
dustrial cases show that innovative, 
modern technology offers great help 
to process experts in their root-cause 
analysis of important plant problems. 
These root causes are not always evi-
dent to plant personnel and advanced 
tool support can greatly  reduce time 
spent on localizing these causes. 

The unique combination of top-down 
and bottom-up approaches which 

combine the most important tools for 
process control engineers makes the 
ABB tool very powerful. Furthermore, 
encouraging results have been 
achieved by applying the PDA meth-
odology to new fields of application, 
eg, advanced alarm management and 
supervision and diagnosis of electrical 
networks.
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6  Level control loop LC2 data in Vaporizer A. a  setpoint and process 
variable (0-100 percent), b  manipulated variable (valve opening) 
(0-100 percent). The data shows a sticking behavior.
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Factbox  LPM Auditing output

- LC2: Overall loop assessment: 
------------------------
The control loop performance is not acceptable.
- LC2: Detailed information: 
------------------------
The control loop is oscillating.
- The control loop is oscillating.
- The control valve exhibits stiction that results in 

loop oscillations. Put controller in manual to 
 verify.

The oscillation accounts for a significant part of 
the overall variation. Removing the oscillation will 
have lead to great improvement.
The oscillation amplitude is quite regular. This is 
untypical for a pure (linear) tuning problem.
- The final control element introduces variability to 

the output.
The control valve suffers from increased static 
 friction (stiction). A malfunctioning valve increases 
loop variability. Put loop in manual or maintain 
valve.

Peak performance


