ACS 160

Installation and Start-up Guide

DeviceNet Adapter Module CFB-DEV

DeviceNet Adapter Module CFB-DEV

Installation and Start-up Guide

3BFE 64401882 REV B EFFECTIVE: 1.11.2002

© 2002 ABB Oy. All Rights Reserved.

Overview	This chapter s followed when DeviceNet Ad	states the safety instructions that must be in installing and operating the CFB-DEV apter Module.
	The material in attempting any	n this chapter must be studied before y work on, or with, the unit.
Warnings and Notes	This manual d instructions. V which can, if p serious fault c are used when attention or wh available on th Warnings, but	distinguishes two sorts of safety Varnings are used to inform of conditions proper steps are not taken, lead to a ondition, physical injury and death. Notes in the reader is required to pay special hen there is additional information he subject. Notes are less crucial than should not be disregarded.
Warnings	Readers are in serious physic equipment wit	nformed of situations that can result in cal injury and/or serious damage to th the following symbols:
		Dangerous Voltage Warning : warns of situations in which a high voltage can cause physical injury and/or damage equipment. The text next to this symbol describes ways to avoid the danger.
	•	General Warning: warns of situations which can cause physical injury and/or

General Warning: warns of situations which can cause physical injury and/or damage equipment by means other than electrical. The text next to this symbol describes ways to avoid the danger.

Electrostatic Discharge Warning:

warns of situations in which an electrostatic discharge can damage equipment. The text next to this symbol describes ways to avoid the danger.

- *Notes* Readers are notified of the need for special attention or additional information available on the subject with the following symbols:
 - **CAUTION!** Caution aims to draw special attention to a particular issue.
 - *Note:* Note gives additional information or points out more information available on the subject.

General SafetyWARNING! All electrical installation and maintenanceInstructionswork on the drive should be carried out by qualified
electricians.

The drive and adjoining equipment must be properly earthed.

Do not attempt any work on a powered drive. After switching off the mains, always allow the intermediate circuit capacitors 5 minutes to discharge before working on the frequency converter, the motor or the motor cable. It is good practice to check (with a voltage indicating instrument) that the drive is in fact discharged before beginning work.

The motor cable terminals of the drive are at a dangerously high voltage when mains power is applied, regardless of motor operation.

There can be dangerous voltages inside the drive from external control circuits even when the drive mains power is shut off. Exercise appropriate care when working with the unit. Neglecting these instructions can cause physical injury and death.

WARNING! There are several automatic reset functions in the drive. If selected, they reset the unit and resume operation after a fault. These functions should not be selected if other equipment is not compatible with this kind of operation, or dangerous situations can be caused by such action.

More Warnings and Notes are printed at appropriate instances along the text.

Safety Instructions

Safety Instructions

Overview	 		 		 					 				i
Warnings and Notes	 		 		 					 				i
General Safety Instructions .	 		 		 					 			. i	i

Table of Contents

Chapter 1 – Introduction to This Guide

Intended Audience	1-1
Before You Start.	1-1
What This Guide Contains	1-1
Definitions and Abbreviations	1-2

Chapter 2 – Overview

Overview	2-1
DeviceNet Bus Topology	2-1
The CFB-DEV DeviceNet Adapter Module	2-2
Delivery Check	2-3
Warranty and Liability Information	2-4

Chapter 3 – Installation

Exploded View of the CFB-DEV	3-1
Mounting	3-2
Drive Connection	3-2
DeviceNet Connection	3-2
DeviceNet Bus Termination	3-4

Chapter 4 – Programming

Overview	4-1
Configuring the System	4-1
DeviceNet Connection Configuration	4-1
Other Parameters	4-4

Chapter 5 – Communication

Overview
Introduction to DeviceNet
Object Modelling and Functional Profiles 5-2
Identity Object (0x01)
Message Router Object (0x02)5-3
DeviceNet Object (0x03)
Assembly Object (0x04) 5-5
BASIC SPEED Assembly 5-6
EXTENDED SPEED Assembly
TRANSPARENT Assembly
DeviceNet Connection Object (0x05) 5-20
Acknowledge Handler Object (0x2B) 5-23
AC/DC Object (0x2A) 5-24
Control Supervisor Object (0x29) 5-25
Run/Stop Event Matrix 5-26
State Transition Diagram
Motor Data Object (0x28) 5-27
CFB-DEV Parameter Object (0x64) 5-27

Chapter 6 – Fault Tracing

Overview	 	. 6-1
CFB-DEV Status Codes	 	. 6-1
Status LEDs	 	. 6-2
Installation Problems	 	. 6-3
Drive Setup	 	. 6-4
PLC Programming	 	. 6-4
Scanner Fault Indications	 	. 6-4

Appendix A – Technical Data

Fieldbus Link.	A	-1
CFB-DEV	A	-2

Appendix B – Ambient Conditions

Operation	 	 	 	 	 	 	 	 . B-1
Storage and Transportation	 	 	 	 	 	 •		 . B-1

Intended Audience	The Guide is intended for the people who are responsible for commissioning and using a CFB-DEV DeviceNet Adapter Module with an ABB drive. The reader is expected to have a basic knowledge of electrical fundamentals, electrical wiring practices, how to operate the drive, and the DeviceNet protocol.
Before You Start	It is assumed that the drive is installed and ready to operate before starting the installation of the adapter module.
	In addition to conventional installation tools, have the drive manuals available during the installation as they contain important information not included in this guide. The drive manuals are referred to at various points of this guide.
What This Guide Contains	This manual contains information on the wiring, configuration and use of the CFB-DEV module.
	Safety Instructions are featured in the first few pages of this Guide. Safety Instructions describe the formats for various warnings and notations used within this Guide.
	Chapter 2 – Overview contains a short description of the DeviceNet protocol and the CFB-DEV DeviceNet Adapter Module, a delivery checklist, and warranty information.
	<i>Chapter 3 – Installation</i> contains wiring, bus termination and earthing instructions.
	<i>Chapter 4 – Programming</i> explains how to program the master station and the drive before the

communication through the adapter module can be started.

Chapter 5 – Communication contains a description of how data is transmitted through the CFB-DEV module. This chapter also explains how to configure the Scanner.

Chapter 6 – Diagnostics explains how to fault diagnose the DeviceNet connection during installation and normal operation.

Appendix A contains Technical Data.

Appendix B contains a specification of the ambient conditions allowed during transportation, storage and use of the CFB-DEV module.

Definitions and Abbreviations

Bit-Strobe Message	The Bit-Strobe Command is an I/O Message that is transmitted by the Master. A Bit-Strobe Command Message has multi-cast capabilities. Multiple Slaves can receive and react to the same Bit-Strobe Command (multi-cast capabilities). The Bit-Strobe Response is an I/O Message that a Slave transmits back to the Master when the Bit-Strobe Command is received.
CFB-DEV DeviceNet Adapter Module	The CFB-DEV module is an optional device for the ACS 160 that enables the connection of the drive to a DeviceNet serial communication bus.
Change of State/ Cyclic Message	The Change of State/Cyclic Message is transmitted by either the Master or the Slave. A Change of State/Cyclic Message is directed towards a single specific node (point-to-point). An Acknowledge Message may be returned in response to this message.

- *Input* In the ODVA DeviceNet specification the word 'input' is used to describe data flow from a device into to the network. In this manual, however, the word 'input' is used to describe data flow to a device such as the CFB-DEV.
- I/O Assembly Selection
 Smart networked devices (such as the CFB-DEV) can produce and/or consume more than one I/O value. Typically, they will produce and/or consume one or more I/O value, as well as status and diagnostic information. Each piece of data communicated by a device is represented by an attribute of one of the device's internal objects.

Transmission of multiple pieces of data (attributes) across a single I/O connection requires that the attributes be grouped or assembled together into a single block.

- *MAC ID* Every node on DeviceNet network has to have a unique identifier. This node number is called MAC ID on device net (Media Access Control ID).
 - ODVA The ODVA (Open DeviceNet Vendor Association) is an independent organisation that promotes interoperativity between different manufacturers DeviceNet products. ABB is an Associate Member of the ODVA. See *www.odva.org.*
- *Output* In the ODVA DeviceNet specification, the word 'output' is used to describe data flow from the network into a device. In this manual, however, the word 'output' is used to describe data flow from a device such as the CFB-DEV.
- Parameter A parameter is an operating instruction for the drive. Parameters can be read and programmed with the drive control panel, or through the CFB-DEV module.

Poll Message Most DeviceNet Scanners and the CFB-DEV support 3 different data services. These are the Poll, Bit-Strobe and Change of State/Cyclic messages.

The Poll Command is an I/O Message transmitted by the Master. A Poll Command is directed towards a single, specific Slave (point-to-point, the CFB-DEV always acts as a Slave). A Master must transmit a separate Poll Command Message for each one of its Slaves that is to be polled. The Poll Response is an I/O Message that a Slave transmits back to the Master when the Poll Command is received.

Scanlist The DeviceNet Scanner communicates with the DeviceNet Slaves in a user-defined order. This order of communication is the scanlist. The scanlist contains a complete list of the Slave nodes, and the order in which the Slaves are accessed.

Overview This chapter contains a short description of the DeviceNet bus topology, the CFB-DEV DeviceNet Adapter Module, a delivery checklist, and warranty information.

Further information on DeviceNet can be obtained from *www.odva.org.*

DeviceNet BusThe DeviceNet network has a linear bus topology.TopologyTerminating resistors are required on each end of the
trunk line. Drop lines as long as 6 metres (20 feet) each
are permitted, allowing one or more nodes to be
attached. DeviceNet allows branching structures only
on drop lines. An example of an allowable topology is
shown below.

Figure 2-1 DeviceNet bus topology.

	The maximum length of trunk cable depends on the data rate and on the type of the cable used (see Appendix A).
Terminating Resistor	The DeviceNet network should be terminated at both ends of the trunk cable with a 121 Ω , ¼ W, 1% Metal Film resistor. Connect this resistor between the two signal wires (CAN_H, CAN_L) on the DeviceNet cable.
<i>The CFB-DEV DeviceNet Adapter Module</i>	The CFB-DEV DeviceNet Adapter Module is an optional device for an ABB ACS 160 drive which enables the connection of the drive to a DeviceNet system. The drive is considered a slave in the DeviceNet network. Through the CFB-DEV module, it is possible to:
	 Give control commands to the drive (Start, Stop, Run enable, etc.)
	 Feed a motor speed reference to the drive
	 Give a process actual value or a process reference to the PID controller of the drive
	 Read status information and actual values from the drive
	 Read and write drive parameter values
	Reset a drive fault.
	The CFB-DEV acts as a Class 2 slave only with predefined master-slave connection set services, viz. 5 UCMM Explicit Server, 1 Master/Slave Explicit Server, 1 Master/Slave Polled I/O Server, 1 Master/Slave Change of State I/O. The DeviceNet commands and services supported by the CFB-DEV are discussed in Chapter 5.

The adapter module is mounted onto the housing of the ACS 160 drive. See the ACS 160 User's Manual for more information.

Figure 2-2 The construction of the DeviceNet link and the CFB-DEV DeviceNet Adapter Module.

Delivery Check The option package for the CFB-DEV module contains:

- DeviceNet Adapter Module, Type CFB-DEV
- 2 pcs M16×1.5 cable glands with O ring
- 2 pcs M4×12 mounting screws
- this manual, the *CFB-DEV Installation and Start-up Guide*.

Warranty and
LiabilityThe warranty for your ABB drive and options covers
manufacturing defects. The manufacturer carries no
responsibility for damage due to transport or unpacking.

In no event and under no circumstances shall the manufacturer be liable for damages and failures due to misuse, abuse, improper installation, or abnormal conditions of temperature, dust, or corrosives, or failures due to operation above rated capacities. Nor shall the manufacturer ever be liable for consequential and incidental damages.

The period of manufacturer's warranty is 12 months, and not more than 18 months, from the date of delivery. Extended warranty may be available with certified startup. Contact your local distributor for details.

Your local ABB Drives company or distributor may have a different warranty period, which is specified in their sales terms, conditions, and warranty terms.

If you have any questions concerning your ABB drive, contact your local distributor or ABB Drives office.

The technical data and specifications are valid at the time of printing. ABB reserves the right to subsequent alterations.

WARNING! Follow the safety instructions given in this Guide and in the ACS 160 User's Manual.

WARNING! The CFB-DEV contains components sensitive to electrostatic discharge (ESD). Wear an earthing wrist band when handling the circuit board assembly. Do not touch the boards unnecessarily.

The CFB-DEV is mounted onto the ACS 160 drive with two screws as shown in the ACS 160 User's Manual. This also provides the earthing of the module housing.			
The CFB-DEV uses the control panel connector of the drive. (However, leave the CFB-DEV disconnected at this point since the control panel is needed later for setting up the communication parameters.)			
The CFB-DEV is powered through the drive control panel connector.			
The CFB-DEV provides two cable entries for the ncoming and outgoing DeviceNet cables. The cables are connected to a detachable terminal header, which enables the disconnection of the CFB-DEV without nterrupting the data transfer to other devices.			
If only one bus cable is connected, the unused cable entry should be plugged.			
To connect the DeviceNet cables, follow this procedure:			
 Lead the bus cables to the space where the ACS 160 and the CFB-DEV are installed in. Arrange the bus cables as far away from any power cables as possible. Avoid parallel runs. Use grommets or cable glands at all cable lead-throughs for protection. 			
2. Remove the cover of the CFB-DEV module. Fasten the cable glands to the cover (if not done already).			
 Lead the bus cables through the cable glands and the cover. Loosen the clamping nuts of the cable glands if necessary. 			
 Detach the terminal header from its receptacle on the circuit board assembly and make the connections. 			

Bus Connector Terminal Designations

Terminal		Description
1	V-	Power supply negative (0 V)
2	CAN_L	DeviceNet bus signal LOW
3	SHIELD	Bus cable screen
4	CAN_H	DeviceNet bus signal HIGH
5	V+	Power supply positive (+24 V)

- 5. Re-insert the terminal header into its receptacle.
- 6. Replace the cover of the CFB-DEV.
- 7. Tighten the clamping nuts of the cable glands.

DeviceNet Bus
TerminationThe DeviceNet network should be terminated at both
ends of the trunk cable with a 121 ohm, ¼ watt, 1%
metal film resistor. The resistor is to be connected
between the two signal conductors (CAN_H and
CAN_L) of the DeviceNet cable.

Overview	This chapter gives information on configuring the DeviceNet Scanner and the drive for communication through the CFB-DEV DeviceNet Adapter Module.
<i>Configuring the System</i>	After the CFB-DEV module has been mechanically and electrically installed, the drive must be prepared for communication with the module and the DeviceNet Scanner.
	Please refer to the Scanner documentation for information on configuring the system for communication with the CFB-DEV. Configuration (EDS) files for the CFB-DEV are available through your local ABB representative.
DeviceNet Connection Configuration	The communication between the drive and the CFB-DEV module is configured through drive parameters. As the control panel of the drive and the CFB-DEV share the same connector, the parameters must be set before detaching the panel and connecting the CFB-DEV.
	The parameters that configure the CFB-DEV are listed in Table 4-1 below. The alternative selections for these parameters are discussed in more detail below the table.
	<i>Note:</i> After making the necessary parameter adjustments, power down the drive, disconnect the control panel, connect the CFB-DEV, and power up the drive.

Chapter 4 – Programming

Table 4-1	The CFB-DEV	configuration	parameters.
10010 1 1		ooninganadon	paramotoror

Param. No.	Parameter Name Alternative Settings		Default Setting	
5101	Module Type	0 None;; 6 CFB-DEV;; 9 Other	6 CFB-DEV	
5102	DeviceNet Fault Mode	0 NOT SEL; 1 FAULT; 2 CONST SP 7; 3 LAST SPEED	0 NOT SEL	
5103	User-defined Output Param. 1	0 None; 19910 (ACS 160 Parameter No.)	0 None	
5104	User-defined Output Param. 2	0 None; 19910 (ACS 160 Parameter No.)	0 None	
5105	Input Assembly Instance	0 20; 1 21; 2 100	0 20	
5106 Output Assembly Instance		0 70; 1 71; 2 101	0 70	
5107	Baudrate MacID	125 kbit/s; 250 kbit/s; 500 kbit/s 0…63h (See text.)	63 (125 kbit/s, MacID = 63)	
5108	Speed Scaling	-128127	0	
5109	Time Scaling	-128127	0	
5110	Stop Mode	1 Coast; 2 Ramp	1 Coast	

5101 Module Type This parameter must be set to 6.

5102 DeviceNet Defines the action of the module upon a DeviceNet communication error. For further information, see the Fault Mode Control Supervisor Object on page 5-25. 5103 User-defined Source selector for TRANSPARENT assembly, **Output Parameter 1** Instance 101, Actual Value 1. See page 5-9. 5104 User-defined Target selector for TRANSPARENT assembly, **Output Parameter 2** Instance 101, Actual Value 2. See page 5-9. Selects the active instance for transferring data to the 5105 Input drive. See Assembly Object (0x04) starting page 5-5. Assembly Instance

5106 OutputSelects the active instance for transferring data from the
drive. See Assembly Object (0x04) starting page 5-5.5107This parameter defines both the baudrate used for
DeviceNet communication and the node number
(MacID) for the module.

For example, a baudrate of 250 kbit/s and MacID 63 are entered as follows:

```
250 kbit/s \rightarrow xxxxxx01 0000000 = 256
63 \rightarrow xx111111
\rightarrow The value for the parameter is 256 + 63 = 319.
```

- *5108 Speed Scaling* (Not effective with Instances 100/101.) Speed scaling. Scaled speed equals rpm / 2^[value of 5114].
 - *5109 Time Scaling* (Not effective with Instances 100/101.) Time scaling. Scaled time equals ms / 2^[value of 5115].
 - *5110 Stop Mode* Upon a Stop command, selects whether the drive coasts to stop or decelerates along a pre-defined time ramp. See the *ACS 160 User's Manual,* Parameter Group 21.

Chapter 4 – Programming

Other Parameters

Fieldbus Communication	Parameters 5204 COMM FAULT TIME and 5205 COMM FAULT FUNC define the action taken in the event of a communication error between the CFB-PDP module and the drive.
Control Locations and Actual Signal Selections	The ACS 160 drive can receive control signals from multiple sources (such as the digital and analogue inputs, the control panel, and a fieldbus adapter). The user can separately determine the source for each type of control information, and select which operating data is output as actual signals by the drive. Especially refer to parameter groups 10, 11, 15 and 16 in the ACS 160 User's Manual for information on the selection parameters.

Overview	This chapter describes the DeviceNet communication protocol for the CFB-DEV and the configuration of the scanner. For detailed information on DeviceNet communication, refer to ODVA DeviceNet Specifications Release 2.0.
Introduction to DeviceNet	DeviceNet is a protocol based on CAN technology. CAN specifies the physical layer interface. DeviceNet specifies the wiring, and the data transfer through CAN.
	The CFB-DEV is a device that acts as a Group 2 Only Server realising the Predefined Master Slave Connection Set functionality. The Offline Connection Set functionality and UCMM are not supported.

Object Modelling and Functional Profiles

One of the main features of DeviceNet is Object modelling. A group of Objects can be described with a Functional Profile. The CFB-DEV realises the ODVA AC/DC Drive Functional Profile with additional features.

The following Objects are supported by the CFB-DEV:

OI	Class	
DeviceNet Objects	0x01	
	Message Router	0x02
	DeviceNet	0x03
	Assembly	0x04
	DeviceNet Connection	0x05
	Acknowledge Handler	0x2B
Profile-specific	AC/DC	0x2A
Objects	Control Supervisor	0x29
	Motor Data	0x28
Vendor-specific Objects CFB-DEV Parameters		0x64

Identity Object (0x01)

Cla	Class Attributes							
#	Name	Services	Description	Default Min Max		Data Type		
1	Revision	Get	Revision of Identity Object	1		UINT		
Ins	stance Attributes	6						
#	Name	Services	Description	Default	Min	Max	Data Type	
1	Vendor ID	Get	Identification of vendor		90		UINT	
2	Device Type	Get	Indication of general type of product	2			UINT	
3	Product Code	Get	Product code	46			UINT	
4	Revision	Get	Revision of the item the Identity Object represents	(1,1)		Array of USINT USINT		
5	Status	Get	Summary status of device	0 0 255		WORD		
6	Serial Number	Get	Serial number of device	N/A		UDINT		
7	Product Name	Get	Information	"ACS 160- DEVS-DEV"		SHORT_ STRING		
9	Config. Consist. Value	Get	Device configuration	N/A			UINT	

Message Router Object (0x02)

Cla	Class Attributes (0)					
#	Name	Services	Description	Data Type		
1	Revision	Get_Attribute_Single	Revision of Identity Object	UINT		

Chapter 5 – Communication

DeviceNet Object (0x03)

Info

Class Attributes (0)										
#	Name	Services	Description	escription						
1	Revision	Get	Revision of I which the im	evision of DeviceNet Object Class Definition on hich the implementation is based						
Ins	Instance Attributes (1)									
#	Name	Service	S	Description	Default	Min	Мах	Data Type		
1	MacID	Get_Attr	ibute_Single	Node address	—	0	63	USINT		
2	Baud Rate	Get_Attr	ibute_Single	Baud rate of device	-	0	2	USINT		
3	Allocation	Get_Attr	ibute_Single	Allocation choice		N/A		UINT		

Master's MacID

Assembly Object (0x04)

I/O Assembly Instances may also be referred to as Block Transfer of data. Intelligent devices, such as the CFB-DEV, realising a Functional Profile have several objects. Since it is not possible to transmit more than one Object data through a single Connection, it is practical and more efficient to group Attributes from different Objects into a single I/O connection (for example a Polled Connection) using the Assembly Object. The Assembly Object acts as a tool for grouping these attributes.

The Assembly Selections described above are in fact Instances of the Assembly Object Class. The CFB-DEV uses Static Assemblies (in other words, fixed groupings of different object data only). These are predefined and cannot be changed.

The CFB-DEV communicates with the drive mainly using fast cyclic data set communication. The size and meaning of the data transmitted via data sets is predefined. The following tables describe the predefined assembly instances supported by the CFB-DEV. **BASIC SPEED**The BASIC SPEED Assembly is defined by the ODVA**Assembly**AC/DC Drive Profile. The format of the input assemblyis:

Instance	e 20											
Byte	Bit	7	Bit 6	Bit	5	Bit 4		Bit 3	Bit 2		Bit 1	Bit 0
0									Fault Rese	et		Run Fwd
1												
2	Speed Reference (Low Byte)											
3	Speed Reference (High Byte)											
Namo				Instance		Attribute				Туре		
Name		Cia	133		instance		Name			Νι	ımber	Type
RunFwd		Control Superv		1		Rı	un1		3		BOOL	
Reset	Control Superv		1		Fa	FaultRst		12		BOOL		
Speed F	eed Ref AC/DC Drive			1		SpeedRef 8			INT			

The format of the output assembly is:

Instance	e 70									
Byte	Bit 7	Bit 6	Bit	5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0							Running Forward		Faulted	
1										
2	Speed Actual Value (Low Byte)									
3	Speed Actual Value (High Byte)									
Nomo				Instance		Attribute				Tuno
Name		21055		1115	lance	Name		Nur	mber	туре
Faulted	C	Control Supe	erv	1		Faulted		9		BOOL
Running Forward	C	Control Supe	Superv 1 Running1		g1	7		BOOL		
Speed A	Act AC/DC Drive 1 SpeedAct 7			INT						

Note: If the BASIC SPEED assembly is used, it must be ensured that the following settings are in effect:

- External control location selection is set to EXT1, and COMM is selected as the source for EXT1.
- RUN ENABLE signal is taken from the CFB-DEV module . (This is necessary for having an ODVA Drive Profile-compliant control logic.)
- Reference and actual values are scaled correctly both in the drive and in the CFB-DEV.

EXTENDED SPEED The format of the input assembly is: **Assembly**

Instance	21											
Byte	Bit 7	7	Bit 6	Bit	5	Bit 4	В	it 3	Bit 2		Bit 1	Bit 0
0			NetRef Net		Ctrl				Fault Rese	t	Run Reverse	Run Fwd
1							•					
2	Spe	ed R	eference (l	_ow I	Byte)							
3	Spe	Speed Reference (High Byte)										
Nome		Class		Instance		Attribute				Tuno		
Name		Cia	33		Instance		Name		Number		ishe	
RunFwd		Cor	ntrol Super	V	1		Run	1		3		BOOL
RunRev		Cor	ntrol Super	v	1		Run	12		4		BOOL
Reset		Cor	ntrol Super	v	1		Fau	ltRst		12		BOOL
NetCtrl		Cor	ntrol Super	v	1		Net	Ctrl		5		BOOL
NetRef		AC/	DC Drive		1		Net	Ref		4		BOOL
Speed R	ef	AC/	DC Drive		1		Spe	edRef		8		INT

Instar	nce 71													
Byte	Bit 7		Bit 6	Bit	5	Bit 4		3	Bit 2		Bit 1	Bit 0		
0	At Referer	nce	Ref From Ctrl Net Net		From	Ready	/ Run / Reve	ning erse	Running Forward		Warning	Faulted		
1	Drive S ⁻	tate	!											
2	Speed /	Actu	ual Value (Lo	ow B	yte)									
3	Speed /	Actı	ual Value (H	igh E	Byte)									
Name			200		Inctor	200	Attrib	ute				Type		
name	class		iiistai		Name	•		Nu	mber	туре				
Faulte	d	Сс	ontrol Super	V	/ 1		1		Faulte	ulted 9		9		BOOL
Warni	ng	Сс	ontrol Super	V	1		Warni	ng		11		BOOL		
Runni Forwa	ng ard	Co	ontrol Super	V	1		Running1		7		BOOL			
Runni Rever	ng se	Co	ontrol Super	v	1		Running2			8		BOOL		
Ready	y	Сс	ontrol Super	V	1		Ready			9		BOOL		
CtrlFr	rlFromNet Control Superv		1		CtrlFromNet		ət	15		BOOL				
Drive	State	Сс	ontrol Super	Superv 1			DriveState			6		USINT		
RefFr	omNet	AC	C/DC Drive		1		RefFromNet		29		BOOL			
At Re	f	AC/DC Drive 1		1		AtRef		3		BOOL				
Speed	d Act	AC	C/DC Drive		1		SpeedAct		7		INT			

The format of the output assembly is:

Note: If the EXTENDED SPEED assembly is used, it must be ensured that the following settings are in effect:

- External control location selection is set to EXT1, and COMM is selected as the source for EXT1.
- RUN ENABLE signal is taken from the CFB-DEV module . (This is necessary for having an ODVA Drive Profile-compliant control logic.)
- Reference and actual values are scaled correctly both in the drive and in the CFB-DEV.

TRANSPARENT Assembly

The format of the input assembly is:

Instance 100							
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit							
Control Word (Low Byte)							
Control Word (High Byte)							
*Reference 1 (Low Byte)							
*Reference 1 (High Byte)							
**Reference 2 (Low Byte)							
**Reference 2 (High Byte)							
	Bit 7 Contro Contro *Refe *Refe **Refe	nce 100Bit 7Bit 6Control WordControl Word*Reference 1*Reference 1**Reference 2**Reference 2	nce 100Bit 7Bit 6Bit 5Control Word (Low EControl Word (High*Reference 1 (Low E*Reference 1 (High E**Reference 2 (Low**Reference 2 (High	nce 100Bit 7Bit 6Bit 5Bit 4Control Word (Low Byte)Control Word (High Byte)*Reference 1 (Low Byte)*Reference 2 (Low Byte)**Reference 2 (Low Byte)**Reference 2 (High Byte)	nce 100Bit 7Bit 6Bit 5Bit 4Bit 3Control Word (Low Byte)Control Word (High Byte)*Reference 1 (Low Byte)*Reference 2 (Low Byte)**Reference 2 (Low Byte)**Reference 2 (High Byte)	nce 100Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Control Word (Low Byte)	nce 100Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Control Word (Low Byte)

*Reference (Speed). This value is available as the fieldbus reference for control location EXT1.

**Reference (%). (Not supported by the ACS 160 firmware at the time of publishing.)

The format of the output assembly is:

Instar	nce 101								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit							
0	Status	Status Word (Low Byte)							
1	Status	Status Word (High Byte)							
2	*Actua	*Actual Value 1 (Low Byte)							
3	*Actua	*Actual Value 1 (High Byte)							
4	**Actual Value 2 (Low Byte)								
5	**Actu	ial Valu	e 2 (Hig	gh Byte)				

*This value is taken from address defined by Parameter 5103.

**This value is taken from address defined by Parameter 5104.

The Control Word and the Status Word The Control Word (CW) is the principal means for controlling the drive from a fieldbus system. It is effective when the drive is in external (remote) control and the controlling commands are received through serial communication channel (set by parameters 1001 EXT1 COMMANDS, 1002 EXT2 COMMANDS and 1102 EXT1/EXT2 SEL).

Note: With the ACS 160, fieldbus control is only possible through external control location 1 (EXT1).

The Control Word (detailed in Table 5-1 below) is sent by the fieldbus master station to the drive. The drive switches between its states according to the bit-coded instructions of the Control Word. See also state machine in Figure 5-1.

The Status Word (SW) is a word containing status information, sent by the drive to the master station. The composition of the Status Word is explained in Table 5-3.

Note: Operation of Control Word and Status Word conforms to ABB Drives Profile with the exception of Control Word bit #10 (REMOTE_CMD), which is not used by the ACS 160.

Table 5-1 The Control Word. See also the State machine in Figure 5-1.

Bit	Value	Description
0	1	Enter <i>READY TO OPERATE</i>
	0	Emergency OFF. Ramp to stop according to parameter 2203 DECELER TIME 1. Enter <i>OFF1 ACTIVE</i> ; proceed to <i>READY TO SWITCH</i> <i>ON</i> unless other interlocks (OFF2, OFF3) are active.
1	1	Continue operation (OFF2 inactive)
	0	Emergency OFF, coast to stop. Enter <i>OFF2 ACTIVE</i> ; proceed to <i>SWITCH-ON INHIBITED</i> .
2	1	Continue operation (OFF3 inactive)
	0	Emergency stop. Drive ramps to stop according to parameter 2205 DECELER TIME 2. Enter <i>OFF3 ACTIVE</i> ; proceed to <i>switch-on INHIBITED</i> .
3	0 - 1	Enter <i>OPERATION ENABLED</i> (Note that also the Run enable signal must be present on a digital input – see parameter 1601 RUN ENABLE.)
	0	Inhibit operation. Enter OPERATION INHIBITED
4		Unused.
5	1	Normal operation. Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED
	0	Halt ramping (Ramp Function Generator output held)
6	1	Normal operation. Enter OPERATING
	0	Force Ramp Function Generator input to zero.
7	0 - 1	Fault reset (enter <i>switch-on inhibited</i>)
	0	(Continue normal operation)
8 to 10		Unused
11	1	Select external control location 2 (EXT2)
	0	Select external control location 1 (EXT1)
12 to 15		Unused

The following example shows how to use the Control Word to start the drive. When the power is connected for the first time, the state of the drive (see the state machine in Figure 5-1) is NOT READY TO SWITCH ON. Control Word is used to step through the state machine states until OPERATING state is reached, meaning that the drive is running and follows the given reference.

Table 5-2 Using the Control Word.

Control Word Value/Description
$CW = 0000\ 0000\ 0000\ 0110$ $ \qquad $ bit 15 bit 0 When this value is written, drive state changes to READY TO SWITCH ON
Wait at least 100 ms before proceeding.
CW = 0000 0000 0000 0111 Drive state changes to READY TO OPERATE.
CW = 0000 0000 0000 1111 Drive starts, but will not accelerate. Drive state changes to OPERATION ENABLED.
CW = 0000 0000 0010 1111 The ramp function generator (RFG) output is released. Drive state changes to RFG: ACCELERATOR ENABLED.
CW = 0000 0000 0110 1111 The ramp function generator (RFG) input is released. Drive state changes to OPERATING. Drive will accelerate to given reference and follow the reference.

This example assumes that the ACS 160 is in remote control, that external control place 1 (EXT1) is the active control place (as selected by parameter 1102), and that EXT1 start and stop commands are received through serial communication (parameter 1001).

Table 5-3 The Status Word.

Bit	Value	Description
0	1	ready to switch on
	0	not ready to switch on
1	1	ready to operate
	0	off1 active
2	1	operation enabled
	0	Not ready (OPERATION INHIBITED)
3	0 - 1	fault
	0	No fault
4	1	OFF2 inactive
	0	OFF2 ACTIVE
5	1	OFF3 inactive
	0	OFF3 ACTIVE
6	1	switch-on inhibited
	0	
7	1	Alarm is active. See Diagnostics section for a list of relevant alarms.
	0	No alarm
8	1	<i>OPERATING.</i> Actual value equals reference value (= is within tolerance limits).
	0	Actual value differs from reference value (= is outside tolerance limits)
9	1	Drive control location: REMOTE
	0	Drive control location: LOCAL
10	1	The value of first supervised parameter equals to or is greater than supervision limit. Refer to Group 32 Supervision.
	0	The value of first supervised parameter is below supervision limit
11	1	External control location 2 (EXT2) selected
	0	External control location 1 (EXT1) selected
12	1	Run Enable signal received
	0	No Run Enable signal received
13 to 15		Unused

Chapter 5 – Communication

*This state transition occurs also if the fault is reset from any other source (e.g. digital input).

References	References are 16-bit words comprising a sign bit and a
	15-bit integer. A negative reference (indicating reversed
	direction of rotation) is formed by calculating the two's
	complement from the corresponding positive reference
	value.

Reference 1 can be used as the frequency reference REF1 for the ACS 160. The signal source of external reference 1 (REF1) must be set to COMM and external control location 1 (EXT1) must be activated. Refer to parameters 1103 EXT REF 1 SELECT and 1102 EXT1/EXT2 SEL.

Reference 2 can be used as the frequency reference REF2 for the ACS 160. The signal source of external reference 2 REF2 must be set to COMM and External control location 2 (EXT2) must be activated. Refer to parameters 1106 EXT REF 2 SELECT and 1102 EXT1/EXT2 SEL.

Fieldbus References Fieldbus references are scaled as follows:

Reference 1: 20000 ≙ EXT REF1 MAX (Hz, parameter 1105). Scaling Parameter 1104 EXT REF1 MIN is not used.

Reference 2: 10000 ≙ EXT REF2 MAX (%, parameter 1108). Scaling Parameter 1107 EXT REF2 MIN is not used.

Fieldbus reference is selected by setting a reference selection parameter – 1103 EXT REF1 SELECT or 1106 EXT REF2 SELECT – to COMM, COMM+AI1 or COMM*AI1. The latter two enable correction of the fieldbus reference using analogue input AI1. The following table explains these selections. Note that the analogue input value is a percentage value (0-100 %) which can be seen in parameter 0118 AI1. When the analogue input is 50 %, the correction is 0. When the input is <50 % (>50 %), the correction reduces (respectively increases) the reference used. Table 5-4 Correcting the fieldbus reference through analogue input.

Setting	Effect of Al1 Value on Fieldbus Reference
СОММ	None
COMM+AI 1	Corrected fieldbus reference = given fieldbus reference + analogue input Al1 value
COMM*AI1	Corrected fieldbus reference = given fieldbus reference × analogue input Al1 value / 50 %

Example of the effect of Al1 value on fieldbus reference:

Assume that 2008 MAXIMUM FREQ = 50 Hz

Assume that fieldbus reference 1 is 5000 (corresponding to 25 % of full scale) and voltage at Al1 is 3 V (corresponding to 30 % of full scale).

1. If setting COMM+AI1 is used, then corrected fieldbus reference is 25 % + 30 % - 50 % = 5 % or 2.5 Hz.

2. If setting COMM*AI1 is used, then corrected fieldbus reference is 25 % \times 30 % / 50 % = 15 % or 7.5 Hz.

CFB-DEV Installation and Start-up Guide

Actual Values	Actual values are read-only values containing
	information on the operation of the drive. Actual values
	are 16-bit words containing sign bit and a 15-bit integer.
	A negative value is given as two's complement of the
	corresponding positive value.

Actual Value 1 is the actual output frequency. Scaling: $5000 \triangleq 50 \text{ Hz}$.

Actual Value 2 is the actual output current. Scaling: 10 \triangleq 1 A.

Fault and AlarmThe ACS 160 provides fault and alarm status words for
the external control system. These data words are
accessible only through the serial communication link
but not from the control panel.

Fault and alarm status words are located in parameter group 3. The group also contains copies of the Control Word and Status Word. Group 3 parameters are of read-only type; however, both alarm words can be reset by writing a zero to them.

Table 5-5 Fault and alarm status words.

No	Name	Description
301	MAIN COMMAND WORD	Read-only copy of the Control Word. See Table 5-1.
302	MAIN STATUS WORD	Read-only copy of the Status Word. See Table 5-3.
305	FAULT WORD 1	Fault information. When a fault is active corresponding bit is set. Bit descriptions are given in Table 5-6.
306	FAULT WORD 2	Fault information. When a fault is active, the corresponding bit is set. Bit descriptions are given in Table 5-6.
308	ALARM WORD 1	Alarm information. When an alarm is active corresponding bit is set. Bits remain set until whole alarm word is reset by writing 0 to it. See Table 5-7.
309	ALARM WORD 2	Alarm information. When an alarm is active corresponding bit is set. Bits remain set until whole alarm word is reset by writing 0 to it. See Table 5-7.

Table 5-6 Bit descriptions for fault words 1 and 2. See also the Diagnostics section in the ACS 160 User's Manual for more information about faults and fault codes.

Bit #	Fault Word 1	Fault Word 2
0	Overcurrent	Underload
1	DC overvoltage	Reserved
2	ACS160 overtemperature	DDCS Link
3	Fault current	Reserved
4	Output overload	
5	DC undervoltage	
6	Analogue input 1 fault	
7	Analogue input 2 fault	
8	Motor overtemperature	Hardware
9	Panel loss	error
10	Parameters inconsistent	
11	DC bus ripple too large	-
12	Motor stall	
13	Serial communication loss	
14	External fault	
15	Output earth fault	1

Bit #	Alarm Word 1	Alarm Word 2
0	Overcurrent controller alarm	Overload alarm
1	Overvoltage controller alarm	Autorest alarm
2	Undervoltage controller alarm	PID sleep alarm
3	Direction lock alarm	Autochange alarm. Reserved
4	Serial communication loss	Interlock alarm. Reserved
5	Modbus exception	Brake resistor overload alarm
6	Analogue input 1 loss	Reserved
7	Analogue input 2 loss	
8	Panel loss	
9	ACS 160 overtemperature	
10	Motor overtemperature	
11	Underload	7

Table 5-7 Bit descriptions for alarm words 1 and 2. See also the Diagnostics section for more information about alarms and alarm codes.

DeviceNet Connection Object (0x05)

Class Attributes (0)					
#	Name	Services	Description	Data Type	
1	Revision	Get	Revision of DeviceNet Object	UINT	

Exp	Explicit Connection Instance (1)							
#	Name	Ser- vices	Description	Range	Data Type			
1	State	Get	State of object	05 Def: 1	USINT			
2	Instance Type	Get	Indicates either IO or messaging connection	0	USINT			
3	Transport Class Trigger	Get Set	Defines behaviour of connection	0x83	BYTE			
4	Produced Connection ID	Get Set	Placed in CAN Identifier Field when connection transmits	N/A	UINT			
5	Consumed Connection ID	Get Set	CAN Identifier Field value that denotes message to be received	N/A	UINT			
6	Initial Comm Characteristics	Get Set	Defines message groups across which productions and consumptions with this Connection occur. Bits 74: Initial Production Characteristics; Bits 30: Initial Consumption Characteristics	N/A	BYTE			
7	Produced Conn. Size	Get Set	Max number of bytes transmitted across this Connection	512	UINT			
8	Consumed Conn. Size	Get Set	Max number of bytes received across this Connection	512	UINT			
9	Expected Packet Rate	Get Set	Defines timing associated with this Connection	N/A	UINT			
12	Watchdog Timeout Action	Get Set	Defines how Inactivity and Watchdog timeouts are handled	N/A	USINT			
13	Produced Conn. Path Length	Get Set	No. of bytes in the produced_ connection_path length attribute	0	UINT			
14	Produced Conn. Path	Get Set	Application Object producing data on this connection	0	Array of USINT			
15	Consumed Conn. Path Length	Get Set	No. of bytes in the consumed_ connection_path length attribute	0	UINT			
16	Consumed Conn. Path	Get Set	Specifies the Application Objects that are to receive the data consumed by this Connection Object	N/A	Array of 01 UINT			

Pol	Polled I/O Connection Instance (2)							
#	Name	Ser- vices	Description	Range	Data Type			
1	State	Get	State of object	04 Def: 1	USINT			
2	Instance Type	Get	Indicates either IO or messaging connection	01 Def: 0	USINT			
3	Transport Class Trigger	Get Set	Defines behaviour of connection	N/A	BYTE			
4	Produced Connection ID	Get Set	Placed in CAN Identifier Field when connection transmits	N/A	UINT			
5	Consumed Connection ID	Get Set	CAN Identifier Field value that denotes message to be received	N/A	UINT			
6	Initial Comm Characteristics	Get Set	Defines message groups across which productions and consumptions with this Connection occur. Bits 74: Initial Production Characteristics; Bits 30: Initial Consumption Characteristics	N/A	BYTE			
7	Produced Conn. Size	Get Set	Max number of bytes transmitted across this Connection	0…I/O In Length Def: I/O In Length	UINT			
8	Consumed Conn. Size	Get Set	Max number of bytes received across this Connection	0…I/O Out Length Def: I/O Out Len.	UINT			
9	Expected Packet Rate	Get Set	Defines timing associated with this Connection	N/A	UINT			
12	Watchdog Timeout Action	Get Set	Defines how Inactivity and Watchdog timeouts are handled	N/A	USINT			
13	Produced Conn. Path Len.	Get Set	No. of bytes in the produced_ connection_path length attribute	3	UINT			
14	Produced Conn. Path	Get Set	Application Object producing data on this connection	0x62 0x37 0x31	Array of USINT			
15	Consumed Conn. Path Len.	Get Set	No. of bytes in the consumed_ connection_path length attribute	3	UINT			
16	Consumed Conn. Path	Get Set	Specifies the Application Objects that are to receive the data consumed by this Connection Object	0x62 0x32 0x31	Array of UINT			

Cha	Change of State/Cyclic (4) (Acknowledged)							
#	Name	Ser- vices	Description	Range	Data Type			
1	State	Get	State of object	1	USINT			
2	Instance Type	Get	Indicates either IO or messaging connection	0…1 Def: 1	USINT			
3	Transport Class Trigger	Get Set	Defines behaviour of connection	N/A	BYTE			
4	Produced Connection ID	Get Set	Placed in CAN Identifier Field when connection transmits	N/A	UINT			
5	Consumed Connection ID	Get Set	CAN Identifier Field value that denotes message to be received	N/A	UINT			
6	Initial Comm Characteristics	Get Set	Defines message groups across which productions and consumptions with this Connection occur. Bits 74: Initial Production Characteristics; Bits 30: Initial Consumption Characteristics	N/A	BYTE			
7	Produced Conn. Size	Get Set	Max number of bytes transmitted across this Connection	0	UINT			
8	Consumed Conn. Size	Get Set	Max number of bytes received across this Connection	0	UINT			
9	Expected Packet Rate	Get Set	Defines timing associated with this Connection	0 0xFFFF Def: 0	UINT			
12	Watchdog Timeout Action	Get Set	Defines how Inactivity and Watchdog timeouts are handled	N/A	USINT			
13	Produced Conn. Path Len.	Get Set	No. of bytes in the produced_ connection_path length attribute	03 Def: 0	UINT			
14	Produced Conn. Path	Get Set	Application Object producing data on this connection	Min: 0 Def: 20 66 24 01 30 03	Array of USINT			
15	Consumed Conn. Path Len.	Get Set	No. of bytes in the consumed_ connection_path length attribute	4	UINT			
16	Consumed Conn. Path	Get Set	Specifies the Application Objects that are to receive the data consumed by this Connection Object	0x62 0x32 0x31	Array of UINT			
17	Production Inhibit Time	Get Set	Defines the minimum time between new data production. Required for I/O Client Connections	0	UINT			

Acknowledge Handler Object (0x2B)

Cla	Class Attributes (0)						
#	Name	Services	Description	Data Type			
1	Revision	Get	Revision of DeviceNet Object Class Definition on which implementation is based	UINT			
2	Max Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT			

Ins	Instance Attributes (1)						
#	Name	Ser- vices	Description	Range	Data Type		
1	Acknowledge Timer	Get Set	Time to wait for acknowledge before resending	165535 Def: 16	UINT		
2	Retry Limit	Get Set	Number of acknowledge timeouts before informing producing application of a Retry_Limit_Reached event	0255 Def: 1	USINT		
3	COS Producing Conn. Instance	Get Set	ID of conn. instance containing the path of the producing I/O application object which is to be notified of Acknowledge Handler events	N/A	UINT		
4	Ack List Size	Get	Max number of members in Ack List 0 = Dynamic	N/A	BYTE		
5	Ack List	Get	List of active conn. instances receiving acknowledgements Format: No. of members followed by list of Conn. Instance IDs	N/A	BYTE ARRAY OF: USINT		
6	Data with Ack Path List Size	Get	Max number of members in Data with Ack Path List 0 = Dynamic	N/A	BYTE		
7	Data with Ack Path List	Get	List of conn. instance/consuming application object pairs. Used to forward data received with acknowledgement	N/A	BYTE Array of UINT USINT Array of USINT		

AC/DC Object (0x2A)

Cla	Class Attributes (0)						
#	Name	Services	Description	Data Type			
1	Revision	Get	Revision of DeviceNet Object Class Definition on which implementation is based	UINT			

Inst	Instance Attributes (1)					
#	Name	Ser- vices	Description	Data Type		
3	At Reference	Get	Actual frequency equals reference (ie. is within tolerance limits)	BOOL		
4	NetRef	Get Set	If drive parameter $1103 = 8$, then NetRef = 1. Otherwise NetRef = 0.	BOOL		
6	Drive Mode	Get	Drive mode of module. Always to be set to 0. 0 = Vendor-specific mode; 1 = Open loop speed (Frequency); 2 = Closed loop speed control; 3 = Torque control; 4 = Process control; 5 = Position control	UINT		
7	Speed Actual	Get	Corresponds to drive parameter 0102	INT		
8	SpeedRef	Get Set	Corresponds to drive parameter 0111	INT		
17	Output Voltage	Get	Corresponds to drive parameter 0109	INT		
18	AccelTime	Get Set	Corresponds to drive parameter 2202	UINT		
19	DecelTime	Get Set	Corresponds to drive parameter 2203	UINT		
20	LowSpdLimit	Get Set	Corresponds to drive parameter 1104	INT		
21	HighSpeedLimit	Get Set	Corresponds to drive parameter 1105	UINT		
22	Speed Scale	Get Set	Internal in CFB-DEV	USINT		
28	Time Scale	Get Set	Internal in CFB-DEV	USINT		

Control Supervisor Object (0x29)

Cla	Class Attributes (0)						
#	Name	Services	Description	Data Type			
1	Revision	Get	Revision of DeviceNet Object Class Definition on which implementation is based	UINT			

Ins	Instance Attributes (1)				
#	Name	Ser- vices	Description	Data Type	
3	Run 1	Get Set	Internal in CFB-DEV	BOOL	
4	Run 2	Get Set	Internal in CFB-DEV	BOOL	
5	Net Control	Get Set	If drive parameters 1001 = 10 and 1102 = 8, then Net Control = 1.	BOOL	
6	State	Get	1 = Start-up; 2 = Not ready; 3 = Ready; 4 = Enabled; 5 = Stopping; 6 = FaultStop; 7 = Faulted	UINT	
7	Running1	Get	Internal in CFB-DEV	BOOL	
8	Running2	Get	Internal in CFB-DEV	BOOL	
10	Faulted	Get	If Status Word bit $3 = 1$, then Faulted = 1. Otherwise Faulted = 0.	BOOL	
12	FaultRst	Get Set	Internal in CFB-DEV	BOOL	
15	CtlFromNet	Get	If drive parameter 1001 = 10, then CtIFromNet = 1. Otherwise CtIFromNet = 0.	BOOL	
16	DNFaultMode	Get Set	See drive parameter 5205 COMM FAULT FUNC	UINT	

Run/Stop Event Matrix

Run/Stop Event Matrix					
RunFwd	RunRev	Trigger Event	Run Type		
0	0	Stop	N/A		
$0 \rightarrow 1$	0	Run	RunFwd		
0	$0 \rightarrow 1$	Run	RunRev		
$0 \rightarrow 1$	$0 \rightarrow 1$	No Action	N/A		
1	1	No Action	N/A		
$1 \rightarrow 0$	1	Run	RunRev		
1	$1 \rightarrow 0$	Run	RunFwd		

State Transition Diagram

Motor Data Object (0x28)

Class Attributes (0)				
#	Name	Services	Description	Data Type
1	Revision	Get	Revision of DeviceNet Object Class Definition on which implementation is based	UINT

Instance Attributes (1)					
#	Name	Ser- vices	Description	Range	Data Type
3	Motor Type	Get	7 = Squirrel Cage Induction Motor	7	UINT
6	Rated Current	Get	Rated stator current from motor nameplate. Corresponds to drive parameter 9906 MOTOR NOM CURR.	See ACS 160 User's Manual	UINT
7	Rated Voltage	Get	Rated base voltage from motor nameplate. Corresponds to drive parameter 9905 MOTOR NOM VOLT.	See ACS 160 User's Manual	UINT

CFB-DEV	The Instance Attributes in this Object are the
Parameter Object	parameters of the ACS 160, numbered 0102 to 9910.
(0x64)	See the ACS 160 User's Manual for a complete listing.

Chapter 5 – Communication

Overview	This chapter gives diagnostic information for finding out the root causes and corrections to the most common problems with the CFB-DEV module.
CFB-DEV Status Codes	This Status parameter indicates the status of the DeviceNet module.
	SELF TEST The module is initialising and performing self-test.
	NO CONNECT The module has completed its power-up sequence, and is waiting for a DeviceNet Scanner or the Manager software to establish a connection.
	CONNECTED The DeviceNet module is connected and communicating with a DeviceNet Scanner or Manager software.
	TIME-OUT The DeviceNet Scanner has stopped communicating with the CFB-DEV. The Scanner might have been powered down.
	<i>Note:</i> Timeout is only observed with I/O connections (Poll, Bit-strobe, COS/Cyclic) and not with explicit messaging connection.
	DUP. MAC ERR The module has observed another device with the same MAC ID in the network. Change the MAC ID value and switch the module power off and on.

BUS OFF

The module has detected an error on the DeviceNet wire physical communication, and is disconnected. To clear this state, switch the module power off and on.

COM. ERROR

Some other communication error (receive buffer overflow for example) has been detected by the module. Try switching the module power off and on. Also check the connections and increase Scanner interscan cycles.

WRONG ASMBLY

The drive does not support the chosen I/O assembly. See the I/O assembly selection parameter settings.

Status LEDsThere are three status LEDs on the CFB-DEV, labelled
DDCS, NS (Network Status) and MS (Module Status).
The LEDs are bicolour (green/red) with white diffused
lens.

The LED indications are as follows:

LED	Mode	Description
	Off	Not powered
	Flashing Green	DDCS initialisation in progress
DDCS	Green	DDCS communication established
	Flashing Red	DDCS communication errors
	Red	 DDCS communication failed, or Module fault

	Off	Not on-line/Not powered: • Not powered (see <i>MS</i> LED), or • Dup_MAC_ID test not completed yet
	Flashing Green	 On-line, but without connections in the established state: Dup_MAC_ID test completed but no established connections to other nodes, or Not allocated to a master
NS	Green	Link OK. On-line with connections in the established state. Allocated to a master
	Flashing Red	One or more connections are in timed-out state
	Red	Critical link failure. The module has detected an error that has rendered it incapable of communicating on the network (Duplicate MAC ID, or Bus- off)
	Off	Not powered
MS	Flashing Green	Stand-by. Module needs commissioning due to incomplete or incorrect configuration. E.g. wrong assembly selected
	Green	Operating in a normal condition
	Red	Unrecoverable fault
	Flashing Red–Green	Self test in progress

Installation Problems

Verify all the connections on the module:

- DeviceNet and power cables are connected to terminal blocks X1 and X2 as described in Chapter 3.
- DeviceNet power cable (if used) has sufficient 24 V d.c. regulated power connected to it.

Chapter 6 – Fault Tracing

Drive Setup	The fieldbus parameter group is not shown on the panel:
	 Enable the CFB-DEV by setting the corresponding drive parameter.
	The CFB-DEV is using default values:
	• Verify that the fieldbus parameter group is set up correctly. If so, turn off and on the power to the CFB-DEV. This makes the module re-read its setup parameters.
	Drive actual values can be read, but the control commands (start/stop or reference) do not go through:
	 Check that the control location parameters of the drive are set to use the CFB-DEV as the source of the required command.
	 Check that the drive is in REMOTE control.
PLC Programming	The PLC program is beyond ABB Drives support. Contact the manufacturer for assistance.
Scanner Fault Indications	Refer to scanner documentation. The latest revision is available at Allen-Bradley internet homepage <i>http://www.ab.com</i> .

Fieldbus LinkCompatible Devices: Any ODVA compliant DeviceNet
scanner supporting Poll - Response and/or Bit - Strobe
commands to Class-2 Only Slaves

Medium: Shielded, twisted pair RS485 cable

- Termination: 121 Ω , 1%, Metal Film, 1/4 W
- DeviceNet Cables: YR-29790 (Thick DeviceNet Cable) YR-29832 (Thin DeviceNet Cable)
- Maximum Bus Length: 1200 m

Topology: Multi-drop

Serial Communication Type: Asynchronous, half Duplex

Transfer Rate: 125, 250 or 500 kBit/s

Protocol: DeviceNet

CFB-DEVEnclosure: Cast aluminium, dimensions $124 \times 79 \times 42$ mm (without cable glands)

Degree of Protection: IP65

Mounting: Onto ACS 160 drive

Settings: Via drive interface (control panel)

Connectors:

 One Phoenix Contact MC1,5/5-ST-3,81 (5-pole, cross-section 1.5 mm² max.) screw terminal block for fieldbus connection:

Terminal		Description
1	V-	Power supply negative (0 V)
2	CAN_L	DeviceNet bus signal LOW
3	SHIELD	Bus cable screen
4	CAN_H	DeviceNet bus signal HIGH
5	V+	Power supply positive (+24 V)

General:

 Complies with EMC Standards EN 50081-1 and EN 50082-2

Operation	The following conditions apply to stationary use of the module.			
	Installation Site Altitude: 0 to 2000 m above sea level. If the installation site is higher than 2000 m above sea level, please contact your local ABB representative for further information.			
	Temperature: -10 to +50 °C			
	Contamination Levels (IEC 721-3-3): Chemical gases: Class 3C3 Solid particles: Class 3S3			
	Sinusoidal Vibration (IEC 721-3-3, 2nd Edition 1994-12): Max 3 mm (2 to 9 Hz) Max 10 m/s ² (9 to 200 Hz)			
	Shock (IEC 721-3-3, 2nd Edition 1994-12): Max 250 m/s ² , 6 ms			
Storage and Transportation	The following conditions apply to storage and transportation of the module in the protective package.			
	Temperature: -40 to +70 °C			
	Contamination Lev Storage:	vels (IEC 721-3-3): Chemical gases: Class 1C2 Solid particles: Class 1S3		
	Transportation:	Chemical gases: Class 2C2 Solid particles: Class 2S2		
	Shock (IEC 721-3-3 Max 300 m/s ² , 18 n	3, 2nd Edition 1994-12): ns		

Appendix B – Ambient Conditions

ABB Oy

AC Drives P.O.Box 184 FIN-00381 Helsinki FINLAND Telephone: +358 10 22 11 Fax: +358 10 22 22681 Internet: www.abb.com

ABB Inc.

Drives 16250 West Glendale Drive New Berlin, WI 53151 USA Telephone: 262 785-3200 800 243-4384 Fax: 262 780-5135