Power Products

Special transformers
Liquid Immersed transformers
for wind applications
ABB transformers are made for land based and offshore wind applications. The compact construction is well suited for installation in wind turbine towers.

The compact, easy to assemble design fits well into the limited space found in wind turbine towers and nacelles. For service purposes, the transformer can be easily replaced through the slim entrance space.

Transformer tank
Transformers for wind turbines are all hermetically sealed with rigid tank designed expansion tank. The tank is filled with oil, without a gas cushion, and the oil volume variation is permitted by the expansion tank.

Reliable and salt mist resistant
The wind turbine nacelle is commonly regarded as one of the most harsh operating environments for a transformer, especially in an offshore installation. The painted tank surface of this transformer is resistant to salt mist, while the hermetically sealed tank construction ensures that the transformers active part is safe and secured from humidity and other environmental stresses.

ABB’s long experience in offshore and sub-sea installations is a guarantee for the best possible knowledge of requirements in challenging and demanding installations.

Personal safety
With plug-in bushings on, this transformer is touch protected for personal safety and also resistant against harm caused by humidity.

Working inside the tower or nacelle in close proximity to the transformer is safe and no additional protective safe distance is needed.

Liquids for insulation and cooling
Several different liquids can be used for insulation and cooling:
- inhibited mineral transformer oil
- silicone oil
- synthetic ester
- natural ester

Silicone oil, synthetic and natural esters have excellent fire resistant and heat dissipation dielectric qualities. These liquids have improved environmental safety and minimized fire risks.

Both synthetic and natural esters are fully biodegradable within 28 days according to standards. The characteristics of these liquids make them environmentally safe to be used in offshore applications.

Design temperatures
To cover the widest possible market requirements, this series of transformers has been designed to be delivered with two different working temperatures for oil and winding:

Normal winding temperature rise 65 K
- For this solution, standard proven paper isolation material is used for isolation. Mineral oil can be used as an insulating liquid.

High winding temperature rise 115 K
- utilized by high temperature insulation aramid, polyester resins and glass fibre.

Slender transformer with integrated fuse load break switch
Low losses – more energy to sell
By using only highest available quality of materials for the core and winding, a reduction of losses has been achieved.

For the end-user this means that with lower losses, there is more energy to sell, which makes the payback time of the investment shorter. The lifetime of the transformer is also extended.

Voltage and power ratings
The voltage range of the wind turbine transformers up to 72.5 kV is proven technology from oil gas platforms. This higher voltage allows increased wind farm power levels without need for separate step-up transformer platform installations. The power rating range of the transformers is typically up to 10 MVA with a possibility to go even higher in power. For ratings above 5 MVA forced cooling is normally required. The solution can be liquid to air or liquid to water cooling.

Standards
ABB transformers are fulfilling the relevant existing IEC-standards and are specifically strengthened for windmill duty. The fulfillment of these standards as such, without special measures, does not necessarily ensure that the transformers in the long term can withstand windmill application duty. Therefore, a specific standard for windmill transformers IEC 60076-16 has been published. ABB is actively participating in this work and will be in the forefront adopting any new requirements in transformer design.

Special options
Different types of special applications, eg, auxiliary windings, 12-pulse applications, tertiary windings and water-cooled solutions are possible.
Typical characteristics, turbine transformers

<table>
<thead>
<tr>
<th>Design</th>
<th>Liquid-immersed Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power [MVA]</td>
<td>0.5-10</td>
</tr>
<tr>
<td>Cooling</td>
<td>ONAN / KNAN / KFAF / KFWF</td>
</tr>
<tr>
<td>High Voltage [kV]</td>
<td>6-72.5</td>
</tr>
<tr>
<td>Primary Tappings</td>
<td>±2x2.5%</td>
</tr>
<tr>
<td>Low Voltage [kV]</td>
<td>0.4-4</td>
</tr>
<tr>
<td>Temperature Class</td>
<td>A / 220 °C (Aramid insulation)</td>
</tr>
<tr>
<td>Standards</td>
<td>IEC60076-16, ANSI C57.12.00</td>
</tr>
<tr>
<td></td>
<td>IEC60076-14, IEEE C57.164</td>
</tr>
</tbody>
</table>

Design Liquid-immersed transformer

- **Tank Construction**: (Nitrogen sealed) conservator type, vacuumproof tank / Hermetically sealed corrugated tank
- **Insulation Liquid**: Synthetic ester, Natural ester, Silicon oil, Inhibited mineral transformer oil
- **Environmental class**: C3 / C4 / C5-I / C5-M
- **Termination type**: Touch protected plug-in bushings
- **Installation**: Windmill nacelle or tower

Type of design

- **Tank Construction**: Conservator type, vacuumproof tank
- **Insulation Liquid**: Synthetic ester, Natural ester, Silicon oil, Inhibited mineral transformer oil
- **Environmental class**: C3 / C4 / C5-I / C5-M
- **Termination type**: Touch protected plug-in bushings, Open bushings
- **Installation**: Platform mounted for offshore, Transformer cell mounted for onshore installation

Other products for wind parks

- Shunt reactors
- Variable shunt reactors
- Adjustable arc-suppression coil

Grid transformer with air to oil cooler (OFAF)

Image of a grid transformer with air to oil cooler (OFAF).
Note:
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction - in whole or in parts - is forbidden without ABB’s prior written consent.

Copyright 2013 ABB
All rights reserved.