Accurate, reliable turbidity measurement

Flow-through turbidity design
— Fast response to process turbidity changes due to minimal sample residence time

Automatic sensor cleaning
— Reduces maintenance requirements
— Optimizes performance sensitivity

Secondary standards for calibration verification
— Accurate, repeatable, simple, safe
— Realize significant cost savings by reducing the use of primary standards

Reliable and accurate measurement
— Ultralow back scatter for accurate measurement of low turbidity values
— Automatic bubble rejection to compensate for erroneous readings due to degassing
ABB's 4690 range of turbidity systems

The measurement of turbidity is a critical measurement in drinking water as it is used to indicate water quality and filtration effectiveness (for example, whether disease-causing organisms are present).

ABB’s 4690 Range of turbidity systems have been designed specifically for the measurement of turbidity throughout the potable water treatment process.

Whichever of the two measurement ranges you choose, low range (0 to 40 NTU) or higher range (0 to 400 NTU), you can benefit from reliable, accurate turbidity measurement with automatic optical cleaning and dry standard calibration verification.

Applications

Typical applications for the 4690 range of flow-through turbidity systems in potable water treatment include:

- **Raw water / source monitoring**
 Provides an indication of the solids loading entering the treatment plant to enable adjustment of the coagulant dose.

- **Monitoring clarified water**
 Clarifier supernatant turbidity measurement monitors clarifier efficiency to provide early warning of floc blanket break-up or incorrect coagulant dosing.

- **Filter backwashing control**
 Monitors the filter backwash curve to minimize clean water usage.

- **Monitoring of filtered water**
 Ensures correct operation of the filters and guards against turbidity breakthrough.

- **Monitoring of final drinking water quality**
 Provides a final quality check after disinfection before distribution.

For higher turbidity applications or for turbidity measurement in open channels and tanks please refer to ABB’s 4670 range of turbidity systems (data sheet DS/4670–EN).

Fig. 1: Typical turbidity monitoring application
4690 turbidity system overview

Wall- / Pipe- or panel-mount analyzers available
- Ultra-stable electronics
- Flexible installation
- In-built bubble rejection software
- Easy-to-use

Auto-clean system
- Programmable automatic cleaning
- Reduces operator maintenance
- Ensures sensor accuracy and reliability

Dry Secondary Standards
- Simplifies routine instrument verification
- Eliminates chemical standard preparation errors
- Reduces cost-of-ownership

Sample Flow Cell
- Flow-through nephelometric design
- Minimal sample residence time provides fast response to turbidity changes for improved process control

Emitter & Receiver Assemblies
- ISO 7027 compliant

Integral Sample Feed and Drain Valves
- Simple installation
- Quick and easy calibration
4690 Series
Turbidity systems

Reliable measurement

ABB’s 4690 range of turbidity systems have been designed for reliability, ease-of-use and maintenance simplicity.

Measurement technique

The 4690 range of turbidity sensors utilize a flow-through nephelometric design compliant to the ISO* 7027 standard.

Water flows continually through the sensor body. Light directed by the emitter assembly passes through the sample where it is scattered by any suspended particles present in the sample. This scattered light is detected by the sensor receiver assembly that is placed at a 90° angle to the incident beam.

The ultralow back scatter allows for very accurate readings as only light scattering due to turbidity is measured. This is especially important when measuring low turbidity values. Due to the short sample residence time in the flow cell the system is able to respond much faster than many competing systems.

* International Organization for Standardization

Automatic cell cleaning

The 4690 range of turbidity sensors feature an auto-clean system. This feature consists of a mechanical wiper assembly that physically wipes clean the optical cell at user-programmable intervals from every 15 minutes up to every 24 hours.

The highly efficient automatic cleaning process overcomes the problem of optical fouling and ensures that performance can be maintained for long periods (up to 6 months) without the need for manual intervention.

Automatic bubble rejection

Turbidity readings can be affected by short-term spikes, usually due to the effect of the sample degassing. The 4690 analyzer has an automatic bubble rejection feature that, when enabled, applies a digital filter to the measured results removing any spurious high reading.

Optional external debubbler

Any bubbles present in the sample give false turbidity readings. For applications where bubbles are likely, it is recommended that the optional external debubbler assembly is used to supply a constant head of debubbled sample to the sensor.

Fig. 2: Nephelometric turbidity monitor

Fig. 3: Auto-clean wiper unit

Fig. 4: Detector, Lens, Light Source
Simple to calibrate

A key feature of the 4690 turbidity systems is the dry secondary calibration standard that simplifies routine instrument verification and removes the need for the use of chemical standards.

Both low- and high-range secondary standards are available so that the analyzer calibration can be verified at a level that is suited to the application. Each secondary standard is supplied factory-certified against a primary formazine standard.

The benefits of using ABB’s Secondary Standards include:

— **Minimum analyzer downtime**
 Simple and fast procedure to verify analyzer performance.

— **Low cost of ownership**
 Reduce usage of consumable chemical standards and the time taken to prepare such standards.

— **Minimise employee’s exposure to Formazine**
 Formazin is highly toxic and a suspected carcinogen.

— **Repeatable and reliable**
 Removes any chemical standard preparation errors.

— **Simple to use**
 The secondary standard is simply inserted into the sensor assembly optical light path allowing the pre-calibrated opto-mechanical filter to divert a fixed quantity of light to the detector that corresponds to the calibrated turbidity value. Rotation of the dry standard blocks the light path enabling a zero turbidity calibration to be made.

Fig. 4: Dry secondary standard

Fig. 5: Dry standard calibration
Simple to maintain

The 4690 turbidity sensing systems are designed to be as maintenance-free as possible. The inherent product design and auto-clean feature minimize the amount of maintenance required to external cleaning of sample lines and periodic replacement of the wiper blade and light source.

The sensor features ABB’s patented light replacement system, a unique feature that enables bulb replacement in the field in seconds. Each bulb is supplied fully protected in a patented assembly with integral light guide so you never come into direct contact with the bulb. This not only protects the bulb, ensuring maximum lamp life, but also makes replacement very simple and fast as it just clicks into place.

<table>
<thead>
<tr>
<th>Task</th>
<th>Recommended frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual checks – sample flow, leaks</td>
<td>Weekly</td>
</tr>
<tr>
<td>Calibration verification¹ with secondary standard² - as per regulatory guidelines</td>
<td>Monthly</td>
</tr>
<tr>
<td>Calibration³ with primary standard³ – as per regulatory guidelines</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Replace wiper blade</td>
<td>Annually</td>
</tr>
<tr>
<td>Replace LED Light Source (ISO 7027)</td>
<td>Every 5 years</td>
</tr>
</tbody>
</table>

1. Calibration Verification
A procedure used to check whether or not the calibration of the analyzer is within certain limits.

2. Secondary Standards
Standards that the manufacturer (or an independent testing organization) has certified provide analyzer calibration results equivalent (within certain limits) to the results obtained when the instrument is calibrated with a primary standard.

3. Calibration
A procedure which checks or adjusts an analyzer’s accuracy by comparison with a defined standard or reference.

4. Primary Standards
Turbidity standards that are traceable and equivalent to the reference turbidity standard, within statistical errors. Formazine is the most commonly acceptable form of primary standard. Primary standards are used to calibrate a turbidity meter directly or to calibrate a secondary standard.

Fig. 6: Replacing the light source
4690 sensor specification

Range
Low range 0 to 40 NTU
High range 0 to 400 NTU

Measurement principle
90 ° scattered light measurement.
Compliant to ISO 7027

Maximum linearity
Typically <1.0 %

Accuracy1, 2
Low range version ±2 % of reading
High range version ±5 % of reading or 0.3 NTU

Repeatability3
0 to 200 NTU: <1 %
200 to 400 NTU: 2 %

Limit of Detection4
Low range version: 0.003 NTU
High range version: 0.3 NTU

Response time
T90 < 1 min at 1 l/min⁻¹ (0.26 gall [US]/min⁻¹)

Flow rate
0.5 to 1.5 l/min (0.13 to 0.39 gall [US]/min)

Integral wiper cleaning system
Programmable operational frequency every 0.25 hour, 0.5 hour, 0.75 hour or multiples of 1 hour up to 24 hours

Sample operating temperature
0 to 50 °C (32 to 122 °F)

Sample pressure
Up to 3 bar (43.5 psi)

Ambient operating temperature
0 to 50 °C (32 to 122 °F)

Ambient operating humidity
Up to 95 % RH

Wetted parts – materials used
Cell body unit
— Black POM (Polyoxymethylene) Copolymer
— Spectrosil 2000 fused silica
— Nitrile (O-ring)
— Epoxy preform (cured): Uni-forms 5034-00
— Polyamide 6
— Nickel plated brass
— Teflon

Wiper unit
— Black Polycarbonate, 10% Glass Fibre filled – Lexan 500R
— Stainless Steel (SS 316 S13/S11) w/ Chemical Black – MIL-C13924 class 4
— Silicone grease (WRC Approved): Unisilkon L 250 L
— 2-part Epoxy Adhesive (cured): DELO AD894
— EPDM (ethylene propylene diene Monomer) black

1Maximum measured error across full measurement range (typical, limited by uncertainty in Formazine standards).
4Tested in accordance with BS ISO 15839: 2003.
4690 analyzer specification

General
Measured value
5-digit x 7-segment backlit LCD

Information
16-character, single line, dot matrix, backlit LCD

Units of measurement
All models: NTU and FNU
mg/l and ppm for high range models

Accuracy
±0.2 % of reading, ±1 digit

Linearity
±0.1 % FSD

Auto-clean timing (7998011, 7998012)
Programmable 15 min, 30 min, 45 min or 1 hour up to 24 hours in 1 hour increments

Environmental Data
Operating temperature limits
−20...55 °C (−4...131 °F)

Storage temperature limits
−25...55 °C (−13...131 °F)

Operating humidity limits
Up to 95 % RH non-condensing

Power Supply
Voltage requirements
100...130 V, 200...260 V, 50/60 Hz

Power consumption
< 6 VA AC

Error due to power supply variation
Less than 0.1 % for +6 % ~20 % variation from nominal supply

Insulation
Mains to earth (line to ground) 2 kV RMS

Relay Outputs and Set Points
No. of relays
Two

Relay contacts
Single pole changeover
Rating 250 V AC 250 V DC max.
3 A AC, 3 A DC max.
Loading (non-inductive) 750 VA 30 W max.
(inductive) 750 VA 3 W max.

Insulation
2 kV RMS contacts to earth (ground)

No. of set points
Two

Set point adjustment
Programmable

Set point hysteresis
±1 % fixed

Local set point annunciation
Red LED
Retransmission

No. of retransmission signals
One fully isolated programmable 0...10 mA, 0...20 mA or 4...20 mA
Optional second current output

Accuracy
±0.25 % FSD ±0.5 % reading

Resolution
0.1 % at 10 A, 0.05 % at 20 mA

Max. load resistance
750 Ω (20 A max.)

Mechanical Data

Model 4690 Wall- / Pipe-mount transmitter

- Wall-mounting
- Protection: IP66 / NEMA4X
- Dimensions: 160 mm (6.30 in.) wide x 214 mm (8.43 in.) high x 68 mm (2.68 in.) deep
- Weight: 2 kg (4½ lb)

Model 4695 Panel-mount transmitter

- Panel-mounting: (¼ DIN)
- Protection: IP66 / NEMA4X front
- Dimensions: 96 mm (3.78 in.) wide x 96 mm (3.78 in.) high x 191 mm (7.52 in.) deep
- Weight: 1.5 kg (3¼ lb)
- Panel cut-out: 92 - 0.8 mm x 92 - 0.8 mm
 (3.62 - 0.03 in. x 3.62 - 0.03 in.)
4690 Series
Turbidity systems

Overall dimensions

4690 turbidity sensor (with optional wiper unit)

Dimensions in mm (in.)
4690 turbidity sensor (without optional wiper unit)

Dimensions in mm (in.)

Sample Inlet Connector (12 mm [0.5] internal diameter tube)
Sample Drain Connector (12 mm [0.5] internal diameter tube)

6 x Ø7 (0.3) Mounting Holes

298.0 (11.7)
230.0 (9.0)
282.0 (11.1)
118.0 (4.65)
155.5 (6.12)
46.5 (1.83)
4690 Series
Turbidity systems

4690 wall- / pipe-mount analyzer
Dimensions in mm (in.)

4695 panel-mount analyzer
Dimensions in mm (in.)

Optional de-bubbler assembly
Dimensions in mm (in.)
Electrical connections

Panel-mount analyzer connections

Wall- / Pipe-mount analyzer connections

Note.
1. A second retransmission output is available if the RS485 serial communications facility is not used.
2. If ‘Test Cleaner’ is selected during analyzer configuration, Relay 2 becomes ‘Failed Wiper Alarm’ relay.
Typical system installation schematic

With optional de-bubbler

Dimensions in mm (in)
Ordering information

Turbidity system 4690/

<table>
<thead>
<tr>
<th>Transmitter type</th>
<th>4690/</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-/ Pipe-mount (gland fittings)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall- / Pipe-mount (conduit)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel-mount</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115 V AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communications and IO

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard (1 analog output)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional analog output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor type

<table>
<thead>
<tr>
<th>Sensor type</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-through system (ISO 7027 compliant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor range

<table>
<thead>
<tr>
<th>Sensor range</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 40 NTU (without auto-clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 … 40 NTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 … 400 NTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary dry calibration

<table>
<thead>
<tr>
<th>Secondary dry calibration</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low range (<5 NTU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High range (50 … 100 NTU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor cable length

<table>
<thead>
<tr>
<th>Sensor cable length</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No sensor cable supplied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 m (3.3 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 m (16.4 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 m (32.8 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manual

<table>
<thead>
<tr>
<th>Manual</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-bubbler assembly</td>
<td>7997 500</td>
</tr>
<tr>
<td>Dry standard HIGH (for ISO infrared LED version)</td>
<td>7998 048</td>
</tr>
<tr>
<td>Dry standard LOW (for ISO infrared LED version)</td>
<td>7998 047</td>
</tr>
</tbody>
</table>