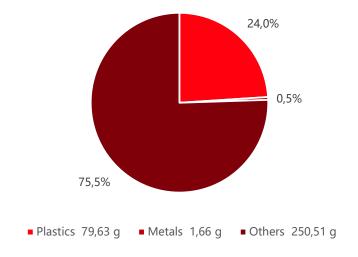


COMBI-RANGE (SAH/S8.X.7.1)

PEP ecopassport® Product Environmental Profile

PEP eco PASS PORT Document	in compliance with ISO 14025: 2006	s "Environmental labels and declaration	ons. Type III e	environmen	tal declaratior	
ORGANIZATION	ORGANIZATION					
ABB Stotz-Kontakt GmbH		pia.denninghoff@de.abb.com				
ADDRESS		WEBSITE				
Eppelheimer Str. 82, 69123 Heidelb	perg	https://new.abb.com/products/2CD	G110250R00	111		
STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00261-V01.01-EN	1	en	1/11	
© Copyright 2022 ABB. All rights re	served.		-			

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.


Ψ *!!

General Information

Reference product	One Combi-Range: SAH/S8.16.7.1 Schalt-/Jalousieakt,8f,16A (2CDG110250R0011)
Description of the product	The compact combi switch actuators SAH/S are modular installation devices (MDRC) in proM design, with 8 mutually independent switching relays. They are designed for installation in electrical distribution boards and small housings with a 35 mm mounting rail. The outputs can be used individually via ABB i-bus® KNX for switching electric consumers (individually) with a rate current of 6A, 10A or 16A. Alternative controlling shutter and blind drives (230 V AC) (no electromechanically interlocking). The device features a manual operation, which can also be disabled. Via the manual operation the outputs can be operated manually and the switching or driving status is displayed. The device is powered by KNX and requires no additional power supply.
Functional unit	For switching 8 independent electrical loads with rated current 6A, 10A or 16A. Alternative for controlling 4 independent blind or roller shutter drives (230V AC). The bus can be connected via enclosed terminal block. The device has a degree of protection IP20. The reference for service life of the product is 10 years.
Other products covered	SAH/S8.10.7.1 Schalt-/Jalousieakt, 8f,10A (2CDG110247R0011), SAH/S8.6.7.1 Schalt-/Jalousieaktor, 8f,6A (2CDG110244R0011)

STATUS	SECURITY LEVEL	EVEL REGISTRATION NUMBER REV.		LANG.	PAGE					
Approved	Public	ABBG-00261-V01.01-EN	1	en	2/11					
© Copyright 2022 ABB. All rights reserved.										

Constituent Materials

Total weight of Reference product

331,8

Plastics as %	Plastics as % of weight		Metals as % of weight		fweight
Name and CAS number	Weight%	Name and CAS number	Weight%	Name and CAS number	Weight%
Polycarbonate	23,6	Stainless steel	0,5	Cardboard - packaging	14,6
Polyethylene- terephthalate	0,4	-	x	Active electronic component	0,5
Polymethyl- methacrylate	0,0	-	x	Keypad	0,8
-	x	-	x	РСВА	54,7
_	-	-	-	Paper	4,9

The product is in conformity with the provisions of RoHS directive 2011/65/EU, covering 2015/863(EU), REACH regulation No 1907/2006 and national legislation. The product contains the SVHC lead (CAS 7439-92-1).

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE				
Approved	Public	ABBG-00261-V01.01-EN	1	en	3/11				
© Copyright 2022 ABB. All rights reserved.									

Additional Environmental Information

Manufacturing	The PCBA is manufactured at the Hornberg production site, while final assembly of all components into the Switch/shutter actuator happens at Lüdenscheid. No recycled material content is assumed. All components are transported by lorry from the supplier to these manufacturing sites. The electricity mix on the both manufacturing sites are largely renewable from Scandinavian hydropower and rooftop solar power (80% on Ludenscheid and 100% on Hornberg). Instead of hydropower, a German electricity market mix was modelled to avoid double counting of renewable energy. The remaining power and heating demand is met by combustion of natural gas, for which all CO2 emissions are compensated through ClimatePartner. Nevertheless, this compensation is not accounted for in the model of this EPD. Production waste is assumed to be transported by lorry (100 km by default in the PCR) and treated by recycling. Specific one-year data from 2022 on manufacturing site level was collected and allocated to the product by economic partitioning following the requirements of ISO 14044.
Distribution	The transport scenario is estimated based on the distance to the capital city of the countries it is sold to, according to the sales data for 2022.
Installation	Installation is done manually, without using energy or other auxiliary materials. For treatment of packaging waste, the scenario set by the PSR is followed.
Use	The reference product is on stand-by during 95% of the time with and energy consumption of 0,15W, and is in active mode with a maximum energy consumption of 0,25 W for the remaining 5% of the time. With a reference lifetime of 10 years and 8760 hours per year, this results in a power consumption of 13,58 kWh over the lifetime.
End of life	The standard scenario set in the PCR is considered, with parameters listed in Appendix D and a transport distance of 1000 km.
Benefits and loads beyond the system boundaries	Steel has a recovery rate of 80% according to the PCR. The Module D formula from the PCR was used to calculate the benefits of steel. Other materials were not included here, due to a material recovery rate of 0 or lack of recycling in real life scenarios.

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE				
Approved	Public	ABBG-00261-V01.01-EN	1	en	4/11				
Approved Public ABBG-00261-V01.01-EN 1 en 4/11 © Copyright 2022 ABB. All rights reserved.									

Use

End of life

⋒ Environmental Impacts

Reference lifetime	10 years
Product category	Other equipment
Installation elements	Not applicable
Use scenario	Active product
Geographical representativeness	DACH+ (Germany, Austria, Switzerland), Europe, MEA (Middle East and Africa) and Asia
Technological representativeness	Materials and process data are specific for the production of the Switch/Shutter actuator
Software and database used	SimaPro version 9.5.0.1, Ecoinvent 3.9.1
Energy model used	
Manufacturing	Electricity, high voltage {DE} market for Cut-off, U Electricity, low voltage {DE} electricity production, photovoltaic, 3kWp slanted-roof installation, single-Si, panel, mounted Cut-off, U Natural gas, high pressure {DE} market for Cut-off, S
Installation	Not applicable
	Electricity, low voltage {DE} market for electricity, low voltage Cut-off, S

Electricity, low voltage {Europe without Switzerland}| market

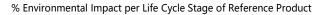
Electricity, low voltage {RME}| market group for electricity,

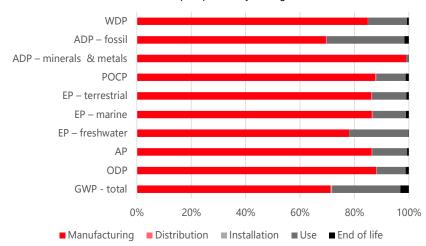
Electricity, low voltage {RAS}| market group for electricity, low

group for electricity, low voltage | Cut-off, S

low voltage | Cut-off, S

voltage | Cut-off, S


Not applicable


STATUS SECURITY LEVEL REGISTRATION NUMBER REV. LANG. PAGE Approved Public ABBG-00261-V01.01-EN 1 en 5/11 © Copyright 2022 ABB. All rights reserved.

1 en

6/11

Common base of mandatory indicators

Public

© Copyright 2022 ABB. All rights reserved.

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
GWP-total	kg CO ₂ eq.	2,56E+01	1,83E+01	7,59E-02	7,91E-02	6,45E+00	7,92E-01	-2,72E-0
GWP-fossil	kg CO ₂ eq.	2,48E+01	1,80E+01	7,58E-02	3,09E-03	5,98E+00	7,40E-01	-3,66E-0
GWP-biogenic	kg CO ₂ eq.	8,43E-01	2,67E-01	5,09E-05	7,60E-02	4,49E-01	5,06E-02	1,05E-02
GWP-luluc	kg CO ₂ eq.	4,35E-02	3,30E-02	2,89E-05	1,73E-06	1,03E-02	9,81E-05	-6,80E-0
GWP-fossil = Glob GWP-biogenic = C GWP-luluc = Glob	Global Warming	g Potential b	oiogenic	se change				
ODP	kg CFC-11 eq.	7,37E-07	6,48E-07	1,52E-09	9,98E-11	7,87E-08	8,51E-09	-1,12E-0
ODP = Depletion p	potential of the	stratospheri	c ozone layer					
AP	H+ eq.	1,71E-01	1,48E-01	2,67E-04	1,86E-05	2,20E-02	1,13E-03	-2,04E-0
AP = Acidification	potential, Accu	mulated Ex	ceedance					
EP-freshwater	kg P eq.	3,45E-03	2,70E-03	4,90E-07	6,13E-08	7,51E-04	4,15E-06	-3,02E-0
FP-marine	kg N eg.	2.67E-02	2.31E-02	9.30E-05	7.55E-06	3.24E-03	2.81E-04	-1.08E-0
Li -iliaillic		_,	2,012 02	0,000 00	7,55L-00	0,2 12 00		.,
EP-terrestrial	mol N eq.	3,12E-01	2,69E-01	9,97E-04	7,79E-05	3,93E-02	2,83E-03	,
	mol N eq. Eutrophication pophication poter	3,12E-01 otential, fraction	2,69E-01 ction of nutrient n of nutrients re	9,97E-04 s reaching frest aching marine	7,79E-05 hwater end comp	3,93E-02 eartment	2,83E-03	,
EP-terrestrial EP-freshwater = E EP-marine = Eutro	mol N eq. Eutrophication pophication poter	3,12E-01 otential, fraction	2,69E-01 ction of nutrient n of nutrients re	9,97E-04 s reaching frest aching marine	7,79E-05 hwater end comp	3,93E-02 eartment	2,83E-03 1,27E-03	-5,96E-C
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu	mol N eq. Eutrophication popplication poterutrophication poterutrophication po	3,12E-01 otential, fraction tial, fraction tential, Acci	2,69E-01 ction of nutrient n of nutrients re umulated Exce 9,65E-02	9,97E-04 is reaching frest eaching marine edance	7,79E-05 hwater end comp end compartmen	3,93E-02 artment t		-5,96E-(
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu	mol N eq. Eutrophication popplication poterutrophication poterutrophication po	3,12E-01 otential, fraction tial, fraction tential, Acci	2,69E-01 ction of nutrient n of nutrients re umulated Exce 9,65E-02	9,97E-04 is reaching frest eaching marine edance	7,79E-05 hwater end comp end compartmen	3,93E-02 artment t		-5,96E-C
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu POCP POCP = Formation ADP-minerals	mol N eq. Eutrophication p ophication poter utrophication po kg NMVOC eq. n potential of tre	3,12E-01 otential, fraction tial, fraction tential, Accidential, Accid	2,69E-01 ction of nutrient n of nutrients re umulated Excer 9,65E-02	9,97E-04 s reaching frest eaching marine edance 3,77E-04	7,79E-05 hwater end comp end compartmen 2,17E-05	3,93E-02 artment t 1,19E-02 6,32E-05	1,27E-03	-5,96E-C
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu POCP POCP = Formation ADP-minerals & metals	mol N eq. Eutrophication p pophication poter utrophication poter kg NMVOC eq. n potential of tro kg Sb eq. MJ netals = Abiotic	3,12E-01 otential, fraction tial, fraction tential, Accord 1,10E-01 opospheric 6,28E-03 3,41E+02 depletion p	2,69E-01 ction of nutrient n of nutrients re umulated Excer- 9,65E-02 ozone 6,22E-03 2,37E+02 otential for non	9,97E-04 s reaching frest eaching marine edance 3,77E-04 1,92E-07 1,03E+00	7,79E-05 hwater end compend compartmen 2,17E-05 7,68E-09 3,16E-02	3,93E-02 artment t 1,19E-02 6,32E-05	1,27E-03 6,85E-07	-5,96E-C
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-minerals & m	mol N eq. Eutrophication p pophication poter utrophication poter kg NMVOC eq. n potential of tro kg Sb eq. MJ netals = Abiotic	3,12E-01 otential, fraction otential, fraction otential, Accidential, Accidential, Accidential 1,10E-01 opospheric 6,28E-03 3,41E+02 depletion p fossil resou	2,69E-01 ction of nutrient n of nutrients re umulated Excer- 9,65E-02 ozone 6,22E-03 2,37E+02 otential for non	9,97E-04 s reaching frest eaching marine edance 3,77E-04 1,92E-07 1,03E+00	7,79E-05 hwater end compend compartmen 2,17E-05 7,68E-09 3,16E-02	3,93E-02 artment t 1,19E-02 6,32E-05	1,27E-03 6,85E-07	-1,62E-0 -2,82E-0 -4,77E-0
EP-terrestrial EP-freshwater = E EP-marine = Eutro EP-terrestrial = Eu POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-minerals & m ADP-fossil = Abiot	mol N eq. Eutrophication pophication potentiation potentiation potentiation potentiation potentiation potentiation potential of trocking Sb eq. MJ metals = Abiotic tic depletion for m³ eq. depr.	3,12E-01 otential, fraction tial, fraction tential, Accord 1,10E-01 opospheric 6,28E-03 3,41E+02 depletion perfossil resour	2,69E-01 ction of nutrient n of nutrients re umulated Excer 9,65E-02 ozone 6,22E-03 2,37E+02 otential for non urces potential	9,97E-04 s reaching fres aching marine edance 3,77E-04 1,92E-07 1,03E+00 -fossil resource	7,79E-05 hwater end compend compartmen 2,17E-05 7,68E-09 3,16E-02	3,93E-02 artment t 1,19E-02 6,32E-05 9,76E+01	1,27E-03 6,85E-07 5,40E+00	-1,62E-0 -2,82E-0 -4,77E-0

ABBG-00261-V01.01-EN

Common base of mandatory indicators

Inventory flows indicator - Resource use indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
PERE	MJ	5,32E+01	2,88E+01	1,51E-02	4,07E-03	2,43E+01	5,63E-02	-4,35E-02
PERM	MJ	7,73E-01	7,73E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-3,26E-01
PERT	MJ	5,39E+01	2,96E+01	1,51E-02	4,07E-03	2,43E+01	5,63E-02	-3,69E-01
PENRE	MJ	3,41E+02	2,37E+02	1,03E+00	3,16E-02	9,76E+01	5,40E+00	-4,76E-01
PENRM	MJ	8,80E-02	8,80E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	3,41E+02	2,37E+02	1,03E+00	3,16E-02	9,76E+01	5,40E+00	-4,76E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials

Inventory flows indicator – Indicators describing the use of secondary materials, water, and energy resources

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	2,07E-01	1,50E-01	1,32E-04	6,43E-05	5,55E-02	1,03E-03	-6,60E-04

SM = Use of secondary material

Inventory flows indicator - Waste category indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Hazardous waste disposed	kg	1,91E-01	5,32E-03	0,00E+00	0,00E+00	0,00E+00	1,86E-01	0,00E+00
Non- hazardous waste	kg	2,28E-01	1,23E-01	0,00E+00	8,73E-03	0,00E+00	9,62E-02	0,00E+00
Radioactive waste disposed	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00261-V01.01-EN	1	en	7/11
© Copyright 2022 ABB. All rights re	served.				

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total Use of renewable primary energy resources

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total Use of non-renewable primary energy resources

RSF = Use of renewable secondary fuels

NRSF = Use of non-renewable secondary fuels

FW = Use of net fresh water

Common base of mandatory indicators

Inventory flows indicator – Output flow indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Components for re- use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling	kg	8,14E-01	7,73E-01	0,00E+00	3,98E-02	0,00E+00	1,34E-03	0,00E+00
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Inventory flow indicator - other indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Biogenic carbon content of the product	kg of C	0,00E+00	-6,15E-03	0,00E+00	0,00E+00	0,00E+00	6,15E-03	0,00E+00
Biogenic carbon content of the associated packaging	kg of C	0,00E+00	-2,20E-02	0,00E+00	2,20E-02	0,00E+00	0,00E+00	0,00E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00261-V01.01-EN	1	en	8/11
© Copyright 2022 ABB. All rights res	served.				

Optional indicators

Environmental indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Total use of primary energy during the life cycle	MJ	3,95E+02	2,67E+02	1,04E+00	3,57E-02	1,22E+02	5,45E+00	-8,46E-01
Emissions of fine particles	incidence of diseases	1,09E-06	9,69E-07	4,17E-09	2,00E-10	9,87E-08	1,48E-08	-2,53E-09
lonizing radiation, human health	kBq U235 eq.	1,27E+00	7,65E-01	5,16E-04	4,78E-05	5,03E-01	1,71E-03	-1,47E-03
Ecotoxicity (fresh water)	CTUe	4,12E+02	3,76E+02	5,47E-01	9,58E-02	1,21E+01	2,30E+01	-3,52E-01
Human toxicity, car- cinogenic effects	CTUh	3,88E-08	3,56E-08	2,65E-11	4,83E-12	2,26E-09	8,99E-10	-6,60E-11
Human toxicity, non- carcinogenic effects	incidence of diseases	9,03E-07	7,91E-07	9,03E-10	2,03E-10	1,03E-07	7,57E-09	-5,54E-10
Impact related to land use/soil quality		1,35E+02	1,12E+02	4,38E-01	2,46E-02	2,14E+01	1,08E+00	-1,64E+00

Other indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Photochemical oxidation	kg C2H4 eq	1,54E-02	1,44E-02	6,14E-06	5,48E-07	9,02E-04	5,72E-05	-9,61E-06
Acidification	kg SO2 eq	1,41E-01	1,21E-01	1,36E-04	1,36E-05	1,82E-02	9,11E-04	-1,48E-04
Eutrophication	kg PO4 eq	2,13E-02	1,76E-02	2,30E-05	4,02E-06	3,60E-03	1,24E-04	-5,90E-05

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00261-V01.01-EN	1	en	9/11
© Copyright 2022 ABB. All rights re-	served.				

Environmental Impact Indicator Glossary

Impact indicators

Indicator	Description	Distri- bution
Global warming potential (GWP) - total	Indicator of potential global warming caused by emissions to air contributing to the greenhouse effect. The total global warming potential (GWP-total) is the sum of three subcategories of climate change. GWP-total = GWP-fossil + GWP-biogenic + GWP- land use and land use change	kg CO ₂ eq.
Ozone depletion (ODP)	Emissions to air that contribute to the destruction of the stratospheric ozone layer	kg CFC- 11 eq.
Acidification of soil and water (A)	Acidification of soils and water caused by the release of certain gases to the atmosphere, such as nitrogen oxides and sulphur oxides	H+ eq.
Eutrophication (E)	Indicator of the contribution to eutrophication of water by the enrichment of the aquatic ecosystem with nutritional elements, e.g. industrial or domestic effluents, agriculture, etc. This indicator is divided to three: freshwater, marine and terrestrial.	kg P eq., kg N eq., mole N eq.
Photochemical ozone creation (POCP)	Indicator of emissions of gases that affect the creation of photochemical ozone in the lower atmosphere (smog) because of the rays of the sun.	kg NMVOC eq.
Depletion of abiotic resources – elements (ADPe)	Indicator of the depletion of natural non-fossil resources	kg Sb eq.
Depletion of abiotic resources – fossil fuels (ADPf)	The use of non-renewable fossil resources in an unsustainable way (e.g. from material to waste)	MJ (lower heating value)
Water Deprivation potential (WDP)	Deprivation-weighted water consumption. Assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.	m³ eq. depr.

Resource use indicators

Indicator	Description	Distri- bution
Total use of primary energy	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) + Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	MJ (lower heating value)

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00261-V01.01-EN	1	en	10/11
© Copyright 2022 ABB. All rights re-	served.				

Registration number	: ABBG-00261-V01.01-EN	Drafting Rules: PCF	t-ed4-EN-2021 09 06
		Supplemented by: PSR	2-0005-ed3-EN-2023 06 06
Verifier accreditation	n number: <i>VH44</i>	Information and referenc documents:	e www.pep-ecopassport.org
Date of issue:	10/06/2024	Validity period: 5 years	
Independent verifica	ation of the declaration and data, in c	ompliance with ISO 14025: 2	2006
Internal: 〇	External:		
The PCR review was	conducted by a panel of experts chaire	ed by Julie Orgelet (DDemain	
·	ith XP C08-100-1:2016 and EN 50693:2 present PEP cannot be compared with		ogram.
Document in complia	ance with ISO 14025: 2006 "Environme	ental labels and declarations.	Type PORT®

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00261-V01.01-EN	1	en	11/11