Model Predictive Control for Flotation Plants
Content

- **Technology**
 - Model Predictive Control and its modalities
 - Implementation in cpmPlus Expert Optimizer

- **Economic Process Optimization in Minerals Beneficiation Plants**
 - Goals
 - Technology
 - Project Phases

- **Case Study: Boliden Garpenberg, Sweden**
 - Plant, Modeling, Results

- **Other Advanced Process Control applications**
 - Grinding

- **Conclusions**
Stabilize then optimize

Manual

Production Rate

Automatic using APC

Optimized Setpoint

Benefits due to Optimization

Optimize

Manual Setpoint

Stabilize

Time
Model Predictive Control (MPC)

- Main ingredients are
 - Plant model
 - Objective Function
- Model used to predict system behaviour some steps into the future
- Cost Function used to decide which is the best strategy
- Requires solution of optimization problem at every sampling time
- Cost function is normally a sum of linear and quadratic terms so as to guarantee convexity
1. Evaluate position (=measurement) and estimate system state
2. Predict sequence of future moves (mathematical algorithm, optimization) and select the best
3. Implement the first move (new actuator set-point)
4. Restart after the opponent moves (process reaction)

- Constraints are considered (allowed moves)
- A cost function drives the decision process (e.g. improve quality of the position)
Modelling for Model Predictive Control
First Principles and/or Black Box Models

- Models are not necessarily high fidelity models
 - Comprise only magnitudes relevant for the control tasks
 - Often contain information related to gains, time constants, and time delays
 - Must predict only relevant time horizon as given by process time constants
- Two modelling paradigms
 - “First principle models”: attempt to describe the relationships via equations based on process knowledge. Selected parameters are adapted online
 - Black Box models: models are generated by looking at plant data. Variables must undergo “excitation” for algorithms to work successfully
Expert Optimizer: ABB’s advanced process control platform

- Successor of “Linkman” (Fuzzy Logic), but enhanced with Neural Networks and MPC technology
- DCS independent
- More than 300 installations worldwide
- Global Fuels Conference Award for “most innovative technology for electrical energy savings”
Implementation in Expert Optimizer

- Signal processing
- Measurements
- Estimation of process state variables
 - (MHE, *moving horizon estimation*)
 - State estimates
- Computation of optimal set-points
 - (MPC, *model predictive control*)
 - Set-points
- Postprocessing of set-points

Done in Expert Optimizer

Sensors

Flotation process

ABB 800xA control platform

Actuators

OPC protocol for communication

Require solving an optimization problem
Expert Optimizer – Advanced Process Control Platform
Model Predictive Control in Expert Optimizer
First Principles and/or Black Box Models

- Supports both modelling approaches
 - Model building by connecting blocks from a standard library or importing custom made ones
 - Cost function also designed in this form
 - Nonlinear models also supported
- Infrastructure for Black Box identification
 - Environment for handling data import and data set manipulation
 - Subspace identification for model generation
 - Model export with subsequent import in runtime environment

Offline Real Time Environment
Content

- Technology
 - Model Predictive Control and its modalities
 - Implementation in cpmPlus Expert Optimizer
- Economic Process Optimization in Flotation Plants
 - Goals
 - Technology
 - Project Phases
- Case Study: Boliden Garpenberg, Sweden
 - Plant, Modeling, Results
- Other Advanced Process Control applications
 - Grinding
- Conclusions
Flotation: where are we and where do we want to go?

State of the art

- Manual control, intricate due to
 - dynamics (e.g. recirculating flows),
 - frequent feed variations (quantity and quality), and
 - operator shift changes
- No circuit-wide automatic control widely established

Objectives

- Maximization of plant output
- Observance of minimum concentrate grade
- Reduction of chemical reagent use
- Prevention of costly unplanned plant stops by respecting operating range of plant
Beneficiation Plant Project Phases

Feasibility Study
- Tech/Econ Feasibility Analysis
- Project Execution Plan
- Commercial and Technical Offer

Phase 1: Basic Automation Level
- Sensors and Actuators Assessment
- Loop Tuning and Monitoring

Phase 2: Circuit Level Control
- Strategy Configuration
- Commissioning

Phase 3: Flotation Optimization
- Civil Work
- Commissioning

Phase 4: Setpoint Optimization
- Strategy Configuration
- Commissioning
Expert Optimizer for Circuit Level Control

■ Objectives
 ■ Better control of the cell levels in the entire circuit

■ Technology
 ■ Adjusting the valves between cells, using measurements of the cells levels
 ■ Multivariable control problem, solved using MPC technology
 ■ Model considers coupling between cells and the effect of actions with the valves on the entire circuit

■ Benefits
 ■ More production
 ■ Better process stability
 ■ Quality as specified
Expert Optimizer for Flotation Circuit Control

- Objectives
 - Highest possible feed rate
 - Guarantee product quality spec.
 - Increase recovery
 - Reduce reagent usage
 - Prevent froth collapse or overfrothing

- Techniques
 - Model Predictive Control
 - Models
 - Froth Model
 - Slurry Model
 - Coupling between Cells

- Manipulated Variables
 - Reagents, Air Supply, Froth Depth
 - Cell Froth/Slurry Levels!
Next Step: Economic Process Optimization

\[J = Q_C \cdot F(x_C, x^{Fe}_C) \]

- What have we achieved so far?
 - MPC controls concentrate and tailings to desired set-points.
 - However, not obvious which set-points to use.

- Method to find best set-points to maximize the value of the production.
 - Assume it is possible to control the flotation process to desired set-points
 - The value of the production depends on the amount of produced mineral, the purity of it, and its market price.
 - Static model of the flotation process as constraint for the optimization
Content

- Technology
 - Model Predictive Control and its modalities
 - Implementation in cpmPlus Expert Optimizer

- Economic Process Optimization in Minerals Beneficiation Plants
 - Goals
 - Technology
 - Project Phases

- Case Study: Boliden Garpenberg, Sweden
 - Plant, Modeling, Results

- Other Advanced Process Control applications
 - Grinding

- Conclusions
Customer Case: cpmPlus Expert Optimizer in Flotation

- Customer – Boliden, Sweden
 - Optimisation of Floatation Cells in Zn
 - Aim – Achieve better recovery at given grade

- Approach
 - a) Model using historical data
 - b) Model derived from first principles

- Manipulated Variables
 - Cell level control
 - Air Supply
 - Froth Level
 - Reagents
Manipulated and measured variables of a circuit

Legend:
- air addition
- froth level change
- reagent addition
- X-ray analyzer
- volume flow meter

© ABB Group
September 2, 2009 | Slide 19
Controller Configuration in Expert Optimizer
Thin Client User Interface in cpmPlus Expert Optimizer
Grey/Black Box Modeling approach

- **Experimental phase:**
 - **What is done:**
 - Plant actuators are moved in controlled manner
 - Reaction of process is recorded
 - **Objective**
 - Excite relevant process variables so that process dynamic becomes visible
 - **Constraints**
 - Plant conditions, cost and safety

- **Modeling phase:**
 - Selection of appropriate slices of data
 - Model generation
 - Delicate iterative process
Linearised first-principle approach

The process model is

- Mechanistic ("first principles")
 - Mass and volume balances
 - Pulp-to-froth transfer model
 - Variables: volumes and volume flows of relevant fractions
- Linearized about an operating point
- Generic and modular (component-wise):
 - flotation cell, mixing tank, …
 - analyzers, volume flow meters, …
→ Objectives:
 → maintainability, reuse
Black Box versus First Principles
Steady State Model for Setpoint Optimization

\[J = Q_C \cdot F(x_C, x_C^{Fe}) \]

- Value of the production depends on the amount of produced mineral, the purity of it, and its market price.
- Value function reflects the plant management objectives
- Static model of the flotation process as constraint for the optimization
cpmPlus Expert Optimizer delivers higher yields

- Black Box approach currently more successful
- Several months on-line testing and comparison with existing manual strategy
 - One to two days on, then one to two days off, etc.

- Value
 - 1% Higher Yield
 - More consistent Zn concentrate
 - Improvement is at least one percentage unit
 - Millions worth
Content

- Technology
 - Model Predictive Control and its modalities
 - Implementation in cpmPlus Expert Optimizer

- Economic Process Optimization in Minerals Beneficiation Plants
 - Goals
 - Technology
 - Project Phases

- Case Study: Boliden Garpenberg, Sweden
 - Plant, Modeling, Results

- Other Advanced Process Control applications
 - Grinding

- Conclusions
Grinding Circuit Optimization
Grinding Plant Optimization

- Customer Value
 - Better grinding efficiency
 - Protect mill from ball impacts and thus mechanical damage

- Project Data
 - Execution in 3 phases
 - Base Loops
 - Individual Mill Stabilization
 - Coordination thereof via setpoint optimization
 - Total duration 6 months.

- Technology
 - Modular approach
 - Simultaneous and timely manipulation of
 - Ore Feed Rate
 - Mill Speed
 - Slurry Density
 - to achieve
 - Power and Bearing Pressure inside targets
 - Reduced quality variability
Grinding Plant Project Phases

Feasibility Study
- Tech/Econ Feasibility Analysis
- Project Execution Plan
- Commercial and Technical Offer

Phase 1: Basic Automation Level
- Sensors and Actuators Assessment
- Loop Tuning and Monitoring

Phase 2: SAG Mill Control
- Strategy Configuration
- Commissioning

Phase 3: Ball Mill(s) Control
- Strategy Configuration
- Commissioning

Phase 4: Grinding Circuit Optimization
- Strategy Configuration
- Commissioning
Customer Value with cpmPlus Expert Optimizer

- Value we deliver to customer
 - Increased Output 3% to 5%
 - Reduced Fuel Consumption 3% to 5%
 - Reduced Emission Levels 3% to 5%
 - Reduced Electricity Consumption 3% to 5%
 - Reduced Quality Variability 10% to 20%
 - Reduced Refractory Consumption 10% to 20%

- Customers
 - Oil & Gas
 - Pulp & Paper
 - Minerals, Metals
 - Industrial Power