SPAM 150 C Series ### **Motor Protection Relay** #### Versatile ...multi-function... The microprocessor-based SPAM 150 C, Motor Protection Relay, is a perfect solution for AC motor drives. It provides complete protection for large- and medium-sized three-phase motors in all conventional contactor or circuit-breaker controlled motor drives. #### High-quality ...Motor Protection Relay... This relay is also used in applications (such as feeders) requiring single-, two- or three-phase overcurrent and overload protection and non-directional earth-fault protection. The SPAM 150 C can provide AC motor protection with enduring quality and proven reliability in a large number of applications. #### Reliable ...through the years... With numerous years of service in different applications world-wide, the SPAM 150 C serves you with a proven track record of reliability. # The Relay with communication skills for in-depth data collection and analysis The SPAM 150 C also features extensive data communication capabilities based on a fibre-optic serial bus between the motor protection and substation control system. As a result, this relay can collect data and record fault information, as well as provide in-depth post-fault analysis and online supervision of the motor drive. # The legendary SPACOM family: More than 300,000 relays in use world-wide The SPAM 150 Series relays belong to the SPACOM product family – already a legend in its field. With these products, ABB Substation Automation Oy was the first in the world to introduce a substation automation concept based on a genuine communicating microprocessor-controlled relay solution. Today, these products still keep pace with the same enduring protection power. #### SPAM 150 C Series Technology summary #### Integrated solution thermal overload protection, monitoring all the three phases and start-up stall protection. #### **High-set overcurrent protection** operating instantaneously or with definite time characteristic. #### **Recorded memory** for measured fault parameters. #### Freely configurable output relays for tripping and signalling. #### **Direct numerical readout** for a full set of measured and recorded values, indications and status information. #### **Data communication capabilities** Serial interface with digital display to connect the relay with the data collection, recording and analysis functions of local or remote control systems or other host systems. #### **High immunity** to electrical and electromagnetic interference and rugged aluminium case to class IP54. #### Improved reliability and availability supported by built-in self-supervision system with auto-diagnosis. CE marking according to the EC directive for EMC. | | | | | SPCJ 4D34 | | | | |-----------|---|--|---|--|--|--|--| | REGISTERS | | | | | OP | | | | 0 | 0 | 0 | 0 | | 0 | | | | 1 | 111 | /1n | | | 1 | 0 | | | | | | | | 2 | 0 | | | 3 | 1 L3 | /1n | | | 3 | 0 | | | 4 | 101 | %1 | n] | | 4 | 1: | | | 5 | Δ1 | [% | L | | 5 | Δ | | | 6 | 12t | [% | ols2 | ts] | 6 | 1 | | | 7 | θ_{m} | [% |] | | 7 | 1 | | | 8 | 9[| %] | | | 8 | 1 | | | 9 | t _i [| min | 1 | | 9 | E | | | | 0
1
2
3
4
5
6
7
8 | 0 0
1 I _{L1}
2 I _{L2}
3 I _{L3}
4 I _O [
5 ΔI
7 θ _m
8 θ[| 0 0 0 0 1 I _{L1} /I _{II} 2 I _{L2} /I _{II} 3 I _{L3} /I _{II} 4 I ₀ [% / 5 Δ/ [% / 6 / ² t [% / 7 θ _m [% / 8 θ[%] | 0 0 0 0 0
1 I _{L1} /I _n
2 I _{L2} /I _n
3 I _{L3} /I _n
4 I ₀ [%I _n]
5 ΔI [%I _L]
6 I ² t [%I _S ²
7 θ _m [%] | REGISTERS 0 0 0 0 1 /L1//n 2 /L2//n 3 /L3//n 4 /o[%/n] 5 Δ/ [%/L] 6 /²t [%/s²ts] 7 θm[%] 8 θ[%] | REGISTERS 0 0 0 0 0 1 I _{L1} /I _n 1 2 I _{L2} /I _n 2 3 I _{L3} /I _n 3 4 I ₀ [%I _n] 4 5 ΔI [%I _L] 5 6 I ² t [%I _S ² ts] 6 7 θ _m [%] 7 8 θ[%] 8 | | #### **ABB Oy, Distribution Automation** P.O. Box 699 FIN-65101 VAASA Phone: +358 10 22 11 Fax: +358 10 22 41094 www.abb.com/substationautomation #### **ABB Limited, Distribution Automation** Maneja, Vadodara - 390013, India Phone: +91 265 260 4386 Fax: +91 265 263 8922 www.abb.com/substationautomation