S200 I/O System Units

S200 I/O is a range of cost effective I/O units which are bus compatible with S200L I/O and can be mixed with them in any order on the same DIN rail.

The S200 I/O System features a number of interface units for various process applications. The units in the I/O system are intended for use in industrial environment and they fulfil the EMC directive 89/336/EEC. The I/O units may be mounted centrally at the Controller or remotely.
The inputs and outputs are filtered and galvanically isolated by optocouplers.
Configuration of the I/O units' functions and measuring ranges is performed using the system software.

The S200 I/O System features:

- Replacement under system power
- CE and UL approvement
- Software configurable function
- Mechanical coding for safe replacement
- Safety function on outputs in remote configuration
- Variety of termination options
- The same I/O units in central and remote configurations
- Compatible with S200L I/O

I/O Units

The in/outputs are filtered and galvanically isolated by optocouplers. LEDs are located on the front.
It is possible under system power to remove/ insert the units. The process is connected to the units via the terminal base.

200-IB16

I/O unit for 16 digital input signals. The status of each input signal is indicated by a yellow LED.
Each signal is isolated from the logic circuits by an optocoupler and filtered with a low-pass filter. The inputs share a common ground connection.

The input signals are sampled at intervals determined by a filter time. The signal status is changed only if two consecutive samples are the same. The filter time is set with the programming software.
200-IB16 contains a 16 -bit counter.

200-OB16, 200-OB16P

I/O units for 16 digital output signals. The outputs of 200-OB16P are short-circuit proof. Up to four outputs can be connected in parallel (the total load must, however, not exceed 1.8 A).
The status of each output signal is indicated by a yellow LED if +24 V DC is supplied.
The 16 outputs share a common ground connection.

200-IB10xOB6

I/O unit for ten digital input and six digital output signals. The status of each signal is indicated by a yellow LED.
The outputs can deliver up to 2 A to the I/O system.
Each signal is isolated from the logic circuits by an optocoupler and filtered with a low-pass filter. The inputs have a programmable filter time.

200-IB32

I/O unit for 32 digital input signals. The status of each input signal is indicated by a yellow LED.
The signals are isolated from the logic circuits in two groups by optocouplers and filtered with a low-pass filter. Each of the two input groups share common power and ground connections.
The input signals are sampled at intervals determined by a filter time common for all 31 input signals. The filter time is set with the programming software.

200-OB32P

I/O units for 32 digital protected output signals. The outputs are short-circuit proof and are isolated from the logic circuits in two groups by optocouplers.
The status of each output signal is indicated by a yellow LED if +24 V DC is supplied.
Each of the two output groups share common power and ground connections.

200-IB16xOB16P

I/O unit for 16 digital input signals and 16 digital protected output signals. The status of each signal is indicated by a yellow LED.

The outputs can deliver up to 0.5 A to the I/O system.
Input channels are isolated from output channels. The inputs have a programmable filter time.

200-IE8

I/O unit for eight analog input signals. The unit has 12-bit resolution and each of the inputs can be either a voltage ($0-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC}$) or a current $(0-20 \mathrm{~mA}, 4-20 \mathrm{~mA})$ input. Selection of voltage or current is made both by the programming software and by the input on the terminal base unit.

One green LED indicates power on/off.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers and the eight inputs are single ended.

An additional power supply is required.

200-OE4

I/O unit for four analog output signals. The unit has 12-bit resolution and each of the outputs can be either a voltage ($0-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC})$ or a current ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$) output. Selection of voltage or current is made both by the programming software and by the output on the terminal base unit.

One green LED indicates power on/off.
The outputs are, as a group of four, galvanically isolated from the system by optocouplers.

An additional power supply is required.

200-IE4xOE2

I/O unit for four analog input and two analog output signals.
Selection of voltage or current is made both by the programming software and directly on the terminal base unit.

One green LED indicates power on/off.
The inputs and the outputs are, as a group, galvanically isolated from the system by optocouplers.
An additional power supply is required.

200-IF4I

I/O unit for four analog input signals. The unit has up to 16-bit resolution and each of the inputs can be either a voltage ($0-5 \mathrm{~V} \mathrm{DC}, \pm 5 \mathrm{~V}$ DC / $0-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC})$ or a current ($0-20 \mathrm{~mA}$, 4-20 mA) input. Selection of voltage or current is made both by the programming software and by the input on the terminal base unit.
One bi-colored LED indicates function status.
The inputs are individually galvanically isolated from the serial bus by optocouplers.
An additional power supply for the analog port is required.

I/O unit for four analog output signals. The unit has a resolution of 15 bits plus sign, and each of the outputs can be either a voltage ($0-5 \mathrm{VDC}$, $\pm 5 \mathrm{~V} \mathrm{DC} / 0-10 \mathrm{~V}$ DC, $\pm 10 \mathrm{~V}$ DC) or a current ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$) output. Selection of voltage or current is made both by the programming software and by the output on the terminal base unit.
One bi-colored LED indicates function status.
The outputs are individually galvanically isolated from the system by optocouplers.
An additional power supply for the analog port is required.

200-IP2

I/O unit with two pulse transmitter interfaces, each with four optocoupled inputs. The maximum pulse frequency is 100 kHz . The I/O unit is configured using the control system program.
200-IP2 can be adapted for a wide range of applications, for example, for counting pulses from pulse transmitters or incremental encoders with one or two pulse trains. Quantity counting, positioning and speed calculation are examples of other applications.
200-IP2 has two 16-bit up/down counters, which are individually programmable. The number of edges to be counted in a pulse train can be specified to $\mathrm{x} 1, \mathrm{x} 2$ or x 4 .
Complementary or non-complementary pulse transmitters can be connected.
The status of each input signal is indicated by a yellow LED. One bi-colored LED indicates function status.

200-IP4

I/O unit with four pulse transmitter interfaces, each with two optocoupled inputs. The maximum pulse frequency is 100 kHz . The I/O unit is configured using the control system program.
200-IP4 can be adapted for a wide range of applications, for example, for counting pulses from flow and density meters, quantity counting and speed calculation.
200-IP4 has two 16-bit counters per channel. Each can be individually configured for either period time measurement, using one 16 -bit counter and accumulating pulse counting using the other 16-bit counter or period time measurement using a 32 -bit counter.
An internal clock (1 or 10 MHz) is used for the period time measurement.
The status of each input signal is indicated by a yellow LED. One bi-colored LED indicates function status.

200-IT8

I/O unit for eight thermocouple input signals with programmable filters and 16 -bit resolution. One bi-colored LED indicates function status.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers. Each channel can be turned off to improve system throughput.
Terminal base unit 200-TB2 or TB3 can be used with the thermocouple/ mV unit in millivolt mode only. To also obtain ability to connect the two cold junction sensors, terminal base unit 200-TB3T must be used.
An additional power supply is required.

I/O unit for eight three-wire RTD input signals with programmable filters and 16-bit resolution. A number of sensor types are supported. One bicolored LED indicates function status.

The inputs are, as a group of eight, galvanically isolated from the system by optocouplers. Each channel can be turned off to improve system throughput.

An additional power supply is required.

200-IR8R

I/O unit for eight four-wire RTD input signals. The inputs have programmable filters and 16-bit resolution. One sensor type is supported.
The status of each input signal is indicated by a yellow LED. A green LED indicates function status.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers. Each channel can be turned off to improve system throughput.

An additional power supply is required.

200-IA8, 200-IM8

I/O unit for eight digital 120 V AC (200-IA8) or 230 V AC (200-IM8) input signals. The status of each input signal is indicated by a yellow LED. Each signal is filtered with a low-pass filter.

The input signals are sampled at intervals determined by the filter time. The signal status is changed only if two consecutive samples are the same. The filter time is set with the programming software.

The eight inputs share a common voltage connection.

200-OA8, 200-OM8

I/O unit for eight digital 120 V AC (200-OA8) or 230 V AC (200-OM8) output signals. The status of each output signal is indicated by a yellow LED.
Output indicators will not work unless $120 / 230 \mathrm{~V} \mathrm{AC}$ is supplied.
The eight outputs share a common 0 VAC connection.

200-OW8

I/O unit for eight relay output signals. The status of each output signal is indicated by a yellow LED.
If the voltage exceeds 132 V , terminal base unit $200-\mathrm{TBN}$ or $200-\mathrm{TBNF}$ must be used.
An additional power supply is required.

200-OB8EP

I/O unit for eight short-circuit proof output signals. The unit is intended for detection of short-circuit condition in its output circuit or low impedance loads causing excessive current drain. Each of the eight output channels has a current sensing circuit. The unit is designed to allow up to 2.0 A current per channel.
The status of each output signal is indicated by a yellow LED. Diagnostics are carried out for each output and a fault is indicated by a red LED.

By pressing a manual reset button, all output faults are reset simultaneously. Diagnostics and reset functions are fully accessible from the application.
The eight outputs share a common ground connection.

Technical Data

General specifications	
Power supply	24 V DC (19.2-30 V DC) incl. 5 \% ripple acc. to EN 61131-2 standard i.e. +20 \%, -15% and max. 5 \% ripple
Temperature (unless stated otherwise)	
Operating	$\pm 0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-operating	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Protection rating	IP20
Environment	Industrial areas
Approvals (when product or packaging is marked)	CE marked and meets EMC directive 89/336/EEC according to EN 50081-2 and EN 50082-2. Low Voltage Directive 73/23/EEC with suppl. 93/68/EEC acc. to EN 61131-2 (only appl. for units connected to 501000 V AC and/or 75-1500 V DC). UL listed according to UL 508. CSA certified; class 1 div. 2 hazardous locations.
Package volume	
1 unit 10 units	$\begin{aligned} & \text { H } 133 \times \text { W } 133 \times \text { D } 93 \mathrm{~mm}\left(1.65 \mathrm{dm}^{3}\right) \\ & \text { H } 278 \times \text { W } 470 \times \text { D } 150 \mathrm{~mm}\left(19.60 \mathrm{dm}^{3}\right) \end{aligned}$
Dimensions	H $46 \times \mathrm{W} 94 \times \mathrm{D} 53 \mathrm{~mm}$
Weight (unless stated otherwise)	0.085 kg excl. package 0.180 kg incl. package
200-IB16	
Number of inputs	16 positive logic
Galvanic isolation	Yes (via optocouplers)
Status indicators	16 yellow LEDs for input indications
ON-state input voltage	10.0 V DC min., 24 V DC nominal, 31.2 V DC max.
ON-state input current	2.0 mA min., 8.0 mA nominal at 24 V DC, 12.0 mA max.
OFF-state input voltage	5.0 V DC max.
OFF-state input current	Current must be $\leq 1.5 \mathrm{~mA}$ to be defined as being in OFF state
Filter time	Software programmable
Filter	First-order, low-pass filter with time constant $5 \mu \mathrm{~s}$
Input impedance	$4.6 \mathrm{k} \Omega$ max.
Isolation voltage	100% tested at 850 V DC for 1 s between user and system. No isolation between individual channels
Internal current consumption (from serial bus)	30 mA max.
Power dissipation	6.1 W at 31.2 V DC max.
Unit identity	0281 (hex.)
Counter	5 bits on channel 15.500 Hz max. Min. pulse width 1 ms
Backplane key code	2
Humidity	Max. 5-95 \%, non-condensing
Order code	200-IB16
200-OB16, 200-OB16P	
Number of outputs	16 positive logic
Galvanic isolation	Yes (via optocouplers)
Status indicators	16 yellow LEDs for output indications
ON-state voltage range	10 V DC min., 24 V DC nominal, 31.2 V DC max.
ON-state voltage drop	0.5 V DC max.
Output current rating	8 A (16 outputs at 0.5 A)
ON-state current	1.0 mA min. per channel 450 mA max. per channel when in parallel 500 mA max. per channel

OFF-state voltage
Surge current
200-OB16
200-OB16P
OFF-state leakage
Isolation voltage

Output signal delay
OFF to ON
ON to OFF
ON to OFF
Internal current consumption (from serial bus)
200-OB16
200-OB16P
Power dissipation
Unit identity
200-OB16
200-OB16P
Backplane key code
External DC power
Supply voltage
Supply current
Humidity
Fuse
200-OB16
200-OB16P
Order codes

80 mA max.
31.2 V DC max.

2 A for 50 ms , repeatable every 2 s
1.5 A for 50 ms , repeatable every 2 s
0.5 mA max.

100 \% tested at 850 V DC for 1 s between plant and system. No isolation between individual channels
0.5 ms max.
1.0 ms max.

60 mA max.
5.3 W at 31.2 V DC max.

0191 (hex.)
0108 (hex.)
2
24 V DC nom. (19.2-31.2 V DC)
49 mA at 24 V DC ($38 \mathrm{~mA}-65 \mathrm{~mA}$)
Max. 5-95 \%, non-condensing
800 mA (when used in TBNF)
Outputs are electronically protected
200-OB16
200-OB16P

200-IB10xOB6

General specifications:

Galvanic isolation	Yes (via optocouplers)
Status indicators	16 yellow LEDs for in/output indications
Isolation voltage	100% tested at 2100 V DC for 1 s between plant and system
Internal current consumption (from the serial bus)	35 mA max.
Power dissipation	4.0 W at $31.2 \mathrm{~V} \mathrm{DC} \mathrm{max}$.
Unit identity	0100 (hex.)
Backplane key code	2
External DC Power	$24 \mathrm{~V} \mathrm{DC} \mathrm{nom}. \mathrm{(19.2-31.2} \mathrm{~V} \mathrm{DC)}$
Supply voltage Supply current	70 mA at 24 V DC (not incl. outputs)
Humidity	Max. 5-95 \%, non-condensing
Order code	200-IB10xOB6

Input specifications:

Number of inputs $\quad 10$ positive logic, non-isolated
ON-state input voltage 10 V DC min., 24 V DC nominal, 31.2 V DC max.

ON-state input current $\quad 2.0 \mathrm{~mA}$ min., 8.0 mA nominal, 11.0 mA max.
OFF-state input voltage
OFF-state input
current
Input impedance
Filter time
Filter

5 V DC max.
Current $\leq 1.5 \mathrm{~mA}$ to be defined as being in OFF state
$4.4 \mathrm{k} \Omega$ max.
Software programmable
First-order, low-pass filter with time constant 100μ (i.e. time to reach 63% of FS)

Output specifications:

Number of outputs 6 positive logic
ON-state voltage range 10 V DC min., 24 V DC nominal, 31.2 V DC max.

Output current rating
ON-state current
OFF-state voltage
Surge current
OFF-state leakage
ON-state voltage drop

2 A per output, 10 A per unit
1.0 mA per output min., 2.0 A per output max., 10 A per unit max.
31.2 V DC max.

4 A for 50 ms , repeatable every 2 s
0.5 mA max.
$2 \mathrm{~V} D \mathrm{at} 2 \mathrm{~A}, 1 \mathrm{~V} \mathrm{DC}$ at 1 A

200-IB32

Number of inputs
Galvanic isolation
Status indicators
ON-state input voltage
ON-state input current
OFF-state input
voltage
OFF-state input
current
Filter time
Input impedance
Isolation voltage

Internal current con-
sumption (from serial
bus)
Power dissipation
Unit identity
Backplane key code
Humidity
Order code

32 inputs
Yes, in two groups via optocouplers
32 yellow LEDs for input indications
19.2 V DC min, 24 V DC nominal, 31.2 V DC max.
2.0 mA min., 4.1 mA nominal at 24 V DC, 6.0 mA max.
5.0 V DC max.

Current must be $\leq 1.5 \mathrm{~mA}$ to be defined as being in OFF state
$0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}$,
$16 \mathrm{~ms}, 32 \mathrm{~ms}$, software programmable

$6.0 \mathrm{k} \Omega$ max.

1250 V AC for inputs to backplane;
100 \% tested at 2121 V DC for 1 s between user and system, no isolation between individual channels

35 mA max.
6.0 W max at 31.2 V DC

0211 (hex.)
2
5-95 \%, non-condensing
200-IB32

200-OB32P
Number of outputs
Galvanic isolation
Status indicators
ON-state voltage range
ON-state voltage drop
Output current rating
ON-state current

OFF-state voltage
Surge current
OFF-state leakage
Isolation voltage

Output signal delay
OFF to ON
ON to OFF
Internal current
consumption (from serial bus)
Power dissipation Unit identity
Backplane key code

32 positive logic
Yes, in two groups via optocouplers 32 yellow LEDs for output indications 10 V DC min., 24 V DC nominal, 31.2 V DC max.
0.5 V DC max.

8 A (16 outputs at 0.5 A)
1.0 mA min. and 500 mA max. per channel
14 A max. per module (6 A total for channels 0-15; 8 A total for channels 16-31)
31.2 V DC max.

2 A for 50 ms , repeatable every 2 s 0.5 mA max.

1250 V AC for outputs to backplane;
100 \% tested at 2121 V DC for 1 s between user and system, no isolation between individual channels
0.5 ms max.
1.0 ms max.

80 mA max.
5.3 W max.at 31.2 V DC

0001 (hex.)

External DC power

Supply voltage
Supply current
Humidity
Fuse
Order code

24 V DC nom. (19.2-31.2 V DC) 49 mA at 24 V DC ($38 \mathrm{~mA}-65 \mathrm{~mA}$) 5-95 \%, non-condensing
Outputs are electronically protected 200-OB32P

200-IB16xOB16P

General specifications:

Galvanic isolation	Input channels are isolated from output channels
Status indicators	16 yellow LEDs for input indications, and 16 for output indications
Isolation voltage	1250 V AC for inputs or outputs to back- plane and between input and output channels 100% tested at 2121 V DC for 1 s between user and system, no isolation between individual channels

Internal current
consumption (from the 100 mA max.
serial bus)
Power dissipation
Unit identity
7.0 W max. at 31.2 V DC

011C (hex.)
Backplane key code
2
External DC Power
Supply voltage
Supply current
Humidity
Order code
24 V DC nom. (19.2-31.2 V DC)
28 mA at 24 V DC (not incl. outputs)
5-95 \%, non-condensing
200-IB16xOB16P
Input specifications:
Number of inputs 16 non-isolated
ON-state input voltage 10 V DC min., 24 V DC nominal,
31.2 V DC max.

ON-state input current $\quad 2.0 \mathrm{~mA}$ min., 8.8 mA nominal, 12.1 mA max.
OFF-state input
voltage
OFF-state input current
Input impedance
Filter time
5 V DC max.
Current $\leq 1.5 \mathrm{~mA}$ to be defined as being in OFF state

$2.5 \mathrm{k} \Omega$ max.

$0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}$,
$16 \mathrm{~ms}, 32 \mathrm{~ms}$, software programmable

Output specifications:

Number of outputs 16 non-isolated, positive logic
ON-state voltage range $10 \mathrm{~V} D \mathrm{D}$ min., 24 V DC nominal,
31.2 V DC max.

Output current rating
ON-state current
OFF-state voltage
Surge current
OFF-state leakage
ON-state voltage drop
Output signal delay
OFF to ON
0.5 A per output, 8 A per unit
1.0 mA min. and 0.5 A max. per channel;

8 A max. per module
31.2 V DC max.
1.5 A for 50 ms , repeatable every 2 s
0.5 mA max.

Max. 0.5 V DC at 1 A
0.5 ms max.
1.0 ms max.

200-IP2, 200-IP4

Number of inputs

200-IP2
200-IP4
Counting frequency

2 pulse counter interfaces, each with 4 inputs
4 frequency counter interfaces, each with 2 inputs
Max. 100 kHz . Each signal condition must be stable for at least 2μ s to be recognized by the counter logic

200-IP4 only	Min. 15.3 Hz for a 16 -bits time period measurement and internal clock = 1 MHz . Only one period can be measured Min. 153 Hz for int. clock $=10 \mathrm{MHz}$
Galvanic isolation	Yes (via optocouplers)
Status indicators	
200-IP2	2×6 yellow LEDs for I/O status 1 red/green LED for OK status
200-IP4	4×2 yellow LEDs for I/O status 4×2 yellow LEDs for selected measurement function 1 red/green LED for OK status
Input range (2×4 input signals)	
Input ON (active)	$\begin{aligned} & \text { Max. +26.4 V DC, (} 24 \mathrm{~V} \text { DC +10 \%). } \\ & \text { Min. }+6 \mathrm{~V} \text { DC } \end{aligned}$
Input OFF (inactive)	$\begin{aligned} & \text { Max. }+3.0 \mathrm{~V} \text { DC } \\ & \text { Min. }-26.4 \mathrm{~V} \text { DC } \end{aligned}$
Input current	Typ. 3 mA at 6 V DC Typ. 8 mA at 12 V DC Typ. 15 mA at 24 V DC
Voltage range external power supply	12-24 V DC ± 10 \%
Current consumptionexternal power supply	150 mA at 12 V DC 75 mA at 24 V DC
Isolation voltage	500 V DC
Internal current consumption (from serial bus)	5 mA
Power dissipation	Max. 5 W (at 24 V input voltage at all inputs)
Unit identity	
200-IP2	1800 (hex)
200-IP4	1A00 (hex)
Backplane key code	1
Temperature	
Operating	$+5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-operating	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity	5-95\%, non-condensing
Weight	0.12 kg excl. package 0.20 kg incl. package
Order codes	$\begin{aligned} & 200-I P 2 \\ & 200-I P 4 \end{aligned}$
200-IE8	
Number of inputs	8 single-ended
Galvanic isolation	Yes (via optocouplers)
Status indicator	One green LED for Power
Resolution	12-bit
Input current range	4-20 mA, 0-20 mA
Input voltage range	2-10 V DC, $\pm 10 \mathrm{~V}$ DC, $0-10 \mathrm{~V}$ DC
Input resistance	
Voltage	$200 \mathrm{k} \Omega$
Current	238 ת
Filter	First-order, low-pass filter with time constant 100 ms (i.e. time to reach 63% of FS)
Non-linearity	
Voltage	0.05 \% max.
Current	0.10 \% max.
Accuracy	
Voltage terminal	$\pm 0.2 \%$ FS at $25^{\circ} \mathrm{C}$
Current terminal	$\pm 0.2 \%$ FS at $25^{\circ} \mathrm{C}$
Accuracy drift with temperature	
Voltage terminal	± 0.0043 \% FS/ ${ }^{\circ} \mathrm{C}$
Current terminal	$\pm 0.0041 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Repeatability	$\pm 0.05 \%$ of FS
Overload (without damage)	
Voltage	30 V DC continuously
Current	32 mA continuously, one channel at a time max.

Isolation voltage	Type-test voltage: 850 V DC for 1 s between user and system. No isolation between individual channels
Internal current consumption (from serial bus)	20 mA max.
Power dissipation Unit identity	3 W at 31.2 V DC max.
Backplane key code	1924 (hex.)
External DC Power	3
Supply voltage Supply current	$24 \mathrm{~V} \mathrm{DC} \mathrm{nom}. \mathrm{(19.2-31.2} \mathrm{~V} \mathrm{DC)}$
Humidity	60 mA at 24 V DC (typically)
Operating Non-operating Order code	Non-condensing Max. 5-95 \%
	Max. 5-80 \% $200-I E 8$

200-OE4	
Number of outputs	4
Galvanic isolation	Yes (via optocouplers)
Status indicator	One green LED for Power Resolution
Output voltage range Output current range	$2-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC}, 0-10 \mathrm{~V} \mathrm{DC}$
Time to reach 63% of	$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$
FS (first-order, low-pass filter time	
constant)	

200-IE4xOE2

General specifications:

Number of inputs
Number of outputs
Galvanic isolation
Status indicator Resolution Isolation Voltage

4 single-ended
2 single-ended
Yes (via optocouplers)
One green LED for Power 12-bits
Type-test voltage: 850 V DC for 1 s between user and system. No isolation between individual channels

Internal current consumption (from serial bus)
Power dissipation
Unit identity
Backplane key code

External DC Power

Supply voltage
Supply current
Humidity
Operating
Non-operating
Order code
$20 \mathrm{~mA} \max$
4.0 W at 31.2 V DC max. 1526 (hex.)

5

24 V DC nom. (19.2-31.2 V DC)
70 mA at 24 V DC (not incl. outputs)
Non-condensing
Max. 5-95 \%
Max. 5-80 \%
200-IE4xOE2

Input specifications:

Number of inputs
Input voltage range
Input current range
Input resistance
Voltage
Current
Filter

Accuracy

Voltage terminal	$\pm 0.3 \%$ FS at $25^{\circ} \mathrm{C}$
Current terminal	$\pm 0.3 \% \mathrm{FS}$ at $25^{\circ} \mathrm{C}$

Accuracy drift with temperature

Voltage terminal
 $\pm 0.0045 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
 Current terminal
 $\pm 0.0045 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$

Overload without damage

Voltage
Current
30 V DC continuously
32 mA continuously, one channel at a time max.

Output specifications:

Number of outputs 2 single-ended, non-isolated
Output current range
$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$
Output voltage range
2-10 V DC, ± 10 V DC, 0-10 V DC
Time to reach 63 \% of FS
Current load on volt-
age output
24 ms (first-order, low-pass filter time constant)

3 mA max.
Resistive load on mA
output
$15-750 \Omega$
Non-linearity

Current	0.1%
Voltage	0.1%
Accuracy	$\pm 0.14 \%$ FS at $25^{\circ} \mathrm{C}$
Voltage terminal	$\pm 0.43 \%$ FS at $25^{\circ} \mathrm{C}$

Accuracy drift with temperature

Voltage terminal	$\pm 0.005 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Current terminal	$\pm 0.007 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$

200-IF4I	
Number of inputs	4
Galvanic isolation	Yes (via optocouplers)
Status indicator	Bi -color (green/red) LED for OK
Resolution	16 bits unipolar, 15 bits plus sign bipolar
Input current range	$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$
Input voltage range	$0-5 \mathrm{~V} \mathrm{DC}, \pm 5 \mathrm{~V} \mathrm{DC}$,
	$0-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC}$
Input resistance	$>10 \mathrm{M} \Omega$
Voltage	$<100 \Omega$
Current	First-order, low-pass filter with time con- stant 100 ms, 500 ms or 1000 ms (i.e. time to reach 63% of FS), or no low- pass filter function

Accuracy

Voltage terminal
Current terminal

Accuracy drift with temperature

Voltage terminal
$\pm 0.0028 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Current terminal $\quad \pm 0.0038 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$

Overload (without damage)

Voltage

Isolation voltage

Internal current consumption (from serial bus)
Power dissipation
Unit identity Backplane key code
External DC Power
Supply voltage
Supply current
Humidity
Operating
Non-operating
Order code

Including offset, gain, non-linearity and repeatability errors
$\pm 0.1 \%$ FS at $25^{\circ} \mathrm{C}$
$\pm 0.1 \%$ FS at $25^{\circ} \mathrm{C}$

30 V DC continuously
32 mA continuously, one channel at a time max.
Factory test voltage: 2550 V DC for 1 s between channel to channel, channel to user power, channel to system, or user power to system.

50 mA max
2 W at 31.2 V DC max.
1720 (hex.)
3
24 V DC nom. (19.2-31.2 V DC)
80 mA at 24 V DC (typ.)
Non-condensing
Max. 5-95 \%
Max. 5-80 \%
200-IF4I

200-OF4I	
Number of outputs	4
Galvanic isolation	Yes (via optocouplers)
Status indicator	Bi -color (green/red) LED for OK
Resolution	15 bits plus sign
Output voltage range	$\begin{aligned} & 0-5 \vee \mathrm{DC}, \pm 5 \mathrm{~V} \text { DC, } \\ & 0-10 \mathrm{VCC}, \pm 10 \mathrm{~V} \text { DC } \end{aligned}$
Output current range	4-20 mA, 0-20 mA
Filter	Step response to 63% of $\mathrm{FS}<25 \mu \mathrm{~s}$
Current load on voltage output	3 mA max.
Resistive load on mA output	0-750 Ω
Accuracy	Including offset, gain, non-linearity and repeatability errors
Voltage terminal	$\pm 0.1 \%$ FS at $25{ }^{\circ} \mathrm{C}$
Current terminal	$\pm 0.1 \%$ FS at $25^{\circ} \mathrm{C}$

Accuracy drift with temperature

Voltage terminal
Current terminal
Isolation Voltage

Internal current

 consumption (from serial bus)Power dissipation
Unit identity
Backplane key code
External DC Power
Supply voltage
Supply current
Humidity Non-condensing
Operating
Non-operating
Order code
$\pm 0.0012 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
$\pm 0.0025 \%$ FS $/{ }^{\circ} \mathrm{C}$
Factory test voltage: 2550 V DC for 1 s between channel to channel, channel to user power, channel to system or user power to system.

50 mA max.
4.7 W at 31.2 V DC max.

1621 (hex.)
4

24 V DC nom. (19.2-31.2 V DC)
210 mA at 24 V DC

Max. 5-95 \%
Max. 5-80 \%
200-OF4I

200-IT8	
Number of inputs	8
Galvanic isolation	Yes
Status indicator	Bi-color (green/red) LED for OK
Resolution	16-bits
Input voltage range	$\pm 76.5 \mathrm{mV}$ DC
Overvoltage capability	35 V DC, 25 V AC continuous at $25^{\circ} \mathrm{C}$, 250 V peak transient
Accuracy with filter	0.025 \% of FSR $\pm 0.5{ }^{\circ} \mathrm{C}$ max.
Accuracy without filter	0.05% of FSR $\pm 0.5{ }^{\circ} \mathrm{C}$ max.
Filter	Programmable
Internal current consumption (from serial bus)	20 mA max.
Normal mode noise rejection	-60 dB at 60 Hz
Common mode rejection	$\begin{aligned} & -115 \mathrm{~dB} \text { at } 60 \mathrm{~Hz} ; \\ & -100 \mathrm{~dB} \text { at } 50 \mathrm{~Hz} \end{aligned}$
System throughput	Progammable 28-325 ms for 1 channel; 2.6 s for 8 channels
Open thermocouple detection	Out of range reading (upscale)
Open-thermocouple detection time	1 s , typically
Input offset drift with temperature	$\pm 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
Gain drift with temperature	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Overall drift with temperature	$50 \mathrm{ppm} 1^{\circ} \mathrm{C}$ of span max.
Supported thermocouple types	Millivolt $\pm 76.5 \mathrm{mV}$ Type B: $+300-+1800^{\circ} \mathrm{C}$ Type C: $\pm 0-+2315^{\circ} \mathrm{C}$ Type E: $-270-+1000^{\circ} \mathrm{C}$ Type J: -210-+1200 ${ }^{\circ} \mathrm{C}$ Type K: $-270-+1372^{\circ} \mathrm{C}$ Type $\mathrm{N}:-270-+1300^{\circ} \mathrm{C}$ Type R: $-50-+1768^{\circ} \mathrm{C}$ Type S: $-50-+1768^{\circ} \mathrm{C}$ Type T: $-270-+400^{\circ} \mathrm{C}$
Power dissipation	3 W at 31.2 V DC max.
Unit identity	$1 \mathrm{B00}$ (hex.)
Backplane key code	3
External DC Power	
Supply voltage	24 V DC nom. (19.2-31.2 V DC)
Supply current	60 mA at 24 V DC
Humidity	
Operating	5-95\%, non-condensing
Non-operating	5-80\%, non-condensing
Order code	200-IT8
200-IR8	
Number of inputs	8
Galvanic isolation	Yes (via optocouplers)
Status indicator	Bi-color (green/red) LED for OK
Resolution	16-bits across 435Ω
Input range	$1-433 \Omega$
Overvoltage capability	$\pm 35 \mathrm{~V}$ DC, 25 V AC continuous at $25^{\circ} \mathrm{C}$, 250 V peak transient
Filter	Programmable
Accuracy without calibration and at low humidity levels	0.05% of FSR max. in normal mode (0.01% of FSR typ. in enhanced mode) at $25^{\circ} \mathrm{C}$
Internal current consumption (from serial bus)	20 mA max.
Normal mode noise rejection	60 dB at 60 Hz
Calibration	Programmable
Common mode rejection	120 dB at $60 \mathrm{~Hz}, 100 \mathrm{~dB}$ at 50 Hz . For A/D filter cut-off at 10 Hz

200-IR8R	
Number of inputs	8
Galvanic isolation	Yes
Status indicators	8 yellow LEDs for I/O status
	1 green LED for OK
Resolution	16 -bits
Input range	$0-100 \%$ (0-65535) corresponding to
	$-60^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

External DC power	
Supply voltage Supply current	$24 \mathrm{~V} \mathrm{DC} \mathrm{nominal} \mathrm{(19.2-30.0} \mathrm{~V} \mathrm{DC)}$
Temperature	100 mA at 24 V DC
Operating	$+5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-operating	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity	Non-condensing
Operating	Max. $5-95 \%$
Non-operating	Max. $5-80 \%$
Order code	$200-$ IR8R

200-IA8	
Number of inputs	8 (1 group of 8), non-isolated
Galvanic isolation	Yes (via optocouplers)
Status indicators	8 yellow LEDs (field side indication)
ON-state voltage	$65 \mathrm{~V} \mathrm{AC} \mathrm{min}$.
OFF-state voltage	$43 \mathrm{~V} \mathrm{AC} \mathrm{max}$.
ON-state current	7.1 mA min.
OFF-state current	2.9 mA max.
Filter time	Software programmable
Filter	First-order, low-pass filter with time con-
stant 8 ms	

200-IM8

Number of inputs
Galvanic isolation
Status indicators
ON-state voltage
OFF-state voltage
ON-state current
OFF-state current Input delay time OFF to ON

ON to OFF

Isolation voltage

Input impedance
Internal current
consumption (from serial bus)
Power dissipation
Unit identity
Backplane key code

8 (1 group of 8)
Yes (via optocouplers)
8 yellow LEDs (field side indication)
159 V AC min.
40 V AC max.
11 mA min.
2.6 mA max.

Software programmable
Max. time from valid input signal to recognition by the logic: 7.5 ms (default), $8 \mathrm{~ms}, 9 \mathrm{~ms}, 10 \mathrm{~ms}, 12 \mathrm{~ms}, 16 \mathrm{~ms}$, $24.5 \mathrm{~ms}, 42 \mathrm{~ms}$.
Max. time from input dropping below valid level to recognition by the logic: 26.5 ms (default), $27 \mathrm{~ms}, 28 \mathrm{~ms}, 29 \mathrm{~ms}$, $31 \mathrm{~ms}, 35 \mathrm{~ms}, 44 \mathrm{~ms}, 60.5 \mathrm{~ms}$.
100% tested at 2600 V DC for 1 s between user and system. No isolation between individual channels and no isolation between customer power to input channels
$22.3 \mathrm{k} \Omega$ nominal
30 mA max. at 5 V DC
4.7 W at 264 V AC max

0205 (hex.)
8

External AC Power

Supply voltage Input frequency Voltage range
Humidity
Order code

230 V AC nominal $47-63 \mathrm{~Hz}$ 159-264 V AC
Max 5-95\%, non-condensing 200-IM8

200-OA8	
Number of outputs	8 (1 group of 8), non-isolated
Galvanic isolation	Yes (via optocouplers)
Status indicators	8 yellow LEDs
Output voltage range	85-132 V AC, 47-63 Hz
Output current range	4.0 A (8 outputs at 500 mA)
ON-state voltage drop	$1.0 \mathrm{~V} \mathrm{AC} \mathrm{at} \mathrm{0.5} \mathrm{~A} \mathrm{min}$.
Inrush current	7 A for 45 ms , repeatable every 8 s
OFF-state leakage	2.25 mA max.
Isolation voltage	100 \% tested at 1250 V AC for 1 s between user and system. No isolation between individual channels
Output signal delay	
OFF to ON	1/2 cycle max.
ON to OFF	$1 / 2$ cycle max.
Internal current consumption (from serial bus)	80 mA max.
Power dissipation	5.2 W at 132 V AC
Unit identity	0195 (hex.)
Backplane key code	8
External AC Power	
Supply voltage	120 V AC nominal
Input frequency	$47-63 \mathrm{~Hz}$
Voltage range	85-132 V AC
Supply current	150 mA min .
Surge current capability	50 A for $1 / 2$ cycle at power-up max.
Humidity	Max. 5-95\%, non-condensing
Fuse	1.6 A, slow (when used in TBNF)
Order code	200-OA8

200-OM8	
Number of outputs	8 (1 group of 8), non-isolated
Galvanic isolation	Yes (via optocouplers)
Status indicators	8 yellow LEDs
Output voltage range	159-264 V AC, 47-63 Hz
ON-state current	50 mA per output min. 500 mA per output max. at $55^{\circ} \mathrm{C}$
ON-state voltage drop	1.5 V AC at 0.5 A
Inrush current	7 A for 40 ms , repeatable every 8 s
OFF-state leakage	2.5 mA max.
Isolation voltage	100% tested at 2600 V DC for 1 s between user and system. No isolation between individual channels or between user power and output channels
Output signal delay OFF to ON ON to OFF	1/2 cycle max. $1 / 2$ cycle max.
Internal current consumption (from serial bus)	60 mA max.
Power dissipation	5 W at 0.5 A
Unit identity	0105 (hex.)
Backplane key code	8
External AC Power	
Supply voltage	230 V AC nominal
Input frequency	$47-63 \mathrm{~Hz}$
Voltage range	159-264 V AC
Surge current capability	7 A for 40 ms each, repeatable every 8 s
Humidity	Max. 5-95 \%, non-condensing
Fuse	0,8 A
Order code	200-OM8

200-OW8	
Number of outputs	8 (1 group of 8), normally open electromechanical relays
Galvanic isolation	Yes (via optocouplers and relays)
Status indicators	8 yellow LEDs
Output voltage range (load dependent)	5-30 V DC at 2.0 A resistive 48 V DC at 0.5 A resistive 125 V DC at 0.25 A resistive 125 V AC at 2.0 A resistive 240 V AC at 2.0 A resistive
Output current rating (at rated power)	
Resistive	$\begin{aligned} & 2 \mathrm{~A} \text { at } 5-30 \mathrm{~V} \text { DC } \\ & 0.5 \mathrm{~A} \text { at } 48 \mathrm{~V} \text { DC } \\ & 0.25 \mathrm{~A} \text { at } 125 \mathrm{~V} D C \\ & 2 \mathrm{~A} \text { at } 125 \mathrm{~V} \text { AC } \\ & 2 \mathrm{~A} \text { at } 240 \mathrm{~V} \text { AC } \end{aligned}$
Inductive (steady state)	2.0 A at $5-30 \mathrm{~V} D C, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$ 0.5 A at $48 \mathrm{~V} \mathrm{DC}, \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ 0.25 A at 125 V DC, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ 2.0 A, 15 A at operation of a relay at $125 \mathrm{~V} \mathrm{AC}, \cos \varphi=0.4$ 2.0 A, 15 A at operation of a relay at $240 \mathrm{VAC}, \cos \varphi=0.4$
Power rating (steady state)	
Resistive	250 W max. for 125 V AC 480 W max. for 240 V AC 60 W max. for 30 V DC 24 W max. for 48 V DC 31 W max. for 125 V DC
Inductive	250 VA max. for 125 V AC 480 VA max. for 240 V AC 60 VA max. for 30 V DC 24 VA max. for 48 V DC 31 VA max. for 125 V DC
Initial contact resistance$30 \mathrm{~m} \Omega$	
Switching frequency	1 operation $/ 3 \mathrm{~s}$ (0.3 Hz at rated load) max.
Operate/release time	10 ms , max.
Bounce time	1.2 ms , mean
Contact load	$100 \mu \mathrm{~A}$ at 100 mV DC min.
Expected life of electrical contacts	100,000 operations min. at rated loads
OFF-state leakage current	1 mA max. at 240 V AC through snubber circuit
Isolation voltage between any 2 sets of	
customer load to logic customer load to 24 V	2550 V DC for 1 s
DC supply customer 24 V DC	2550 V DC for 1 s
supply to logic	850 V DC for 1 s
Internal current consumption (from serial bus)	69 mA max.

$\left.\begin{array}{ll}\text { Output signal delay } & \\ \text { OFF to ON }\end{array} \quad \begin{array}{l}8 \text { ms max. (time from a valid output on } \\ \text { signal-to-relay energization by the unit) } \\ \text { ON to OFF } \\ \text { signal-to-relay de-energization by the }\end{array}\right\}$

200-OB8EP	
Number of outputs	8 (1 group of 8)
Galvanic isolation	Yes (via optocouplers)
Status indicators	8 yellow LEDs for status indications and 8 red LEDs for diagnostic fault indication
ON-state voltage range	19.2 V DC min., 24 V DC nominal, 31.2 V DC max.
ON-state voltage drop	0.2 V DC max.
Output current rating	10 A (e.g. 8 outputs at $1.25 \mathrm{~A}, 5$ outputs at 2.0 A or similar output/A combinations, totally $\leq 10 \mathrm{~A}$)
ON-state current	1.0 A min. per channel 2.0 A max. per channel
OFF-state voltage	31.2 V DC max.
Surge current	4 A for 10 ms , repeatable every 3 s
OFF-state leakage	0.5 mA max.
Isolation voltage	100% tested at 850 V DC for 1 s between plant and system. No isolation between individual channels
Output signal delay OFF to ON ON to OFF	0.4 ms max. 0.2 ms max.
Internal current consumption (from serial bus)	73 mA max.
Power dissipation	5.5 W at 31.2 V DC max.
Unit identity	019D (hex.)
Backplane key code	2
External DC Power	
Supply voltage	24 V DC
Voltage range	19.2 to 31.2 V DC
Supply current	80 mA at 24 V DC
Humidity	Max. 5-95 \%, non-condensing
Order code	200-OB8EP

3BSE 021366 R201. Printed in Sweden May 2002.
Specificaons subject to change without notice. Copyright © 1999 by ABB. All rights to trademarks reside with their respective owners.

Automation Technology Products	Automation Technology Products
Västeras, Sweden	Wickliffe, Ohio, USA
www.abb.com/processautomation	www.abb.com/processautomation
email: processautomation@se.abb.com	email: industrialitsolutions@us.abb.com

